JP2009164402A - Manufacturing method of dust core - Google Patents

Manufacturing method of dust core Download PDF

Info

Publication number
JP2009164402A
JP2009164402A JP2008001377A JP2008001377A JP2009164402A JP 2009164402 A JP2009164402 A JP 2009164402A JP 2008001377 A JP2008001377 A JP 2008001377A JP 2008001377 A JP2008001377 A JP 2008001377A JP 2009164402 A JP2009164402 A JP 2009164402A
Authority
JP
Japan
Prior art keywords
particles
magnetic particles
metal magnetic
magnetic
dust core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008001377A
Other languages
Japanese (ja)
Inventor
Hiroshi Sato
啓 佐藤
Masaharu Edo
雅晴 江戸
Takayuki Hirose
隆之 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2008001377A priority Critical patent/JP2009164402A/en
Publication of JP2009164402A publication Critical patent/JP2009164402A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic component which has high magnetic permeability and high resistivity with a relatively easy method by imparting high electric insulation to metal magnetic particles and making a high-temperature heat treatment possible. <P>SOLUTION: Disclosed is a manufacturing method of a dust core in which metal magnetic particles which have the insulating oxide coatings on their surfaces are compression-molded and then a heat treatment is carried out, the manufacturing method of the dust core being characterized in that the metal magnetic particles are spherical or flat particles, and the insulating oxide coatings are uniformly formed by a dry filming method. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧粉磁心の製造方法に関する。この絶縁酸化被膜付き金属磁性粒子を用いて形成された圧粉磁心は、スイッチング電源などに搭載される高周波用トランス、リアクトルなどに用いる複合磁性材料および磁気部品として有用である。   The present invention relates to a method for manufacturing a dust core. The dust core formed using the metal magnetic particles with an insulating oxide film is useful as a composite magnetic material and a magnetic component used for a high-frequency transformer, a reactor, etc. mounted on a switching power supply or the like.

近年、各種電子機器は、小形化、軽量化されてきており、なおかつ低消費電力化が求められている。これに伴い電子機器に搭載されているスイッチング電源も小形化の要求が高まっている。特にノート型パソコンや小型携帯機器、薄型CRT、フラットパネルディスプレイに用いられるスイッチング電源では、小型化、薄型化が強く求められている。しかしながら、従来のスイッチング電源は、その主要な構成部品であるトランス、リアクトル等の磁気部品が大きな体積を占め、小型化、薄型化することに限界があった。これら磁気部品の体積を小型、薄型化しない限り、スイッチング電源を小型化、薄型化することは困難となっていた。   In recent years, various electronic devices have been reduced in size and weight, and reduction in power consumption has been demanded. Along with this, there is an increasing demand for miniaturization of switching power supplies mounted on electronic devices. In particular, switching power supplies used in notebook personal computers, small portable devices, thin CRTs, and flat panel displays are strongly required to be small and thin. However, in conventional switching power supplies, magnetic components such as transformers and reactors, which are main components, occupy a large volume, and there is a limit to downsizing and thinning. Unless the volume of these magnetic components is reduced in size and thickness, it has been difficult to reduce the size and thickness of the switching power supply.

従来、このようなスイッチング電源に使用されているトランス、リアクトルなどの磁気部品には、センダストやパーマロイなどの金属磁性材料や、フェライトなどの酸化物磁性材料がコアすなわち圧粉磁心として使用されていた。   Conventionally, in magnetic parts such as transformers and reactors used in such switching power supplies, metal magnetic materials such as sendust and permalloy, and oxide magnetic materials such as ferrite have been used as cores, that is, dust cores. .

金属磁性材料は、一般に高い飽和磁束密度と透磁率を有するが、電気抵抗率が低いため、特に高周波数領域ではヒステリシス損失や渦電流損失が大きくなってしまう。スイッチング電源では、回路を高周波駆動することにより、高効率化および小型化する傾向にあるが、上記の渦電流損失の影響から金属磁性材料をスイッチング電源用の磁気部品に使用することは困難であった。   Metallic magnetic materials generally have a high saturation magnetic flux density and magnetic permeability, but have low electrical resistivity, so hysteresis loss and eddy current loss are particularly large in the high frequency region. Switching power supplies tend to be highly efficient and miniaturized by driving the circuit at a high frequency. However, it is difficult to use metallic magnetic materials for magnetic parts for switching power supplies due to the effects of eddy current loss. It was.

一方、フェライトに代表される酸化物磁性材料は、金属磁性材料に比べ電気抵抗率が高いため、高周波数領域でも発生する渦電流損失が小さい。しかしながら、トランスやリアクトルを小型化した場合、コイルに流す電流は同じでも磁心にかかる磁場は強くなってしまう。一般に、フェライトの飽和磁束密度は金属磁性材料に比べて小さく、スイッチング電源の磁気部品として使用した場合、上記の理由によりその小型化には限界がある。   On the other hand, an oxide magnetic material typified by ferrite has a higher electrical resistivity than a metal magnetic material, and therefore, an eddy current loss generated even in a high frequency region is small. However, when the transformer or the reactor is downsized, the magnetic field applied to the magnetic core becomes strong even if the current flowing through the coil is the same. In general, the saturation magnetic flux density of ferrite is smaller than that of a metal magnetic material, and when used as a magnetic component of a switching power supply, there is a limit to downsizing for the above reasons.

このように、従来の磁気部品では、いずれの材料を用いても、スイッチング電源の磁気部品に対して要求される、高周波駆動と小型化の双方を満足させることは困難となっていた。   As described above, with any conventional magnetic component, it has been difficult to satisfy both high frequency driving and miniaturization required for the magnetic component of the switching power supply, regardless of which material is used.

近年、前述の圧粉磁心材料である飽和磁束密度および透磁率が高い金属磁性材料に関して、トレードオフの関係にある低抵抗率を改善するため、様々な検討がなされており、金属磁性粒子の表面に電気抵抗率の高い酸化物材料の被膜や粒子を形成した粒子を用いた圧粉磁心や、金属磁性粉末と電気絶縁性が高いバインダーとの混合物からなる圧粉磁心が提案されている。(例えば、特許文献1〜5参照。)   In recent years, various studies have been made to improve the low resistivity, which has a trade-off relationship, with respect to the above-described powder magnetic core material, which has a high saturation magnetic flux density and high magnetic permeability. In addition, there have been proposed a dust core using particles formed with a film or particles of an oxide material having a high electrical resistivity, and a dust core made of a mixture of metal magnetic powder and a binder having high electrical insulation. (For example, see Patent Documents 1 to 5.)

