JPH10208923A - Composite magnetic material and production thereof - Google Patents

Composite magnetic material and production thereof

Info

Publication number
JPH10208923A
JPH10208923A JP728497A JP728497A JPH10208923A JP H10208923 A JPH10208923 A JP H10208923A JP 728497 A JP728497 A JP 728497A JP 728497 A JP728497 A JP 728497A JP H10208923 A JPH10208923 A JP H10208923A
Authority
JP
Japan
Prior art keywords
metal
magnetic material
group
oxide
composite magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP728497A
Other languages
Japanese (ja)
Inventor
Shinya Matsutani
伸哉 松谷
Shinji Harada
真二 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP728497A priority Critical patent/JPH10208923A/en
Publication of JPH10208923A publication Critical patent/JPH10208923A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composite magnetic material excellent in moldability and magnetic characteristics, especially core loss, by raising the heat treatment temperature of a high performance metal based dust core being employed in a choke coil, or the like, thereby removing stress sufficiently. SOLUTION: The composite magnetic material has a structure containing a metallic magnetic material and at least one kind of group A metals including Fe, Al, Ti, Sn, Si, Mn, Ta, Zr, Ca, Zn and alloys thereof. This composition realizes a composite magnetic material excellent in moldability and magnetic characteristics, especially core loss, in which stress can be removed sufficiently by raising the heat treatment temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チョークコイル等
の高性能な金属系圧粉磁芯に用いられる複合磁性体及び
その製造方法に関し、特に磁心用の軟磁性材料として用
いられる複合磁性体およびその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite magnetic material used for a high-performance metal dust core such as a choke coil and a method for producing the same, and more particularly to a composite magnetic material used as a soft magnetic material for a magnetic core. The present invention relates to the manufacturing method.

【0002】[0002]

【従来の技術】近年、電気・電子機器の小型化がすす
み、小型で高効率の磁性材料が要求されている。高周波
で用いられるチョークコイルとして、フェライト磁心や
圧粉磁心が使用されている。これらのうち、フェライト
磁心は飽和磁束密度が小さいという欠点を有している。
これに対して、金属磁性粉を成形して作成される圧粉磁
心は、軟磁性フェライトに比べて著しく大きい飽和磁束
密度を有しているため小型化に有利である。しかし、透
磁率および電力損失についてはフェライトより優れてい
るとはいえなかった。チョークコイルやインダクターに
使用するコアでは、コア損失が大きいとコアの温度上昇
が大きくなって、小型化が難しくなる。
2. Description of the Related Art In recent years, miniaturization of electric and electronic devices has been progressing, and there has been a demand for magnetic materials of small size and high efficiency. Ferrite cores and dust cores are used as choke coils used at high frequencies. Among them, the ferrite core has a disadvantage that the saturation magnetic flux density is small.
On the other hand, a dust core formed by molding metal magnetic powder has an extremely large saturation magnetic flux density as compared with soft magnetic ferrite, which is advantageous for miniaturization. However, magnetic permeability and power loss were not superior to ferrite. In a core used for a choke coil or an inductor, if the core loss is large, the temperature rise of the core becomes large, and it is difficult to reduce the size.

【0003】圧粉磁心のコア損失は、通常ヒステリシス
損失と渦電流損失よりなる。渦電流損失は、周波数の二
乗と渦電流が流れるサイズの二乗に比例して増大するの
で、磁性粉末粒子の表面に層間絶縁用の絶縁粉末で覆い
渦電流の発生を抑制するようにしている。一方、ヒステ
リシス損失は、圧粉磁心の成形密度をあげるために通常
10ton/cm2以上の成形圧がかかるために、磁性体とし
て歪みが増大し透磁率が劣化し、ヒステリシス損失が増
大する。
[0003] The core loss of a dust core usually consists of hysteresis loss and eddy current loss. The eddy current loss increases in proportion to the square of the frequency and the square of the size in which the eddy current flows. Therefore, the surface of the magnetic powder particles is covered with an insulating powder for interlayer insulation to suppress the generation of the eddy current. On the other hand, as for the hysteresis loss, a molding pressure of usually 10 ton / cm 2 or more is applied in order to increase the molding density of the dust core, so that the magnetic material is increased in strain, the magnetic permeability is deteriorated, and the hysteresis loss is increased.

【0004】これを回避するために、歪みを解放するた
めに成形後熱処理を施す。しかし、熱処理温度が500
℃以上必要なために、磁性体粉末を絶縁し、しかも粉体
同士の結着を保つ絶縁性の結着剤が不可欠である。従来
圧粉体の結着剤として使用される、エポキシ樹脂、フェ
ノール樹脂、塩ビ樹脂等のほとんど有機系樹脂は高温熱
処理時での使用が不可能であり、無機系バインダー等を
使用する必要がある。
[0004] In order to avoid this, a heat treatment is performed after molding to release the distortion. However, if the heat treatment temperature is 500
Since the temperature is required to be higher than or equal to ° C., an insulating binder which insulates the magnetic powder and keeps the binding between the powders is indispensable. Almost organic resins such as epoxy resins, phenolic resins, and PVC resins conventionally used as binders for green compacts cannot be used during high-temperature heat treatment, and require the use of inorganic binders and the like. .

