WO2018105697A1 - Method for producing reactor, method for producing core, core, reactor, soft magnetic composite material, magnetic core using soft magnetic composite material, and reactor using soft magnetic composite material - Google Patents

Method for producing reactor, method for producing core, core, reactor, soft magnetic composite material, magnetic core using soft magnetic composite material, and reactor using soft magnetic composite material Download PDF

Info

Publication number
WO2018105697A1
WO2018105697A1 PCT/JP2017/044027 JP2017044027W WO2018105697A1 WO 2018105697 A1 WO2018105697 A1 WO 2018105697A1 JP 2017044027 W JP2017044027 W JP 2017044027W WO 2018105697 A1 WO2018105697 A1 WO 2018105697A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic powder
resin
magnetic
core
reactor
Prior art date
Application number
PCT/JP2017/044027
Other languages
French (fr)
Japanese (ja)
Inventor
泰雄 大島
渡 ▲高▼橋
Original Assignee
株式会社タムラ製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016238715A external-priority patent/JP6840523B2/en
Priority claimed from JP2016238718A external-priority patent/JP6817802B2/en
Priority claimed from JP2017046798A external-priority patent/JP6506788B2/en
Application filed by 株式会社タムラ製作所 filed Critical 株式会社タムラ製作所
Priority to CN201780075640.0A priority Critical patent/CN110062948B/en
Publication of WO2018105697A1 publication Critical patent/WO2018105697A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils

Definitions

  • the present invention uses a reactor manufacturing method having a metal composite core made of magnetic powder and resin, a core manufacturing method, a soft magnetic composite material suitable for a reactor called a core, a reactor, and a metal composite type, and a soft magnetic composite material.
  • the present invention relates to a reactor using a magnetic core and a soft magnetic composite material.
  • Reactors are used in various applications such as office automation equipment, solar power generation systems, automobiles, and uninterruptible power supplies.
  • the reactor is used, for example, in a filter that prevents the harmonic current from flowing out to the output system, a voltage raising / lowering converter that raises or lowers the voltage, and the like.
  • Reactors are required to have magnetic properties such as magnetic permeability, inductance value, and iron loss according to the application.
  • a reactor used for a voltage raising / lowering converter is required to improve energy conversion efficiency, and thus is required to have a small iron loss as an energy loss.
  • the metal composite core (hereinafter, also simply referred to as MC core) is a core formed by molding a material obtained by mixing metal magnetic powder and resin into a predetermined shape and solidifying it.
  • the conventional MC core is in the form of a slurry, is easy to pour the material into a container, and has an advantage in moldability that can form a predetermined shape.
  • a reactor called a metal composite type is a reactor that is manufactured by integrally molding a magnetic core and a coil using a material in which soft magnetic powder and resin are mixed. This reactor is characterized in that it is less likely to be magnetically saturated in a high temperature range as compared with a multilayer reactor using ferrite as a magnetic core.
  • Patent Document 2 discloses a method of obtaining a soft magnetic composite material having a relatively low relative permeability and a high saturation magnetic flux density by using a soft magnetic powder having a predetermined density ratio.
  • the conventional MC core has an advantage of good moldability because the material obtained by mixing magnetic powder and resin is in the form of slurry.
  • the material is easily spilled.
  • the conventional MC core material has a high resin content, the proportion of the magnetic powder in the material is reduced, leading to a decrease in core density, resulting in a decrease in magnetic properties.
  • the MC core has flat magnetic characteristics. That is, the MC core is less likely to be magnetically saturated than the ferrite core, and has a characteristic that the permeability is less likely to decrease even when the current flowing through the coil is increased. That is, in other words, the MC core has a characteristic that the initial permeability, that is, the permeability when no current flows through the coil tends to be low.
  • Patent Document 1 a technique for aligning the magnetic powder in the MC core by applying a magnetic field from the outside in the MC core manufacturing process is known.
  • a conductive member for forming a current path is separately provided, a magnetic field is generated by energizing the conductive member, and a magnetic field is applied to the MC core material from the outside.
  • a conductive member is provided, for example, outside the container containing the MC core material, and the installation position of the conductive member needs to be moved in order to obtain a desired orientation.
  • the MC core resin exists between the magnetic powders to prevent contact between the magnetic powders. In other words, the insulation between the magnetic powders is ensured by the resin.
  • the resin is decomposed, and a decrease in magnetic properties due to contact between magnetic powders is regarded as a problem.
  • the present invention has at least one of the following first object, second object, and third object.
  • a first object of the present invention is to provide a reactor manufacturing method, a core manufacturing method, a core, and a reactor capable of improving productivity and density while obtaining advantages of moldability.
  • a second object of the present invention is to provide a reactor manufacturing method capable of obtaining a reactor having a core having a high initial permeability.
  • the third object of the present invention is proposed to solve the above-mentioned problems of the prior art, and is a composite soft magnetic composite that suppresses deterioration of magnetic properties when used for a long time at high temperature.
  • the object is to provide a material, a metal composite core, and a metal composite core manufacturing method.
  • a method for manufacturing a reactor according to the present invention is a method for manufacturing a reactor including a core including magnetic powder and a resin, and a coil attached to the core. It is provided with.
  • the method for producing a core of the present invention is a method for producing a core containing magnetic powder and a resin, The following configuration is provided. (1) A mixing step of mixing 3 to 5 wt% resin with respect to the magnetic powder. (2) A molding step of molding the mixture obtained in the mixing step in a predetermined container. (3) A pressurizing step of pressing the mixture during the molding step. (4) A curing step of curing the resin in the molded body obtained in the molding step.
  • the core of the present invention is a core made of magnetic powder and resin, and has the following configuration.
  • the magnetic powder includes a first magnetic powder and a second magnetic powder having an average particle diameter smaller than that of the first magnetic powder.
  • the addition amount of the first magnetic powder in the magnetic powder is 60 to 80 wt%, and the second magnetic powder is 20 to 40 wt%.
  • the first magnetic powder has an average particle size of 100 ⁇ m to 200 ⁇ m, and the second magnetic powder has an average particle size of 3 ⁇ m to 10 ⁇ m.
  • the content of the resin with respect to the magnetic powder is 3 to 5 wt%.
  • the ratio of the apparent density of the core to the true density of the magnetic powder is more than 76.47%.
  • the present invention can also be understood as a reactor having the above core.
  • a method for manufacturing a reactor according to the present invention is a method for manufacturing a reactor including a core containing magnetic powder and a resin, and a coil attached to the core, and has the following configuration It is provided with.
  • a reactor manufacturing method is a reactor manufacturing method including a core including magnetic powder and a resin, and a coil mounted on the core, and has the following configuration. .
  • the soft magnetic composite material of the present invention is a soft magnetic composite material obtained by mixing magnetic powder and a resin, and when the resin is exposed to an atmosphere of 220 ° C. for 40 hours.
  • the reduction rate is 0.1% or less.
  • the reduction rate may be 0.08% or less.
  • the reduction rate may be a reduction rate of the weight of the resin.
  • the magnetic powder may include a first magnetic powder having a predetermined average particle diameter and a second magnetic powder having an average particle diameter smaller than the first magnetic powder.
  • the average particle diameter of the first magnetic powder may be 100 to 200 ⁇ m, and the average particle diameter of the second magnetic powder may be 5 to 10 ⁇ m.
  • the addition amount of the first magnetic powder in the magnetic powder may be 60 to 80 wt%, and the second magnetic powder may be 20 to 40 wt%.
  • the resin may be a thermosetting resin.
  • the resin may be an epoxy resin.
  • a magnetic core composed of the soft magnetic composite material as described above is also an embodiment of the present invention.
  • the magnetic core may have an iron loss change rate of 10% or less when exposed to an atmosphere at 155 ° C. for 500 hours or more.
  • a reactor including the magnetic core is also an aspect of the present invention.
  • the reduction rate when the resin mixed with the magnetic powder is exposed at 220 ° C. for 40 hours is 0.1% or less.
  • the magnetic core and the reactor composed of this soft magnetic composite material are exposed to a high temperature for a long time, it is possible to suppress the disappearance of the resin existing between the magnetic powders.
  • the magnetic core and the reactor it is possible to suppress a decrease in magnetic properties when used at a high temperature for a long time.
  • FIG. 5 is a flowchart for explaining a reactor manufacturing method according to embodiment I. It is a figure for demonstrating a formation process and a pressurization process.
  • 3 is a graph of theoretical density versus surface pressure in Examples 1 to 3 and Comparative Examples 1 and 2.
  • 4 is a SEM photograph (100 times) of a core cross section of Example 2.
  • FIG. 4 is a SEM photograph (100 times) of a core cross section of Comparative Example 1.
  • 3 is a graph of magnetic permeability with respect to surface pressure in Examples 1 to 3 and Comparative Examples 1 and 2;
  • 6 is a graph of iron loss versus surface pressure in Examples 1 to 3 and Comparative Examples 1 and 2.
  • 7 is a graph of magnetic permeability with respect to surface pressure in Examples 4 to 6 and Comparative Example 3.
  • 6 is a graph of iron loss versus surface pressure in Examples 4 to 6 and Comparative Example 3.
  • 6 is a graph of magnetic permeability with respect to surface pressure in Examples 9 to 11 and Comparative Example 6.
  • 6 is a graph of iron loss versus surface pressure in Examples 9 to 11 and Comparative Example 6. It is a flowchart for demonstrating the manufacturing method of the reactor which concerns on Embodiment II. It is a graph of the initial permeability with respect to the resin amount when not applying a magnetic field. It is a graph of the change rate of the magnetic permeability with respect to the resin amount. It is a graph of the change rate of the initial inductance value with respect to a magnetic field.
  • the reactor of this embodiment includes a core and a coil.
  • the core is a metal composite core composed of magnetic powder and resin.
  • a core can be made into a predetermined shape by filling a predetermined container with a clay-like mixture in which magnetic powder and resin are mixed, and pressurizing the mixture.
  • the shape of the core can be various shapes such as a toroidal core, an I-type core, a U-type core, a ⁇ -type core, an E-type core, and an EER-type core.
  • soft magnetic powder can be used, and in particular, Fe powder, Fe—Si alloy powder, Fe—Al alloy powder, Fe—Si—Al alloy powder (Sendust), or a mixed powder of two or more of these powders. Etc. can be used.
  • Fe—Si alloy powder for example, Fe-6.5% Si alloy powder and Fe-3.5% Si alloy powder can be used.
  • the average particle diameter (D50) of the soft magnetic powder is preferably 20 ⁇ m to 150 ⁇ m. In the present specification, the “average particle diameter” refers to D50, that is, the median diameter unless otherwise specified.
  • the magnetic powder may be composed of two or more kinds of magnetic powders having different average particle diameters.
  • the magnetic powder is composed of the first magnetic powder and the second magnetic powder having an average particle diameter smaller than that of the first magnetic powder, and the weight ratio thereof is the first magnetic powder: second magnetic powder.
  • the powder is preferably 80:20 to 60:40. By setting it in this range, the density is improved, the magnetic permeability is improved, and the iron loss can be reduced.
  • the average particle diameter of the first magnetic powder is preferably 100 ⁇ m to 200 ⁇ m, and the second magnetic powder is preferably 3 ⁇ m to 10 ⁇ m. This is because the second magnetic powder having a small average particle diameter enters the gaps between the first magnetic powders, and the density and permeability can be improved and the iron loss can be reduced.
  • the first magnetic powder and the second magnetic powder are preferably spherical.
  • the circularity of the first magnetic powder is preferably 0.93 or more, and the circularity of the second magnetic powder is preferably 0.95 or more. This is because the gap between the first magnetic powders is reduced and more second magnetic powder can easily enter through the gap, and the density and permeability can be improved.
  • the types of the first magnetic powder and the second magnetic powder may be the same or different. If different, three or more may be used. When the magnetic powder is composed of three or more types of powders, the average particle size may be different for each type.
  • the first magnetic powder is preferably pulverized.
  • the second magnetic powder those produced by a water atomizing method, a gas atomizing method, or a water / gas atomizing method can be used, and those by a water atomizing method are particularly preferable. The reason is that the water atomization method rapidly cools during atomization, so that the powder is difficult to crystallize.
  • Resin is mixed with magnetic powder to hold the magnetic powder.
  • the resin a thermosetting resin, an ultraviolet curable resin, or a thermoplastic resin can be used.
  • thermosetting resin phenol resin, epoxy resin, unsaturated polyester resin, polyurethane, diallyl phthalate resin, silicone resin and the like can be used.
  • ultraviolet curable resin urethane acrylate, epoxy acrylate, acrylate, and epoxy resins can be used.
  • thermoplastic resin it is preferable to use a resin having excellent heat resistance such as polyimide or fluororesin.
  • An epoxy resin that is cured by adding a curing agent is suitable for the present invention because its viscosity can be adjusted by the amount of the curing agent added.
  • Thermoplastic acrylic resins and silicone resins can also be used.
  • the resin is preferably contained in an amount of 3 to 5 wt% with respect to the magnetic powder.
  • the resin content is less than 3 wt%, the bonding strength of the magnetic powder is insufficient and the mechanical strength of the core is lowered.
  • the resin content is more than 5 wt%, the resin formed between the first magnetic powder enters, the second magnetic powder cannot fill the gap, and the core density decreases, Magnetic permeability decreases.
  • the viscosity of the resin is preferably 50 to 5000 mPa ⁇ s when mixed with the magnetic powder.
  • the viscosity is less than 50 mPa ⁇ s, the resin does not get entangled with the magnetic powder during mixing, the magnetic powder and the resin are easily separated in the container, and the density or strength of the core varies.
  • the viscosity exceeds 5000 mPa ⁇ s, the viscosity becomes too high. For example, the resin formed between the first magnetic powders enters, and the gap cannot be filled with the second magnetic powder. Decreases, and the magnetic permeability decreases.
  • SiO 2 , Al 2 O 3 , Fe 2 O 3 , BN, AlN, ZnO, TiO 2 or the like can be used as a viscosity adjusting material.
  • the average particle diameter of the filler as the viscosity adjusting material is not more than the average particle diameter of the second magnetic powder, preferably not more than 1/3 of the average particle diameter of the second magnetic powder. This is because when the average particle size of the filler is large, the density of the obtained core decreases.
  • a high thermal conductivity material such as Al 2 O 3 , BN, or AlN can be added to the resin.
  • the ratio of the apparent density of the core to the true density of the magnetic powder is preferably more than 76.47%, and more preferably 77.5% or more.
  • the ratio is more than 76.47%, the magnetic permeability can be increased.
  • the ratio is 76.47% or less, low permeability results in low magnetic permeability.
  • the coil is a conductive wire with an insulating coating, and a copper wire or an aluminum wire can be used as the wire.
  • the coil is formed or mounted by winding a conductive wire around at least a part of the core, and is arranged around at least a part of the core.
  • the method of winding the coil and the shape of the wire are not particularly limited.
  • the reactor manufacturing method includes (1) a mixing step, (2) a molding step, (3) a pressing step, and (4) a curing step.
  • the mixing step is a step of mixing magnetic powder and resin.
  • the mixing step includes the first magnetic powder and the second magnetic powder having an average particle diameter smaller than that of the first magnetic powder. Are mixed to form a magnetic powder, and a resin mixing step of adding 3 to 5 wt% of the resin to the magnetic powder and mixing the magnetic powder and the resin.
  • the mixing in each mixing step can be performed automatically or manually using a predetermined mixer.
  • the mixing time of each mixing step can be set as appropriate, and is not particularly limited.
  • a mixture of magnetic powder and resin (hereinafter also referred to as a composite magnetic material) can be obtained.
  • the magnetic powder and the resin may be filled and mixed in a container for molding the composite magnetic material in the molding step. Thereby, it is not necessary to transfer a composite magnetic material to a container, and a manufacturing man-hour can be reduced.
  • the molding process is a process in which the composite magnetic powder is put into a container having a predetermined shape and molded into a predetermined shape.
  • a coil may be put together with the composite magnetic powder and molded.
  • Containers with various shapes are used according to the shape of the core to be manufactured.
  • the container When inserting a coil, the container uses a box-type container or a dish-shaped container with an open top so that the coil can be inserted from above.
  • the container used in the molding process can also be used as it is as an outer case of a reactor that houses the core and the coil. If the container is used as an exterior case, there is an advantage that it is not necessary to take out the container after the composite magnetic powder is cured.
  • a plurality of reactors may be manufactured with one container.
  • a plurality of reactors may be manufactured by forming a plurality of recesses in the bottom of the container and putting a composite magnetic material and a coil in the recesses.
  • the container used for the molding process all or a part thereof can be constituted by a resin molded product.
  • the manufacturing cost can be reduced, and the advantage that the MC core can have any shape can be utilized. That is, since the resin is a comparatively inexpensive material, the cost of manufacturing the container can be suppressed, and a core having an arbitrary shape can be formed by injection molding or the like.
  • a material of the resin molded product for example, unsaturated polyester resin, urethane resin, epoxy resin, BMC (bulk molding compound), PPS (polyphenylene sulfide), PBT (polybutylene terephthalate), or the like can be used.
  • all or part of the container may be made of a metal having high thermal conductivity such as aluminum or magnesium. This is because the composite magnetic material can be easily warmed in the pressurizing step, as will be described later.
  • the pressurization step is a step of pressing the composite magnetic material with a pressing member during the molding step.
  • the composite magnetic material is expanded to the shape of the container, and the voids contained in the composite magnetic material are reduced, and the apparent density and permeability are reduced. Improve magnetic susceptibility.
  • the composite magnetic material becomes a shape inside the container by the process. That is, a molded body having a predetermined shape made of a composite magnetic material can be obtained.
  • the composite magnetic material When putting the coil in the container, as shown in FIG. 2, the composite magnetic material is put in the container, and the composite magnetic material is spread in the shape of the container by the pressing member. Thereafter, the coil is inserted into the space formed by pressing the composite magnetic material, and further filled with the composite magnetic material, and the composite magnetic material is pressed together with the coil from above by the pressing member.
  • the composite magnetic material may be put in a container, and then the coil including the inner and outer circumferences may be embedded in the composite magnetic material, and the composite magnetic material may be pressed together with the coil.
  • gap contained in the composite magnetic material can be reduced and an apparent density and a magnetic permeability can be improved.
  • the pressurizing step may press the composite magnetic material with the pressing member to make the material into the shape of the container.
  • the pressurizing step can be regarded as the pressurizing step and the molding step. .
  • the pressure for pressing the composite magnetic material is preferably 6.3 kg / cm 2 or more. If it is less than this value, the pressure to press is small and the effect of improving the apparent density is small. Moreover, even if it is more than the said value, it is preferable that it is 15.7 kg / cm ⁇ 2 > or less. This is because even if pressing exceeds this value, the effect of improving the apparent density is small. In addition, if the pressure exceeds this value, only the resin is pressed and the insulation between the magnetic powders deteriorates.
  • the time for pressing the composite magnetic material can be appropriately changed depending on the resin content and viscosity. For example, it can be 10 seconds.
  • the pressurizing step may be performed by setting the pressing member for pressing the container or the composite magnetic material to a temperature higher than normal temperature (for example, 25 ° C.). By raising the temperature of the container or the pressing member, the resin is warmed and softened. For this reason, the composite magnetic material can easily flow into the gap in the container and the moldability can be improved, and the material can easily flow into the voids in the composite magnetic material, and the density can be improved.
  • the temperature of the pressing member that presses the container or the composite magnetic material is preferably higher than the softening point of the resin contained in the composite magnetic material. This is because the resin can be effectively softened.
  • the pressurizing step may be performed while maintaining the temperature of the pressing member that presses the container or the composite magnetic material.
  • the temperature of the container or the pressing member may be raised, or the composite magnetic material itself may be warmed to press the composite magnetic material.
  • the temperature of the pressing member that presses the container or the composite magnetic material may be maintained, and the composite magnetic material itself may be warmed and pressed.
  • the curing step is a step of curing the resin in the molded body obtained in the molding step.
  • the drying atmosphere can be an air atmosphere.
  • the drying time can be appropriately changed according to the type, content, drying temperature, etc. of the resin, and can be, for example, 1 hour to 4 hours, but is not limited thereto.
  • the drying temperature can be appropriately changed according to the type, content, drying time, etc. of the resin, and can be, for example, 85 ° C. to 150 ° C., but is not limited thereto.
  • the drying temperature is the temperature of the drying atmosphere.
  • the curing of the resin is not limited to drying, and the curing method varies depending on the type of resin.
  • the resin is a thermosetting resin
  • the resin is cured by applying heat
  • the resin is an ultraviolet curable resin
  • the resin is cured by irradiating the molded body with ultraviolet rays.
  • the step of curing the molded body for a predetermined time at a predetermined temperature may be repeated a plurality of times. Further, for example, when the resin is cured by drying, the drying temperature or the drying time may be changed every time the resin is repeated a plurality of times.
  • a method for manufacturing a reactor according to the present embodiment is a method for manufacturing a reactor including a core including magnetic powder and a resin, and a coil attached to the core, and is 3 to 5 wt% with respect to the magnetic powder. Obtained in the mixing step of mixing the resin, a molding step in which the mixture and the coil obtained in the mixing step are molded in a predetermined container, a pressing step for pressing the mixture in the molding step, and a molding step And a curing step for curing the molded body.
  • the composite magnetic material becomes clayy and easy to handle, and the productivity can be improved.
  • the advantage of the moldability that is the advantage of the MC core that the shape of the composite magnetic material can be formed into a predetermined shape can be secured, and the composite magnetic material is pressed. As a result, the material can easily enter the voids included in the composite magnetic material, and the apparent density of the core can be improved.
  • the pressure for pressing the mixture was set to 6.3 kg / cm 2 or more. Thereby, the density of a core can be improved.
  • the pressurizing step was performed by setting the member or container for pressing the mixture to a temperature higher than room temperature. Thereby, the resin in the composite magnetic material which is the mixture is warmed and softened. For this reason, the composite magnetic material can easily flow into every corner of the container and the moldability can be improved, and the material can easily flow into the voids in the composite magnetic material, and the density can be improved.