また、磁気特性(透磁率)の向上を図るために磁性粒子の成形加工歪を除去する提案もある。(例えば、特許文献3、5参照。)   There is also a proposal to remove the molding distortion of magnetic particles in order to improve the magnetic properties (permeability). (For example, see Patent Documents 3 and 5.)

これらの提案は、金属磁性体の特性である高飽和磁束密度は維持したまま、圧粉磁心全体の透磁率および抵抗率を増大させ、高周波数帯域においても高透磁率を維持し、ヒステリシス損や渦電流損を低減させた、いわゆる低損失化圧粉磁心を提供することを目的としている。   These proposals increase the magnetic permeability and resistivity of the entire powder magnetic core while maintaining the high saturation magnetic flux density, which is a characteristic of the metal magnetic material, maintain high magnetic permeability even in a high frequency band, reduce hysteresis loss and An object of the present invention is to provide a so-called low-loss powder magnetic core with reduced eddy current loss.

即ち、特許文献1では、圧粉磁心の固有抵抗値を増加させるために、電気絶縁性の高い樹脂やバインダーなどを用いて絶縁酸化物粉末を磁性粒子表面に被覆する湿式絶縁被膜形成方法により被膜を形成しており、特許文献2では、酸化物の水和物を含有する溶液を用いた湿式絶縁被膜形成方法により被膜を形成している。次に、特許文献3に開示されている従来の圧粉磁心の製造方法では、粒子を被覆する絶縁被膜が2層構造であり、耐熱性を持たせた絶縁被膜を有する磁性粒子を用いた圧粉磁心が提案されている。   That is, in Patent Document 1, in order to increase the specific resistance value of the powder magnetic core, the film is formed by a wet insulating film forming method in which the surface of magnetic particles is coated with insulating oxide powder using a highly electrically insulating resin or binder. In Patent Document 2, a film is formed by a wet insulating film forming method using a solution containing an oxide hydrate. Next, in the conventional method of manufacturing a powder magnetic core disclosed in Patent Document 3, the insulating coating that covers the particles has a two-layer structure, and the pressure using magnetic particles having the insulating coating with heat resistance is used. A powder magnetic core has been proposed.

次に、特許文献4には、乾式絶縁被膜形成法を用いた絶縁被膜の上にリン酸系化成処理被膜を形成することにより、熱による絶縁被膜の破壊を抑制するとともに、高圧力で加圧しても上記二重の被膜による被覆状態を維持することができる、したがって高温高圧を印加しても高抵抗比を十分に維持することができる磁性粒子による圧粉磁心の製造方法が提案されている。   Next, Patent Document 4 discloses that a phosphoric acid-based chemical conversion treatment film is formed on an insulating film using a dry insulating film forming method, thereby suppressing the destruction of the insulating film due to heat and pressurizing at a high pressure. However, a method of manufacturing a dust core with magnetic particles that can maintain the coating state with the above-mentioned double coating, and can sufficiently maintain a high resistance ratio even when high temperature and high pressure are applied has been proposed. .

特許文献5には、絶縁被膜成分の添加により磁性粒子の充填率(占有率)が低下することを抑制するために、表面絶縁層を有する軟磁性金属粉末と塑性変形性に優れた軟磁性金属ガラス合金粉末とからなる圧粉磁心が提案されている。   Patent Document 5 discloses a soft magnetic metal powder having a surface insulating layer and a soft magnetic metal excellent in plastic deformability in order to suppress a decrease in the filling rate (occupancy) of magnetic particles due to the addition of an insulating coating component. A dust core made of glass alloy powder has been proposed.

特開2001−307914号公報JP 2001-307914 A 特開2003−332116号公報JP 2003-332116 A 特開2006−5173号公報JP 2006-5173 A 特開2001−85211号公報JP 2001-85211 A 特開2006−237153号公報JP 2006-237153 A

特許文献1および2に開示されている圧粉磁心の製造方法では、いずれもSiO2微粒子を含む分散液と磁性粒子を混合する際に、スラリー状にして混錬する湿式の絶縁被膜形成法が用いられている。
この絶縁被膜形成法のみでは圧粉磁心の高抵抗化は図れるが、耐熱性が低く、粒子の成形歪み除去温度での熱処理が行えない。したがって、透磁率が向上しない。また、粒子混合溶液中の不純物との化学反応や、磁性粒子の腐食が生じるおそれがある。また、強度が低い、生産コストが高いなどの欠点もある。このため、磁気部品への適用は困難と言える。
In both methods of manufacturing a powder magnetic core disclosed in Patent Documents 1 and 2, there is a wet insulating film forming method in which a dispersion containing SiO 2 fine particles and magnetic particles are mixed and kneaded in a slurry state. It is used.
Although the resistance of the powder magnetic core can be increased only by this insulating film forming method, the heat resistance is low and the heat treatment cannot be performed at the temperature at which the particles are removed from the molding distortion. Therefore, the magnetic permeability is not improved. In addition, chemical reaction with impurities in the particle mixed solution and corrosion of magnetic particles may occur. There are also disadvantages such as low strength and high production costs. For this reason, it can be said that application to magnetic parts is difficult.

特許文献3に開示されている圧粉磁心の製造方法では、粒子を被覆する絶縁被膜が2層構造であり、第2絶縁層中の酸化物粒子により絶縁被膜に耐熱性を付与しているが、湿式法で絶縁層を形成し、乾燥してその層を固定した後に湿式法で次の絶縁層を形成しては乾燥してその層を固定するという手法をとっており、工数、手間、コストがかかり、生産性が低いという問題がある。また、熱処理時の温度が700℃未満であり、完全に磁性粒子の成形加工歪を除去するまでには至らず、透磁率を格段に向上させるのは困難である。   In the method of manufacturing a powder magnetic core disclosed in Patent Document 3, the insulating coating covering the particles has a two-layer structure, and the insulating coating is given heat resistance by the oxide particles in the second insulating layer. , Forming an insulating layer by a wet method, drying and fixing the layer, then forming a next insulating layer by a wet method and then drying and fixing the layer, man-hours, labor, There is a problem that costs are high and productivity is low. Moreover, the temperature at the time of heat treatment is less than 700 ° C., and it does not come to completely remove the molding distortion of the magnetic particles, and it is difficult to remarkably improve the magnetic permeability.