【0005】無機バインダーとしては、珪酸塩系水ガラ
スまた特開平1−215902号公報のアルミナセメン
ト、特開平6−299144号公報のポロシロキサン樹
脂、特開平6−342714号公報のシリコーン樹脂、
特開平8−45724号公報のシリコーン樹脂と有機チ
タン混合等の提案がなされている。
Examples of the inorganic binder include silicate-based water glass, alumina cement disclosed in JP-A-1-215902, porosiloxane resin disclosed in JP-A-6-299144, and silicone resin disclosed in JP-A-6-342714.
Japanese Patent Application Laid-Open No. 8-45724 proposes a method of mixing a silicone resin and an organic titanium.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の結着剤あるいは絶縁剤は成形時あるいは熱処理後の結
着性が悪く、また処理温度が高くなると特に500℃以
上の高温になると、磁性粉体同士の焼結あるいは結着剤
成分あるいは絶縁成分の磁性粉への拡散が顕著になり、
磁性体としての特性の劣化をもたらす。
However, these binders or insulating agents have poor binding properties at the time of molding or after heat treatment. Sintering of each other or diffusion of the binder component or the insulating component into the magnetic powder becomes remarkable,
Deterioration of characteristics as a magnetic material is caused.

【0007】本目的は上記問題を解消するためになされ
たもので、その目的は成形性に優れ、また歪み取り高温
熱処理が可能となり、磁気特性特にコア損失の優れた複
合磁性体を提供することである。
An object of the present invention is to solve the above problems, and an object thereof is to provide a composite magnetic body which is excellent in moldability, enables high-temperature heat treatment for removing strain, and has excellent magnetic properties, particularly excellent core loss. It is.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、金属磁性体と少なくともA群金属を1種類以上含む
構造からなる複合磁性体で、A群金属としてFe,A
l,Ti,Sn,Si,Mn,Ta,Zr,Ca,Zn
のうち少なくとも1種類以上を含んだ金属単体あるいは
合金である。また、金属磁性体と少なくともA群金属の
酸化物を1種類以上含む構造からなる複合磁性体であ
る。また、前記発明の構成においては、金属磁性体の平
均粒径が100μm以下であり、成形した後500℃以
上の熱処理することが好ましい。また金属磁性体とし
て、純鉄、Fe−Si系、Fe−Al−Si系、パーマ
ロイ、パーメンジュールのうちそれぞれ少なくとも一種
類以上を含有する事が好ましい。これにより、成形性に
優れ、また歪み取り高温熱処理が可能となり、磁気特性
特にコア損失の優れた複合磁性体を提供することができ
る。
In order to achieve the above object, a composite magnetic material having a structure including a metal magnetic material and at least one or more kinds of Group A metals, wherein Fe and A are used as Group A metals.
1, Ti, Sn, Si, Mn, Ta, Zr, Ca, Zn
Metal or an alloy containing at least one of the above. Further, it is a composite magnetic body having a structure containing a metal magnetic body and at least one oxide of Group A metal. In the configuration of the present invention, it is preferable that the metal magnetic material has an average particle size of 100 μm or less, and is heat-treated at 500 ° C. or more after molding. Further, it is preferable that at least one or more of pure iron, Fe-Si system, Fe-Al-Si system, permalloy, and permendur are each contained as the metal magnetic material. This makes it possible to provide a composite magnetic material having excellent moldability, high-temperature heat treatment for removing strain, and excellent magnetic properties, particularly excellent core loss.

【0009】[0009]

【発明の実施の形態】本発明の請求項1記載の発明は、
金属磁性体と少なくともA群金属を1種類以上含む構造
からなる複合磁性体で、A群金属とはFe,Al,T
i,Sn,Si,Mn,Ta,Zr,Ca,Znのうち
少なくとも1種類以上を含んだ金属単体あるいは合金と
したものである。A群金属は延性が大きいため、金属磁
性体と混合し成形したときに塑性変形を起こし、結着剤
としてのバインダー量を減少あるいは全く入れなくても
成形でき、また成形圧力も低減できるために、成形時に
入る歪みも少なくなり、ヒステリシス損失は低減する。
なお、これ以外でも延性の優れた金属、合金、アモルフ
ァス金属等でも同様な効果があることはいうまでもな
い。
BEST MODE FOR CARRYING OUT THE INVENTION
A composite magnetic material having a structure including a metal magnetic material and at least one or more kinds of Group A metals, wherein the Group A metals are Fe, Al, T
It is a single metal or an alloy containing at least one of i, Sn, Si, Mn, Ta, Zr, Ca, and Zn. Group A metal has high ductility, so it undergoes plastic deformation when mixed with a metal magnetic material and molded, and can be molded without reducing the amount of binder as a binder or at all, and because molding pressure can be reduced. Also, distortion during molding is reduced, and hysteresis loss is reduced.
In addition, it goes without saying that similar effects can be obtained with metals, alloys, amorphous metals and the like having excellent ductility.