  • the pressurizing step was performed by putting the mixture warmed to a temperature higher than normal temperature into the container. Thereby, the same effect as said (3) can be acquired.
  • the magnetic powder was prepared by mixing two kinds of magnetic powders having different average particle diameters.
  • the magnetic powder is a mixture of the first magnetic powder and the second magnetic powder having an average particle diameter smaller than that of the first magnetic powder. 80 wt% and the second magnetic powder was 20 to 40 wt%.
  • the second magnetic powder enters the gap between the first magnetic powders, and the density and magnetic permeability can be improved and the iron loss can be reduced.
  • the first magnetic powder has an average particle size of 20 to 150 ⁇ m, and the second magnetic powder has an average particle size of 5 to 20 ⁇ m. Thereby, the density and permeability of the core are improved, and the iron loss can be reduced.
  • the resin was an epoxy resin, a silicone resin, or an acrylic resin. Thereby, a composite magnetic material can be made into a clay shape, it becomes easy to handle, and productivity can be improved.
  • the manufacturing method of the present reactor includes (1) a mixing step, (2) a molding step, (3) a pressurizing step, (4) a curing step, and (5) a magnetic field applying step.
  • the steps (1) to (4) are basically the same as those of the reactor manufacturing method of Embodiment I, so the same portions are omitted and only different portions are described.
  • the pressurization step is a step of pressing the composite magnetic material with a pressing member during the molding step.
  • the initial inductance value is an inductance value when no current is passed through the reactor coil obtained by the present invention, that is, when the applied magnetic field during the curing process is 0 (kA / m).
  • the magnetic field application process is a process in which a coil included in a molded body made of a composite magnetic material is energized and a magnetic field is applied to the molded body during the curing process. When the coil is embedded in the molded body, the coil is energized. After obtaining the molded body, when a coil is formed by winding a conducting wire around the molded body, the coil is energized.
  • the magnetic field application step may be performed until the resin in the molded body is solidified, and the magnetic field application step may be performed before the curing step.
  • the magnetic field application step may be performed between the curing steps when the curing step is performed a plurality of times.
  • the magnetic powder in the molded body is aligned in the direction of the applied magnetic field, and as a result of having an orientation, a core with high initial permeability can be obtained. That is, since the magnetic field application step uses a coil provided as a reactor as a means for applying a magnetic field to the molded body during the curing step, the direction of the magnetic flux generated by the reactor product itself has orientation, so the reactor The magnetic flux generated by the product itself matches the orientation of the magnetic powder.
  • the degree of alignment is preferably such that the easy axis of magnetization of the magnetic powder matches the direction of the magnetic flux generated by the coil provided in the reactor (the direction of the lines of magnetic force). You may incline to about 45 degrees. Thus, a core with high initial permeability can be obtained by the magnetic field application step.
  • the magnetic field applied to the molded body is preferably 2 kA / m or more. This is because the effect of increasing the L0 value, which is more than half of the L0 value saturation increase rate, can be obtained as shown in the examples described later.
  • the L0 value saturation increase rate is the rate of change of the L0 value obtained based on the following equation (5), and L0 (H) in the equation (5) indicates that the applied magnetic field during curing is an improvement in the L0 value. It is the initial inductance value of the reactor obtained by applying a saturated magnetic field.
  • a reactor including a core made of a composite magnetic material that is magnetized and oriented has an effect of reducing eddy current loss and reducing heat generated from the core.
  • a method for manufacturing a reactor according to the present embodiment is a method for manufacturing a reactor including a core including magnetic powder and a resin, and a coil attached to the core, and is 3 to 5 wt% with respect to the magnetic powder.
  • a magnetic field application step of applying a magnetic field to the molded body at times by energizing the coil of the molded body.
  • the amount of resin added to the magnetic powder was more than 5 wt%, but by setting it to 3 to 5 wt%, the density and initial permeability can be improved.
  • the magnetic powder in the molded body is oriented in the direction of the magnetic flux generated by the coil by energizing the coil of the reactor itself during the curing process, it can be oriented in the desired orientation. The initial permeability can be improved.
  • the magnetic field is set to 2 kA / m or more. Thereby, most of the initial inductance value improving effect obtained by the magnetic field applying step can be obtained.
  • a pressing step for pressing the mixture is provided during the molding step. Thereby, the density of a core can be improved.
  • the pressurizing step was performed by setting the member that presses the container or the mixture to a temperature higher than room temperature. Thereby, the resin in the composite magnetic material which is the mixture is warmed and softened. For this reason, the composite magnetic material can easily flow into every corner of the container and the moldability can be improved, and the material can easily flow into the voids in the composite magnetic material, and the density can be improved.
  • the pressurizing step was performed by putting the mixture warmed to a temperature higher than normal temperature into the container. Thereby, the same effect as said (4) can be acquired.
  • the magnetic powder was prepared by mixing two kinds of magnetic powders having different average particle diameters.
  • the magnetic powder is a mixture of the first magnetic powder and the second magnetic powder having an average particle diameter smaller than that of the first magnetic powder. 80 wt% and the second magnetic powder was 20 to 40 wt%.
  • the second magnetic powder enters the gap between the first magnetic powders, and the density and magnetic permeability can be improved and the iron loss can be reduced.
  • the first magnetic powder has an average particle size of 20 to 150 ⁇ m, and the second magnetic powder has an average particle size of 5 to 20 ⁇ m. Thereby, the density and permeability of the core are improved, and the iron loss can be reduced.
  • the resin was an epoxy resin, a silicone resin, or an acrylic resin. Thereby, a composite magnetic material can be made into a clay shape, it becomes easy to handle, and productivity can be improved.
  • the soft magnetic composite material of this embodiment includes a magnetic powder and a resin.
  • a resin having a reduction rate hereinafter referred to as heating loss
  • Resin changes in volume and weight when exposed to a high temperature atmosphere for a long time.
  • the loss on heating is a value indicating the rate of change in the weight or volume of the resin before and after being exposed to a high temperature, and the loss on heating is calculated based on the weight or volume of the resin before and after being exposed to a high temperature.
  • the loss on heating is calculated based on a change in the weight of the resin, but may be calculated based on a change in volume. Even when the loss on heating is calculated on the basis of the change in weight and the change in volume, in this embodiment, a resin having a loss on heating of 0.1% or less when exposed to an atmosphere at 220 ° C. for 40 hours is used.
  • a clay-like soft magnetic composite material is obtained by mixing magnetic powder and resin.
  • a magnetic core is made into a predetermined shape by filling a predetermined container with clay-like soft magnetic composite material and pressurizing it.
  • the shape of the magnetic core can be various shapes such as a toroidal core, an I-type core, a U-type core, a ⁇ -type core, an E-type core, and an EER-type core.
  • Magnetic powder A plurality of magnetic powders having different average particle diameters may be used as the magnetic powder. For example, you may comprise from two types of magnetic powder from which an average particle diameter differs. Below, the mixed powder which mixed the kind soft magnetic powder is demonstrated to an example. However, two kinds of powders are not necessarily mixed. For example, one kind of soft magnetic powder may be used, or three or more kinds of soft magnetic powders may be mixed.
  • the magnetic powder When mixing two types of magnetic powder, the magnetic powder is composed of a first magnetic powder and a second magnetic powder having an average particle diameter smaller than that of the first magnetic powder.
  • the average particle diameter of the first magnetic powder is preferably 100 ⁇ m to 200 ⁇ m, and the second magnetic powder is preferably 5 ⁇ m to 10 ⁇ m.
  • the second magnetic powder having a small average particle diameter enters the gap between the first magnetic powders. Thereby, improvement of density and magnetic permeability and reduction of iron loss can be achieved.
  • soft magnetic powder can be used, and in particular, Fe powder, Fe-Si alloy powder, Fe-Al alloy powder, Fe-Si-Al alloy powder (Sendust), these A mixed powder of two or more kinds of powders, an amorphous soft magnetic alloy powder, or the like can be used.
  • Fe—Si alloy powder for example, Fe-6.5% Si alloy powder and Fe-3.5% Si alloy powder can be used.
  • the average particle diameter (D50) of the soft magnetic powder is preferably 20 ⁇ m to 150 ⁇ m. In the present specification, the “average particle diameter” refers to D50, that is, the median diameter unless otherwise specified.
  • the first magnetic powder and the second magnetic powder are preferably spherical.
  • the circularity of the first magnetic powder is preferably 0.90 or more, and the circularity of the second magnetic powder is preferably 0.94 or more. This is because the gap between the first magnetic powders is reduced and more second magnetic powder can easily enter through the gap, and the density and permeability can be improved.
  • the types of the first magnetic powder and the second magnetic powder may be the same or different.
  • three or more kinds of soft magnetic powders are mixed, three or more kinds of different magnetic powders may be mixed.
  • the first magnetic powder and the second magnetic powder those produced by a gas atomizing method, a water atomizing method, or a water gas atomizing method can be used.
  • the average circularity of the particles formed by these methods is preferably 0.90 or more, and when a powder having an average circularity of 0.90 or more cannot be formed only by various atomization methods, the average circularity of the particles is further increased. You may give the process which raises a degree.
  • the soft magnetic powder by the gas atomization method is a substantially spherical particle. Therefore, the powder formed by the gas atomization method can be used as it is without being processed.
  • the soft magnetic powder produced by the water atomization method is non-spherical particles having irregularities formed on the surface thereof. In this case, the average circularity of the particles can be increased by leveling the surface irregularities using a ball mill, mechanical alloying, jet mill, attritor, or surface modification device.
  • the resin is mixed with the mixed powder and has a function of holding the first powder and the second powder in a homogeneously mixed state.
  • the resin is mixed with the magnetic powder and holds the mixed magnetic powder.
  • each powder is held in a homogeneously mixed state.
  • a resin having a weight loss of 0.1% or less, preferably 0.08% or less when heated at 220 ° C. for 40 hours is used as the resin.
  • a curable resin can be used as the resin. If the loss on heating is 0.1% or less, the resin can be a thermosetting resin, an ultraviolet curable resin, or a thermoplastic resin.
  • thermosetting resin phenol resin, epoxy resin, unsaturated polyester resin, polyurethane, diallyl phthalate resin, silicone resin and the like can be used.
  • ultraviolet curable resin urethane acrylate, epoxy acrylate, acrylate, and epoxy resins can be used.
  • thermoplastic resin it is preferable to use a resin having excellent heat resistance such as polyimide or fluororesin.
  • An epoxy resin that is cured by adding a curing agent is suitable for the present invention because its viscosity can be adjusted by the amount of the curing agent added.
  • Thermoplastic acrylic resins and silicone resins can also be used.
  • the resin is preferably contained in an amount of 3 to 5 wt% with respect to the magnetic powder.
  • the resin content is less than 3 wt%, the bonding strength of the magnetic powder is insufficient and the mechanical strength of the core is lowered.
  • the resin content is more than 5 wt%, the resin formed between the first magnetic powder enters, the second magnetic powder cannot fill the gap, and the core density decreases, The initial permeability ⁇ 0 decreases.
  • the viscosity of the resin is preferably 50 to 5000 mPa ⁇ s when mixed with the magnetic powder.
  • the viscosity is less than 50 mPa ⁇ s, the resin does not get entangled with the magnetic powder during mixing, the magnetic powder and the resin are easily separated in the container, and the density or strength of the core varies.
  • the viscosity exceeds 5000 mPa ⁇ s, the viscosity becomes too high. For example, the resin formed between the first magnetic powders enters, and the gap cannot be filled with the second magnetic powder. Decreases, and the initial permeability ⁇ 0 decreases.
  • SiO2, Al2O3, Fe2O3, BN, AlN, ZnO, TiO2, or the like can be used as a viscosity adjusting material.
  • the average particle diameter of the filler as the viscosity adjusting material is not more than the average particle diameter of the second magnetic powder, preferably not more than 1/3 of the average particle diameter of the second magnetic powder. This is because when the average particle size of the filler is large, the density of the obtained core decreases.
  • high thermal conductivity materials such as Al2O3, BN, and AlN, can be added to the resin.
  • the ratio of the apparent density of the core to the true density of the magnetic powder is preferably more than 76.47%, and more preferably 77.5% or more.
  • the ratio is more than 76.47%, the magnetic permeability can be increased.
  • the ratio is 76.47% or less, low permeability results in low magnetic permeability.
  • the coil is a conducting wire with an insulating coating, and a copper wire or an aluminum wire can be used as the wire.
  • the coil is formed or attached by winding a conductive wire around at least a part of the core, and is arranged around at least a part of the core. There are no particular limitations on the method of winding the coil and the material and shape of the wire.
  • the manufacturing method of the metal composite core includes (1) a mixing step, (2) a molding step, (3) a pressing step, and (4) a curing step.
  • the mixing step is a step of mixing magnetic powder and resin.
  • the first magnetic powder and the second magnetic powder having an average particle diameter smaller than that of the first magnetic powder are mixed, and the magnetic powder mixing step for forming the magnetic powder is performed.
  • the mixing in each mixing step can be performed automatically or manually using a predetermined mixer.
  • the mixing time of each mixing step can be set as appropriate, and is not particularly limited.
  • a mixture of magnetic powder and resin (hereinafter also referred to as a composite magnetic material) can be obtained.
  • the magnetic powder and the resin may be filled and mixed in a container for molding the composite magnetic material in the molding step. Thereby, it is not necessary to transfer a composite magnetic material to a container, and a manufacturing man-hour can be reduced.
  • the molding process is a process in which the composite magnetic powder is put into a container having a predetermined shape and molded into a predetermined shape.
  • a coil may be put together with the composite magnetic powder and molded.
  • Containers with various shapes are used according to the shape of the core to be manufactured.
  • the container When inserting a coil, the container uses a box-type container or a dish-shaped container with an open top so that the coil can be inserted from above.
  • the container used in the molding process can also be used as an outer case of a metal composite core that accommodates the core and the coil as it is. If the container is used as an exterior case, there is an advantage that it is not necessary to take out the container after the composite magnetic powder is cured.
  • a plurality of metal composite cores may be manufactured with one container.
  • a plurality of recesses may be formed at the bottom of the container, and a plurality of metal composite cores may be manufactured by placing a composite magnetic material and a coil in the recesses.
  • the container used for the molding process all or a part thereof can be constituted by a resin molded product.
  • the manufacturing cost can be reduced, and the advantage that the MC core can have any shape can be utilized. That is, since resin is a relatively inexpensive material, the cost of manufacturing a container can be suppressed, and a core having an arbitrary shape can be formed by injection molding or the like.
  • all or part of the container may be made of a metal having high thermal conductivity such as aluminum or magnesium. This is because the composite magnetic material can be easily warmed in the pressurizing step, as will be described later.
  • the pressing step is a step of pressing the composite magnetic material with a pressing member during the molding step.
  • the composite magnetic material becomes a shape inside the container by the process. That is, a molded body having a predetermined shape made of a composite magnetic material can be obtained.
  • the composite magnetic material When putting the coil in the container, as shown in FIG. 2, the composite magnetic material is put in the container, and the composite magnetic material is spread in the shape of the container by the pressing member. Thereafter, the coil is inserted into the space formed by pressing the composite magnetic material, and further filled with the composite magnetic material, and the composite magnetic material is pressed together with the coil from above by the pressing member.
  • the composite magnetic material may be placed in a container, and then the coil may be embedded in the composite magnetic material, and the composite magnetic material may be pressed together with the coil from above.
  • gap contained in the composite magnetic material can be reduced and an apparent density and a magnetic permeability can be improved.
  • the pressurizing step may press the composite magnetic material with the pressing member to make the material into the shape of the container.
  • the pressurizing step can be regarded as the pressurizing step and the molding step. .
  • the pressure for pressing the composite magnetic material is preferably 2.0 kg / cm 2 or more. If it is less than this value, the pressure to press is small and the effect of improving the apparent density is small. Moreover, even if it is more than the said value, it is preferable that it is 10.0 kg / cm ⁇ 2> or less. This is because even if pressing exceeds this value, the effect of improving the apparent density is small.
  • the time for pressing the composite magnetic material can be appropriately changed depending on the resin content and viscosity. For example, it can be 10 seconds.
  • the pressurizing step may be performed by setting the pressing member that presses the container or the composite magnetic material to a temperature higher than room temperature (for example, 25 ° C.). By raising the temperature of the container or the pressing member, the resin is warmed and softened. Therefore, the composite magnetic material can easily flow into the gap in the container, and the moldability can be improved, and the material can easily flow into the voids in the composite magnetic material, and the apparent density can be improved.
  • the temperature of the pressing member that presses the container or the composite magnetic material is preferably higher than the softening point of the resin contained in the composite magnetic material. This is because the resin can be effectively softened.
  • the pressurizing step may be performed while maintaining the temperature of the pressing member that presses the container or the composite magnetic material.
  • the temperature of the container or the pressing member may be raised, or the composite magnetic material itself may be warmed to press the composite magnetic material.
  • the temperature of the pressing member that presses the container or the composite magnetic material may be maintained, and the composite magnetic material itself may be warmed and pressed.
  • the curing step is a step of curing the resin in the molded body obtained in the molding step.
  • the drying atmosphere can be an air atmosphere.
  • the resin is cured by a drying profile that controls the drying temperature and time based on the dry state of the resin.
  • the drying time can be appropriately changed according to the type, content, drying temperature, etc. of the resin, but can be, for example, 1 hour to 4 hours, but is not limited thereto.
  • the drying temperature can be appropriately changed according to the type, content, drying time, etc. of the resin, but can be, for example, 85 ° C. to 150 ° C., but is not limited thereto.
  • the drying temperature is the temperature of the drying atmosphere.
  • the curing of the resin is not limited to drying, and the curing method varies depending on the type of resin. For example, if the resin is a thermosetting resin, the resin is crossed by applying heat, and if the resin is an ultraviolet curable resin, the resin is cured by irradiating the molded body with ultraviolet rays.
  • the step of curing the molded body for a predetermined time at a predetermined temperature may be repeated a plurality of times. Further, for example, when the resin is cured by drying, the drying temperature or the drying time may be changed every time the resin is repeated a plurality of times.
  • the resin used for the magnetic core of the present embodiment is a resin having a reduction rate of 0.1% or less, preferably 0.08% or less when the resin is exposed to an atmosphere at 220 ° C. for 40 hours. .
  • the rate of decrease is the rate of decrease in weight when the resin is exposed to a high temperature atmosphere.
  • the resin When the magnetic core is exposed to a high temperature for a long time, the resin decomposes and disappears due to the influence of heat when the reduction rate of the resin contained in the magnetic core exceeds 0.1%. A larger eddy current is generated when the magnetic powders separated by the resin come into contact with each other due to the disappearance of the resin.
  • the magnetic powder of the present embodiment a plurality of magnetic powders having different average particle diameters were used.
  • the average particle diameter of the first magnetic powder is 100 to 200 ⁇ m
  • the average particle diameter of the second magnetic powder is 5 to 10 ⁇ m.
  • the ratio of the magnetic powder is 60-80 wt% for the first magnetic powder and 20-40 wt% for the second magnetic powder.
  • thermosetting resin an ultraviolet curable resin, or a thermoplastic resin
  • the inside of the thermosetting resin can be used.
  • Epoxy resins not only have a high glass transition point and excellent heat resistance, but also do not produce volatile substances as a by-product during curing, so that there are few dimensional changes in the molded product. Further, since it has high fluidity and can be molded even at a relatively low pressure, the process can be simplified.
  • the magnetic core produced using the soft magnetic composite material of the present embodiment can keep the rate of change in iron loss small even when exposed to an atmosphere at 155 ° C. for a long time. More desirably, a soft magnetic composite material capable of producing a magnetic core having a change rate of iron loss of 10% or less when exposed to an atmosphere at 155 ° C. for 500 hours or more is used. Even if such a magnetic powder core is exposed to an atmosphere at 155 ° C. for 1000 hours or more, the resin does not decompose or disappear due to the influence of heat. In other words, the rate of change in iron loss after 1000 hours can be predicted by the rate of change in iron loss after 500 hours. Is also possible.
  • Example I Embodiment I of the present invention will be described below with reference to Tables 1 to 4 and FIGS. 3 to 11.
  • Measurement items are density, magnetic permeability, and iron loss.
  • Reactors were prepared by winding 40 turns of copper cores with a diameter of 2.6 mm on the prepared core samples.
  • the shape of each core sample was a toroidal shape having an outer diameter of 35 mm, an inner diameter of 20 mm, and a height of 11 mm.
  • the magnetic permeability and iron loss of the produced reactor were computed on condition of the following.
  • the density of the core is the apparent density. That is, the outer diameter, inner diameter, and height of each core sample were measured, and the volume (cm 3 ) of the sample was calculated from these values based on ⁇ ⁇ (outer diameter 2 ⁇ inner diameter 2 ) ⁇ height. Then, the mass of the sample was measured, and the density of the core was calculated by dividing the measured mass by the calculated volume.
  • the magnetic permeability was the amplitude magnetic permeability when the maximum magnetic flux density Bm was set when measuring the iron loss Pcv.
  • the iron loss was calculated using a BH analyzer (Iwatori Measurement Co., Ltd .: SY-8232), which is a magnetic measuring instrument. This calculation was performed by calculating the hysteresis loss coefficient and the eddy current loss coefficient of the iron loss frequency curve using the following formulas (1) to (3) by the least square method.
  • the average particle diameter and the circularity of each powder are the average values of 3000 using the following apparatus, and the powder is dispersed on a glass substrate, and a powder photograph is taken with a microscope. It was measured automatically from the image every time.
  • the composite magnetic material obtained in the mixing step is filled into a resin container having a toroidal-shaped space, and the composite magnetic material in the container is pressed with the press pressure of Table 1 for 10 seconds using a hydraulic press.
  • a toroidal shaped molded body was produced.
  • the temperature of the container was kept at 25 ° C.
  • the molded body thus obtained in the pressurizing step and the molding step is dried in the atmosphere at 85 ° C. for 2 hours, then dried at 120 ° C. for 1 hour, and further dried at 150 ° C. for 4 hours.
  • a toroidal core was produced.
  • Table 1 and FIGS. 3 to 7 show the results of core density, magnetic permeability, and iron loss in Examples 1 to 3 and Comparative Examples 1 and 2 obtained at each pressing pressure.