特許文献4に開示されている圧粉磁心の製造方法では、熱による絶縁被膜の破壊を抑制するために、メカノフュージョン(複数の異なる素材粒子に機械的エネルギーを加えてメカノケミカル的な反応を起こさせる技術、乾式絶縁被膜形成法の1つ)を用いた絶縁被膜付き磁性粒子による圧粉磁心の製造方法が提案されているが、この手法で得られる絶縁被膜は不均一であり、完全に被膜されない部分も生じてしまい、絶縁性が十分とはいえないという問題があると共に、プレス成形時に被膜の欠陥部から被膜の破壊が生じてしまうおそれがある。   In the method of manufacturing a powder magnetic core disclosed in Patent Document 4, in order to suppress the destruction of the insulating coating due to heat, mechanofusion (mechanical reaction is caused by applying mechanical energy to a plurality of different material particles). A method of manufacturing a dust core using magnetic particles with an insulating coating using a technique of forming a dry insulating coating) has been proposed, but the insulating coating obtained by this method is non-uniform and completely coated In addition, there is a problem that a portion that is not formed is generated, and there is a problem that the insulating property is not sufficient, and there is a possibility that the coating may be broken from a defective portion of the coating during press molding.

特許文献5に開示されている圧粉磁心の製造方法によると、高周波数帯域においても200程度の透磁率が得られるが、熱処理手法がプラズマ放電焼結法であり、装置コスト、1回あたりの生産個数の点から量産向きではない。   According to the method for manufacturing a powder magnetic core disclosed in Patent Document 5, a magnetic permeability of about 200 can be obtained even in a high frequency band. However, the heat treatment method is a plasma discharge sintering method, and the apparatus cost per time Not suitable for mass production in terms of production quantity.

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、金属磁性粒子に高電気絶縁牲を付与し、耐熱性を有する被膜を乾式被膜形成法にて成膜してなる複合磁性材料により、高温での熱処理を可能にさせ、高透磁率および高抵抗率を有する磁気部品を比較的簡便な方法で提供することにある。   The present invention has been made in view of such problems. The object of the present invention is to provide a metal film with high electrical insulation and to form a heat-resistant film by a dry film forming method. It is to provide a magnetic component having a high magnetic permeability and a high resistivity in a relatively simple manner by enabling the heat treatment at a high temperature by the composite magnetic material.

即ち、本発明の圧粉磁心の製造方法は、金属磁性粒子の表面に絶縁酸化被膜を有する絶縁酸化被膜付き金属磁性粒子を圧縮成形し、次いで熱処理を施す圧粉磁心の製造方法において、前記金属磁性粒子が、純鉄、Fe−Si系合金、センダスト系合金、パーマロイ系合金から選ばれる1種以上の材質からなる球状もしくは扁平状の粒子であり、前記絶縁酸化被膜が乾式成膜法で成膜された均一な被膜であることを特徴とする。   That is, the method for producing a dust core according to the present invention is the method for producing a dust core in which the metal magnetic particles with an insulating oxide film having an insulating oxide film on the surface of the metal magnetic particles are compression-molded and then subjected to heat treatment. The magnetic particles are spherical or flat particles made of one or more materials selected from pure iron, Fe-Si alloys, Sendust alloys, and permalloy alloys, and the insulating oxide film is formed by a dry film formation method. It is characterized by being a uniform film formed.

本発明によれば、確実に圧粉磁心の透磁率および抵抗率を増大させることができ、圧粉磁心の周波数に対する損失を低減できると共に抗折強度を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the permeability and resistivity of a dust core can be increased reliably, the loss with respect to the frequency of a dust core can be reduced, and the bending strength can be improved.

以下、図面を参照しながら本発明の実施の形態について説明する。
本発明においては、金属磁性粒子として、球状もしくは扁平状の金属磁性粒子の表面に絶縁酸化被膜を有する絶縁酸化被膜付き金属磁性粒子が用いられる。
金属磁性粒子としては、純鉄、Fe−Si系合金、センダスト系合金、パーマロイ系合金から選ばれる1種以上の材質からなるものを例示できる。この金属磁性粒子としては、パーマロイからなる粒子であることが好ましい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the present invention, metal magnetic particles with an insulating oxide film having an insulating oxide film on the surface of spherical or flat metal magnetic particles are used as the metal magnetic particles.
Examples of the metal magnetic particles include those made of one or more materials selected from pure iron, Fe-Si alloys, Sendust alloys, and permalloy alloys. The metal magnetic particles are preferably particles made of permalloy.

金属磁性粒子が球状であると、異方性がないため取り扱いが容易であると共に、粒子が異方性を有する場合に比べて、得られる圧粉磁心の性能が安定するという特徴を有する。また、一般的な製造方法で作製される粒子は概ね球状であり、作製された粒子をそのまま使用すればよい。
一方、金属磁性粒子を偏平化すると、その磁化困難軸が偏平な粒子の面に垂直な方向に現れる。これを磁心に予定される磁路の方向に対して垂直な方向の磁場の下に置くと、粒子の磁化容易軸が磁場の方向に配向する。従って、偏平化した金属磁性粒子を用い、磁場の方向に対して、粒子の偏平面の方向を制御してやることで、透磁率を向上できるという特徴を有する。
偏平化方法としては、ボールミルによる偏平化、メカノフュージョンによる偏平化、圧縮成型による偏平化などを挙げることができる。
When the metal magnetic particles are spherical, there is no anisotropy so that the handling is easy, and the performance of the obtained dust core is stable as compared with the case where the particles have anisotropy. Further, particles produced by a general production method are generally spherical, and the produced particles may be used as they are.
On the other hand, when the metal magnetic particle is flattened, its hard axis appears in a direction perpendicular to the plane of the flat particle. When this is placed under a magnetic field in a direction perpendicular to the direction of the magnetic path planned for the magnetic core, the easy axis of magnetization of the particles is oriented in the direction of the magnetic field. Therefore, the magnetic permeability can be improved by using the flattened metal magnetic particles and controlling the direction of the flat surface of the particles with respect to the direction of the magnetic field.
Examples of the flattening method include flattening using a ball mill, flattening using mechanofusion, and flattening using compression molding.