【0010】本発明の請求項2記載の発明は、金属磁性
体と少なくともA群金属の酸化物を1種類以上含む構造
からなる複合磁性体としたものである。また、A群の金
属は還元性が強く、他の酸化物あるいは雰囲気から酸素
を奪いそれ自身は酸化され安定なA群金属の酸化物とな
り、金属磁性粉の周囲を絶縁し、渦電流損失を低減する
ことができる。
According to a second aspect of the present invention, there is provided a composite magnetic material having a structure containing a metal magnetic material and at least one oxide of a Group A metal. In addition, the metal of group A has a strong reducing property, deprives other oxides or oxygen of the atmosphere, and oxidizes itself to become a stable oxide of group A metal, insulates the periphery of the metal magnetic powder, and reduces eddy current loss. Can be reduced.

【0011】本発明の請求項3記載の発明は、金属磁性
体の平均粒径が100μm以下の請求項1または2記載
の複合磁性体としたものである。渦電流損失は、周波数
の二乗と渦電流が流れるサイズの二乗に比例して増大す
るために、磁性粉末の表面を絶縁体で覆えば、渦電流は
金属磁性粉体の粒径に依存するため、微細な方が渦電流
損失は低減する。
According to a third aspect of the present invention, there is provided the composite magnetic body according to the first or second aspect, wherein the metal magnetic body has an average particle diameter of 100 μm or less. The eddy current loss increases in proportion to the square of the frequency and the square of the size in which the eddy current flows.If the surface of the magnetic powder is covered with an insulator, the eddy current depends on the particle size of the metal magnetic powder. The finer the eddy current loss is.

【0012】たとえば、高調波歪み対策用チョークコイ
ルは、電流測定周波数50kHz、測定磁束密度0.1T
でコア損失1000kW/m3以下、またより好ましく
は500kW/m3以下が望まれている。そのために
は、50kHz以上の渦電流損失を低減するためには、理
論計算より少なくとも平均粒径100μm以下が必要で
あり、より好ましくは50μm以下である。また、金属
磁性粉体の表面に5nm以上の酸化皮膜が形成されてい
れば、より絶縁性は確実となりより渦電流損失の低減に
効果的である。
For example, a choke coil for harmonic distortion countermeasure has a current measurement frequency of 50 kHz and a measured magnetic flux density of 0.1 T
Therefore, a core loss of 1000 kW / m 3 or less, and more preferably 500 kW / m 3 or less is desired. For that purpose, in order to reduce the eddy current loss of 50 kHz or more, at least an average particle diameter of 100 μm or less is required by theoretical calculation, and more preferably 50 μm or less. Further, if an oxide film having a thickness of 5 nm or more is formed on the surface of the metal magnetic powder, the insulating property is more reliable and the eddy current loss is more effectively reduced.

【0013】本発明の請求項4記載の発明は、金属磁性
体として、純鉄、Fe−Al−Si系、Fe−Si系、
パーマロイ、パーメンジュールのうち少なくとも1種類
以上を含有する事を特徴とする請求項1または2記載の
複合磁性体としたものである。これらの金属磁性体は、
飽和磁束密度、透磁率ともに高く、アトマイズ粉、粉砕
粉体等で安易に手に入るが、これ以外の金属軟磁性体た
とえばFe基アモルファス、Co基アモルファスあるい
はナノ微結晶磁性体等でも、同様な効果があることはい
うまでもない。
[0013] The invention according to claim 4 of the present invention is characterized in that pure iron, Fe-Al-Si, Fe-Si,
3. The composite magnetic material according to claim 1, wherein the composite magnetic material contains at least one of permalloy and permendur. These metal magnetic materials are
Both the saturation magnetic flux density and the magnetic permeability are high, and can be easily obtained in atomized powder, pulverized powder, etc. It goes without saying that it is effective.

【0014】本発明の請求項5記載の発明は、金属磁性
体と少なくともA群金属を1種類以上含む混合物を成形
した後、500℃以上の熱処理することにより得られる
複合磁性体の製造方法としたものである。通常10ton
/cm2以上の成形圧がかかるために、磁性体として歪み
が増大し透磁率が劣化し、ヒステリシス損失が増大す
る。そこで、歪みを解放するために成形後500℃以上
の熱処理を施し、ヒステリシス損失を低減する。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a composite magnetic material obtained by molding a mixture containing a metal magnetic material and at least one or more Group A metals and then performing a heat treatment at 500 ° C. or more. It was done. Usually 10ton
Since a molding pressure of / cm 2 or more is applied, the strain increases as the magnetic material, the magnetic permeability deteriorates, and the hysteresis loss increases. Therefore, a heat treatment of 500 ° C. or more is performed after molding to release the distortion, thereby reducing the hysteresis loss.