  • the press pressure was 400 N, 600 N, and 1000 N
  • Comparative Example 1 was not pressed
  • Comparative Example 2 was 100 N.
  • the press surfaces are the same.
  • Theoretical density in Table 1 is a ratio calculated from the apparent density of the core / the true density of the magnetic powder.
  • both the first magnetic powder and the second magnetic powder use Fe-6.5% Si alloy powder, and the theoretical density is calculated by setting the true density to 7.63 g / cm 3 . .
  • FIG. 3 is a graph of theoretical density versus surface pressure in Examples 1 to 3 and Comparative Examples 1 and 2.
  • the theoretical density with respect to the surface pressure in Examples 1 to 3 and Comparative Examples 1 and 2 is Comparative Example 2 in which the pressurizing step was performed, compared to Comparative Example 1 in which the pressurizing step was not performed. It can also be seen that Examples 1 to 3 are higher and tend to increase as the surface pressure increases.
  • Comparative Example 2 where the surface pressure is 1.6 kg / cm 2
  • the theoretical density is not so different from Comparative Example 1 without pressure, but in Examples 1 to 3 where the surface pressure is 6.3 kg / cm 2 or more, The theoretical density is 77.5% or higher, which is higher than Comparative Examples 1 and 2.
  • the surface pressure when the surface pressure is 6.3 kg / cm 2 or more, it can be seen that the density is improved by spreading the material to the voids included in the composite magnetic material and every corner of the container. It can also be seen that the theoretical density is almost constant when the surface pressure is 6.3 kg / cm 2 or more.
  • FIG. 4 is an SEM photograph (100 times) of the core cross section of Example 2.
  • FIG. 5 is an SEM photograph (100 times) of the core cross section of Comparative Example 1. 4 and 5, reference numeral 1 indicates the first magnetic powder, and reference numeral 2 indicates the second magnetic powder.
  • symbol 3 shows resin and the code
  • the void 4 is a portion represented by dark black in the SEM photograph, whereas the portion represented by relatively thin black is the resin 3.
  • the number of voids 4 in the composite magnetic material is smaller in Example 2 shown in FIG. 4 than in Comparative Example 1 shown in FIG. 5, and the size of the void 4 itself is also increased. You can see that it can be made smaller.
  • the magnetic permeability is an amplitude magnetic permeability, and was calculated from the inductance of the strength of each magnetic field at 20 kHz and 1.0 V by using the impedance analyzer described above.
  • “ ⁇ 0” in Table 1 indicates the initial permeability when DC is not superimposed, that is, when the magnetic field strength is 0 H (A / m).
  • “ ⁇ 12000” in Table 1 indicates the magnetic permeability when the magnetic field strength is 12 kH (kA / m).
  • FIG. 6 is a graph of magnetic permeability with respect to the surface pressure in Examples 1 to 3 and Comparative Examples 1 and 2. As shown in Table 1 and FIG. 6, it can be seen that the magnetic permeability is higher in Examples 1 to 3 in which pressure is applied than in Comparative Example 1 in which pressure is not applied. For example, it can be seen that the initial permeability ⁇ 0 of Example 1 is increased by about 8.7% as compared with Comparative Example 1. It can be seen that even in Comparative Example 2 where pressure is applied, the magnetic permeability is higher than in Comparative Example 1 where pressure is not applied, but the contribution to the increase in the density of the core is small.
  • FIG. 7 is a graph of iron loss versus surface pressure in Examples 1 to 3 and Comparative Examples 1 and 2. As shown in Table 1 and FIG. 7, it can be seen that the iron loss is lower in the pressurized examples 1 to 3 than in the comparative example 1 where no pressure is applied. In particular, it can be seen that the hysteresis loss (Phv) tends to decrease by increasing the surface pressure. In Comparative Example 2 in which pressurization is performed, the iron loss is reduced as compared with Comparative Example 1 in which pressurization is not performed, but it can be seen that Examples 1 to 3 further reduce the iron loss.
  • Table 1 and FIG. 7 it can be seen that the iron loss is lower in the pressurized examples 1 to 3 than in the comparative example 1 where no pressure is applied. In particular, it can be seen that the hysteresis loss (Phv) tends to decrease by increasing the surface pressure. In Comparative Example 2 in which pressurization is performed, the iron loss is reduced as compared with Comparative Example 1 in which pressurization is
  • FIG. 8 is a graph of magnetic permeability with respect to the resin amounts of Examples 4 to 8 and Comparative Examples 3 to 5.
  • FIG. 9 is a graph of the iron loss against the resin amount of Examples 4 to 8 and Comparative Examples 3 to 5.
  • Table 2 and FIGS. 8 and 9 when the resin amount is less than 3 wt% with respect to the composite magnetic material, the voids included in the core increase and the density decreases. As a result, it causes a decrease in magnetic permeability and an increase in hysteresis loss.
  • the amount of resin is less than 3 wt%, the magnetic powders are easily brought into point contact with each other, which causes an increase in eddy current loss.
  • the amount of resin is more than 5 wt% with respect to the composite magnetic material, the density is significantly reduced. As a result, hysteresis loss increases.
  • (c) Container temperature Core samples were prepared by varying the container temperature. As described in (a) above, in Examples 1 to 3 and Comparative Example 1, the temperature of the container was 25 ° C. Samples obtained in the same manner as in the above step (a) except for the temperature of the container at 70 ° C. were used as Examples 9 to 11 and Comparative Example 6. Table 3, FIG. 10, and FIG. 11 show the results of density, magnetic permeability, and iron loss in Examples 1 to 3, 9 to 11, and Comparative Examples 1, 2, and 6. The theoretical density, ⁇ 0, and ⁇ 12000 in Table 3 have the same meaning as in Table 1.
  • FIG. 10 is a graph of magnetic permeability with respect to surface pressure in Examples 9 to 11 and Comparative Example 6.
  • FIG. 11 is a graph of iron loss versus surface pressure in Examples 9 to 11 and Comparative Example 6.
  • Table 3 and FIGS. 6, 7, 10, and 11 Examples 9 to 11 in which the container temperature was 70 ° C. and Comparative Examples 6 were examples 1 to 3 in which the container temperature was 25 ° C. It can be seen that the density and the theoretical density tend to increase as compared with Comparative Example 2, and the iron loss tends to decrease. The results showed that the permeability increased or decreased depending on the surface pressure.
  • Examples 9 to 11 had a theoretical density of 77.9% or higher, and were higher than Comparative Example 6 by increasing the surface pressure. I understand.
  • the resin in the composite magnetic material becomes soft, and the material easily flows into the voids in the material, thereby improving the apparent density and the theoretical density. Is thought to improve. As a result, it was found that the effect of reducing iron loss can be obtained.
  • a composite magnetic material was prepared in the same manner as in the mixing step (a) under the conditions shown in Table 4 where the amount of resin added was the same.
  • the obtained composite magnetic material was put into an aluminum container having a diameter of 5 mm so as to have a thickness of 3 mm, and a JIS standard 10 g weight was placed on the center of the composite magnetic material. Then, 10 seconds after the weight was placed, the weight was removed, and the depth of the recess of the composite magnetic material formed with the weight of the weight was measured. The results are shown in Table 4.
  • Measurement items are density, magnetic permeability, iron loss, and inductance value (L value).
  • Reactors were prepared by winding 40 turns of copper cores with a diameter of 2.6 mm on the prepared core samples.
  • the shape of each core sample was a toroidal shape having an outer diameter of 35 mm, an inner diameter of 20 mm, and a height of 11 mm.
  • the magnetic permeability of the produced reactor, the iron loss, and the inductance value were computed on condition of the following.
  • the density of the core is the apparent density. That is, the outer diameter, inner diameter, and height of each core sample were measured, and the volume (cm 3 ) of the sample was calculated from these values based on ⁇ ⁇ (outer diameter 2 ⁇ inner diameter 2 ) ⁇ height. Then, the mass of the sample was measured, and the density of the core was calculated by dividing the measured mass by the calculated volume.
  • the magnetic permeability was the amplitude magnetic permeability when the maximum magnetic flux density Bm was set when measuring the iron loss Pcv.
  • the iron loss was calculated using a BH analyzer (Iwatori Measurement Co., Ltd .: SY-8232), which is a magnetic measuring instrument. This calculation was performed by calculating the hysteresis loss coefficient and the eddy current loss coefficient of the iron loss frequency curve using the following formulas (1) to (3) by the least square method.
  • the inductance value was measured by applying a primary winding (20 turns) to the manufactured core sample and using an impedance analyzer (Agilent Technology: 4294A) under the conditions of 20 kHz and 1.0 V.
  • the average particle diameter and the circularity of each powder are the average values of 3000 pieces using the following apparatus.
  • the powder is dispersed on a glass substrate, and a powder photograph is taken with a microscope. Each shot was automatically measured from the image.
  • the composite magnetic material obtained in the mixing step is filled into a resin container having a toroidal space, and the composite magnetic material in the container is pressed with a 600 N press pressure (surface pressure 9.4 kg) using a hydraulic press. / Cm 2 ) for 10 seconds to produce a toroidal shaped molded body.
  • a 600 N press pressure surface pressure 9.4 kg
  • a hydraulic press. / Cm 2 hydraulic press. / Cm 2
  • the obtained molded body was wound with the above copper wire for 40 turns to form a coil, and a reactor as a base was produced.
  • the reactor was dried in the atmosphere at 85 ° C. for 2 hours, then dried at 120 ° C. for 1 hour, further dried at 150 ° C. for 4 hours to cure the resin, and a sample toroidal core was produced.
  • the coil was energized so as to be 4.85 kA / m during the drying time at each temperature, and samples of Examples 12 to 16 were obtained.
  • the difference between Examples 12 to 16 is the amount of resin added, which is 3.0 to 5.0 wt%, respectively.
  • toroidal coils manufactured without applying a magnetic field during resin curing were prepared, and samples of Comparative Examples 7 to 11 were obtained.
  • FIG. 13 is a graph of initial permeability with respect to the amount of resin with and without application of a magnetic field. As shown in Table 5 and FIG. 13, it can be seen that the initial permeability is improved when a magnetic field is applied during the curing step in each resin amount.
  • FIG. 14 is a graph of the rate of change of magnetic permeability with respect to the amount of resin.
  • the “change rate” shown in Table 5 and FIG. 14 is the change rate of the initial permeability ⁇ 0 when the magnetic field is applied and when the magnetic field is not applied in each resin amount, and is a value obtained by calculation using Expression (4). It is.
  • the rate of change indicates the degree of effect of applying a magnetic field.
  • Rate of change ⁇ 0 (H) / ⁇ 0 (0) ⁇ 1 (4) ⁇ 0 (H): Initial permeability when a magnetic field is applied ⁇ 0 (0): Initial permeability when a magnetic field is not applied
  • the rate of change increases as the amount of resin increases. This is because the larger the amount of resin, the easier the magnetic powder is oriented by the applied magnetic field. It can be seen that the rate of change is 10% or more when the resin amount is in the range of 3.3 to 5.0 wt%, and the effect of improving the initial permeability is high.
  • L0 value change rate L0 (H) / L0 (0) ⁇ 1 (5)
  • FIG. 15 is a graph of the L0 value change rate with respect to the applied magnetic field during the curing process, and Table 6 is graphed. As shown in Table 6 and FIG. 15, it can be seen that the L0 value change rate tends to increase as the amount of resin increases. The L0 value change rate is likely to increase in a region where the magnetic field is small, and is difficult to increase in a region where the magnetic field is large. That is, the L0 value improvement starts to saturate when the applied magnetic field is around 10 kA / m.
  • Table 7 is a table
  • the L value saturation increase rate is the L0 value change rate of the sample produced with the applied magnetic field during the curing process being 14.56 kA / m
  • the half value magnetic field of the L value saturation increase rate is the L value saturation increase rate. This is the value of the applied magnetic field during the curing process, at which half the L0 value change rate is obtained.
  • FIG. 16 is a graph of the initial inductance value of the reactor manufactured with each applied magnetic field during the curing process. As shown in FIG. 16, it was found that L0 is higher when there is a pressurizing step. This is the result of pressing the composite magnetic material to crush the voids in the material, reducing the number of voids, or reducing the size of the voids, thereby improving the apparent density of the core. It is considered that the initial permeability is a factor.
  • FIG. 17 is a graph showing the rate of change of the initial inductance value of the reactor manufactured with each applied magnetic field during the curing process. As shown in FIG. 17, there is no difference in the presence or absence of the pressurizing step when the applied magnetic field during the curing step is as low as about 5 kA / m. It was found that the rate of change of L0 was high. In particular, it can be seen that when the pressure is 9.27 kA / m or more, the effect of the pressurizing step appears significantly.
  • FIG. 18 is a graph of the initial inductance value of the reactor manufactured with each applied magnetic field during the curing process. As shown in FIG. 18, it was found that L0 is higher when there is a pressurizing step. This is the result of pressing the composite magnetic material to crush the voids in the material, reducing the number of voids, or reducing the size of the voids, thereby improving the apparent density of the core. It is considered that the initial permeability is a factor.
  • FIG. 19 is a graph showing the rate of change of the initial inductance value of the reactor manufactured with each applied magnetic field during the curing process. As shown in FIG. 19, also in the change rate of L0, it turned out that a change rate becomes high with a pressurization process.
  • FIG. 20 is a graph of the initial inductance value of the reactor manufactured with each applied magnetic field during the curing process.
  • FIG. 21 is a graph showing the rate of change of the initial inductance value of the reactor manufactured with each applied magnetic field during the curing process.
  • both the initial inductance value and the rate of change thereof are higher when the pressurization process is performed than when the pressurization process is not performed.
  • the difference is small. This is considered to be because the proportion of the resin in the composite magnetic material increases as the amount of the resin increases, and offsets the effect of improving the initial magnetic permeability due to the increase in the apparent density by pressurization.
  • the rate of change of L0 is higher when the applied magnetic field is higher during the curing process than when the pressurized process is not performed. This is considered to be caused by the fact that the orientation of the magnetic powder is easily aligned by the applied magnetic field due to the presence of a large amount of resin.
  • a composite magnetic material was produced in the same manner as in the mixing step (a), with the amount of resin added as shown in Table 11.
  • the obtained composite magnetic material was put into an aluminum container having a diameter of 5 mm so as to have a thickness of 3 mm, and a JIS standard 10 g weight was placed on the center of the composite magnetic material. Then, 10 seconds after the weight was placed, the weight was removed, and the depth of the recess of the composite magnetic material formed with the weight of the weight was measured. The results are shown in Table 11.
  • Example III of the present invention will be described below with reference to Tables 12 to 14 and FIG.
  • ⁇ Resin (about loss on heating)> Four types of resins A to D having different heating losses were prepared, test pieces serving as samples were prepared using the resins A to D, and the heating loss of each resin was measured.
  • the loss on heating of the resin was measured by the following method. Since the loss on heating of the resin varies depending on the size of the sample, the size of the resin sample to be compared needs to be unified. In this example, the weight loss of the resins A to D was measured using a cylindrical sample of “diameter 40 ⁇ height 10 (mm)”.
  • (1) Measuring method of heat loss (a) Preparation of test piece First, a mold and a container having an inner diameter of a predetermined dimension were prepared.
  • the predetermined dimension is a mold having an inner diameter of “diameter 40 ⁇ height 10 (mm)”.
  • a molding material which is a material for resins A to D, was put into the mold, and the mold was heated to 150 ° C. The molding material is melted by the applied heat, and then a chemical reaction occurs to solidify in accordance with the shape of the mold. The heating time of the resins A to D during sample preparation is 4 hours.
  • Table 12 is a graph showing the loss on heating when the high temperature storage test is performed on the resins A to D in an atmosphere of 220 ° C. for 20 hours or 40 hours.
  • resin A has a heating loss of 0.09% when exposed to 20 hours, 0.12% of heat loss when exposed to 40 hours
  • resin B has a heating loss when exposed to 20 hours.
  • the weight loss is 0.07%
  • the heat loss when exposed for 40 hours is 0.08%
  • the resin C has a heat loss of 0.05% when exposed for 20 hours
  • the heat loss when exposed for 40 hours is 0.00. 05%
  • Resin D has a loss on heating of 0.08% when exposed to 20 hours, and a loss of heat of 0.10% when exposed to 40 hours.
  • the measurement item is iron loss.
  • Reactors were prepared by applying 40 turns of the primary winding and 3 turns of the secondary winding to each of the core samples thus prepared with a copper wire of ⁇ 1.2 mm.
  • the shape of each core sample was a toroidal shape having an outer diameter of 35 mm, an inner diameter of 20 mm, and a height of 11 mm.
  • the iron loss of the produced reactor was computed on condition of the following.
  • the iron loss was calculated using a BH analyzer (Iwatori Measurement Co., Ltd .: SY-8232), which is a magnetic measuring instrument. This calculation was performed by calculating the hysteresis loss coefficient and the eddy current loss coefficient of the iron loss frequency curve using the following formulas (1) to (3) by the least square method.
  • the average particle diameter and the circularity of each powder are the average values of 3000 pieces using the following apparatus.
  • the powder is dispersed on a glass substrate, and a powder photograph is taken with a microscope. Each shot was automatically measured from the image.
  • the core sample uses Fe6.5Si having an average particle size of 123 ⁇ m as the first magnetic powder. Next, Fe6.5Si having an average particle diameter of 5.1 ⁇ m is prepared as the second magnetic powder. Then, the first magnetic powder and the second magnetic powder are mixed at a weight ratio of 70:30 to obtain a mixture of two magnetic powders having different average particle diameters.
  • the magnetic powder was put into an aluminum cup, and the resins A to D were added to the magnetic powder and mixed manually using a spatula for 2 minutes. This obtained the composite magnetic material which is a mixture of magnetic powder and resin.
  • the composite magnetic material obtained in the mixing step is filled into a resin container having a toroidal space, and the composite magnetic material in the container is pressed with a 600 N press pressure (surface pressure 9.4 kg) using a hydraulic press. / Cm 2) for 10 seconds to produce a toroidal shaped molded body. During this pressing, the temperature of the container was kept at 25 ° C.
  • the molded body is dried in the atmosphere at 85 ° C. for 2 hours, then dried at 120 ° C. for 1 hour, further dried at 150 ° C. for 4 hours to cure the resin, and a toroidal core as a sample is produced.
  • a sample using Resin A (Comparative Example 12), a sample using Resin B (Example 17), a sample using Resin C (Example 18), and a sample using Resin D (Example 19) are obtained. It was. Thereafter, the obtained toroidal core was wound with 40 turns of the primary winding and 3 turns of the secondary winding with the above-described copper wire, and the original reactor was produced.
  • Table 13 is a table showing the rate of change in iron loss (Pcv) when the high temperature storage test is performed on the samples of Examples 17 to 19 and Comparative Example 12.
  • the rate of change of iron loss (Pcv) was calculated by the following equation, with iron loss (Pcv0) at the start of the test and iron loss (Pcv1) after a predetermined time elapsed.
  • (Pcv1-Pcv0) ⁇ Pcv0 ⁇ 100 Pcv change rate (%)
  • FIG. 23 is a graph created based on Table 13.
  • the vertical axis in FIG. 23 indicates the rate of change of iron loss (Pcv), and the horizontal axis indicates the elapsed time in the high temperature storage test.
  • the change rate (%) of the iron loss (Pcv) of the sample (resin D) of Example 19 increases after 500 hours have elapsed since the start of the test. This is because the heat loss in Resin B with 0.08% loss on heating in 40 hours or Resin D with 0.05% loss on heating in 40 hours is slightly decomposed by heat. Or it may be due to the start of disappearance.
  • iron loss (Pcv) can be suppressed. Furthermore, by using a resin having a loss on heating of 0.08% or less when exposed to an atmosphere of 220 ° C. for 40 hours, even when the magnetic core is exposed to an atmosphere of 155 ° C. for more than 1000 hours, the iron loss (Pcv) Change can be suppressed.
  • the iron loss Pcv is a total value of the hysteresis loss Phv and the eddy current loss Pev.
  • eddy current loss Pev was cited as the cause of the increase in iron loss Pcv.
  • the increase in the change rate (%) of Pcv and the amount of change in hysteresis loss Phv and eddy current loss Pev will be verified.
  • Table 14 shows the iron loss Pcv, hysteresis loss Phv, and eddy current loss Pev from the start of the test to 1000 hours after the start of the test in the sample of Comparative Example 12 using Resin A and the sample of Example 18 for Resin C. It is a table
  • the eddy current loss Pev after the lapse of 400 hours from the start of the test is 6.2
  • the eddy current loss Pev after the start of the test is 1000 hours after the start of the test.
  • the eddy current loss Pev is 9.0.
  • the change rate of the eddy current loss Pev at this time is 45% from (9.0-6.2) /6.2 ⁇ 100.
  • the hysteresis loss Phv after the lapse of 400 hours from the start of the test is 21.3
  • the hysteresis loss Phv after the lapse of 1000 hours from the start of the test is 23.1.
  • the change rate of hysteresis loss Phv at this time is about 8.5% from (23.1-21.3) /21.3 ⁇ 100. That is, in Table 14 and FIG. 23, it can be seen that when the rate of change of Pcv changes greatly, the eddy current loss Pev changes greatly.
  • the eddy current loss Pev after the lapse of 400 hours from the start of the test is 6.0
  • the eddy current loss Pev after the lapse of 1000 hours from the start of the test. Becomes 6.1.
  • the change rate of the eddy current loss Pev is 1.7% from (6.1-6.0) /6.0 ⁇ 100.
  • the hysteresis loss Phv after the lapse of 400 hours from the start of the test is 20.1
  • the hysteresis loss Phv after the lapse of 1000 hours from the start of the test is 20.2.
  • the change rate of the hysteresis loss Phv is about 0.5% from (20.2-20.1) /20.1 ⁇ 100.
  • both the eddy current loss Pev and the hysteresis loss Phv are not significantly changed. Therefore, it can be seen that the change rate (%) of the iron loss Pcv is also small in Table 14 and FIG.