この絶縁酸化被膜は、単一層からなるものでもよく、複数の層からなるものであってもよい。少なくとも前記金属磁性粒子に接する絶縁酸化被膜は、SiO2,TiO2、SiNまたはAl23のいずれかからなるものであることが好ましい。このAl23はアルミナを用いて被膜形成したものであってもよく、金属アルミニウムを用いて被膜形成した後、圧粉磁心成型後の熱処理で酸化したものであってもよい。 This insulating oxide film may be composed of a single layer or a plurality of layers. It is preferable that at least the insulating oxide film in contact with the metal magnetic particles is made of any one of SiO 2 , TiO 2 , SiN, and Al 2 O 3 . This Al 2 O 3 may be formed by coating with alumina, or may be formed by heat treatment after forming a powder magnetic core after forming a coating with metallic aluminum.

絶縁酸化被膜の形成は乾式成膜法により行われる。乾式成膜法としては、均質な膜を前記金属磁性粒子の表面に均一に(すなわち、表面のどの部分でも略等しい厚さで)生成することのできる蒸着法、スパッタ法、アブレーション法などを挙げることができ、いずれの手法も用いることができるが、少なくとも前記金属磁性粒子に接する絶縁酸化被膜はアブレーション法、特にレーザーアブレーション法が好ましく用いられる。   The insulating oxide film is formed by a dry film forming method. Examples of the dry film forming method include a vapor deposition method, a sputtering method, an ablation method and the like that can uniformly generate a uniform film on the surface of the metal magnetic particles (that is, with almost the same thickness at any part of the surface). Any method can be used, but at least the insulating oxide film in contact with the metal magnetic particles is preferably an ablation method, particularly a laser ablation method.

レーザーアブレーション法は、ターゲットにレーザーを集光して照射し、ターゲット表面を急激に液化、気化させる方法である。レーザー照射によりターゲット最表面は放射冷却や材料の気化熱のために内部より低い温度になり、より温度の高い内部の爆発的な体積膨張にともなって、ターゲット最表面の材料がクラスター、イオンとなって表面に対して垂直方向にある角度分布をもって飛び出していく。このとき飛び出していった原料はレーザー光にさらされているために急激な温度上昇とともに再励起され、熱プラズマ化したnmオーダーの微粒子として金属磁性粒子に衝突してその表面に被膜を形成する。したがって、金属磁性粒子表面に均質な膜を形成できる。   The laser ablation method is a method of condensing and irradiating a target with a laser to rapidly liquefy and vaporize the target surface. Due to laser irradiation, the surface of the target surface becomes lower than the inside due to radiation cooling and heat of vaporization of the material, and the material on the surface of the target becomes clusters and ions due to explosive volume expansion inside the higher temperature. Then it jumps out with an angular distribution that is perpendicular to the surface. Since the raw material jumped out at this time is exposed to the laser beam, it is re-excited as the temperature rises suddenly, collides with the metal magnetic particles as nano-order fine particles converted into thermal plasma, and forms a film on the surface. Therefore, a homogeneous film can be formed on the surface of the metal magnetic particles.

成膜法としてレーザーアブレーション法を用いると、ターゲットと膜の組成のずれが少ないため、湿式法で成膜する方法に比べて膜の組成を制御し易いという利点がある。また、レーザーアブレーション法は、通常、真空チャンバー内で実施されるため、被膜形成の対象である粒子の酸化などの劣化を抑制することができる。
また、レーザーアブレーション時に金属磁性粒子に振動を与えておけば、金属磁性粒子表面に均一に被膜を形成できる。
When the laser ablation method is used as a film forming method, there is an advantage that the composition of the film is easy to control as compared with a method of forming a film by a wet method because there is little deviation between the composition of the target and the film. Further, since the laser ablation method is usually performed in a vacuum chamber, it is possible to suppress deterioration such as oxidation of particles that are targets for film formation.
Further, if the metal magnetic particles are vibrated during laser ablation, a film can be uniformly formed on the surface of the metal magnetic particles.

即ち、被膜生成中に金属磁性粒子を酸化させず、さらに、湿式法におけるようにスラリー状にしないため、不純物の混入、不均一性、組成変化、ハロゲンイオンによる腐食を防ぐことができる。   That is, the metal magnetic particles are not oxidized during the formation of the coating, and are not made into a slurry as in the wet method, so that contamination with impurities, nonuniformity, composition change, and corrosion due to halogen ions can be prevented.

前記絶縁酸化被膜の膜厚は5〜50nmであることが好ましい。この膜厚は、絶縁酸化被膜が複数の層からなるものである場合、その複数の層の膜厚の合計を意味する。これにより、1つの被膜付き粒子の内、磁性体の占有率を85〜97%程度とすることができ、磁気特性の悪化を低減できる。この膜厚が上記下限より薄いと、成型、熱処理後に部分的に絶縁不良が生ずるおそれがあり、上記上限より厚いと圧粉磁心中における磁性体の占有率が低下し、磁気特性の十分向上したものが得難くなる。   The insulating oxide film preferably has a thickness of 5 to 50 nm. This film thickness means the sum total of the film thickness of the several layer, when an insulating oxide film consists of a several layer. Thereby, the occupation rate of a magnetic body can be made into about 85-97% among one particle | grains with a film, and the deterioration of a magnetic characteristic can be reduced. If this film thickness is less than the above lower limit, there may be a partial insulation failure after molding and heat treatment, and if it is thicker than the above upper limit, the occupancy rate of the magnetic material in the dust core is reduced, and the magnetic characteristics are sufficiently improved. Things get harder.

この絶縁酸化被膜付き金属磁性粒子を用いて圧縮成形し、圧粉磁心を成型する。圧縮成形方法としては、金型を用いて、例えば上下方向から加圧圧縮する単軸圧縮成形、圧縮圧延成形、電気絶縁性非磁性被膜を有する軟磁性粒子をゴム型などにつめて全方向から加圧圧縮する静圧圧縮成形、これらを温間で行う温間単軸圧縮成形、温間静圧圧縮成形(WIP)、熱間で行う熱間単軸圧縮成形および熱間静圧圧縮成形(HIP)など通常、酸化物被覆金属磁性粒子の圧縮成形に採用される圧縮成形法であればいずれも採用できる。   The metal magnetic particles with an insulating oxide film are compression-molded to form a dust core. As a compression molding method, using a mold, for example, uniaxial compression molding that compresses and compresses in the vertical direction, compression rolling molding, soft magnetic particles having an electrically insulating nonmagnetic coating are packed in a rubber mold and the like from all directions. Hydrostatic compression molding that compresses and compresses, warm uniaxial compression molding that performs these in warm, warm hydrostatic compression molding (WIP), hot uniaxial compression molding that performs hot, and hot hydrostatic compression molding ( Any compression molding method generally employed for compression molding of oxide-coated metal magnetic particles such as HIP) can be employed.