【0015】しかし、歪み取り温度は、金属磁性体によ
り異なりFe−Al−Si系では600℃以上、Fe系
では700℃以上で、通常金属磁性体では700℃以上
の熱処理が好ましい。従来結着剤として使用されるエポ
キシ樹脂、フェノール樹脂、塩ビ樹脂等の有機系樹脂あ
るいは水ガラス、無機シリコーン樹脂等の無機系は、熱
処理温度が高く特に700℃以上の高温になると、磁性
粉体同士の焼結あるいは結着剤成分あるいは絶縁成分の
磁性粉への拡散が顕著になり、磁性体として特性は劣化
し、ヒステリシス損失あるいは渦電流損失ともに増大す
る。
However, the strain relief temperature differs depending on the metal magnetic material, and is preferably 600 ° C. or more for the Fe—Al—Si system, 700 ° C. or more for the Fe system, and usually 700 ° C. or higher for the metal magnetic material. Organic resins such as epoxy resins, phenolic resins, and PVC resins, or inorganic resins such as water glass and inorganic silicone resins, which are conventionally used as binders, have a high heat treatment temperature, especially when the temperature becomes 700 ° C. or higher, the magnetic powder The sintering of each other or the diffusion of the binder component or the insulating component into the magnetic powder becomes remarkable, the characteristics of the magnetic material deteriorate, and both the hysteresis loss and the eddy current loss increase.

【0016】本発明においては、絶縁体の出発原料がA
群金属のため500℃以上の高温熱処理が可能で、成形
時あるいは熱処理時に安定なA群金属の酸化物になるた
めに特性の劣化も少なく、大幅なヒステリシス損失の低
減が可能となる。
In the present invention, the starting material of the insulator is A
The high-temperature heat treatment of 500 ° C. or more is possible because of the group metal, and the oxide of the group A metal is stable at the time of molding or heat treatment. Therefore, there is little deterioration of the characteristics, and the hysteresis loss can be greatly reduced.

【0017】本発明の請求項6記載の発明は、金属磁性
体と少なくともA群金属と酸化物Bとをそれぞれ1種類
以上含む混合物を、成形した後、500℃以上で熱処理
することにより得られる複合磁性体の製造方法で、酸化
物Bとは用いられるA群金属よりも酸化生成エネルギー
が高い酸化物としたものである。酸化生成エネルギー
(電気化学協会編、丸善(株)「電気化学便覧 第4
版」P128,129参照)は、ある元素が酸素と反応
して酸化物を生成する場合に必要な自由エネルギーを示
している。この値が、小さいほど酸化物となりやすく酸
化物としては安定である。
The invention according to claim 6 of the present invention is obtained by molding a mixture containing at least one kind of each of a metal magnetic material, at least a Group A metal and an oxide B, and then performing a heat treatment at 500 ° C. or more. In the method for producing a composite magnetic material, the oxide B is an oxide having higher oxidation generation energy than the group A metal used. Oxidation Energy (Electrochemical Association, Maruzen Co., Ltd. "Electrochemical Handbook No. 4
Plates, p. 128, 129) show the free energy required when an element reacts with oxygen to form an oxide. The smaller this value is, the more easily it becomes an oxide, and the oxide is stable.

【0018】従って、酸化生成エネルギーが低い金属
と、酸化生成エネルギーがそれより高い酸化物が反応す
ると、酸化物は還元され、金属自身は反対に酸化物とな
る。従って、酸化物Bは同時に配合するA群金属によっ
て異なる。Alの還元反応のアルミノテルミット法は、
この代表的例であり、たとえば下記のような反応が起こ
る。
Therefore, when a metal having a low oxidation generation energy reacts with an oxide having a higher oxidation generation energy, the oxide is reduced and the metal itself becomes an oxide on the contrary. Therefore, the oxide B differs depending on the group A metal to be added at the same time. The aluminothermite method for the reduction reaction of Al is as follows:
This is a typical example, for example, the following reaction occurs.

【0019】2/5V25+4/3Al=4/5V+2
/3Al23+496.9kJ また、このように局部的な高温を発生するために、熱処
理後の磁性体の機械強度も向上する。また、酸化物Bの
配合量を変えることで、A群金属の酸化の程度を制御す
る事ができる。
2/5 V 2 O 5 +4/3 Al = 4/5 V + 2
/ 3Al 2 O 3 +496.9 kJ Further, since such a local high temperature is generated, the mechanical strength of the magnetic body after the heat treatment is also improved. Further, the degree of oxidation of the group A metal can be controlled by changing the amount of the oxide B.

【0020】以下に、本発明の具体例を説明する。 (実施の形態1) (表1)に示すように、金属磁性粉100重量部に対し
金属粉あるいは結着剤を混合する試料については、それ
ぞれ10重量部と3重量部をライカイ機にて配合混合し
た。その混合粉を一軸プレスにて成形密度が真密度の9
0%以上になるように成形圧力を変化させ、外径25m
m、内径15mm、厚み約10mmのトロイダル形状の成形
体を得た。
Hereinafter, specific examples of the present invention will be described. (Embodiment 1) As shown in Table 1, with respect to a sample in which a metal powder or a binder is mixed with 100 parts by weight of a metal magnetic powder, 10 parts by weight and 3 parts by weight are mixed by a raikai machine, respectively. Mixed. The mixed powder was molded by a uniaxial press to a molding density of 9
Change the molding pressure so that it becomes 0% or more, outer diameter 25m
m, an inner diameter of 15 mm and a thickness of about 10 mm were obtained in a toroidal shape.