  • a magnetic core made from a soft magnetic composite material containing a resin having a loss on heating of 0.1% or less when heated at 220 ° C. for 40 hours has an iron loss Pcv even when used at 155 ° C. for a long time. It can be seen that the rate of change (%) can be kept small. This is because a resin with a small loss on heating when heated at 220 ° C. for 40 hours does not decompose or disappear even when exposed to a high temperature atmosphere for a long time, so that contact between magnetic powders can be suppressed. Yes, this makes it possible to realize low eddy current loss.
  • Embodiment II as a method of providing a coil in a reactor, a method of placing a coil in a container and embedding it in a composite magnetic material in a molding process has been described. In addition, a method including a winding step of winding a conductive wire constituting the coil around the molded body may be adopted.
  • Embodiment III as a method of providing a coil in a reactor, a method of placing a coil in a container and embedding it in a composite magnetic material in the molding process has been described. However, a molded body of a predetermined shape made of a composite magnetic material is molded in advance. In addition, a method including a winding step of winding a conductive wire constituting the coil around the molded body may be adopted.
  • the magnetic core is formed by pouring a soft magnetic composite material in which soft magnetic powder and resin are mixed in advance into a container, but may be formed by the following method.
  • the density of the mixed powder in the container is increased by vibrating the entire container.
  • the resin is infiltrated into the mixed powder whose density is increased by vibration, and is cured by a curing method depending on the type of resin.
  • a vibration method the whole container may be vibrated up and down or / and back and forth, and left and right using a motor, a cam, or the like, or a container may be tapped with a hammer-like member.
  • the entire container may be vibrated with an ultrasonic pendulum.
  • a pressing step of pressing the easily put composite magnetic material with a pressing member is included between the molding step and the curing step, but the pressing step may be omitted.
  • the pressurization step can be omitted for the purpose of reducing the number of steps and cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Provided are: a method for producing a reactor, which is capable of improving the productivity and the density, while achieving an advantage in terms of moldability; a method for producing a core; a core; and a reactor. This method for producing a reactor, which is provided with a core that contains a magnetic powder and a resin and a coil that is fitted to the core, comprises: a mixing step wherein 3-5 wt% of a resin is mixed into a magnetic powder; a molding step wherein a mixture obtained in the mixing step and a coil are put into a specific container and are subsequently molded therein; a pressurizing step wherein the mixture is pressurized during the molding step; and a curing step wherein a molded body obtained in the molding step is cured.

Description

リアクトルの製造方法、コアの製造方法、コア、リアクトル、軟磁性複合材料、軟磁性複合材料を使用した磁性コア、及び軟磁性複合材料を使用したリアクトルReactor manufacturing method, core manufacturing method, core, reactor, soft magnetic composite material, magnetic core using soft magnetic composite material, and reactor using soft magnetic composite material
 本発明は、磁性粉末と樹脂からなるメタルコンポジットコアを有するリアクトルの製造方法、コアの製造方法、コア、リアクトル、メタルコンポジットタイプと呼ばれるリアクトルに適した軟磁性複合材料、軟磁性複合材料を使用した磁性コア、及び軟磁性複合材料を使用したリアクトルに関する。 The present invention uses a reactor manufacturing method having a metal composite core made of magnetic powder and resin, a core manufacturing method, a soft magnetic composite material suitable for a reactor called a core, a reactor, and a metal composite type, and a soft magnetic composite material. The present invention relates to a reactor using a magnetic core and a soft magnetic composite material.
 OA機器、太陽光発電システム、自動車、無停電電源など様々な用途にリアクトルが用いられている。リアクトルは、例えば、出力系への高調波電流の流出を防止するフィルタや、電圧を昇降させる電圧昇降用コンバータなどに用いられる。 Reactors are used in various applications such as office automation equipment, solar power generation systems, automobiles, and uninterruptible power supplies. The reactor is used, for example, in a filter that prevents the harmonic current from flowing out to the output system, a voltage raising / lowering converter that raises or lowers the voltage, and the like.
 リアクトルには、用途に合わせて透磁率、インダクタンス値、鉄損などの磁気特性が求められる。例えば、電圧昇降用のコンバータに用いられるリアクトルは、エネルギー変換効率の向上が求められるため、エネルギー損失である鉄損が小さいことが求められる。 Reactors are required to have magnetic properties such as magnetic permeability, inductance value, and iron loss according to the application. For example, a reactor used for a voltage raising / lowering converter is required to improve energy conversion efficiency, and thus is required to have a small iron loss as an energy loss.
 また、様々な用途に対応するため、リアクトルに用いられるコアを任意の形状に成型したいという要望もある。このような要望に応えるリアクトルとして、メタルコンポジットコアと呼ばれるタイプのコアを備えたものがある。 There is also a desire to mold the core used in the reactor into any shape to accommodate various applications. As a reactor that meets such a demand, there is a reactor equipped with a core type called a metal composite core.
 メタルコンポジットコア(以下、単にMCコアともいう。)は、金属磁性粉末と樹脂とを混ぜた材料を所定形状に成型して固化させてなるコアである。従来のMCコアは、その材料がスラリー状であり、容器に当該材料を流し込みやすく、所定の形状を形成できる成型性に利点がある。 The metal composite core (hereinafter, also simply referred to as MC core) is a core formed by molding a material obtained by mixing metal magnetic powder and resin into a predetermined shape and solidifying it. The conventional MC core is in the form of a slurry, is easy to pour the material into a container, and has an advantage in moldability that can form a predetermined shape.
 メタルコンポジットタイプと呼ばれるリアクトルは、軟磁性粉末と樹脂を混ぜた材料を用いた磁性コアと、コイルとを一体成型して製造するリアクトルのことである。このリアクトルは磁性コアにフェライトを用いた積層タイプのリアクトルと比べて高温域で磁気飽和しにくいことなどを特徴とする。 A reactor called a metal composite type is a reactor that is manufactured by integrally molding a magnetic core and a coil using a material in which soft magnetic powder and resin are mixed. This reactor is characterized in that it is less likely to be magnetically saturated in a high temperature range as compared with a multilayer reactor using ferrite as a magnetic core.
 メタルコンポジットタイプのリアクトルに使用される磁性コアは、メタルコンポジットコアと呼ばれる。これは、軟磁性粉末と樹脂を混合して軟磁性複合材料を作成し、それを固化させることにより製造される。特許文献2には、所定の密度比の軟磁性粉末を用いることで、ある程度比透磁率が低く、飽和磁束密度が高い軟磁性複合材料を得る方法が開示されている。 The magnetic core used in the metal composite type reactor is called a metal composite core. This is manufactured by mixing a soft magnetic powder and a resin to prepare a soft magnetic composite material and solidifying it. Patent Document 2 discloses a method of obtaining a soft magnetic composite material having a relatively low relative permeability and a high saturation magnetic flux density by using a soft magnetic powder having a predetermined density ratio.
特開2012- 33727号公報JP 2012-33727 A 特開2014-160828号公報JP 2014-160828 A
 上記の通り、従来のMCコアは、磁性粉末と樹脂とを混ぜてなる材料がスラリー状であるため、成型性が良いという利点がある。しかし、その反面、作業者が容器に当該材料を流す際に、当該材料をこぼしやすい等、その取扱いが難しく、生産性に問題があった。 As described above, the conventional MC core has an advantage of good moldability because the material obtained by mixing magnetic powder and resin is in the form of slurry. However, on the other hand, when an operator pours the material into the container, the material is easily spilled.
 また、従来のMCコアの材料は、樹脂の含有量が多いため、当該材料中の磁性粉末の占める割合が少なくなり、コア密度の低下を招き、結果として磁気特性が低下していた。 In addition, since the conventional MC core material has a high resin content, the proportion of the magnetic powder in the material is reduced, leading to a decrease in core density, resulting in a decrease in magnetic properties.
 そこで、樹脂量を少なくすることにより、当該材料に含まれる磁性粉末の密度を上げることが考えられる。しかし、樹脂量を少なくすれば、当該材料が容器内の隅々に流れ込みにくくなり、MCコアの利点である成型性が損なわれる。このように、従来のMCコアでは、成型性、生産性及び高密度を全て成立させることが困難であった。 Therefore, it is conceivable to increase the density of the magnetic powder contained in the material by reducing the amount of resin. However, if the amount of resin is reduced, it becomes difficult for the material to flow into every corner of the container, and the moldability that is an advantage of the MC core is impaired. Thus, it has been difficult to achieve all of moldability, productivity, and high density with the conventional MC core.
 また、MCコアは、フラットな磁気特性を有している。すなわち、MCコアは、フェライトコアに比べて磁気飽和しにくく、コイルに流す電流を増大させても、透磁率が低下しにくい特性がある。つまり、言い換えると、MCコアは、初透磁率、すなわち、コイルに電流を流していない時の透磁率が低い傾向にあるという特性がある。 Also, the MC core has flat magnetic characteristics. That is, the MC core is less likely to be magnetically saturated than the ferrite core, and has a characteristic that the permeability is less likely to decrease even when the current flowing through the coil is increased. That is, in other words, the MC core has a characteristic that the initial permeability, that is, the permeability when no current flows through the coil tends to be low.
 ところで、透磁率を高めようとする技術として、MCコア製造過程において、外部から磁界を印加してMCコア内の磁性粉末の配向を揃える技術が知られている(特許文献1)。 By the way, as a technique for increasing the magnetic permeability, a technique for aligning the magnetic powder in the MC core by applying a magnetic field from the outside in the MC core manufacturing process is known (Patent Document 1).
 このような従来技術では、別途、電流経路を形成するための導電部材を設置して、当該導電部材を通電することにより磁界を発生させ、MCコアの材料に対し、外部から磁界を印加する。このような導電部材は、例えば、MCコアの材料を入れた容器の外側に設けられており、所望の配向にするために当該導電部材の設置位置を移動させる必要がある。 In such a conventional technique, a conductive member for forming a current path is separately provided, a magnetic field is generated by energizing the conductive member, and a magnetic field is applied to the MC core material from the outside. Such a conductive member is provided, for example, outside the container containing the MC core material, and the installation position of the conductive member needs to be moved in order to obtain a desired orientation.
 しかし、当該導電部材の設置条件の制約上から、実際に配向させたい向きに磁束を発生させることが難しい。そのため、実際に配向させたい向きと導電部材により発生する磁束の向きとが不一致となり、初透磁率を高める効果が得られない場合があった。 However, due to restrictions on the installation conditions of the conductive member, it is difficult to generate magnetic flux in the direction in which it is actually desired to be oriented. For this reason, the direction of actual orientation and the direction of the magnetic flux generated by the conductive member are inconsistent, and the effect of increasing the initial permeability may not be obtained.
 また、MCコアにおいては、樹脂が磁性粉末間に存在し、磁性粉末同士の接触を防止している。換言すると、樹脂により磁性粉末間の絶縁性を確保している。このようなMCコアを長時間高温下で使用すると樹脂が分解し、磁性粉末同士の接触に起因する磁気特性の低下が問題視されている。 Also, in the MC core, resin exists between the magnetic powders to prevent contact between the magnetic powders. In other words, the insulation between the magnetic powders is ensured by the resin. When such an MC core is used at a high temperature for a long time, the resin is decomposed, and a decrease in magnetic properties due to contact between magnetic powders is regarded as a problem.
 本発明は、下記の第1の目的、第2の目的、第3の目的の少なくとも何れか1つを目的とする。 The present invention has at least one of the following first object, second object, and third object.
 本発明の第1の目的は、成型性の利点を得つつも、生産性及び密度を向上させることのできるリアクトルの製造方法、コアの製造方法、コア及びリアクトルを提供することにある。 A first object of the present invention is to provide a reactor manufacturing method, a core manufacturing method, a core, and a reactor capable of improving productivity and density while obtaining advantages of moldability.
 本発明の第2の目的は、初透磁率の高いコアを備えたリアクトルを得ることのできるリアクトルの製造方法を提供することにある。 A second object of the present invention is to provide a reactor manufacturing method capable of obtaining a reactor having a core having a high initial permeability.
 本発明の第3の目的は、前記のような従来技術の問題点を解決するために提案されたものであり、高温下で長時間使用した際の磁気特性の悪化を抑制した複合軟磁性複合材料、メタルコンポジットコア及びメタルコンポジットコアの製造方法を提供することにある。 The third object of the present invention is proposed to solve the above-mentioned problems of the prior art, and is a composite soft magnetic composite that suppresses deterioration of magnetic properties when used for a long time at high temperature. The object is to provide a material, a metal composite core, and a metal composite core manufacturing method.
 上記第1の目的を達成するため、本発明のリアクトルの製造方法は、磁性粉末及び樹脂を含むコアと、前記コアに装着されたコイルとを備えたリアクトルの製造方法であって、下記の構成を備えたことを特徴とする。
(1)前記磁性粉末に対して3~5wt%の樹脂を混合する混合工程。
(2)前記混合工程で得た混合物と前記コイルとを所定の容器に入れて成型する成型工程。
(3)前記成型工程時に、前記混合物を押圧する加圧工程。
(4)前記成型工程で得た成型体中の樹脂を硬化させる硬化工程。
In order to achieve the first object, a method for manufacturing a reactor according to the present invention is a method for manufacturing a reactor including a core including magnetic powder and a resin, and a coil attached to the core. It is provided with.
(1) A mixing step of mixing 3 to 5 wt% resin with respect to the magnetic powder.
(2) A molding step of molding the mixture obtained in the mixing step and the coil in a predetermined container.
(3) A pressurizing step of pressing the mixture during the molding step.
(4) A curing step of curing the resin in the molded body obtained in the molding step.
 本発明のコアの製造方法は、磁性粉末及び樹脂を含むコアの製造方法であって、
下記の構成を備えたことを特徴とする。
(1)前記磁性粉末に対して3~5wt%の樹脂を混合する混合工程。
(2)前記混合工程で得た混合物を所定の容器に入れて成型する成型工程。
(3)前記成型工程時に、前記混合物を押圧する加圧工程。
(4)前記成型工程で得た成型体中の前記樹脂を硬化させる硬化工程。
The method for producing a core of the present invention is a method for producing a core containing magnetic powder and a resin,
The following configuration is provided.
(1) A mixing step of mixing 3 to 5 wt% resin with respect to the magnetic powder.
(2) A molding step of molding the mixture obtained in the mixing step in a predetermined container.
(3) A pressurizing step of pressing the mixture during the molding step.
(4) A curing step of curing the resin in the molded body obtained in the molding step.
 本発明のコアは、磁性粉末と樹脂とからなるコアであって、下記の構成を有することを特徴とする。
(1)前記磁性粉末は、第1の磁性粉末と、前記第1の磁性粉末より平均粒子径の小さい第2の磁性粉末とを有すること。
(2)前記磁性粉末における前記第1の磁性粉末の添加量が60~80wt%、前記第2の磁性粉末が20~40wt%であること。
(3)前記第1の磁性粉末は、平均粒子径が100μm~200μmであり、前記第2の磁性粉末は、平均粒子径が3μm~10μmであること。
(4)前記磁性粉末に対する前記樹脂の含有量が3~5wt%であること。
(5)前記磁性粉末の真密度に対する前記コアの見かけ密度の割合が、76.47%超であること。
The core of the present invention is a core made of magnetic powder and resin, and has the following configuration.
(1) The magnetic powder includes a first magnetic powder and a second magnetic powder having an average particle diameter smaller than that of the first magnetic powder.
(2) The addition amount of the first magnetic powder in the magnetic powder is 60 to 80 wt%, and the second magnetic powder is 20 to 40 wt%.
(3) The first magnetic powder has an average particle size of 100 μm to 200 μm, and the second magnetic powder has an average particle size of 3 μm to 10 μm.
(4) The content of the resin with respect to the magnetic powder is 3 to 5 wt%.
(5) The ratio of the apparent density of the core to the true density of the magnetic powder is more than 76.47%.
 本発明は、上記コアを備えたリアクトルとしても捉えることができる。 The present invention can also be understood as a reactor having the above core.
 上記第2の目的を達成するため、本発明のリアクトルの製造方法は、磁性粉末及び樹脂を含むコアと、前記コアに装着されたコイルとを備えたリアクトルの製造方法であって、下記の構成を備えたことを特徴とする。
(1)前記磁性粉末に対して3~5wt%の樹脂を混合する混合工程。
(2)前記混合工程で得た混合物と前記コイルとを所定の容器に入れて成型する成型工程。
(3)前記成型工程で得た成型体中の前記樹脂を硬化させる硬化工程。
(4)前記硬化工程時に前記成型体の前記コイルを通電し、前記成型体に磁界を印加する磁界印加工程。
In order to achieve the second object, a method for manufacturing a reactor according to the present invention is a method for manufacturing a reactor including a core containing magnetic powder and a resin, and a coil attached to the core, and has the following configuration It is provided with.
(1) A mixing step of mixing 3 to 5 wt% resin with respect to the magnetic powder.
(2) A molding step of molding the mixture obtained in the mixing step and the coil in a predetermined container.
(3) A curing step of curing the resin in the molded body obtained in the molding step.
(4) A magnetic field applying step of energizing the coil of the molded body and applying a magnetic field to the molded body during the curing step.
 また、本発明のリアクトルの製造方法は、磁性粉末及び樹脂を含むコアと、前記コアに装着されたコイルとを備えたリアクトルの製造方法であって、下記の構成を備えたことを特徴とする。
(1)前記磁性粉末に対して3~5wt%の樹脂を混合する混合工程。
(2)前記混合工程で得た混合物を所定の容器に入れて成型する成型工程。
(3)前記成型工程で得た成型体に前記コイルを構成する導線を巻回する巻回工程。
(4)前記導線が巻回された前記成型体中の前記樹脂を硬化させる硬化工程。
(5)前記硬化工程時に前記導線に通電し、前記成型体に磁界を印加する磁界印加工程。
A reactor manufacturing method according to the present invention is a reactor manufacturing method including a core including magnetic powder and a resin, and a coil mounted on the core, and has the following configuration. .
(1) A mixing step of mixing 3 to 5 wt% resin with respect to the magnetic powder.
(2) A molding step of molding the mixture obtained in the mixing step in a predetermined container.
(3) A winding step of winding a conductive wire constituting the coil around the molded body obtained in the molding step.
(4) A curing step of curing the resin in the molded body around which the conductive wire is wound.
(5) A magnetic field applying step of energizing the conducting wire during the curing step and applying a magnetic field to the molded body.
 上記第3の目的を達成するため、本発明の軟磁性複合材料は、磁性粉末と樹脂とを混合してなる軟磁性複合材料であって、当該樹脂を220℃の雰囲気に40時間晒した際の減少率が0.1%以下であることを特徴とする。 In order to achieve the third object, the soft magnetic composite material of the present invention is a soft magnetic composite material obtained by mixing magnetic powder and a resin, and when the resin is exposed to an atmosphere of 220 ° C. for 40 hours. The reduction rate is 0.1% or less.
 前記減少率は、0.08%以下としても良い。 The reduction rate may be 0.08% or less.
 前記減少率は、前記樹脂の重量の減少率としても良い。 The reduction rate may be a reduction rate of the weight of the resin.
 前記磁性粉末は、所定の平均粒子径の第1の磁性粉末と、平均粒子径が前記第1の磁性粉末より小さい第2の磁性粉末と、を含んでも良い。 The magnetic powder may include a first magnetic powder having a predetermined average particle diameter and a second magnetic powder having an average particle diameter smaller than the first magnetic powder.
 前記第1の磁性粉末の平均粒子径は100~200μmであり、前記第2の磁性粉末の平均粒子径は5~10μmとしても良い。 The average particle diameter of the first magnetic powder may be 100 to 200 μm, and the average particle diameter of the second magnetic powder may be 5 to 10 μm.
 前記磁性粉末における前記第1の磁性粉末の添加量が60~80wt%、前記第2の磁性粉末が20~40wt%としても良い。 The addition amount of the first magnetic powder in the magnetic powder may be 60 to 80 wt%, and the second magnetic powder may be 20 to 40 wt%.
 前記樹脂は、熱硬化性樹脂としても良い。 The resin may be a thermosetting resin.
 前記樹脂は、エポキシ樹脂としても良い。 The resin may be an epoxy resin.
 上記のような軟磁性複合材料によって構成された磁性コアも本発明の一態様である。また、前記の磁性体コアは、155℃の雰囲気に500時間以上晒した際の鉄損の変化率が10%以下であっても良い。 A magnetic core composed of the soft magnetic composite material as described above is also an embodiment of the present invention. The magnetic core may have an iron loss change rate of 10% or less when exposed to an atmosphere at 155 ° C. for 500 hours or more.
 さらに、当該磁性コアを備えるリアクトルも本発明の一態様である。 Furthermore, a reactor including the magnetic core is also an aspect of the present invention.
 本発明によれば、成型性の利点を得つつも、生産性及び密度を向上させることのできるリアクトルの製造方法、コアの製造方法、コア及びリアクトルを提供することができる。 According to the present invention, it is possible to provide a reactor manufacturing method, a core manufacturing method, a core, and a reactor capable of improving productivity and density while obtaining advantages of moldability.
 本発明によれば、初透磁率の高いコアを備えたリアクトルを得ることのできるリアクトルの製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a reactor capable of obtaining a reactor having a core having a high initial permeability.
 本発明によれば、軟磁性複合材料において、磁性粉末に混合する樹脂の220℃で40時間晒した際の減少率を0.1%以下とする。これより、この軟磁性複合材料より構成される磁性コア及びリアクトルを長時間高温下に晒した際にも、磁性粉末間に存在する樹脂の消失を抑制することができ、その結果、本発明の磁性コア及びリアクトルでは、長時間高温下で使用した際の磁気特性の低下を抑えることができる。 According to the present invention, in the soft magnetic composite material, the reduction rate when the resin mixed with the magnetic powder is exposed at 220 ° C. for 40 hours is 0.1% or less. As a result, even when the magnetic core and the reactor composed of this soft magnetic composite material are exposed to a high temperature for a long time, it is possible to suppress the disappearance of the resin existing between the magnetic powders. In the magnetic core and the reactor, it is possible to suppress a decrease in magnetic properties when used at a high temperature for a long time.