本発明においては、得られた圧粉成形体を熱処理する。熱処理することにより成型加工された圧粉磁心の成型加工歪が消失すると共に、透磁率が向上し、透磁率が高く(μ’(透磁率の実部)が大きく)、損失の小さい(μ”(透磁率の虚部)が小さい)成形体を得ることができる。熱処理の最高到達温度は700〜1000℃であることが好ましい。この熱処理は酸素含有雰囲気下で行われる。酸素雰囲気下で熱処理を行っても、金属磁性粒子の表面には絶縁酸化被膜が形成されているので問題が生じるほど金属磁性粒子が酸化されることはない。   In the present invention, the obtained green compact is heat-treated. Molding distortion of the dust core molded by heat treatment disappears, the permeability is improved, the permeability is high (μ ′ (the real part of the permeability) is large), and the loss is small (μ ” A compact with a small (imaginary part of magnetic permeability) can be obtained.The maximum temperature of the heat treatment is preferably 700 to 1000 ° C. This heat treatment is performed in an oxygen-containing atmosphere. However, since the insulating oxide film is formed on the surface of the metal magnetic particles, the metal magnetic particles are not oxidized so as to cause a problem.

本発明において、前記絶縁酸化被膜が複数の層からなるものである場合、最外層が低融点金属を融解付着させてなり、圧縮成形後の熱処理により前記低融点金属が前記金属磁性粒子間に浸透すると共に酸化されて酸化物を形成したものであることが好ましい。
この低融点金属としては、アルミニウム(Al)、錫(Sn)、鉛(Pb)などを挙げることができる。最外層の内側の層の酸化物としてアルミナ(Al23)を用いた場合は、低融点金属としては、アルミニウムを用いると、酸化後には内側の層とほぼ同一の組成になるので好ましい。
In the present invention, when the insulating oxide film is composed of a plurality of layers, the outermost layer is formed by melting and adhering a low melting point metal, and the low melting point metal penetrates between the metal magnetic particles by heat treatment after compression molding. In addition, the oxide is preferably oxidized to form an oxide.
Examples of the low melting point metal include aluminum (Al), tin (Sn), lead (Pb), and the like. When alumina (Al 2 O 3 ) is used as the oxide of the innermost layer of the outermost layer, it is preferable to use aluminum as the low melting point metal because the composition becomes almost the same as that of the inner layer after oxidation.

最外層に低融点金属を用いた場合、絶縁酸化被膜と低融点金属で被覆された金属磁性粒子を用いて圧縮成形して、酸素含有雰囲気で熱処理すると、低融点金属が融解して前記金属磁性粒子間の間隙に浸透して金属磁性粒子同士を接合すると共に、雰囲気中の酸素により酸化されて電気絶縁性の高い酸化物を形成する。低融点金属の融解(実際にはその状態で酸化されて形成された酸化物)により金属磁性粒子同士が接合されることにより、圧粉磁心の抗折強度が向上する。   When a low melting point metal is used for the outermost layer, compression molding using metal magnetic particles coated with an insulating oxide film and a low melting point metal and heat treatment in an oxygen-containing atmosphere causes the low melting point metal to melt and the metal magnetism It penetrates into the gaps between the particles and joins the metal magnetic particles together, and is oxidized by oxygen in the atmosphere to form an oxide with high electrical insulation. The metal magnetic particles are joined to each other by melting of the low melting point metal (actually oxidized and formed in that state), whereby the bending strength of the dust core is improved.

<実施例1>
本実施例では、金属磁性粒子1として水アトマイズ法にて作製したNi78Mo5Fe粒子(Niが78wt%,Moが5wt%,残りがFeからなる粒子、以下同様)(平均粒径8μm)を10g用いた。
<Example 1>
In this example, 10 g of Ni78Mo5Fe particles (Ni is 78 wt%, Mo is 5 wt%, the rest is Fe particles, the same applies hereinafter) (average particle diameter of 8 μm) prepared by the water atomization method are used as the metal magnetic particles 1. .

この金属磁性粒子表面に、レーザーアブレーション法により酸化物絶縁体被膜として、SiO2被膜を形成した。
即ち、チャンバー内に配置した所定の容器内にNi78Mo5Fe粒子を入れ、同容器を振動させ、同チャンバー内にあるターゲット(SiO2)にYAGレーザー光源により波長266nmの紫外線レーザーを照射した。レーザーにより蒸発したターゲットであるSiO2が振動容器内のNi78Mo5Fe粒子表面に付着する。この際、容器を振動させておく事で、粒子全面に均一にSiO2絶縁被膜が形成される。この絶縁被膜は、均一に付着された状態が最適である。この絶縁被膜の厚母10nmになるようにした。
図1に、金属磁性粒子1に乾式被膜2を形成した絶縁被膜付き金属磁性粒子の模式断面図を示す。
A SiO 2 film was formed as an oxide insulator film on the surface of the metal magnetic particles by a laser ablation method.
That is, Ni78Mo5Fe particles were placed in a predetermined container placed in the chamber, the container was vibrated, and a target (SiO 2 ) in the chamber was irradiated with an ultraviolet laser having a wavelength of 266 nm from a YAG laser light source. SiO 2 which is the target evaporated by the laser adheres to the surface of the Ni78Mo5Fe particles in the vibration container. At this time, the container is vibrated, so that the SiO 2 insulating film is uniformly formed on the entire surface of the particles. The insulating film is optimally attached uniformly. The thickness of this insulating coating was set to 10 nm.
FIG. 1 shows a schematic cross-sectional view of a metal magnetic particle with an insulating coating in which a dry coating 2 is formed on the metal magnetic particle 1.

上記のようにして得られた被膜付き粒子を、超硬合金製の金型に充填し、1177MPa(12ton/cm2)の一軸プレスにより内径3mmφ、外形8mmφ、高さ約3mmのリングコア形状に成型した。
成型後、電気炉にて大気中で熱処理をした。熱処理条件は設定温度700℃、保持時間1時間、昇温速度100℃/hとした。
The coated particles obtained as described above are filled into a cemented carbide mold and molded into a ring core shape with an inner diameter of 3 mmφ, an outer diameter of 8 mmφ, and a height of about 3 mm by uniaxial pressing of 1177 MPa (12 ton / cm 2 ). did.
After molding, heat treatment was performed in the air in an electric furnace. The heat treatment conditions were set temperature 700 ° C., holding time 1 hour, and heating rate 100 ° C./h.