【0021】また、用いた金属磁性体の純鉄は純度9
9.6%、Fe−Al−Siはセンダスト組成であるS
i−9%、Al−5%、残部Fe、Fe−SiはSi−
3.5%、残部Fe、パーマロイはNi−78.5%、
残部Fe、パーメンジュールはCo−50%、残部Fe
であり、それぞれ平均粒径50μm以下のアトマイズ粉
であり、あらかじめ熱処理にて酸化皮膜を表面に5nm
〜10nm厚み形成している。
The pure iron of the metal magnetic material used has a purity of 9%.
9.6%, Fe-Al-Si has a sendust composition of S
i-9%, Al-5%, balance Fe and Fe-Si are Si-
3.5%, balance Fe, permalloy is Ni-78.5%,
Remaining Fe, Permendur Co-50%, Remaining Fe
Each of which is an atomized powder having an average particle size of 50 μm or less.
It is formed to a thickness of 10 to 10 nm.

【0022】透磁率の測定は、LCRメーターで周波数
10kHzで測定し、コア損失の測定は交流B−Hカーブ
測定機を用いて測定周波数50kHz、測定磁束密度0.
1Tで測定を行った。その結果を(表1)に示す。
The magnetic permeability was measured at a frequency of 10 kHz with an LCR meter, and the core loss was measured at a frequency of 50 kHz with a measured magnetic flux density of 0.
The measurement was performed at 1T. The results are shown in (Table 1).

【0023】[0023]

【表1】 [Table 1]

【0024】(表1)の結果より明らかなように、A群
金属を配合した試料は、必要な成形圧力が下がりコア損
失が低減している。また、A群金属以外のMg,Ndは
塑性変形しにくいために、成形体を維持する事ができな
かった。なお、実施例以外のA群金属が少なくとも1種
類以上含まれる合金、あるいは固溶体、アモルファスで
も同様の効果があることは、言うまでもない。
As is evident from the results shown in Table 1, the sample containing the Group A metal required a lower molding pressure and reduced core loss. Further, Mg and Nd other than the Group A metals were hardly plastically deformed, so that the formed body could not be maintained. It goes without saying that the same effect can be obtained even with an alloy containing at least one or more kinds of Group A metals other than the examples, or a solid solution or amorphous.

【0025】(実施の形態2) (表2)に示すように、金属磁性粉100重量部に対し
金属粉あるいは結着剤を混合するものについては、それ
ぞれ10重量部と3重量部をライカイ機にて配合混合し
た。その混合粉を一軸プレスにて成形圧力6ton/cm
2で、外径25mm、内径15mm、厚み約10mmのトロイ
ダル形状の成形体を得、(表2)に示す温度で雰囲気制
御を行いながら熱処理を行った。また、用いたFe−S
iはSi−3.5%であり、平均粒径50μm以下の粉
砕粉である。
(Embodiment 2) As shown in Table 2, 10 parts by weight and 3 parts by weight of a metal magnetic powder mixed with 100 parts by weight of a metal powder or a binder were added to a raikai machine. And mixed. The mixed powder is formed with a uniaxial press at a molding pressure of 6 ton / cm.
In step 2 , a toroidal shaped body having an outer diameter of 25 mm, an inner diameter of 15 mm, and a thickness of about 10 mm was obtained, and was heat-treated while controlling the atmosphere at the temperatures shown in Table 2. The used Fe-S
i is Si-3.5% and is a pulverized powder having an average particle size of 50 μm or less.

【0026】透磁率の測定は、LCRメーターで周波数
10kHzで測定し、コア損失の測定は交流B−Hカーブ
測定機を用いて測定周波数50kHz、測定磁束密度0.
1Tで測定を行った。その結果を(表2)に示す。
The magnetic permeability is measured at a frequency of 10 kHz with an LCR meter, and the core loss is measured at a frequency of 50 kHz with a measured magnetic flux density of 0.
The measurement was performed at 1T. The results are shown in (Table 2).

【0027】[0027]

【表2】 [Table 2]

【0028】(表2)の結果より明らかなように、A群
金属を混合した試料は、500℃以上の高温で熱処理で
きコア損失が低減している。また、好ましくは700℃
以上でさらに低減していることが分かる。また、熱処理
後の成形体を蛍光X線で組成分析するとそれぞれA群金
属はそれぞれの酸化物になっていることが確認できた。
また、他の金属磁性粉とA群金属で同様な効果があるこ
とは、言うまでもない。
As is evident from the results shown in Table 2, the sample mixed with Group A metal can be heat-treated at a high temperature of 500 ° C. or more, and the core loss is reduced. Also preferably 700 ° C.
From the above, it can be seen that it is further reduced. Further, when the composition of the molded body after the heat treatment was analyzed by X-ray fluorescence, it was confirmed that the metal of Group A was in the form of the respective oxide.
Needless to say, other metal magnetic powders and Group A metals have similar effects.