実施形態Iに係るリアクトルの製造方法を説明するためのフローチャートである。5 is a flowchart for explaining a reactor manufacturing method according to embodiment I. 成型工程及び加圧工程を説明するための図である。It is a figure for demonstrating a formation process and a pressurization process. 実施例1~3及び比較例1,2の面圧に対する理論密度のグラフである。3 is a graph of theoretical density versus surface pressure in Examples 1 to 3 and Comparative Examples 1 and 2. 実施例2のコア断面のSEM写真(100倍)である。4 is a SEM photograph (100 times) of a core cross section of Example 2. FIG. 比較例1のコア断面のSEM写真(100倍)である。4 is a SEM photograph (100 times) of a core cross section of Comparative Example 1. 実施例1~3及び比較例1,2の面圧に対する透磁率のグラフである。3 is a graph of magnetic permeability with respect to surface pressure in Examples 1 to 3 and Comparative Examples 1 and 2; 実施例1~3及び比較例1,2の面圧に対する鉄損のグラフである。6 is a graph of iron loss versus surface pressure in Examples 1 to 3 and Comparative Examples 1 and 2. 実施例4~6及び比較例3の面圧に対する透磁率のグラフである。7 is a graph of magnetic permeability with respect to surface pressure in Examples 4 to 6 and Comparative Example 3. 実施例4~6及び比較例3の面圧に対する鉄損のグラフである。6 is a graph of iron loss versus surface pressure in Examples 4 to 6 and Comparative Example 3. 実施例9~11及び比較例6の面圧に対する透磁率のグラフである。6 is a graph of magnetic permeability with respect to surface pressure in Examples 9 to 11 and Comparative Example 6. 実施例9~11及び比較例6の面圧に対する鉄損のグラフである。6 is a graph of iron loss versus surface pressure in Examples 9 to 11 and Comparative Example 6. 実施形態IIに係るリアクトルの製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the reactor which concerns on Embodiment II. 磁界を印加する場合と印加しない場合の樹脂量に対する初透磁率のグラフである。It is a graph of the initial permeability with respect to the resin amount when not applying a magnetic field. 樹脂量に対する透磁率の変化率のグラフである。It is a graph of the change rate of the magnetic permeability with respect to the resin amount. 磁界に対する初期のインダクタンス値の変化率のグラフである。It is a graph of the change rate of the initial inductance value with respect to a magnetic field. 樹脂量3wt%として硬化工程中の各印加磁界で作製したリアクトルの初期インダクタンス値のグラフである。It is a graph of the initial inductance value of the reactor produced by each applied magnetic field in a hardening process as resin amount 3wt%. 樹脂量3wt%として硬化工程中の各印加磁界で作製したリアクトルの初期インダクタンス値の変化率を示すグラフである。It is a graph which shows the change rate of the initial inductance value of the reactor produced by each applied magnetic field in a hardening process as resin amount 3wt%. 樹脂量4wt%として硬化工程中の各印加磁界で作製したリアクトルの初期インダクタンス値のグラフである。It is a graph of the initial inductance value of the reactor produced by each applied magnetic field in a hardening process as resin amount 4wt%. 樹脂量4wt%として硬化工程中の各印加磁界で作製したリアクトルの初期インダクタンス値の変化率を示すグラフである。It is a graph which shows the change rate of the initial inductance value of the reactor produced with each applied magnetic field in a hardening process as the resin amount of 4 wt%. 樹脂量5wt%として硬化工程中の各印加磁界で作製したリアクトルの初期インダクタンス値のグラフである。It is a graph of the initial inductance value of the reactor produced by each applied magnetic field in a hardening process as resin amount 5wt%. 樹脂量5wt%として硬化工程中の各印加磁界で作製したリアクトルの初期インダクタンス値の変化率を示すグラフである。It is a graph which shows the change rate of the initial inductance value of the reactor produced with each applied magnetic field in a hardening process as resin amount 5wt%. 実施形態IIIに係るメタルコンポジットコアの製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the metal composite core which concerns on Embodiment III. 高温放置試験における放置時間と鉄損Pcvの関係を示すグラフである。It is a graph which shows the relationship between the leaving time in a high temperature leaving test, and the iron loss Pcv.
[1.実施形態I]
[1-1.構成]
 本実施形態のリアクトルは、コアと、コイルとを備える。コアは、磁性粉末と樹脂とを含み構成されたメタルコンポジットコアである。磁性粉末と樹脂とを混合した粘土状の混合物を、所定の容器に充填し、加圧することでコアを所定の形状とすることができる。コアの形状は、例えば、トロイダル状コア、I型コア、U型コア、θ型コア、E型コア、EER型コアなど、種々の形状とすることができる。
[1. Embodiment I]
[1-1. Constitution]
The reactor of this embodiment includes a core and a coil. The core is a metal composite core composed of magnetic powder and resin. A core can be made into a predetermined shape by filling a predetermined container with a clay-like mixture in which magnetic powder and resin are mixed, and pressurizing the mixture. The shape of the core can be various shapes such as a toroidal core, an I-type core, a U-type core, a θ-type core, an E-type core, and an EER-type core.
 磁性粉末としては、軟磁性粉末が使用でき、特に、Fe粉末、Fe-Si合金粉末、Fe-Al合金粉末、Fe-Si-Al合金粉末(センダスト)、又はこれら2種以上の粉末の混合粉などが使用できる。Fe-Si合金粉末としては、例えば、Fe-6.5%Si合金粉末、Fe-3.5%Si合金粉末を使用できる。軟磁性粉末の平均粒子径(D50)は20μm~150μmが好ましい。なお、本明細書において「平均粒子径」とは、特に断りがない限り、D50、すなわちメジアン径を指すものとする。 As the magnetic powder, soft magnetic powder can be used, and in particular, Fe powder, Fe—Si alloy powder, Fe—Al alloy powder, Fe—Si—Al alloy powder (Sendust), or a mixed powder of two or more of these powders. Etc. can be used. As the Fe—Si alloy powder, for example, Fe-6.5% Si alloy powder and Fe-3.5% Si alloy powder can be used. The average particle diameter (D50) of the soft magnetic powder is preferably 20 μm to 150 μm. In the present specification, the “average particle diameter” refers to D50, that is, the median diameter unless otherwise specified.
 磁性粉末は、平均粒子径の異なる2種類以上の磁性粉末から構成しても良い。この場合、磁性粉末は、第1の磁性粉末と、第1の磁性粉末より平均粒子径の小さい第2の磁性粉末とから構成し、その重量比率は、第1の磁性粉末:第2の磁性粉末=80:20~60:40とすることが好ましい。この範囲とすることで密度が向上し、透磁率も向上するともに、鉄損を小さくすることができる。 The magnetic powder may be composed of two or more kinds of magnetic powders having different average particle diameters. In this case, the magnetic powder is composed of the first magnetic powder and the second magnetic powder having an average particle diameter smaller than that of the first magnetic powder, and the weight ratio thereof is the first magnetic powder: second magnetic powder. The powder is preferably 80:20 to 60:40. By setting it in this range, the density is improved, the magnetic permeability is improved, and the iron loss can be reduced.
 第1の磁性粉末の平均粒子径は100μm~200μm、第2の磁性粉末は、3μm~10μmが好ましい。第1の磁性粉末同士の隙間に平均粒子径の小さい第2の磁性粉末が入り込み、密度及び透磁率の向上と低鉄損化を図ることができるからである。 The average particle diameter of the first magnetic powder is preferably 100 μm to 200 μm, and the second magnetic powder is preferably 3 μm to 10 μm. This is because the second magnetic powder having a small average particle diameter enters the gaps between the first magnetic powders, and the density and permeability can be improved and the iron loss can be reduced.
 第1の磁性粉末及び第2の磁性粉末は、球形であることが好ましい。第1の磁性粉末の円形度は、0.93以上であり、第2の磁性粉末の円形度は、0.95以上であることが好ましい。第1の磁性粉末同士の隙間が少なくなり、かつ、当該隙間により多くの第2の磁性粉末が入り込み易くなり、密度及び透磁率の向上を図ることができるからである。 The first magnetic powder and the second magnetic powder are preferably spherical. The circularity of the first magnetic powder is preferably 0.93 or more, and the circularity of the second magnetic powder is preferably 0.95 or more. This is because the gap between the first magnetic powders is reduced and more second magnetic powder can easily enter through the gap, and the density and permeability can be improved.
 なお、第1の磁性粉末と第2の磁性粉末の種類は同じでも良いし、異なっていても良い。異なる場合は3種以上であっても良い。3種類以上の粉末により磁性粉末を構成する場合、各種類で平均粒子径を異ならせても良い。 Note that the types of the first magnetic powder and the second magnetic powder may be the same or different. If different, three or more may be used. When the magnetic powder is composed of three or more types of powders, the average particle size may be different for each type.
 第1の磁性粉末は、粉砕分を用いることが好ましい。第2の磁性粉末は、水アトマイズ法、ガスアトマイズ法、水・ガスアトマイズ法により製造されるものを使用できるが、特に、水アトマイズ法によるものが好ましい。理由は、水アトマイズ法はアトマイズ時に急冷するため、粉末が結晶化しにくいからである。 The first magnetic powder is preferably pulverized. As the second magnetic powder, those produced by a water atomizing method, a gas atomizing method, or a water / gas atomizing method can be used, and those by a water atomizing method are particularly preferable. The reason is that the water atomization method rapidly cools during atomization, so that the powder is difficult to crystallize.
 樹脂は、磁性粉末を混合され、磁性粉末を保持する。磁性粉末が平均粒子径の異なる種類の粉末で構成される場合、各粉末を均質に混合した状態で保持する。樹脂としては、熱硬化性樹脂、紫外線硬化性樹脂、又は熱可塑性樹脂が使用できる。熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン、ジアリルフタレート樹脂、シリコーン樹脂などが使用できる。紫外線硬化性樹脂としては、ウレタンアクリレート系、エポキシアクリレート系、アクリレート系、エポキシ系の樹脂を使用できる。熱可塑性樹脂としては、ポリイミドやフッ素樹脂などの耐熱性に優れた樹脂を使用することが好ましい。硬化剤を添加することにより硬化するエポキシ樹脂は、硬化剤の添加量などによってその粘度を調整できることから、本発明に適している。熱可塑性のアクリル樹脂やシリコーン樹脂も使用可能である。 Resin is mixed with magnetic powder to hold the magnetic powder. When the magnetic powder is composed of different types of powders having different average particle sizes, each powder is held in a homogeneously mixed state. As the resin, a thermosetting resin, an ultraviolet curable resin, or a thermoplastic resin can be used. As the thermosetting resin, phenol resin, epoxy resin, unsaturated polyester resin, polyurethane, diallyl phthalate resin, silicone resin and the like can be used. As the ultraviolet curable resin, urethane acrylate, epoxy acrylate, acrylate, and epoxy resins can be used. As the thermoplastic resin, it is preferable to use a resin having excellent heat resistance such as polyimide or fluororesin. An epoxy resin that is cured by adding a curing agent is suitable for the present invention because its viscosity can be adjusted by the amount of the curing agent added. Thermoplastic acrylic resins and silicone resins can also be used.
 樹脂は、磁性粉末に対して3~5wt%含有されていることが好ましい。樹脂の含有量が3wt%より少ないと、磁性粉末の接合力が不足し、コアの機械的強度が低下する。また、樹脂の含有量が5wt%より多いと、第1の磁性粉末間に形成された樹脂が入り込み、その隙間を第2の磁性粉末が埋めることができなくなるなど、コアの密度が低下し、透磁率が低下する。 The resin is preferably contained in an amount of 3 to 5 wt% with respect to the magnetic powder. When the resin content is less than 3 wt%, the bonding strength of the magnetic powder is insufficient and the mechanical strength of the core is lowered. Also, if the resin content is more than 5 wt%, the resin formed between the first magnetic powder enters, the second magnetic powder cannot fill the gap, and the core density decreases, Magnetic permeability decreases.
 樹脂の粘度は、磁性粉末との混合時において50~5000mPa・sであることが好ましい。粘度が50mPa・s未満であると、混合時において樹脂が磁性粉末に絡みつくことがなく、容器内で磁性粉末と樹脂とが分離しやすくなり、コアの密度又は強度にバラツキが生じる。粘度が5000mPa・sを超えると、粘度が高くなりすぎ、例えば、第1の磁性粉末間に形成された樹脂が入り込み、その隙間を第2の磁性粉末が埋めることができなくなるなど、コアの密度が低下し、透磁率が低下する。 The viscosity of the resin is preferably 50 to 5000 mPa · s when mixed with the magnetic powder. When the viscosity is less than 50 mPa · s, the resin does not get entangled with the magnetic powder during mixing, the magnetic powder and the resin are easily separated in the container, and the density or strength of the core varies. When the viscosity exceeds 5000 mPa · s, the viscosity becomes too high. For example, the resin formed between the first magnetic powders enters, and the gap cannot be filled with the second magnetic powder. Decreases, and the magnetic permeability decreases.
 樹脂には、粘度調整材料として、SiO、Al、Fe、BN、AlN、ZnO、TiOなどを使用することができる。粘度調整材料としてのフィラーの平均粒子径は、第2の磁性粉末の平均粒子径以下、好ましくは第2の磁性粉末の平均粒子径の1/3以下が良い。フィラーの平均粒子径が大きいと、得られたコアの密度が低下するからである。また、樹脂には、Al、BN、AlNなどの高熱伝導率材料を添加することができる。 For the resin, SiO 2 , Al 2 O 3 , Fe 2 O 3 , BN, AlN, ZnO, TiO 2 or the like can be used as a viscosity adjusting material. The average particle diameter of the filler as the viscosity adjusting material is not more than the average particle diameter of the second magnetic powder, preferably not more than 1/3 of the average particle diameter of the second magnetic powder. This is because when the average particle size of the filler is large, the density of the obtained core decreases. Further, a high thermal conductivity material such as Al 2 O 3 , BN, or AlN can be added to the resin.
 コアの見かけ密度の、磁性粉末の真密度に対する割合は、76.47%超であることが好ましく、77.5%以上であると更に好ましい。当該割合が76.47%超であると、透磁率を高くすることができる。逆に、当該割合が76.47%以下であると、低密度により低透磁率となる。 The ratio of the apparent density of the core to the true density of the magnetic powder is preferably more than 76.47%, and more preferably 77.5% or more. When the ratio is more than 76.47%, the magnetic permeability can be increased. On the other hand, when the ratio is 76.47% or less, low permeability results in low magnetic permeability.
 コイルは、絶縁被覆が施された導線であり、線材として銅線やアルミニウム線を用いることができる。コイルは、コアの少なくとも一部に導線が巻き回されて形成され或いは装着されており、コアの少なくとも一部の周囲に配置される。コイルの巻き方や線材の形状は特に限定されない。 The coil is a conductive wire with an insulating coating, and a copper wire or an aluminum wire can be used as the wire. The coil is formed or mounted by winding a conductive wire around at least a part of the core, and is arranged around at least a part of the core. The method of winding the coil and the shape of the wire are not particularly limited.
[1-2.リアクトルの製造方法]
 本実施形態に係るリアクトルの製造方法について、図面を参照しつつ説明する。本リアクトルの製造方法は、図1に示すように、(1)混合工程、(2)成型工程、(3)加圧工程、及び(4)硬化工程を備える。
[1-2. Reactor manufacturing method]
The manufacturing method of the reactor which concerns on this embodiment is demonstrated referring drawings. As shown in FIG. 1, the reactor manufacturing method includes (1) a mixing step, (2) a molding step, (3) a pressing step, and (4) a curing step.
(1) 混合工程
 混合工程は、磁性粉末と樹脂とを混合する工程である。磁性粉末が、平均粒子径の異なる2種類の磁性粉末から構成される場合には、混合工程は、第1の磁性粉末と、第1の磁性粉末より平均粒子径の小さい第2の磁性粉末とを混合し、磁性粉末を構成する磁性粉混合工程と、磁性粉末に対して3~5wt%の樹脂を添加し、磁性粉末と樹脂とを混合する樹脂混合工程とを有する。
(1) Mixing step The mixing step is a step of mixing magnetic powder and resin. When the magnetic powder is composed of two kinds of magnetic powders having different average particle diameters, the mixing step includes the first magnetic powder and the second magnetic powder having an average particle diameter smaller than that of the first magnetic powder. Are mixed to form a magnetic powder, and a resin mixing step of adding 3 to 5 wt% of the resin to the magnetic powder and mixing the magnetic powder and the resin.
 各混合工程の混合は、所定の混合器を用いて自動で、又は手動で行うことができる。各混合工程の混合時間は、適宜設定することができ、特に限定されるものではないが、例えば2分間とする。 The mixing in each mixing step can be performed automatically or manually using a predetermined mixer. The mixing time of each mixing step can be set as appropriate, and is not particularly limited.
 このような混合工程により、磁性粉末と樹脂との混合物(以下、複合磁性材料ともいう)を得ることができる。なお、混合工程は、成型工程において複合磁性材料を成型するための容器に、磁性粉末と樹脂とを充填して混合しても良い。これにより、複合磁性材料を容器に移し替える必要がなく、製造工数を削減することができる。 By such a mixing step, a mixture of magnetic powder and resin (hereinafter also referred to as a composite magnetic material) can be obtained. In the mixing step, the magnetic powder and the resin may be filled and mixed in a container for molding the composite magnetic material in the molding step. Thereby, it is not necessary to transfer a composite magnetic material to a container, and a manufacturing man-hour can be reduced.
 (2) 成型工程
 成型工程は、複合磁性粉末を所定形状の容器に入れて所定の形状に成型する工程である。成型工程では、複合磁性粉末とともにコイルを入れて成型しても良い。
(2) Molding process The molding process is a process in which the composite magnetic powder is put into a container having a predetermined shape and molded into a predetermined shape. In the molding step, a coil may be put together with the composite magnetic powder and molded.
 容器としては、製造するコアの形状に合わせて各種の形状のものを使用する。コイルを入れる場合には、容器は、上方からコイルを挿入できるよう、上面開口型の箱型や皿形の容器を使用する。成型工程で使用する容器は、そのままコアとコイルとを収容するリアクトルの外装ケースとして使用することもできる。当該容器を外装ケースとして使用すれば、複合磁性粉末の硬化後に容器を取り出す必要がない利点がある。容器を外装ケースとして使用しない場合には、1つの容器で複数のリアクトルを製造するようにしても良い。すなわち、容器の底部に複数の凹部を形成しておき、当該凹部に複合磁性材料及びコイルを入れることにより、複数のリアクトルを製造するようにしても良い。このようにすることで、複数のリアクトルに対し、一度の成型工程で済むので、製造効率を向上させることができる。 * Containers with various shapes are used according to the shape of the core to be manufactured. When inserting a coil, the container uses a box-type container or a dish-shaped container with an open top so that the coil can be inserted from above. The container used in the molding process can also be used as it is as an outer case of a reactor that houses the core and the coil. If the container is used as an exterior case, there is an advantage that it is not necessary to take out the container after the composite magnetic powder is cured. When the container is not used as an exterior case, a plurality of reactors may be manufactured with one container. That is, a plurality of reactors may be manufactured by forming a plurality of recesses in the bottom of the container and putting a composite magnetic material and a coil in the recesses. By doing in this way, since a single shaping | molding process is enough with respect to several reactors, manufacturing efficiency can be improved.
 成型工程に使用する容器としては、その全部又は一部を樹脂成型品によって構成することができる。容器を樹脂製にすることにより、製造コストを削減することができ、かつ、MCコアの任意の形状とできる利点を活かすことができる。すなわち、樹脂は、比較安価な材料であるため、容器を製造するコストを抑えることができるとともに、射出成型等により、任意の形状のコアを形成することができる。樹脂成型品の材料としては、例えば、不飽和ポリエステル系樹脂、ウレタン樹脂、エポキシ樹脂、BMC(バルクモールディングコンパウンド)、PPS(ポリフェニレンサルファイド)、PBT(ポリブチレンテレフタレート)等を用いることができる。 As the container used for the molding process, all or a part thereof can be constituted by a resin molded product. By making the container made of resin, the manufacturing cost can be reduced, and the advantage that the MC core can have any shape can be utilized. That is, since the resin is a comparatively inexpensive material, the cost of manufacturing the container can be suppressed, and a core having an arbitrary shape can be formed by injection molding or the like. As a material of the resin molded product, for example, unsaturated polyester resin, urethane resin, epoxy resin, BMC (bulk molding compound), PPS (polyphenylene sulfide), PBT (polybutylene terephthalate), or the like can be used.
 また、容器の全部又は一部を、アルミニウム、マグネシウムなどの熱伝導性の高い金属で構成しても良い。後述するように、加圧工程において複合磁性材料を温めやすくなるからである。 Further, all or part of the container may be made of a metal having high thermal conductivity such as aluminum or magnesium. This is because the composite magnetic material can be easily warmed in the pressurizing step, as will be described later.
(3) 加圧工程
 加圧工程は、成型工程時に、複合磁性材料を押圧部材で押圧する工程である。容器に入れられた粘土状の複合磁性材料を、押圧部材で押圧することにより、容器の形状に複合磁性材料を押し広げるとともに、複合磁性材料に含まれていた空隙を減少させ、見かけ密度及び透磁率を向上させる。
(3) Pressurization step The pressurization step is a step of pressing the composite magnetic material with a pressing member during the molding step. By pressing the clay-like composite magnetic material contained in the container with the pressing member, the composite magnetic material is expanded to the shape of the container, and the voids contained in the composite magnetic material are reduced, and the apparent density and permeability are reduced. Improve magnetic susceptibility.
 容器にコイルを入れない場合は、当該工程により、複合磁性材料が容器内部の形状となる。すなわち、複合磁性材料から構成された所定の形状の成型体を得ることができる。 When the coil is not put in the container, the composite magnetic material becomes a shape inside the container by the process. That is, a molded body having a predetermined shape made of a composite magnetic material can be obtained.