このリングコアに1次および2次巻線をそれぞれ5ターン巻回し、B−Hアナライザにて1kHz〜10MHzの周波数領域で測定した複素透磁率μ=μ’+iμ”の実効透磁率μ’を図2のAに示す。   The effective permeability μ ′ of the complex permeability μ = μ ′ + iμ ″ measured in the frequency region of 1 kHz to 10 MHz with a BH analyzer in which the primary and secondary windings are wound around this ring core for 5 turns is shown in FIG. A.

<実施例2>
本実施例でも、実施例1と同様、金属磁性粒子1として水アトマイズ法にて作製したNi78Mo5Fe粒子(平均粒径8μm)を10g用いた。
<Example 2>
Also in this example, 10 g of Ni78Mo5Fe particles (average particle size 8 μm) produced by the water atomization method were used as the metal magnetic particles 1 as in Example 1.

本実施例でも、実施例1と同様、乾式被膜形成手法としてレーザーアブレーションを用いて絶縁被膜を形成したが、被膜を2層構造とした。即ち、ターゲットとしてSiO2の代りにアルミナ(Al23)を用い、被膜形成厚みを5nmとして厚さ5nmの第1アルミナ層を形成した。次に同チャンバー内でターゲットを切り替え、アルミナ被覆金属磁性粒子の表面にアルミニウムを5nm成膜した。
レーザーアブレーションによれば、均一かつ急峻な界面構造をもった複層構造の被膜を成膜可能であり、1層目と、2層目の界面にダレを生じず、化合物を形成させないですむ。図3に成膜後の粒子の模式断面図を示す。図中、3が第1アルミナ層、4がアルミニウム層である。
Also in this example, as in Example 1, an insulating film was formed by laser ablation as a dry film forming method, but the film has a two-layer structure. That is, alumina (Al 2 O 3 ) was used in place of SiO 2 as a target, and a first alumina layer having a thickness of 5 nm was formed with a film formation thickness of 5 nm. Next, the target was switched in the same chamber, and an aluminum film having a thickness of 5 nm was formed on the surface of the alumina-coated metal magnetic particles.
According to laser ablation, it is possible to form a multi-layered film having a uniform and steep interface structure, so that no sagging occurs at the interface between the first layer and the second layer, and no compound is formed. FIG. 3 shows a schematic cross-sectional view of the particles after film formation. In the figure, 3 is a first alumina layer and 4 is an aluminum layer.

上記のようにして得られた被膜付き粒子を、実施例1と同様に、超硬合金製の金型に充填し、1177MPa(12ton/cm2)の一軸プレスにより内径3mmφ、外形8mmφ、高さ約3mmのリングコア形状に成型した。 The coated particles obtained as described above were filled in a cemented carbide mold in the same manner as in Example 1, and the inner diameter was 3 mmφ, the outer diameter was 8 mmφ, and the height was uniaxially pressed at 1177 MPa (12 ton / cm 2 ). It was molded into a ring core shape of about 3 mm.

成型後、電気炉にて大気中で熱処理をした。熱処理条件は実施例1と同様、設定温度700℃、保持時間1時間、昇温速度100℃/hとした。
この熱処理により、第2被膜であるアルミニウムは昇温過程で融解し、粒子の充填間隙に浸透した。さらに大気中の酸素と化学反応を生じ、第2アルミナ層を形成した。この第2アルミナ層は第1アルミナ層ほど抵抗率が高くは無いが、酸化物絶縁体となる。また、この第2アルミナ層は第1アルミナ層とほぼ同一の組成となるため、見かけ上、単一の絶縁被膜になる。加えて、700℃での保持過程では完全に被膜は固形化し、粒子問の結合力が増大し、圧粉磁心全体の抗折強度が向上する。
After molding, heat treatment was performed in the air in an electric furnace. As in Example 1, the heat treatment conditions were set temperature 700 ° C., holding time 1 hour, and heating rate 100 ° C./h.
By this heat treatment, the aluminum as the second coating melted during the temperature rising process and penetrated into the particle filling gap. Furthermore, a chemical reaction with oxygen in the atmosphere occurred to form a second alumina layer. The second alumina layer is not as high in resistivity as the first alumina layer, but becomes an oxide insulator. Further, since the second alumina layer has almost the same composition as the first alumina layer, it apparently becomes a single insulating film. In addition, in the holding process at 700 ° C., the coating is completely solidified, the bonding force between the particles is increased, and the bending strength of the entire dust core is improved.

このリングコアに1次および2次巻線をそれぞれ5ターン巻回し、B−Hアナライザにて1kHz〜10MHzの周波数領域で測定した複素透磁率μ=μ’+iμ”の実効透磁率μ’を図2のBに示す。   The effective permeability μ ′ of the complex permeability μ = μ ′ + iμ ″ measured in the frequency region of 1 kHz to 10 MHz with a BH analyzer in which the primary and secondary windings are wound around this ring core for 5 turns is shown in FIG. B of

<比較例1>
軟磁性金属粒子1として水アトマイズ法にて作製したNi78Mo5Fe粒子(平均粒径8μm)を10g用い、水ガラスを用いて湿式被膜形成法により被膜厚を10nm程度形成した。こうして得られた粒子を用いた以外は実施例1と同様にしてリングコア形状の圧粉磁心を作製し、得られた圧粉磁心に大気中で、700℃の熱処理を施した。被膜はこの熱処理により、SiO2になっている。このリングコアに1次および2次巻線をそれぞれ5ターン巻回し、B−Hアナライザにて1kHz〜10MHzの周波数領域で測定した複素透磁率μ=μ’+iμ”の実効透磁率μ’の測定結果を図2のCに示す。
<Comparative Example 1>
10 g of Ni78Mo5Fe particles (average particle size: 8 μm) produced by the water atomization method were used as the soft magnetic metal particles 1, and a film thickness of about 10 nm was formed by a wet film formation method using water glass. A ring core-shaped dust core was produced in the same manner as in Example 1 except that the particles thus obtained were used, and the obtained dust core was heat treated at 700 ° C. in the atmosphere. The coating has become SiO 2 by this heat treatment. Measurement result of effective permeability μ ′ of complex permeability μ = μ ′ + iμ ”measured in a frequency range of 1 kHz to 10 MHz with a BH analyzer by winding 5 turns of the primary and secondary windings around the ring core. Is shown in FIG.