【0029】(実施の形態3) (表3)に示すように、金属磁性粉100重量部に対し
金属粉10重量部をライカイ機にて配合混合した。その
混合粉を一軸プレスにて成形圧力6ton/cm2で、外径2
5mm、内径15mm、厚み約10mmのトロイダル形状の成
形体を得、800℃で雰囲気制御を行いながら熱処理を
行った。また、用いたパーマロイはNi−78.5%、
残部Feのアトマイズ粉であり、(表3)に示すように
平均粒径を変化させた。
(Embodiment 3) As shown in Table 3, 10 parts by weight of metal powder was mixed and mixed with 100 parts by weight of metal magnetic powder using a raikai machine. The mixed powder was formed with a uniaxial press at a molding pressure of 6 ton / cm 2 and an outer diameter of 2
A toroidal shaped body having a size of 5 mm, an inner diameter of 15 mm, and a thickness of about 10 mm was obtained, and heat-treated at 800 ° C. while controlling the atmosphere. The permalloy used was Ni-78.5%,
The remainder was atomized powder of Fe, and the average particle size was changed as shown in (Table 3).

【0030】透磁率の測定は、LCRメーターで周波数
10kHzで測定し、コア損失の測定は交流B−Hカーブ
測定機を用いて測定周波数50kHz、測定磁束密度0.
1Tで測定を行った。その結果を(表3)に示す。
The permeability was measured at a frequency of 10 kHz with an LCR meter, and the core loss was measured at a frequency of 50 kHz with a measured magnetic flux density of 0.
The measurement was performed at 1T. The results are shown in (Table 3).

【0031】[0031]

【表3】 [Table 3]

【0032】(表3)の結果より明らかなように、金属
磁性粉の平均粒径が100μm以下でコア損失が100
0kW/m3以下のことが分かる。また、より好ましく
は磁性粉の平均粒径が50μm以下である。また、他の
金属磁性粉とA群金属で同様な効果があることは、言う
までもない。
As is evident from the results in Table 3, the average particle size of the metal magnetic powder is 100 μm or less and the core loss is 100%.
It turns out that it is 0 kW / m 3 or less. More preferably, the average particle size of the magnetic powder is 50 μm or less. Needless to say, other metal magnetic powders and Group A metals have similar effects.

【0033】(実施の形態4) (表4)に示すように、金属磁性粉100重量部に対し
金属粉あるいは酸化物を、それぞれ7重量部と3重量部
をライカイ機にて配合混合した。その混合粉を一軸プレ
スにて成形圧力8ton/cm2で、外径25mm、内径15m
m、厚み約10mmのトロイダル形状の成形体を得、90
0℃で雰囲気制御を行いながら熱処理を行った。また、
用いた金属磁性体の純鉄は純度99.6%であり、平均
粒径が50μm以下のカーボニル鉄粉である。
(Embodiment 4) As shown in Table 4, 7 parts by weight and 3 parts by weight of a metal powder or an oxide were mixed and mixed with 100 parts by weight of a metal magnetic powder using a raikai machine. The mixed powder is formed by a uniaxial press at a molding pressure of 8 ton / cm 2 , an outer diameter of 25 mm and an inner diameter of 15 m.
m, a toroidal shaped body having a thickness of about 10 mm was obtained.
The heat treatment was performed at 0 ° C. while controlling the atmosphere. Also,
The pure iron of the magnetic metal used was carbonyl iron powder having a purity of 99.6% and an average particle diameter of 50 μm or less.

【0034】透磁率の測定は、LCRメーターで周波数
10kHzで測定し、コア損失の測定は交流B−Hカーブ
測定機を用いて測定周波数50kHz、測定磁束密度0.
1Tで測定を行った。その結果を(表4)に示す。
The magnetic permeability is measured at a frequency of 10 kHz with an LCR meter, and the core loss is measured at a frequency of 50 kHz with a measured magnetic flux density of 0.
The measurement was performed at 1T. The results are shown in (Table 4).

【0035】[0035]

【表4】 [Table 4]

【0036】酸化生成エネルギーは、次の順番であるC
u>Bi>V>Nb>B>Al>Mg>Ca。従って、
用いたAlよりも酸化生成エネルギーが高い酸化物(C
uO,Bi23,V25,Nb25,B23)は、低コ
ア損失を実現し、また酸化生成エネルギーがAlより低
い酸化物(MgO,CaO)を用いたものは、Alが安
定な酸化物として存在しにくいために、高温熱処理時に
磁性粉の中に拡散して、磁気特性を劣化させることは、
(表4)の結果と蛍光X線等の分析より明らかになっ
た。また、他の金属磁性粉とA群金属とそれより酸化生
成エネルギーが高い酸化物との組み合わせでも同様な効
果があることは、言うまでもない。
The energy of oxidation formation is C in the following order:
u>Bi>V>Nb>B>Al>Mg> Ca. Therefore,
An oxide having a higher oxidation generation energy than Al used (C
uO, Bi 2 O 3 , V 2 O 5 , Nb 2 O 5 , and B 2 O 3 ) achieve low core loss and use an oxide (MgO, CaO) having lower oxidation generation energy than Al. Is that Al is unlikely to exist as a stable oxide, so it diffuses into the magnetic powder during high-temperature heat treatment and deteriorates the magnetic properties.
It became clear from the results of (Table 4) and analysis of fluorescent X-rays and the like. Needless to say, a similar effect can be obtained even when a combination of another metal magnetic powder, a Group A metal and an oxide having higher oxidation generation energy is used.