 容器にコイルを入れる場合は、図2に示すように、容器内に複合磁性材料を入れて、押圧部材により容器の形状に複合磁性材料を押し広げる。その後、複合磁性材料を押圧したことによりできたスペースにコイルを挿入し、さらに複合磁性材料を充填し、コイルとともに複合磁性材料を押圧部材により上から押圧する。或いは、容器内に複合磁性材料を入れ、その後、コイルをその内外周を含めて当該複合磁性材料に埋設し、コイルとともに複合磁性材料を上から押圧するようにしても良い。このように、コイルとともに複合磁性材料を押圧することにより、複合磁性材料に含まれていた空隙を減少させ、見かけ密度及び透磁率を向上させることができる。なお、コイルが存在する部分は避けて、複合磁性材料のみを押圧するようにしても良い。このように、当該工程により、コイルを含んだ所定形状の複合磁性材料の成型体を得ることができる。 When putting the coil in the container, as shown in FIG. 2, the composite magnetic material is put in the container, and the composite magnetic material is spread in the shape of the container by the pressing member. Thereafter, the coil is inserted into the space formed by pressing the composite magnetic material, and further filled with the composite magnetic material, and the composite magnetic material is pressed together with the coil from above by the pressing member. Alternatively, the composite magnetic material may be put in a container, and then the coil including the inner and outer circumferences may be embedded in the composite magnetic material, and the composite magnetic material may be pressed together with the coil. Thus, by pressing a composite magnetic material with a coil, the space | gap contained in the composite magnetic material can be reduced and an apparent density and a magnetic permeability can be improved. In addition, you may make it press only a composite magnetic material, avoiding the part in which a coil exists. In this way, a molded body of a composite magnetic material having a predetermined shape including a coil can be obtained by this process.
 このように、加圧工程は、複合磁性材料を押圧部材で押圧して、当該材料を容器の形状としても良く、この場合は、加圧工程を、加圧工程及び成型工程と捉えることができる。 Thus, the pressurizing step may press the composite magnetic material with the pressing member to make the material into the shape of the container. In this case, the pressurizing step can be regarded as the pressurizing step and the molding step. .
 複合磁性材料を押圧する圧力は、6.3kg/cm以上であることが好ましい。この値未満であれば、押圧する圧力が小さく、見かけ密度を向上させる効果が小さい。また、当該値以上であっても、15.7kg/cm以下であることが好ましい。この値を超えて押圧しても、見かけ密度を向上させる効果が小さいからである。また、この値を超えて応圧すると、樹脂のみが押圧されて、磁性粉末間の絶縁性が悪化するからである。 The pressure for pressing the composite magnetic material is preferably 6.3 kg / cm 2 or more. If it is less than this value, the pressure to press is small and the effect of improving the apparent density is small. Moreover, even if it is more than the said value, it is preferable that it is 15.7 kg / cm < 2 > or less. This is because even if pressing exceeds this value, the effect of improving the apparent density is small. In addition, if the pressure exceeds this value, only the resin is pressed and the insulation between the magnetic powders deteriorates.
 複合磁性材料を押圧する時間は、樹脂の含有量や粘性によって適宜変更することができる。例えば、10秒とすることができる。 The time for pressing the composite magnetic material can be appropriately changed depending on the resin content and viscosity. For example, it can be 10 seconds.
 加圧工程は、容器又は複合磁性材料を押圧する押圧部材を常温(例えば25℃)よりも高い温度にして行っても良い。容器又は押圧部材の温度を上げることにより、樹脂が温められ、柔らかくなる。そのため、容器内の隙間に複合磁性材料が流れ込み易くなり、成型性を向上させることができるとともに、複合磁性材料中の空隙に当該材料が流れ込み易くなり、密度を向上させることができる。容器又は複合磁性材料を押圧する押圧部材の温度は、複合磁性材料に含まれる樹脂の軟化点より高くすると良い。効果的に樹脂を柔らかくすることができるからである。加圧工程は、容器又は複合磁性材料を押圧する押圧部材の温度を保持したまま行っても良い。 The pressurizing step may be performed by setting the pressing member for pressing the container or the composite magnetic material to a temperature higher than normal temperature (for example, 25 ° C.). By raising the temperature of the container or the pressing member, the resin is warmed and softened. For this reason, the composite magnetic material can easily flow into the gap in the container and the moldability can be improved, and the material can easily flow into the voids in the composite magnetic material, and the density can be improved. The temperature of the pressing member that presses the container or the composite magnetic material is preferably higher than the softening point of the resin contained in the composite magnetic material. This is because the resin can be effectively softened. The pressurizing step may be performed while maintaining the temperature of the pressing member that presses the container or the composite magnetic material.
 また、加圧工程は、容器又は押圧部材の温度を上げておく他、複合磁性材料自体を温めておいて当該複合磁性材料を押圧するようにしても良い。容器又は複合磁性材料を押圧する押圧部材の温度を保持し、かつ、複合磁性材料自体を温めておいて押圧するようにしても良い。 Further, in the pressurizing step, the temperature of the container or the pressing member may be raised, or the composite magnetic material itself may be warmed to press the composite magnetic material. The temperature of the pressing member that presses the container or the composite magnetic material may be maintained, and the composite magnetic material itself may be warmed and pressed.
(4) 硬化工程
 硬化工程は、成型工程で得た成型体中の樹脂を硬化させる工程である。成型体中の樹脂の乾燥により硬化させる場合、乾燥雰囲気は、大気雰囲気とすることができる。乾燥時間は、樹脂の種類、含有量、乾燥温度等に応じて適宜変更可能であり、例えば、1時間~4時間とすることができるが、これに限定されない。乾燥温度は、樹脂の種類、含有量、乾燥時間等に応じて適宜変更可能であり、例えば、85℃~150℃とすることができるが、これに限定されない。なお、乾燥温度は、乾燥雰囲気の温度である。
(4) Curing step The curing step is a step of curing the resin in the molded body obtained in the molding step. In the case of curing by drying the resin in the molded body, the drying atmosphere can be an air atmosphere. The drying time can be appropriately changed according to the type, content, drying temperature, etc. of the resin, and can be, for example, 1 hour to 4 hours, but is not limited thereto. The drying temperature can be appropriately changed according to the type, content, drying time, etc. of the resin, and can be, for example, 85 ° C. to 150 ° C., but is not limited thereto. The drying temperature is the temperature of the drying atmosphere.
 また、樹脂の硬化は、乾燥に限られず、樹脂の種類によって硬化方法は異なる。例えば、樹脂が熱硬化性樹脂であれば、熱を加えることにより樹脂を硬化させ、樹脂が紫外線硬化性樹脂であれば、成型体に紫外線を照射させることで樹脂を硬化させる。 Also, the curing of the resin is not limited to drying, and the curing method varies depending on the type of resin. For example, if the resin is a thermosetting resin, the resin is cured by applying heat, and if the resin is an ultraviolet curable resin, the resin is cured by irradiating the molded body with ultraviolet rays.
 硬化工程は、所定の温度で所定時間成型体を硬化させる工程を複数回繰り返しても良い。また、例えば、樹脂の乾燥により硬化させる場合、複数回繰り返す毎に、乾燥温度又は乾燥時間を異ならせても良い。 In the curing step, the step of curing the molded body for a predetermined time at a predetermined temperature may be repeated a plurality of times. Further, for example, when the resin is cured by drying, the drying temperature or the drying time may be changed every time the resin is repeated a plurality of times.
[1-3.作用・効果]
(1)本実施形態のリアクトルの製造方法は、磁性粉末及び樹脂を含むコアと、前記コアに装着されたコイルとを備えたリアクトルの製造方法であって、磁性粉末に対して3~5wt%の樹脂を混合する混合工程と、混合工程で得た混合物とコイルとを所定の容器に入れて成型する成型工程と、成型工程時に、前記混合物を押圧する加圧工程と、成型工程で得た成型体を硬化させる硬化工程とを備えるようにした。
[1-3. Action / Effect]
(1) A method for manufacturing a reactor according to the present embodiment is a method for manufacturing a reactor including a core including magnetic powder and a resin, and a coil attached to the core, and is 3 to 5 wt% with respect to the magnetic powder. Obtained in the mixing step of mixing the resin, a molding step in which the mixture and the coil obtained in the mixing step are molded in a predetermined container, a pressing step for pressing the mixture in the molding step, and a molding step And a curing step for curing the molded body.
 これにより、成型性の利点を得つつも、生産性及び密度を向上させたコアを得ることができる。すなわち、樹脂量を3~5wt%としたので、複合磁性材料が粘土状となって扱い易くなり、生産性を向上させることができる。また、加圧工程を有することで、複合磁性材料の形状を所定の形状に成型することができるというMCコアの利点である成型性の利点を確保することができるとともに、複合磁性材料を押圧することにより、複合磁性材料に含まれる空隙に当該材料が入り込みやすくなり、コアの見かけ密度を向上させることができる。 This makes it possible to obtain a core with improved productivity and density while obtaining the advantage of moldability. That is, since the resin amount is 3 to 5 wt%, the composite magnetic material becomes clayy and easy to handle, and the productivity can be improved. Moreover, by having a pressurizing step, the advantage of the moldability that is the advantage of the MC core that the shape of the composite magnetic material can be formed into a predetermined shape can be secured, and the composite magnetic material is pressed. As a result, the material can easily enter the voids included in the composite magnetic material, and the apparent density of the core can be improved.
(2)加圧工程は、前記混合物を押圧する圧力を、6.3kg/cm以上とした。これにより、コアの密度を向上させることができる。 (2) In the pressing step, the pressure for pressing the mixture was set to 6.3 kg / cm 2 or more. Thereby, the density of a core can be improved.
(3)加圧工程は、前記混合物を押圧する部材又は容器を常温よりも高い温度にして行うようにした。これにより、当該混合物である複合磁性材料中の樹脂が温められ、柔らかくなる。そのため、容器内の隅々までに複合磁性材料が流れ込み易くなり、成型性を向上させることができるとともに、複合磁性材料中の空隙に当該材料が流れ込み易くなり、密度を向上させることができる。 (3) The pressurizing step was performed by setting the member or container for pressing the mixture to a temperature higher than room temperature. Thereby, the resin in the composite magnetic material which is the mixture is warmed and softened. For this reason, the composite magnetic material can easily flow into every corner of the container and the moldability can be improved, and the material can easily flow into the voids in the composite magnetic material, and the density can be improved.
(4)加圧工程は、常温よりも高い温度に温めた前記混合物を前記容器に入れて行うようにした。これにより、上記(3)と同様の作用効果を得ることができる。 (4) The pressurizing step was performed by putting the mixture warmed to a temperature higher than normal temperature into the container. Thereby, the same effect as said (3) can be acquired.
(5)磁性粉末は、平均粒子径の異なる2種類の磁性粉末を混合してなるようにした。特に、磁性粉末は、第1の磁性粉末と、第1の磁性粉末より平均粒子径の小さい第2の磁性粉末とが混合されてなり、磁性粉末における第1の磁性粉末の添加量が60~80wt%、第2の磁性粉末が20~40wt%とした。 (5) The magnetic powder was prepared by mixing two kinds of magnetic powders having different average particle diameters. In particular, the magnetic powder is a mixture of the first magnetic powder and the second magnetic powder having an average particle diameter smaller than that of the first magnetic powder. 80 wt% and the second magnetic powder was 20 to 40 wt%.
 これにより、第1の磁性粉末同士の隙間に第2の磁性粉末が入り込み、密度及び透磁率の向上と低鉄損化を図ることができる。 Thereby, the second magnetic powder enters the gap between the first magnetic powders, and the density and magnetic permeability can be improved and the iron loss can be reduced.
(6)第1の磁性粉末は、平均粒子径を20~150μmとし、第2の磁性粉末は、平均粒子径を5~20μmとした。これにより、コアの密度、透磁率が向上し、鉄損を小さくすることができる。 (6) The first magnetic powder has an average particle size of 20 to 150 μm, and the second magnetic powder has an average particle size of 5 to 20 μm. Thereby, the density and permeability of the core are improved, and the iron loss can be reduced.
(7)樹脂は、エポキシ樹脂、シリコーン樹脂、又はアクリル樹脂とした。これにより、複合磁性材料を粘土状にすることができ、取扱い容易となり、生産性を向上させることができる。 (7) The resin was an epoxy resin, a silicone resin, or an acrylic resin. Thereby, a composite magnetic material can be made into a clay shape, it becomes easy to handle, and productivity can be improved.
[2.実施形態II]
[2-1.構成]
 本実施形態のリアクトルは、実施形態Iのリアクトルの構成と同じであるので説明は省略する。すなわち、コア、コイル、磁性粉末、樹脂は実施形態Iと同様である。
[2. Embodiment II]
[2-1. Constitution]
Since the reactor of this embodiment is the same as the structure of the reactor of Embodiment I, description is abbreviate | omitted. That is, the core, coil, magnetic powder, and resin are the same as in Embodiment I.
[2-2.リアクトルの製造方法]
 本実施形態に係るリアクトルの製造方法について、図面を参照しつつ説明する。本リアクトルの製造方法は、図12に示すように、(1)混合工程、(2)成型工程、(3)加圧工程、(4)硬化工程、及び(5)磁界印加工程を備える。(1)~(4)の工程は、実施形態Iのリアクトルの製造方法と基本的に同じであるので、同じ部分は省略し、異なる部分のみ説明する。
[2-2. Reactor manufacturing method]
The manufacturing method of the reactor which concerns on this embodiment is demonstrated referring drawings. As shown in FIG. 12, the manufacturing method of the present reactor includes (1) a mixing step, (2) a molding step, (3) a pressurizing step, (4) a curing step, and (5) a magnetic field applying step. The steps (1) to (4) are basically the same as those of the reactor manufacturing method of Embodiment I, so the same portions are omitted and only different portions are described.
(3) 加圧工程
 加圧工程は、成型工程時に、複合磁性材料を押圧部材で押圧する工程である。容器に入れられた粘土状の複合磁性材料を、押圧部材で押圧することにより、容器の形状に複合磁性材料を押し広げるとともに、複合磁性材料に含まれていた空隙を減少させ、見かけ密度、初透磁率及び初期のインダクタンス値を向上させる。初期のインダクタンス値とは、本発明により得られたリアクトルのコイルに電流を流していない時、すなわち硬化工程中の印加磁界が0(kA/m)の時のインダクタンス値である。
(3) Pressurization step The pressurization step is a step of pressing the composite magnetic material with a pressing member during the molding step. By pressing the clay-like composite magnetic material contained in the container with the pressing member, the composite magnetic material is expanded to the shape of the container, and the voids contained in the composite magnetic material are reduced. Improve permeability and initial inductance value. The initial inductance value is an inductance value when no current is passed through the reactor coil obtained by the present invention, that is, when the applied magnetic field during the curing process is 0 (kA / m).
(5) 磁界印加工程
 磁界印加工程は、硬化工程時に複合磁性材料からなる成型体が備えるコイルを通電し、当該成型体に磁界を印加する工程である。成型体にコイルが埋設されている場合は、当該コイルを通電する。成型体を得た後、当該成型体に導線を巻回してコイルを構成する場合は、当該コイルを通電する。
(5) Magnetic field application process The magnetic field application process is a process in which a coil included in a molded body made of a composite magnetic material is energized and a magnetic field is applied to the molded body during the curing process. When the coil is embedded in the molded body, the coil is energized. After obtaining the molded body, when a coil is formed by winding a conducting wire around the molded body, the coil is energized.
 磁界印加工程は、成型体中の樹脂が固化するまでに行えば良く、磁界印加工程は、硬化工程前に行っても良い。また、磁界印加工程は、硬化工程を複数回行う場合には、その硬化工程間に行っても良い。 The magnetic field application step may be performed until the resin in the molded body is solidified, and the magnetic field application step may be performed before the curing step. The magnetic field application step may be performed between the curing steps when the curing step is performed a plurality of times.
 磁界印加工程により、成型体中の磁性粉末が、印加された磁界の向きに揃うこととなり、配向性を有する結果、初透磁率の高いコアを得ることができる。すなわち、磁界印加工程は、硬化工程の間、成型体に磁界を印加する手段として、リアクトルとして備えるコイルを用いるものであるため、リアクトル製品自身が発生させる磁束の向きに配向性を有するため、リアクトル製品自身が発生させる磁束と磁性粉末の配向が一致する。 In the magnetic field application step, the magnetic powder in the molded body is aligned in the direction of the applied magnetic field, and as a result of having an orientation, a core with high initial permeability can be obtained. That is, since the magnetic field application step uses a coil provided as a reactor as a means for applying a magnetic field to the molded body during the curing step, the direction of the magnetic flux generated by the reactor product itself has orientation, so the reactor The magnetic flux generated by the product itself matches the orientation of the magnetic powder.
 この配向性の一致の程度は、磁性粉末の磁化容易軸が、リアクトルが備えるコイルにより発生する磁束の向き(磁力線の方向)と一致していることが望ましいが、磁化容易軸が磁力線に対して45°程度まで傾いていても良い。このように、磁界印加工程により、初透磁率の高いコアを得ることができる。 The degree of alignment is preferably such that the easy axis of magnetization of the magnetic powder matches the direction of the magnetic flux generated by the coil provided in the reactor (the direction of the lines of magnetic force). You may incline to about 45 degrees. Thus, a core with high initial permeability can be obtained by the magnetic field application step.
 成型体に印加する磁界は、2kA/m以上であることが好ましい。後述の実施例で示すように、L0値飽和増加率の半分以上のL0値増加の効果が得られるからである。L0値飽和増加率とは、下記の式(5)に基づき得られるL0値の変化率であり、式(5)中のL0(H)は、硬化中の印加磁界を、L0値の向上が飽和する磁界を印加して得たリアクトルの初期インダクタンス値である。 The magnetic field applied to the molded body is preferably 2 kA / m or more. This is because the effect of increasing the L0 value, which is more than half of the L0 value saturation increase rate, can be obtained as shown in the examples described later. The L0 value saturation increase rate is the rate of change of the L0 value obtained based on the following equation (5), and L0 (H) in the equation (5) indicates that the applied magnetic field during curing is an improvement in the L0 value. It is the initial inductance value of the reactor obtained by applying a saturated magnetic field.
 また、第2の磁性粉末が励磁されると、磁性粉末中の結晶粒の磁化方向が揃う効果があり、第2の磁性粉末を励磁することで直流重畳特性が向上する。 Further, when the second magnetic powder is excited, there is an effect that the magnetization directions of the crystal grains in the magnetic powder are aligned, and the DC superposition characteristics are improved by exciting the second magnetic powder.
 また、励磁して配向された複合磁性材料からなるコアを備えたリアクトルは、渦電流損失が低下し、コアから発生する熱が低くなる効果があると考えられる。 Also, it is considered that a reactor including a core made of a composite magnetic material that is magnetized and oriented has an effect of reducing eddy current loss and reducing heat generated from the core.
[2-3.作用・効果]
(1)本実施形態のリアクトルの製造方法は、磁性粉末及び樹脂を含むコアと、前記コアに装着されたコイルとを備えたリアクトルの製造方法であって、磁性粉末に対して3~5wt%の樹脂を混合する混合工程と、混合工程で得た混合物とコイルとを所定の容器に入れて成型する成型工程と、成型工程で得た成型体中の樹脂を硬化させる硬化工程と、硬化工程時に成型体のコイルを通電し、成型体に磁界を印加する磁界印加工程と、を備えるようにした。
[2-3. Action / Effect]
(1) A method for manufacturing a reactor according to the present embodiment is a method for manufacturing a reactor including a core including magnetic powder and a resin, and a coil attached to the core, and is 3 to 5 wt% with respect to the magnetic powder. Mixing step of mixing the resin, a molding step of molding the mixture and coil obtained in the mixing step into a predetermined container, a curing step of curing the resin in the molded body obtained in the molding step, and a curing step And a magnetic field application step of applying a magnetic field to the molded body at times by energizing the coil of the molded body.
 これにより、初透磁率の高いコアを備えたリアクトルを得ることができる。すなわち、従来のMCコアでは、磁性粉末に対する樹脂の添加量が5wt%超であったのに対し、3~5wt%とすることで、密度及び初透磁率を向上させることができる。さらに、硬化工程時にリアクトル自身が備えるコイルに通電することにより、当該コイルにより発生する磁束の向きに成型体中の磁性粉末を配向させるようにしたので、配向させたい向きに配向させることができるので、初透磁率を向上させることができる。 This makes it possible to obtain a reactor having a core with a high initial permeability. That is, in the conventional MC core, the amount of resin added to the magnetic powder was more than 5 wt%, but by setting it to 3 to 5 wt%, the density and initial permeability can be improved. Furthermore, since the magnetic powder in the molded body is oriented in the direction of the magnetic flux generated by the coil by energizing the coil of the reactor itself during the curing process, it can be oriented in the desired orientation. The initial permeability can be improved.
(2)磁界印加工程は、前記磁界を2kA/m以上とした。これにより、磁界印加工程により得られる初期インダクタンス値向上効果の大半を得ることができる。 (2) In the magnetic field application step, the magnetic field is set to 2 kA / m or more. Thereby, most of the initial inductance value improving effect obtained by the magnetic field applying step can be obtained.
(3)成型工程時に、前記混合物を押圧する加圧工程を備えるようにした。これにより、コアの密度を向上させることができる。 (3) A pressing step for pressing the mixture is provided during the molding step. Thereby, the density of a core can be improved.
(4)加圧工程は、容器又は前記混合物を押圧する部材を常温よりも高い温度にして行うようにした。これにより、当該混合物である複合磁性材料中の樹脂が温められ、柔らかくなる。そのため、容器内の隅々までに複合磁性材料が流れ込み易くなり、成型性を向上させることができるとともに、複合磁性材料中の空隙に当該材料が流れ込み易くなり、密度を向上させることができる。 (4) The pressurizing step was performed by setting the member that presses the container or the mixture to a temperature higher than room temperature. Thereby, the resin in the composite magnetic material which is the mixture is warmed and softened. For this reason, the composite magnetic material can easily flow into every corner of the container and the moldability can be improved, and the material can easily flow into the voids in the composite magnetic material, and the density can be improved.
(5)加圧工程は、常温よりも高い温度に温めた前記混合物を前記容器に入れて行うようにした。これにより、上記(4)と同様の作用効果を得ることができる。 (5) The pressurizing step was performed by putting the mixture warmed to a temperature higher than normal temperature into the container. Thereby, the same effect as said (4) can be acquired.