<比較例2>
表面に被膜を形成せず、Ni78Mo5Fe粒子(平均粒径8μm)をそのまま用いてリングコア形状の圧粉磁心に圧縮成形し、実施例1と同一条件で熱処理した後、このリングコアに1次および2次巻線をそれぞれ5ターン巻回し、B−Hアナライザにて1kHz〜10MHzの周波数領域で測定した複素透磁率μ=μ’+iμ”の実効透磁率μ’の測定結果を図2のDに示す。
<Comparative example 2>
Without forming a coating on the surface, Ni78Mo5Fe particles (average particle size 8 μm) were directly compressed into a ring core-shaped powder magnetic core, heat treated under the same conditions as in Example 1, and then primary and secondary were applied to the ring core. FIG. 2D shows the measurement result of the effective permeability μ ′ of the complex permeability μ = μ ′ + iμ ″ measured by the BH analyzer in the frequency range of 1 kHz to 10 MHz after winding the windings for 5 turns.

図2から明らかなように、実施例のリングコアは比較例のリングコアと比して、周波数特性の悪化が抑制でき、特に高周波の透磁率が格段に向上していることがわかる。すなわち、実施例において、乾式絶縁被膜形成法により生成された均一な被膜が粒子の成形加工歪除去温度での熱処理後にも十分組成・状態を維持し、抵抗率低下による周波数特性の悪化が抑制されていることがわかる。
これにより、高周波まで使用可能な磁気部品の製品化が、工程/工数の削減により、コストの低減が可能となり、生産効率の向上を図ることで実現可能となる。
As is apparent from FIG. 2, it can be seen that the ring core of the example can suppress the deterioration of the frequency characteristics and particularly the high-frequency permeability is significantly improved as compared with the ring core of the comparative example. That is, in the examples, the uniform coating produced by the dry insulation coating formation method maintains a sufficient composition and state even after the heat treatment at the particle forming processing strain removal temperature, and the deterioration of the frequency characteristics due to the decrease in resistivity is suppressed. You can see that
As a result, the commercialization of magnetic parts that can be used up to high frequencies can be realized by reducing the cost by reducing the number of processes / man-hours and by improving the production efficiency.

本発明によれば、優れた透磁率を有し、高周波帯域における周波数特性の悪化が抑制された圧粉磁心を得ることができる。しかも工程/工数の削減により、コストの低減および生産効率の向上を図ることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it has the outstanding magnetic permeability and can obtain the powder magnetic core by which the deterioration of the frequency characteristic in a high frequency band was suppressed. In addition, by reducing the process / man-hours, it is possible to reduce costs and improve production efficiency.

実施例1で得たSiO2被膜付き金属磁性粒子の模式断面図である。1 is a schematic cross-sectional view of a SiO 2 coated metal magnetic particle obtained in Example 1. FIG. 実施例1、実施例2および比較例1、比較例2に記載した、各種リングコアにおける実効透磁率の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the effective permeability in various ring cores described in Example 1, Example 2, Comparative Example 1, and Comparative Example 2. 実施例2で作製した第1アルミナ層、アルミニウム層を有する金属磁性粒子の模式断面図である。4 is a schematic cross-sectional view of metal magnetic particles having a first alumina layer and an aluminum layer produced in Example 2. FIG.

符号の説明Explanation of symbols

1 金属磁性粒子
2 SiO2被膜
3 第1アルミナ層
4 アルミニウム層
A 実施例1で得られたリングコアを用いて測定したμ’の周波数特性
B 実施例2で得られたリングコアを用いて測定したμ’の周波数特性
C 比較例1で得られたリングコアを用いて測定したμ’の周波数特性
D 比較例2で得られたリングコアを用いて測定したμ’の周波数特性
Mu was measured using a ring core obtained in 1 metal magnetic particles 2 SiO 2 coating 3 frequency characteristic of the first measured using a ring core obtained in alumina layer 4 aluminum layer A in Example 1 mu 'B Example 2 'Frequency characteristics C' Frequency characteristics measured using the ring core obtained in Comparative Example 1 D 'Frequency characteristics measured using the ring core obtained in Comparative Example 2

Claims (5)

金属磁性粒子の表面に絶縁酸化被膜を有する絶縁酸化被膜付き金属磁性粒子を圧縮成形し、次いで熱処理を施す圧粉磁心の製造方法において、前記金属磁性粒子が球状もしくは扁平状の粒子であり、前記絶縁酸化被膜が乾式成膜法で成膜された均一な被膜であることを特徴とする圧粉磁心の製造方法。   In the method of manufacturing a dust core in which the metal magnetic particles with an insulating oxide film having an insulating oxide film on the surface of the metal magnetic particles are compression-molded and then subjected to heat treatment, the metal magnetic particles are spherical or flat particles, A method for producing a dust core, wherein the insulating oxide film is a uniform film formed by a dry film formation method. 前記絶縁酸化被膜が単一層または複数の層からなり、前記絶縁酸化被膜の厚さが5〜50nmであり、少なくとも前記金属磁性粒子に接する絶縁酸化被膜の成膜方法がレーザーアブレーション法であることを特徴とする請求項1記載の圧粉磁心の製造方法。   The insulating oxide film is composed of a single layer or a plurality of layers, the insulating oxide film has a thickness of 5 to 50 nm, and at least the method for forming the insulating oxide film in contact with the metal magnetic particles is a laser ablation method. The method for producing a dust core according to claim 1, wherein: 少なくとも前記金属磁性粒子に接する絶縁酸化被膜がSiO2,TiO2、SiNまたはAl23のいずれかからなることを特徴とする請求項2記載の圧粉磁心の製造方法。 At least method for producing a dust core according to claim 2, wherein the insulating oxide film in contact with the metal magnetic particles are characterized by consisting of either SiO 2, TiO 2, SiN or Al 2 O 3. 前記熱処理が、酸素含有雰囲気下で最高処理温度700〜1000℃の熱を印加することであることを特徴とする請求項1〜3のいずれか1項に記載の圧粉磁心の製造方法。   The method of manufacturing a dust core according to any one of claims 1 to 3, wherein the heat treatment is to apply heat at a maximum processing temperature of 700 to 1000 ° C in an oxygen-containing atmosphere. 前記絶縁酸化被膜が複数の層で形成され、前記金属磁性粒子に接する層がSiO2またはAl23からなり、最外層が低融点金属を融解付着させてなり、圧縮成形後の熱処理により前記低融点金属が前記金属磁性粒子間に浸透すると共に酸化されて酸化物を形成することを特徴とする請求項1〜4のいずれか1項に記載の圧粉磁心の製造方法。 The insulating oxide film is formed of a plurality of layers, the layer in contact with the metal magnetic particles is made of SiO 2 or Al 2 O 3 , and the outermost layer is formed by melting and adhering a low melting point metal. The method for producing a dust core according to any one of claims 1 to 4, wherein the low melting point metal permeates between the metal magnetic particles and is oxidized to form an oxide.
JP2008001377A 2008-01-08 2008-01-08 Manufacturing method of dust core Pending JP2009164402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008001377A JP2009164402A (en) 2008-01-08 2008-01-08 Manufacturing method of dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008001377A JP2009164402A (en) 2008-01-08 2008-01-08 Manufacturing method of dust core