【0037】[0037]

【発明の効果】以上のように本発明によれば、A群金属
は成形時には塑性変形し、金属磁性粉体同士の結着性を
助け、成形時あるいは成形後の熱処理時に周囲の酸化物
あるいは雰囲気より酸素を奪い、安定な酸化物絶縁体と
なる。そのため、金属磁性粉の周囲を確実に絶縁し、渦
電流損失を低減すると同時に、この絶縁体は出発は金属
なことより、500℃以上の高温での十分な歪み取り熱
処理が可能となり、ヒステリシス損失も低減し、全体の
コア損失は大幅に低減することができる。
As described above, according to the present invention, the group A metal is plastically deformed during molding, assists in binding metal magnetic powders, and when forming or heat-treating after molding, the surrounding oxide or Oxygen is removed from the atmosphere to form a stable oxide insulator. Therefore, the insulation around the metal magnetic powder is reliably insulated and the eddy current loss is reduced, and at the same time, since this insulator is made of metal, sufficient heat treatment for removing strain at a high temperature of 500 ° C. or more is possible, and the hysteresis loss is reduced. And overall core loss can be significantly reduced.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属磁性体と少なくともA群金属を1種
類以上含む構造からなる複合磁性体(但し、A群金属と
はFe,Al,Ti,Sn,Si,Mn,Ta,Zr,
Ca,Znのうち少なくとも1種類以上を含んだ金属単
体あるいは合金である。)。
1. A composite magnetic material having a structure containing at least one kind of a metal magnetic material and at least one kind of a group A metal (however, the group A metal is Fe, Al, Ti, Sn, Si, Mn, Ta, Zr,
It is a simple metal or alloy containing at least one of Ca and Zn. ).
【請求項2】 金属磁性体と少なくともA群金属の酸化
物を1種類以上含む構造からなる複合磁性体(但し、A
群金属とはFe,Al,Ti,Sn,Si,Mn,T
a,Zr,Ca,Znのうち少なくとも1種類以上を含
んだ金属単体あるいは合金である。)。
2. A composite magnetic material having a structure containing at least one kind of a metal magnetic material and at least one oxide of a Group A metal (however, A
Group metals are Fe, Al, Ti, Sn, Si, Mn, T
It is a simple metal or an alloy containing at least one of a, Zr, Ca, and Zn. ).
【請求項3】 金属磁性体の平均粒径が100μm以下
の請求項1または2記載の複合磁性体。
3. The composite magnetic body according to claim 1, wherein the average particle size of the metal magnetic body is 100 μm or less.
【請求項4】 金属磁性体として、純鉄、Fe−Al−
Si系、Fe−Si系、パーマロイ、パーメンジュール
のうち少なくとも一種類以上を含有する事を特徴とする
請求項1または2記載の複合磁性体。
4. As the metal magnetic material, pure iron, Fe—Al—
The composite magnetic material according to claim 1, wherein the composite magnetic material contains at least one of Si-based, Fe—Si-based, permalloy, and permendur.
【請求項5】 金属磁性体と少なくともA群金属を1種
類以上含む混合物を成形した後、500℃以上の熱処理
を行うことにより得られる複合磁性体の製造方法(但
し、A群金属とはFe,Al,Ti,Sn,Si,M
n,Ta,Zr,Ca,Znのうち少なくとも1種類以
上を含んだ金属単体あるいは合金である。)。
5. A method for producing a composite magnetic material obtained by molding a mixture containing a metal magnetic material and at least one or more Group A metals and then performing a heat treatment at 500 ° C. or higher (where Group A metals are Fe , Al, Ti, Sn, Si, M
It is a simple metal or an alloy containing at least one of n, Ta, Zr, Ca, and Zn. ).
【請求項6】 金属磁性体と少なくともA群金属と酸化
物Bとをそれぞれ1種類以上含む混合物を、成形した後
500℃以上で熱処理することにより得られる複合磁性
体の製造方法(但し、A群金属とはFe,Al,Ti,
Sn,Si,Mn,Ta,Zr,Ca,Znのうち少な
くとも1種類以上を含んだ金属単体あるいは合金であ
る。また酸化物Bとは用いられるA群金属よりも酸化生
成エネルギーが高い酸化物である。)。
6. A method for producing a composite magnetic material obtained by molding a mixture containing at least one kind of each of a metal magnetic material, at least a Group A metal and an oxide B, and then heat-treating the mixture at 500 ° C. or more. Group metals are Fe, Al, Ti,
It is a simple metal or an alloy containing at least one of Sn, Si, Mn, Ta, Zr, Ca, and Zn. The oxide B is an oxide having higher oxidation generation energy than the group A metal used. ).
JP728497A 1997-01-20 1997-01-20 Composite magnetic material and production thereof Pending JPH10208923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP728497A JPH10208923A (en) 1997-01-20 1997-01-20 Composite magnetic material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP728497A JPH10208923A (en) 1997-01-20 1997-01-20 Composite magnetic material and production thereof