(6)磁性粉末は、平均粒子径の異なる2種類の磁性粉末を混合してなるようにした。特に、磁性粉末は、第1の磁性粉末と、第1の磁性粉末より平均粒子径の小さい第2の磁性粉末とが混合されてなり、磁性粉末における第1の磁性粉末の添加量が60~80wt%、第2の磁性粉末が20~40wt%とした。 (6) The magnetic powder was prepared by mixing two kinds of magnetic powders having different average particle diameters. In particular, the magnetic powder is a mixture of the first magnetic powder and the second magnetic powder having an average particle diameter smaller than that of the first magnetic powder. 80 wt% and the second magnetic powder was 20 to 40 wt%.
 これにより、第1の磁性粉末同士の隙間に第2の磁性粉末が入り込み、密度及び透磁率の向上と低鉄損化を図ることができる。 Thereby, the second magnetic powder enters the gap between the first magnetic powders, and the density and magnetic permeability can be improved and the iron loss can be reduced.
(7)第1の磁性粉末は、平均粒子径を20~150μmとし、第2の磁性粉末は、平均粒子径を5~20μmとした。これにより、コアの密度、透磁率が向上し、鉄損を小さくすることができる。 (7) The first magnetic powder has an average particle size of 20 to 150 μm, and the second magnetic powder has an average particle size of 5 to 20 μm. Thereby, the density and permeability of the core are improved, and the iron loss can be reduced.
(8)樹脂は、エポキシ樹脂、シリコーン樹脂、又はアクリル樹脂とした。これにより、複合磁性材料を粘土状にすることができ、取扱い容易となり、生産性を向上させることができる。 (8) The resin was an epoxy resin, a silicone resin, or an acrylic resin. Thereby, a composite magnetic material can be made into a clay shape, it becomes easy to handle, and productivity can be improved.
[3.実施形態III]
[3-1.構成]
 本実施形態の軟磁性複合材料は、磁性粉末と樹脂とを含み構成される。軟磁性複合材料に含まれる樹脂としては、220℃で40時間の雰囲気に晒した際の減少率(以下、加熱減量)が0.1%以下の樹脂を使用する。樹脂は、高温の雰囲気に長時間晒すことで体積や重量が変化する。加熱減量は、高温に晒した前後の樹脂の重量または体積の変化率を示す値であり、加熱減量は高温に晒した前後の樹脂の重量または体積に基づいて算出する。以下では、加熱減量を樹脂の重量変化に基づいて算出するが、体積変化に基づいて算出しても良い。加熱減量を、重量変化及び体積変化に基づいて算出した場合でも、本実施形態では、220℃で40時間の雰囲気に晒した際の加熱減量が0.1%以下の樹脂を使用する。
[3. Embodiment III]
[3-1. Constitution]
The soft magnetic composite material of this embodiment includes a magnetic powder and a resin. As the resin contained in the soft magnetic composite material, a resin having a reduction rate (hereinafter referred to as heating loss) of 0.1% or less when exposed to an atmosphere at 220 ° C. for 40 hours is used. Resin changes in volume and weight when exposed to a high temperature atmosphere for a long time. The loss on heating is a value indicating the rate of change in the weight or volume of the resin before and after being exposed to a high temperature, and the loss on heating is calculated based on the weight or volume of the resin before and after being exposed to a high temperature. In the following, the loss on heating is calculated based on a change in the weight of the resin, but may be calculated based on a change in volume. Even when the loss on heating is calculated on the basis of the change in weight and the change in volume, in this embodiment, a resin having a loss on heating of 0.1% or less when exposed to an atmosphere at 220 ° C. for 40 hours is used.
 本実施形態では、磁性粉末と樹脂とを混合することで粘土状の軟磁性複合材料を得る。また、本実施形態では、粘土状の軟磁性複合材料を、所定の容器に充填し、加圧することで磁性コアを所定の形状とする。磁性コアの形状は、例えば、トロイダル状コア、I型コア、U型コア、θ型コア、E型コア、EER型コアなど、種々の形状とすることができる。 In this embodiment, a clay-like soft magnetic composite material is obtained by mixing magnetic powder and resin. Moreover, in this embodiment, a magnetic core is made into a predetermined shape by filling a predetermined container with clay-like soft magnetic composite material and pressurizing it. The shape of the magnetic core can be various shapes such as a toroidal core, an I-type core, a U-type core, a θ-type core, an E-type core, and an EER-type core.
(磁性粉末)
 磁性粉末としては、平均粒子径の異なる複数の磁性粉末を使用しても良い。例えば、平均粒子径の異なる2種類の磁性粉末から構成しても良い。以下では、種類の軟磁性粉末を混合した混合粉末を例に説明する。ただし、必ずしも2種類の粉末を混合したものでなくてもよい。例えば、1種類の軟磁性粉末を用いてもよいし、3種類以上の軟磁性粉末を混合してもよい。
(Magnetic powder)
A plurality of magnetic powders having different average particle diameters may be used as the magnetic powder. For example, you may comprise from two types of magnetic powder from which an average particle diameter differs. Below, the mixed powder which mixed the kind soft magnetic powder is demonstrated to an example. However, two kinds of powders are not necessarily mixed. For example, one kind of soft magnetic powder may be used, or three or more kinds of soft magnetic powders may be mixed.
 2種類の磁性粉末を混合する場合、磁性粉末は、第1の磁性粉末と、第1の磁性粉末より平均粒子径の小さい第2の磁性粉末とから構成する。第1の磁性粉末及び第2の磁性粉末の重量比率は、第1の磁性粉末:第2の磁性粉末=80:20~60:40とすることが好ましい。この範囲とすることで密度が向上し、透磁率も向上するとともに、鉄損を小さくすることができる。 When mixing two types of magnetic powder, the magnetic powder is composed of a first magnetic powder and a second magnetic powder having an average particle diameter smaller than that of the first magnetic powder. The weight ratio of the first magnetic powder and the second magnetic powder is preferably set to the first magnetic powder: second magnetic powder = 80: 20 to 60:40. By setting it as this range, a density improves, a magnetic permeability improves, and an iron loss can be made small.
 第1の磁性粉末の平均粒子径は100μm~200μm、第2の磁性粉末は、5μm~10μmが好ましい。平均粒子径の異なる2種類の磁性粉末を混合することで、第1の磁性粉末同士の隙間に平均粒子径の小さい第2の磁性粉末が入り込むことになる。これにより、密度及び透磁率の向上と低鉄損化を図ることができる。 The average particle diameter of the first magnetic powder is preferably 100 μm to 200 μm, and the second magnetic powder is preferably 5 μm to 10 μm. By mixing two kinds of magnetic powders having different average particle diameters, the second magnetic powder having a small average particle diameter enters the gap between the first magnetic powders. Thereby, improvement of density and magnetic permeability and reduction of iron loss can be achieved.
 第1の磁性粉末及び第2の磁性粉末としては、軟磁性粉末が使用でき、特に、Fe粉末、Fe-Si合金粉末、Fe-Al合金粉末、Fe-Si-Al合金粉末(センダスト)、これら2種以上の粉末の混合粉、又は非晶質軟磁性合金粉末などが使用できる。Fe-Si合金粉末としては、例えば、Fe-6.5%Si合金粉末、Fe-3.5%Si合金粉末を使用できる。軟磁性粉末の平均粒子径(D50)は20μm~150μmが好ましい。なお、本明細書において「平均粒子径」とは、特に断りがない限り、D50、すなわちメジアン径を指すものとする。 As the first magnetic powder and the second magnetic powder, soft magnetic powder can be used, and in particular, Fe powder, Fe-Si alloy powder, Fe-Al alloy powder, Fe-Si-Al alloy powder (Sendust), these A mixed powder of two or more kinds of powders, an amorphous soft magnetic alloy powder, or the like can be used. As the Fe—Si alloy powder, for example, Fe-6.5% Si alloy powder and Fe-3.5% Si alloy powder can be used. The average particle diameter (D50) of the soft magnetic powder is preferably 20 μm to 150 μm. In the present specification, the “average particle diameter” refers to D50, that is, the median diameter unless otherwise specified.
 第1の磁性粉末及び第2の磁性粉末は、球形であることが好ましい。第1の磁性粉末の円形度は、0.90以上であり、第2の磁性粉末の円形度は、0.94以上であることが好ましい。第1の磁性粉末同士の隙間が少なくなり、かつ、当該隙間により多くの第2の磁性粉末が入り込み易くなり、密度及び透磁率の向上を図ることができるからである。 The first magnetic powder and the second magnetic powder are preferably spherical. The circularity of the first magnetic powder is preferably 0.90 or more, and the circularity of the second magnetic powder is preferably 0.94 or more. This is because the gap between the first magnetic powders is reduced and more second magnetic powder can easily enter through the gap, and the density and permeability can be improved.
 なお、第1の磁性粉末と第2の磁性粉末の種類は同じでも良いし、異なっていても良い。3種類以上の軟磁性粉末を混合する場合には、それぞれ異なる磁性粉末を3種以上混合しても良い。 Note that the types of the first magnetic powder and the second magnetic powder may be the same or different. When three or more kinds of soft magnetic powders are mixed, three or more kinds of different magnetic powders may be mixed.
 第1の磁性粉末及び第2の磁性粉末は、ガスアトマイズ法や水アトマイズ法あるいは水ガスアトマイズ法で製造されたものを使用することができる。これらの方法で形成した粒子の平均円形度は、0.90以上とすることが望ましく、各種アトマイズ法のみで平均円形度が0.90以上の粉末を形成できない場合には、さらに粒子の平均円形度をあげる加工を施しても良い。例えば、ガスアトマイズ法による軟磁性粉末はほぼ球状の粒子である。したがって、ガスアトマイズ法により形成した粉末を加工せずそのまま使用することが可能である。一方、水アトマイズ法で製造された軟磁性粉末は、その表面に凹凸が形成された非球状の粒子である。この場合には、ボールミル、メカニカルアロイング、ジェットミル、アトライター又は表面改質装置を用いて表面の凹凸を均すことで、粒子の平均円形度を上昇させることができる。 As the first magnetic powder and the second magnetic powder, those produced by a gas atomizing method, a water atomizing method, or a water gas atomizing method can be used. The average circularity of the particles formed by these methods is preferably 0.90 or more, and when a powder having an average circularity of 0.90 or more cannot be formed only by various atomization methods, the average circularity of the particles is further increased. You may give the process which raises a degree. For example, the soft magnetic powder by the gas atomization method is a substantially spherical particle. Therefore, the powder formed by the gas atomization method can be used as it is without being processed. On the other hand, the soft magnetic powder produced by the water atomization method is non-spherical particles having irregularities formed on the surface thereof. In this case, the average circularity of the particles can be increased by leveling the surface irregularities using a ball mill, mechanical alloying, jet mill, attritor, or surface modification device.
(樹脂)
 樹脂は、混合粉末に混合され、第1粉末と第2粉末が均質に混合された状態で保持する機能を有する。樹脂は、磁性粉末と混合し、混合した磁性粉末を保持する。磁性粉末が平均粒子径の異なる種類の粉末で構成される場合、各粉末を均質に混合した状態で保持する。樹脂としては、220℃で40時間加熱した際の加熱減量が0.1%以下、望ましくは0.08%以下の樹脂を使用する。樹脂としては、硬化性樹脂が使用できる。加熱減量が0.1%以下であれば、樹脂としては、熱硬化性樹脂、紫外線硬化性樹脂、又は熱可塑性樹脂が使用できる。熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン、ジアリルフタレート樹脂、シリコーン樹脂などが使用できる。紫外線硬化性樹脂としては、ウレタンアクリレート系、エポキシアクリレート系、アクリレート系、エポキシ系の樹脂を使用できる。熱可塑性樹脂としては、ポリイミドやフッ素樹脂などの耐熱性に優れた樹脂を使用することが好ましい。硬化剤を添加することにより硬化するエポキシ樹脂は、硬化剤の添加量などによってその粘度を調整できることから、本発明に適している。熱可塑性のアクリル樹脂やシリコーン樹脂も使用可能である。
(resin)
The resin is mixed with the mixed powder and has a function of holding the first powder and the second powder in a homogeneously mixed state. The resin is mixed with the magnetic powder and holds the mixed magnetic powder. When the magnetic powder is composed of different types of powders having different average particle sizes, each powder is held in a homogeneously mixed state. As the resin, a resin having a weight loss of 0.1% or less, preferably 0.08% or less when heated at 220 ° C. for 40 hours is used. A curable resin can be used as the resin. If the loss on heating is 0.1% or less, the resin can be a thermosetting resin, an ultraviolet curable resin, or a thermoplastic resin. As the thermosetting resin, phenol resin, epoxy resin, unsaturated polyester resin, polyurethane, diallyl phthalate resin, silicone resin and the like can be used. As the ultraviolet curable resin, urethane acrylate, epoxy acrylate, acrylate, and epoxy resins can be used. As the thermoplastic resin, it is preferable to use a resin having excellent heat resistance such as polyimide or fluororesin. An epoxy resin that is cured by adding a curing agent is suitable for the present invention because its viscosity can be adjusted by the amount of the curing agent added. Thermoplastic acrylic resins and silicone resins can also be used.
 樹脂は、磁性粉末に対して3~5wt%含有されていることが好ましい。樹脂の含有量が3wt%より少ないと、磁性粉末の接合力が不足し、コアの機械的強度が低下する。また、樹脂の含有量が5wt%より多いと、第1の磁性粉末間に形成された樹脂が入り込み、その隙間を第2の磁性粉末が埋めることができなくなるなど、コアの密度が低下し、初透磁率μ0が低下する。 The resin is preferably contained in an amount of 3 to 5 wt% with respect to the magnetic powder. When the resin content is less than 3 wt%, the bonding strength of the magnetic powder is insufficient and the mechanical strength of the core is lowered. Also, if the resin content is more than 5 wt%, the resin formed between the first magnetic powder enters, the second magnetic powder cannot fill the gap, and the core density decreases, The initial permeability μ0 decreases.
 樹脂の粘度は、磁性粉末との混合時において50~5000mPa・sであることが好ましい。粘度が50mPa・s未満であると、混合時において樹脂が磁性粉末に絡みつくことがなく、容器内で磁性粉末と樹脂とが分離しやすくなり、コアの密度又は強度にバラツキが生じる。粘度が5000mPa・sを超えると、粘度が高くなりすぎ、例えば、第1の磁性粉末間に形成された樹脂が入り込み、その隙間を第2の磁性粉末が埋めることができなくなるなど、コアの密度が低下し、初透磁率μ0が低下する。 The viscosity of the resin is preferably 50 to 5000 mPa · s when mixed with the magnetic powder. When the viscosity is less than 50 mPa · s, the resin does not get entangled with the magnetic powder during mixing, the magnetic powder and the resin are easily separated in the container, and the density or strength of the core varies. When the viscosity exceeds 5000 mPa · s, the viscosity becomes too high. For example, the resin formed between the first magnetic powders enters, and the gap cannot be filled with the second magnetic powder. Decreases, and the initial permeability μ0 decreases.
 樹脂には、粘度調整材料として、SiO2、Al2O3、Fe2O3、BN、AlN、ZnO、TiO2などを使用することができる。粘度調整材料としてのフィラーの平均粒子径は、第2の磁性粉末の平均粒子径以下、好ましくは第2の磁性粉末の平均粒子径の1/3以下が良い。フィラーの平均粒子径が大きいと、得られたコアの密度が低下するからである。また、樹脂には、Al2O3、BN、AlNなどの高熱伝導率材料を添加することができる。 For the resin, SiO2, Al2O3, Fe2O3, BN, AlN, ZnO, TiO2, or the like can be used as a viscosity adjusting material. The average particle diameter of the filler as the viscosity adjusting material is not more than the average particle diameter of the second magnetic powder, preferably not more than 1/3 of the average particle diameter of the second magnetic powder. This is because when the average particle size of the filler is large, the density of the obtained core decreases. Moreover, high thermal conductivity materials, such as Al2O3, BN, and AlN, can be added to the resin.
 コアの見かけ密度の、磁性粉末の真密度に対する割合は、76.47%超であることが好ましく、77.5%以上であると更に好ましい。当該割合が76.47%超であると、透磁率を高くすることができる。逆に、当該割合が76.47%以下であると、低密度により低透磁率となる。 The ratio of the apparent density of the core to the true density of the magnetic powder is preferably more than 76.47%, and more preferably 77.5% or more. When the ratio is more than 76.47%, the magnetic permeability can be increased. On the other hand, when the ratio is 76.47% or less, low permeability results in low magnetic permeability.
(コイル)
 コイルは、絶縁被覆が施された導線であり、線材として銅線やアルミニウム線を用いることができる。コイルは、コアの少なくとも一部に導線が巻回されて形成され或いは装着されており、コアの少なくとも一部の周囲に配置される。コイルの巻き方や線材の材料、形状は特に限定されない。
(coil)
The coil is a conducting wire with an insulating coating, and a copper wire or an aluminum wire can be used as the wire. The coil is formed or attached by winding a conductive wire around at least a part of the core, and is arranged around at least a part of the core. There are no particular limitations on the method of winding the coil and the material and shape of the wire.
[3-2.メタルコンポジットコアの製造方法]
 本実施形態に係るメタルコンポジットコアの製造方法について、図面を参照しつつ説明する。本メタルコンポジットコアの製造方法は、図22に示すように、(1)混合工程、(2)成型工程、(3)加圧工程、及び(4)硬化工程を備える。
[3-2. Manufacturing method of metal composite core]
The manufacturing method of the metal composite core which concerns on this embodiment is demonstrated referring drawings. As shown in FIG. 22, the manufacturing method of the present metal composite core includes (1) a mixing step, (2) a molding step, (3) a pressing step, and (4) a curing step.
(1) 混合工程
 混合工程は、磁性粉末と樹脂とを混合する工程である。混合工程は、第1の磁性粉末と、第1の磁性粉末より平均粒子径の小さい第2の磁性粉末とを混合し、磁性粉末を構成する磁性粉混合工程と、磁性粉末に対して3~5wt%の樹脂を添加し、磁性粉末と樹脂とを混合する樹脂混合工程とを有する。
(1) Mixing step The mixing step is a step of mixing magnetic powder and resin. In the mixing step, the first magnetic powder and the second magnetic powder having an average particle diameter smaller than that of the first magnetic powder are mixed, and the magnetic powder mixing step for forming the magnetic powder is performed. A resin mixing step of adding 5 wt% resin and mixing the magnetic powder and the resin.
 各混合工程の混合は、所定の混合器を用いて自動で、又は手動で行うことができる。各混合工程の混合時間は、適宜設定することができ、特に限定されるものではないが、例えば2分間とする。 The mixing in each mixing step can be performed automatically or manually using a predetermined mixer. The mixing time of each mixing step can be set as appropriate, and is not particularly limited.
 このような混合工程により、磁性粉末と樹脂との混合物(以下、複合磁性材料ともいう)を得ることができる。なお、混合工程は、成型工程において複合磁性材料を成型するための容器に、磁性粉末と樹脂とを充填して混合しても良い。これにより、複合磁性材料を容器に移し替える必要がなく、製造工数を削減することができる。 By such a mixing step, a mixture of magnetic powder and resin (hereinafter also referred to as a composite magnetic material) can be obtained. In the mixing step, the magnetic powder and the resin may be filled and mixed in a container for molding the composite magnetic material in the molding step. Thereby, it is not necessary to transfer a composite magnetic material to a container, and a manufacturing man-hour can be reduced.
 (2) 成型工程
 成型工程は、複合磁性粉末を所定形状の容器に入れて所定の形状に成型する工程である。成型工程では、複合磁性粉末とともにコイルを入れて成型しても良い。
(2) Molding process The molding process is a process in which the composite magnetic powder is put into a container having a predetermined shape and molded into a predetermined shape. In the molding step, a coil may be put together with the composite magnetic powder and molded.
 容器としては、製造するコアの形状に合わせて各種の形状のものを使用する。コイルを入れる場合には、容器は、上方からコイルを挿入できるよう、上面開口型の箱型や皿形の容器を使用する。成型工程で使用する容器は、そのままコアとコイルとを収容するメタルコンポジットコアの外装ケースとして使用することもできる。当該容器を外装ケースとして使用すれば、複合磁性粉末の硬化後に容器を取り出す必要がない利点がある。容器を外装ケースとして使用しない場合には、1つの容器で複数のメタルコンポジットコアを製造するようにしても良い。すなわち、容器の底部に複数の凹部を形成しておき、当該凹部に複合磁性材料及びコイルを入れることにより、複数のメタルコンポジットコアを製造するようにしても良い。このようにすることで、複数のメタルコンポジットコアに対し、一度の成型工程で済むので、製造効率を向上させることができる。 * Containers with various shapes are used according to the shape of the core to be manufactured. When inserting a coil, the container uses a box-type container or a dish-shaped container with an open top so that the coil can be inserted from above. The container used in the molding process can also be used as an outer case of a metal composite core that accommodates the core and the coil as it is. If the container is used as an exterior case, there is an advantage that it is not necessary to take out the container after the composite magnetic powder is cured. When the container is not used as an exterior case, a plurality of metal composite cores may be manufactured with one container. That is, a plurality of recesses may be formed at the bottom of the container, and a plurality of metal composite cores may be manufactured by placing a composite magnetic material and a coil in the recesses. By doing in this way, since a single shaping | molding process may be sufficient with respect to a some metal composite core, manufacturing efficiency can be improved.
 成型工程に使用する容器としては、その全部又は一部を樹脂成型品によって構成することができる。容器を樹脂製にすることにより、製造コストを削減することができ、かつ、MCコアの任意の形状とできる利点を活かすことができる。すなわち、樹脂は、比較的安価な材料であるため、容器を製造するコストを抑えることができるとともに、射出成型等により、任意の形状のコアを形成することができる。 As the container used for the molding process, all or a part thereof can be constituted by a resin molded product. By making the container made of resin, the manufacturing cost can be reduced, and the advantage that the MC core can have any shape can be utilized. That is, since resin is a relatively inexpensive material, the cost of manufacturing a container can be suppressed, and a core having an arbitrary shape can be formed by injection molding or the like.