Publications (1)

Publication Number Publication Date
JP2009164402A true JP2009164402A (en) 2009-07-23

Family

ID=40966665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008001377A Pending JP2009164402A (en) 2008-01-08 2008-01-08 Manufacturing method of dust core

Country Status (1)

Country Link
JP (1) JP2009164402A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108059A1 (en) * 2014-01-14 2015-07-23 日立金属株式会社 Magnetic core and coil component using same
CN107025973A (en) * 2015-12-15 2017-08-08 Tdk株式会社 Sheet magnetic material
CN107025972A (en) * 2015-12-08 2017-08-08 Tdk株式会社 Sheet magnetic material
JP2017183631A (en) * 2016-03-31 2017-10-05 太陽誘電株式会社 Magnetic material and coil component having the same
JP2019117898A (en) * 2017-12-27 2019-07-18 Tdk株式会社 Multilayer coil type electronic component
WO2019189794A1 (en) * 2018-03-30 2019-10-03 日本発條株式会社 Thermally conductive composite particles, method for producing same, insulating resin composition, insulating resin molded body, laminate for circuit boards, metal base circuit board and power module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131462A (en) * 2004-11-08 2006-05-25 Matsushita Electric Ind Co Ltd Method for manufacturing composite sintered magnetic material
JP2006351946A (en) * 2005-06-17 2006-12-28 Fuji Electric Holdings Co Ltd Method for manufacturing soft magnetic compact
JP2007154269A (en) * 2005-12-06 2007-06-21 Jfe Steel Kk Grain-oriented electromagnetic steel sheet provided with ceramic film
JP2007194273A (en) * 2006-01-17 2007-08-02 Jfe Steel Kk Dust core and soft magnetic metal powder therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131462A (en) * 2004-11-08 2006-05-25 Matsushita Electric Ind Co Ltd Method for manufacturing composite sintered magnetic material
JP2006351946A (en) * 2005-06-17 2006-12-28 Fuji Electric Holdings Co Ltd Method for manufacturing soft magnetic compact
JP2007154269A (en) * 2005-12-06 2007-06-21 Jfe Steel Kk Grain-oriented electromagnetic steel sheet provided with ceramic film
JP2007194273A (en) * 2006-01-17 2007-08-02 Jfe Steel Kk Dust core and soft magnetic metal powder therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015108059A1 (en) * 2014-01-14 2015-07-23 日立金属株式会社 Magnetic core and coil component using same
CN105917422A (en) * 2014-01-14 2016-08-31 日立金属株式会社 Magnetic core and coil component using same
US9805855B2 (en) 2014-01-14 2017-10-31 Hitachi Metals, Ltd. Magnetic core and coil component using same
CN107025972A (en) * 2015-12-08 2017-08-08 Tdk株式会社 Sheet magnetic material
CN107025973A (en) * 2015-12-15 2017-08-08 Tdk株式会社 Sheet magnetic material
JP2017183631A (en) * 2016-03-31 2017-10-05 太陽誘電株式会社 Magnetic material and coil component having the same
JP2019117898A (en) * 2017-12-27 2019-07-18 Tdk株式会社 Multilayer coil type electronic component
US11302466B2 (en) 2017-12-27 2022-04-12 Tdk Corporation Multilayer coil electronic component
JP7145610B2 (en) 2017-12-27 2022-10-03 Tdk株式会社 Laminated coil type electronic component
WO2019189794A1 (en) * 2018-03-30 2019-10-03 日本発條株式会社 Thermally conductive composite particles, method for producing same, insulating resin composition, insulating resin molded body, laminate for circuit boards, metal base circuit board and power module
JP6616555B1 (en) * 2018-03-30 2019-12-04 日本発條株式会社 Thermally conductive composite particles and manufacturing method thereof, insulating resin composition, insulating resin molded body, laminated board for circuit board, metal base circuit board, and power module

Similar Documents

Publication Publication Date Title
JP4872833B2 (en) Powder magnetic core and manufacturing method thereof
KR102195952B1 (en) Powder magnetic core manufacturing method, and powder magnetic core
EP2680281B1 (en) Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
JP2017168845A (en) Magnetic core and coil component using the same
JP6601389B2 (en) Magnetic core, coil component, and manufacturing method of magnetic core
WO2015079856A1 (en) Powder core, coil component, and method for producing powder core
JP2008270368A (en) Dust core and method of manufacturing the same
WO2006112197A1 (en) Soft magnetic material and dust core
JP2007019134A (en) Method of manufacturing composite magnetic material
CN103189936A (en) Soft magnetic powder, powder granules, dust core, electromagnetic component, and method for manufacturing dust core
JP2009206483A (en) Soft magnetic material and its production process
US20210142933A1 (en) Soft magnetic composite materials and methods and powders for producing the same
JP2009164402A (en) Manufacturing method of dust core
JP2020095988A (en) Dust core
JP2006237153A (en) Composite dust core and manufacturing method thereof
JP2006287004A (en) Magnetic core for high frequency and inductance component using it
JP4534523B2 (en) Method for producing composite sintered magnetic material
CN109716455B (en) Magnetic core and coil component
JP5283165B2 (en) Manufacturing method of iron-nickel alloy powder, and manufacturing method of dust core for inductor using the alloy powder
JP4888784B2 (en) Soft magnetic metal particles with insulating oxide coating
JP2009158802A (en) Manufacturing method of dust core
JP2007048902A (en) Powder magnetic core and its manufacturing method
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2006080166A (en) Dust core

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20101215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313