Publications (1)

Publication Number Publication Date
JPH10208923A true JPH10208923A (en) 1998-08-07

Family

ID=11661745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP728497A Pending JPH10208923A (en) 1997-01-20 1997-01-20 Composite magnetic material and production thereof

Country Status (1)

Country Link
JP (1) JPH10208923A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054709A (en) * 2007-08-24 2009-03-12 Fuji Electric Device Technology Co Ltd Dust core and manufacturing method therefor
JP2010080978A (en) * 2009-12-16 2010-04-08 Daido Steel Co Ltd Soft magnetic alloy powder and powder magnetic core
GB2455211B (en) * 2006-06-19 2011-06-29 Vacuumschmelze Gmbh & Co Kg Magnet core and method for its production
JP2013033966A (en) * 2011-08-01 2013-02-14 Samsung Electro-Mechanics Co Ltd Metal magnetic powder, magnetic layer material comprising metal magnetic powder, and multilayered chip components comprising magnetic layer using magnetic layer material
WO2015008813A1 (en) 2013-07-17 2015-01-22 日立金属株式会社 Dust core, coil component using same and process for producing dust core
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
CN112805907A (en) * 2018-08-02 2021-05-14 美国轮轴制造公司 Systems and methods for additive manufacturing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2455211B (en) * 2006-06-19 2011-06-29 Vacuumschmelze Gmbh & Co Kg Magnet core and method for its production
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
JP2009054709A (en) * 2007-08-24 2009-03-12 Fuji Electric Device Technology Co Ltd Dust core and manufacturing method therefor
JP2010080978A (en) * 2009-12-16 2010-04-08 Daido Steel Co Ltd Soft magnetic alloy powder and powder magnetic core
JP2013033966A (en) * 2011-08-01 2013-02-14 Samsung Electro-Mechanics Co Ltd Metal magnetic powder, magnetic layer material comprising metal magnetic powder, and multilayered chip components comprising magnetic layer using magnetic layer material
WO2015008813A1 (en) 2013-07-17 2015-01-22 日立金属株式会社 Dust core, coil component using same and process for producing dust core
US10186358B2 (en) 2013-07-17 2019-01-22 Hitachi Metals, Ltd. Metal powder core, coil component employing same, and fabrication method for metal powder core
US10418160B2 (en) 2013-07-17 2019-09-17 Hitachi Metals, Ltd. Metal powder core, coil component employing same, and fabrication method for metal powder core
CN112805907A (en) * 2018-08-02 2021-05-14 美国轮轴制造公司 Systems and methods for additive manufacturing

Similar Documents

Publication Publication Date Title
CN100486738C (en) Manufacturing method of Fe-6.5Si alloy powder and manufacturing method of magnetic powder core
KR100307195B1 (en) Composite magnetic material and process for producing the same
JP5099480B2 (en) Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder
JP4265358B2 (en) Manufacturing method of composite sintered magnetic material
JP3624681B2 (en) Composite magnetic material and method for producing the same
JP3580253B2 (en) Composite magnetic material
JP6365670B2 (en) Magnetic core, magnetic core manufacturing method, and coil component
JP2007019134A (en) Method of manufacturing composite magnetic material
JP2001011563A (en) Manufacture of composite magnetic material
JP2015126047A (en) Dust core, coil component using the same, and method for producing dust core
CN102473501A (en) Composite magnetic body and method for producing the same
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP4863628B2 (en) Method for producing Mg-containing oxide film-coated soft magnetic metal powder and method for producing composite soft magnetic material using this powder
JP5439888B2 (en) Composite magnetic material and method for producing the same
JPWO2018052107A1 (en) Magnetic core and coil parts
JP4166460B2 (en) Composite magnetic material, magnetic element using the same, and method of manufacturing the same
JP2002121601A (en) Soft magnetic metal powder particle and treating method thereof, and soft magnetic compact and its manufacturing method
JP2000232014A (en) Manufacture of composite magnetic material
JPH061727B2 (en) Iron core
JPH10208923A (en) Composite magnetic material and production thereof
JP4883755B2 (en) Oxide film-coated Fe-Si-based iron-based soft magnetic powder, manufacturing method thereof, composite soft magnetic material, reactor core, reactor, electromagnetic circuit component, and electrical equipment
JP2006245183A (en) Iron powder covered with laminated oxide film
JPWO2018052108A1 (en) Magnetic core and coil parts
JP5472694B2 (en) Composite sintered body of aluminum oxide and iron, and method for producing the same
WO2018174268A1 (en) Terminal-attached dust core and method for manufacturing same