 また、容器の全部又は一部を、アルミニウム、マグネシウムなどの熱伝導性の高い金属で構成しても良い。後述するように、加圧工程において複合磁性材料を温めやすくなるからである。 Further, all or part of the container may be made of a metal having high thermal conductivity such as aluminum or magnesium. This is because the composite magnetic material can be easily warmed in the pressurizing step, as will be described later.
(3)加圧工程
 加圧工程は、成型工程時に、複合磁性材料を押圧部材で押圧する工程である。容器に入れられた粘土状の複合磁性材料を、押圧部材で押圧することにより、容器の形状に複合磁性材料を押し広げるとともに、複合磁性材料に含まれていた空隙を減少させ、見かけ密度、及び初透磁率を向上させる。
(3) Pressurizing step The pressing step is a step of pressing the composite magnetic material with a pressing member during the molding step. By pressing the clay-like composite magnetic material contained in the container with the pressing member, the composite magnetic material is expanded to the shape of the container, and the voids contained in the composite magnetic material are reduced, the apparent density, and Improve initial permeability.
 容器にコイルを入れない場合は、当該工程により、複合磁性材料が容器内部の形状となる。すなわち、複合磁性材料から構成された所定の形状の成型体を得ることができる。 When the coil is not put in the container, the composite magnetic material becomes a shape inside the container by the process. That is, a molded body having a predetermined shape made of a composite magnetic material can be obtained.
 容器にコイルを入れる場合は、図2に示すように、容器内に複合磁性材料を入れて、押圧部材により容器の形状に複合磁性材料を押し広げる。その後、複合磁性材料を押圧したことによりできたスペースにコイルを挿入し、さらに複合磁性材料を充填し、コイルとともに複合磁性材料を押圧部材により上から押圧する。或いは、容器内に複合磁性材料を入れ、その後、コイルを当該複合磁性材料に埋設し、コイルとともに複合磁性材料を上から押圧するようにしても良い。このように、コイルとともに複合磁性材料を押圧することにより、複合磁性材料に含まれていた空隙を減少させ、見かけ密度及び透磁率を向上させることができる。なお、コイルが存在する部分は避けて、複合磁性材料のみを押圧するようにしても良い。このように、当該工程により、コイルを含んだ所定形状の複合磁性材料の成型体を得ることができる。 When putting the coil in the container, as shown in FIG. 2, the composite magnetic material is put in the container, and the composite magnetic material is spread in the shape of the container by the pressing member. Thereafter, the coil is inserted into the space formed by pressing the composite magnetic material, and further filled with the composite magnetic material, and the composite magnetic material is pressed together with the coil from above by the pressing member. Alternatively, the composite magnetic material may be placed in a container, and then the coil may be embedded in the composite magnetic material, and the composite magnetic material may be pressed together with the coil from above. Thus, by pressing a composite magnetic material with a coil, the space | gap contained in the composite magnetic material can be reduced and an apparent density and a magnetic permeability can be improved. In addition, you may make it press only a composite magnetic material, avoiding the part in which a coil exists. In this way, a molded body of a composite magnetic material having a predetermined shape including a coil can be obtained by this process.
 このように、加圧工程は、複合磁性材料を押圧部材で押圧して、当該材料を容器の形状としても良く、この場合は、加圧工程を、加圧工程及び成型工程と捉えることができる。 Thus, the pressurizing step may press the composite magnetic material with the pressing member to make the material into the shape of the container. In this case, the pressurizing step can be regarded as the pressurizing step and the molding step. .
 複合磁性材料を押圧する圧力は、2.0kg/cm2以上であることが好ましい。この値未満であれば、押圧する圧力が小さく、見かけ密度を向上させる効果が小さい。また、当該値以上であっても、10.0kg/cm2以下であることが好ましい。この値を超えて押圧しても、見かけ密度を向上させる効果が小さいからである。 The pressure for pressing the composite magnetic material is preferably 2.0 kg / cm 2 or more. If it is less than this value, the pressure to press is small and the effect of improving the apparent density is small. Moreover, even if it is more than the said value, it is preferable that it is 10.0 kg / cm <2> or less. This is because even if pressing exceeds this value, the effect of improving the apparent density is small.
 複合磁性材料を押圧する時間は、樹脂の含有量や粘性によって適宜変更することができる。例えば、10秒とすることができる。 The time for pressing the composite magnetic material can be appropriately changed depending on the resin content and viscosity. For example, it can be 10 seconds.
 加圧工程は、容器又は複合磁性材料を押圧する押圧部材を常温(例えば25℃)よりも高い温度にして行っても良い。容器又は押圧部材の温度を上げることにより、樹脂が温められ、柔らかくなる。そのため、容器内の隙間に複合磁性材料が流れ込み易くなり、成型性を向上させることができるとともに、複合磁性材料中の空隙に当該材料が流れ込み易くなり、見かけ密度を向上させることができる。容器又は複合磁性材料を押圧する押圧部材の温度は、複合磁性材料に含まれる樹脂の軟化点より高くすると良い。効果的に樹脂を柔らかくすることができるからである。加圧工程は、容器又は複合磁性材料を押圧する押圧部材の温度を保持したまま行っても良い。 The pressurizing step may be performed by setting the pressing member that presses the container or the composite magnetic material to a temperature higher than room temperature (for example, 25 ° C.). By raising the temperature of the container or the pressing member, the resin is warmed and softened. Therefore, the composite magnetic material can easily flow into the gap in the container, and the moldability can be improved, and the material can easily flow into the voids in the composite magnetic material, and the apparent density can be improved. The temperature of the pressing member that presses the container or the composite magnetic material is preferably higher than the softening point of the resin contained in the composite magnetic material. This is because the resin can be effectively softened. The pressurizing step may be performed while maintaining the temperature of the pressing member that presses the container or the composite magnetic material.
 また、加圧工程は、容器又は押圧部材の温度を上げておく他、複合磁性材料自体を温めておいて当該複合磁性材料を押圧するようにしても良い。容器又は複合磁性材料を押圧する押圧部材の温度を保持し、かつ、複合磁性材料自体を温めておいて押圧するようにしても良い。 Further, in the pressurizing step, the temperature of the container or the pressing member may be raised, or the composite magnetic material itself may be warmed to press the composite magnetic material. The temperature of the pressing member that presses the container or the composite magnetic material may be maintained, and the composite magnetic material itself may be warmed and pressed.
(4) 硬化工程
 硬化工程は、成型工程で得た成型体中の樹脂を硬化させる工程である。成型体中の樹脂の乾燥により硬化させる場合、乾燥雰囲気は、大気雰囲気とすることができる。硬化工程では、樹脂の乾燥状態に基づいて乾燥温度及び時間を制御する乾燥プロファイルにより、樹脂を硬化させる。乾燥時間は、樹脂の種類、含有量、乾燥温度等に応じて適宜変更可能であるが、例えば、1時間~4時間とすることができるが、これに限定されない。乾燥温度は、樹脂の種類、含有量、乾燥時間等に応じて適宜変更可能であるが、例えば、85℃~150℃とすることができるが、これに限定されない。なお、乾燥温度は、乾燥雰囲気の温度である。
(4) Curing step The curing step is a step of curing the resin in the molded body obtained in the molding step. In the case of curing by drying the resin in the molded body, the drying atmosphere can be an air atmosphere. In the curing step, the resin is cured by a drying profile that controls the drying temperature and time based on the dry state of the resin. The drying time can be appropriately changed according to the type, content, drying temperature, etc. of the resin, but can be, for example, 1 hour to 4 hours, but is not limited thereto. The drying temperature can be appropriately changed according to the type, content, drying time, etc. of the resin, but can be, for example, 85 ° C. to 150 ° C., but is not limited thereto. The drying temperature is the temperature of the drying atmosphere.
 また、樹脂の硬化は、乾燥に限られず、樹脂の種類によって硬化方法は異なる。例えば樹脂が熱硬化性樹脂であれば、熱を加えることにより樹脂を交差させ、樹脂が紫外線硬化性樹脂であれば、成型体に紫外線を照射させることで樹脂を硬化させる。 Also, the curing of the resin is not limited to drying, and the curing method varies depending on the type of resin. For example, if the resin is a thermosetting resin, the resin is crossed by applying heat, and if the resin is an ultraviolet curable resin, the resin is cured by irradiating the molded body with ultraviolet rays.
 硬化工程は、所定の温度で所定時間成型体を硬化させる工程を複数回繰り返しても良い。また、例えば、樹脂の乾燥により硬化させる場合、複数回繰り返す毎に、乾燥温度又は乾燥時間を異ならせても良い。 In the curing step, the step of curing the molded body for a predetermined time at a predetermined temperature may be repeated a plurality of times. Further, for example, when the resin is cured by drying, the drying temperature or the drying time may be changed every time the resin is repeated a plurality of times.
[3-3.作用・効果]
(1)本実施形態の磁性コアに使用する樹脂として、当該樹脂を220℃の雰囲気に40時間晒した際の減少率が0.1%以下、望ましくは0.08%以下である樹脂とする。減少率は、樹脂を高温下の雰囲気晒した場合の重量の減少率である。本実施形態の軟磁性複合材料より作成した磁性コアでは、長時間高温下で使用した場合においても、磁性コア内部の磁性粉末同士の接触を抑制することができる。磁性コアにおいては、内部に含まれる軟磁性粉末の大きさに応じた渦電流が発生する。磁性コアを長時間高温下に晒すと、磁性コアに含まれる樹脂の減少率が0.1%超の場合には、樹脂が熱の影響により、分解、消失する。樹脂により隔てられた磁性粉末同士が、樹脂の消失により接触することで、より大きな渦電流が発生する。
[3-3. Action / Effect]
(1) The resin used for the magnetic core of the present embodiment is a resin having a reduction rate of 0.1% or less, preferably 0.08% or less when the resin is exposed to an atmosphere at 220 ° C. for 40 hours. . The rate of decrease is the rate of decrease in weight when the resin is exposed to a high temperature atmosphere. In the magnetic core produced from the soft magnetic composite material of the present embodiment, contact between the magnetic powders inside the magnetic core can be suppressed even when used at a high temperature for a long time. In the magnetic core, an eddy current corresponding to the size of the soft magnetic powder contained therein is generated. When the magnetic core is exposed to a high temperature for a long time, the resin decomposes and disappears due to the influence of heat when the reduction rate of the resin contained in the magnetic core exceeds 0.1%. A larger eddy current is generated when the magnetic powders separated by the resin come into contact with each other due to the disappearance of the resin.
(2)本実施形態の磁性粉末としては、平均粒子径の異なる複数の磁性粉末を使用した。例えば、第1の磁性粉末の平均粒子径は100~200μmとし、第2の磁性粉末の平均粒子径は5~10μmとする。また、磁性粉末の割合を、第1の磁性粉末の添加量が60~80wt%、前記第2の磁性粉末が20~40wt%とする。これにより、第1の磁性粉末同士の隙間に第2の磁性粉末が入り込み、密度及び透磁率の向上と低鉄損化を図ることができる。 (2) As the magnetic powder of the present embodiment, a plurality of magnetic powders having different average particle diameters were used. For example, the average particle diameter of the first magnetic powder is 100 to 200 μm, and the average particle diameter of the second magnetic powder is 5 to 10 μm. Further, the ratio of the magnetic powder is 60-80 wt% for the first magnetic powder and 20-40 wt% for the second magnetic powder. As a result, the second magnetic powder enters the gap between the first magnetic powders, and the density and permeability can be improved and the iron loss can be reduced.
(3)樹脂は、熱硬化性樹脂、紫外線硬化性樹脂、又は熱可塑性樹脂を利用することが可能であるが、熱硬化性樹脂中を使用することができる。その中でもエポキシ樹脂を利用することが好ましい。エポキシ樹脂は、ガラス転移点が高く耐熱性に優れるだけでなく、硬化時に揮発物質を副生しないので成形品の寸法変化が少ない。また、流動性に富み、比較的低圧でも成形できるので工程の簡易化を図ることが可能となる。 (3) As the resin, a thermosetting resin, an ultraviolet curable resin, or a thermoplastic resin can be used, but the inside of the thermosetting resin can be used. Among these, it is preferable to use an epoxy resin. Epoxy resins not only have a high glass transition point and excellent heat resistance, but also do not produce volatile substances as a by-product during curing, so that there are few dimensional changes in the molded product. Further, since it has high fluidity and can be molded even at a relatively low pressure, the process can be simplified.
(4)本実施形態の軟磁性複合材料を使用して作成した磁性コアは、155℃の雰囲気に長時間晒した場合にでも、鉄損の変化率を小さく抑えることが可能である。さらに望ましくは、155℃の雰囲気に500時間以上晒した際の鉄損の変化率が10%以下となる磁性コアを作製可能な軟磁性複合材料を使用する。このような磁性粉末のコアは、155℃の雰囲気に1000時間以上さらしても樹脂が熱の影響により、分解、消失することがない。これは、1000時間経過時点の鉄損の変化率を、500時間経過の時点の鉄損の変化率で予測することが可能であると換言することで、高温放置試験の時間の短縮を図ることも可能となる。 (4) The magnetic core produced using the soft magnetic composite material of the present embodiment can keep the rate of change in iron loss small even when exposed to an atmosphere at 155 ° C. for a long time. More desirably, a soft magnetic composite material capable of producing a magnetic core having a change rate of iron loss of 10% or less when exposed to an atmosphere at 155 ° C. for 500 hours or more is used. Even if such a magnetic powder core is exposed to an atmosphere at 155 ° C. for 1000 hours or more, the resin does not decompose or disappear due to the influence of heat. In other words, the rate of change in iron loss after 1000 hours can be predicted by the rate of change in iron loss after 500 hours. Is also possible.
[4.実施例]
[4-1.実施例I]
 本発明の実施例Iを、表1~表4及び図3~図11を参照して、以下に説明する。
(1)測定項目
 測定項目は、密度、透磁率及び鉄損である。作製された各コアのサンプルに対して、φ2.6mmの銅線で40ターンの巻線を施してリアクトルを作製した。各コアのサンプルの形状は、外径35mm、内径20mm、高さ11mmのトロイダル形状とした。また、作製したリアクトルの透磁率及び鉄損を下記の条件で算出した。
[4. Example]
[4-1. Example I]
Embodiment I of the present invention will be described below with reference to Tables 1 to 4 and FIGS. 3 to 11.
(1) Measurement items Measurement items are density, magnetic permeability, and iron loss. Reactors were prepared by winding 40 turns of copper cores with a diameter of 2.6 mm on the prepared core samples. The shape of each core sample was a toroidal shape having an outer diameter of 35 mm, an inner diameter of 20 mm, and a height of 11 mm. Moreover, the magnetic permeability and iron loss of the produced reactor were computed on condition of the following.
<密度>
 コアの密度は、見かけ密度である。すなわち、各コアのサンプルの外径、内径、及び高さを測り、これらの値からサンプルの体積(cm)を、π×(外径-内径)×高さに基づき算出した。そして、サンプルの質量を測定し、測定した質量を算出した体積で除してコアの密度を算出した。
<Density>
The density of the core is the apparent density. That is, the outer diameter, inner diameter, and height of each core sample were measured, and the volume (cm 3 ) of the sample was calculated from these values based on π × (outer diameter 2 −inner diameter 2 ) × height. Then, the mass of the sample was measured, and the density of the core was calculated by dividing the measured mass by the calculated volume.
<透磁率及び鉄損>
 透磁率及び鉄損の測定条件は、周波数20kHz、最大磁束密度Bm=30mTとした。透磁率は、鉄損Pcv測定時に最大磁束密度Bmを設定したときの振幅透磁率とした。鉄損については、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY-8232)を用いて算出した。この算出は、鉄損の周波数曲線を次の(1)~(3)式で最小2乗法により、ヒステリシス損係数、渦電流損失係数を算出することで行った。
<Permeability and iron loss>
The measurement conditions for magnetic permeability and iron loss were a frequency of 20 kHz and a maximum magnetic flux density Bm = 30 mT. The magnetic permeability was the amplitude magnetic permeability when the maximum magnetic flux density Bm was set when measuring the iron loss Pcv. The iron loss was calculated using a BH analyzer (Iwatori Measurement Co., Ltd .: SY-8232), which is a magnetic measuring instrument. This calculation was performed by calculating the hysteresis loss coefficient and the eddy current loss coefficient of the iron loss frequency curve using the following formulas (1) to (3) by the least square method.
Pcv=Kh×f+Ke×f…(1)
Phv =Kh×f…(2)
Pev =Ke×f…(3)
Pcv:鉄損
Kh :ヒステリシス損係数
Ke :渦電流損係数
f  :周波数
Phv:ヒステリシス損失
Pev:渦電流損失
Pcv = Kh × f + Ke × f 2 (1)
Phv = Kh × f (2)
Pev = Ke × f 2 (3)
Pcv: Iron loss Kh: Hysteresis loss coefficient Ke: Eddy current loss coefficient f: Frequency Phv: Hysteresis loss Pev: Eddy current loss
 本実施例において、各粉末の平均粒子径と円形度は、下記装置を用いて3000個の平均値をとったものであり、ガラス基板上に粉末を分散して、顕微鏡で粉末写真を撮り一個毎自動で画像から測定した。
会社名:Malvern
装置名:morphologi G3S
 比表面積は、BET法により測定した。
In this example, the average particle diameter and the circularity of each powder are the average values of 3000 using the following apparatus, and the powder is dispersed on a glass substrate, and a powder photograph is taken with a microscope. It was measured automatically from the image every time.
Company name: Malvern
Device name: morphologic G3S
The specific surface area was measured by the BET method.
(2)サンプルの作製方法
 コアのサンプルは、下記のように、(a)加圧工程におけるプレス面圧、(b)樹脂量、(c)容器の温度の違いの観点から作製した。これらの作製方法と、その結果について下記に順に示す。
(2) Sample Preparation Method The core sample was prepared from the viewpoint of (a) press surface pressure in the pressing step, (b) resin amount, and (c) temperature difference of the container. These production methods and the results are shown below in order.
(a) 加圧工程におけるプレス面圧
 まず、混合工程として、平均粒径123μmのFe-6.5%Si合金粉末(円形度0.943)と、平均粒径5.1μmのFe-6.5%Si合金粉末(円形度0.908)を重量比率70:30でV型混合機にて30分混合して磁性粉末を構成した。そして、アルミカップに当該磁性粉末を入れ、当該磁性粉末に対して、3.5wt%のエポキシ樹脂を添加し、2分間ヘラを用いて手動で混合した。これにより、磁性粉末と樹脂との混合物である複合磁性材料を得た。
(a) Press surface pressure in the pressurizing step First, as a mixing step, Fe-6.5% Si alloy powder (circularity 0.943) having an average particle size of 123 μm and Fe-6. 5% Si alloy powder (circularity: 0.908) was mixed at a weight ratio of 70:30 with a V-type mixer for 30 minutes to form a magnetic powder. And the said magnetic powder was put into the aluminum cup, 3.5 wt% epoxy resin was added with respect to the said magnetic powder, and it mixed manually using the spatula for 2 minutes. This obtained the composite magnetic material which is a mixture of magnetic powder and resin.
 次に、混合工程で得た複合磁性材料を、トロイダル形状の空間を有する樹脂製の容器に充填し、油圧プレス機を用いて容器内の複合磁性材料を表1のプレス圧で10秒間押圧し、トロイダル形状の成型体を作製した。この押圧の間、容器の温度は25℃に保った。 Next, the composite magnetic material obtained in the mixing step is filled into a resin container having a toroidal-shaped space, and the composite magnetic material in the container is pressed with the press pressure of Table 1 for 10 seconds using a hydraulic press. A toroidal shaped molded body was produced. During this pressing, the temperature of the container was kept at 25 ° C.
 このように加圧工程及び成型工程で得られた成型体を大気中にて、85℃で2時間乾燥させ、その後120℃で1時間乾燥させ、さらに150℃で4時間乾燥させて、サンプルとなるトロイダルコアを作製した。
Figure JPOXMLDOC01-appb-T000001
The molded body thus obtained in the pressurizing step and the molding step is dried in the atmosphere at 85 ° C. for 2 hours, then dried at 120 ° C. for 1 hour, and further dried at 150 ° C. for 4 hours. A toroidal core was produced.
Figure JPOXMLDOC01-appb-T000001
 表1及び図3~図7に各プレス圧にて得られた実施例1~3、比較例1,2におけるコアの密度、透磁率、鉄損の結果を示す。実施例1~3は、プレス圧を400N、600N、1000Nとし、比較例1はプレス無し、比較例2はプレス圧を100Nとした。プレス面はいずれも同じである。 Table 1 and FIGS. 3 to 7 show the results of core density, magnetic permeability, and iron loss in Examples 1 to 3 and Comparative Examples 1 and 2 obtained at each pressing pressure. In Examples 1 to 3, the press pressure was 400 N, 600 N, and 1000 N, Comparative Example 1 was not pressed, and Comparative Example 2 was 100 N. The press surfaces are the same.
 表1における「理論密度」は、コアの見かけ密度/磁性粉末の真密度により算出された割合である。ここでは、第1の磁性粉末、第2の磁性粉末は、ともにFe-6.5%Si合金粉末を使用しており、その真密度を7.63g/cmとして理論密度を算出している。 “Theoretical density” in Table 1 is a ratio calculated from the apparent density of the core / the true density of the magnetic powder. Here, both the first magnetic powder and the second magnetic powder use Fe-6.5% Si alloy powder, and the theoretical density is calculated by setting the true density to 7.63 g / cm 3 . .
 図3は、実施例1~3及び比較例1,2の面圧に対する理論密度のグラフである。表1及び図3に示すように、実施例1~3、比較例1,2の面圧に対する理論密度は、加圧工程を行わない比較例1よりも、加圧工程を行った比較例2及び実施例1~3の方が高く、面圧が上がるにつれて高くなる傾向にあることが分かる。面圧が1.6kg/cmの比較例2では、理論密度は加圧無しの比較例1とそれほど変わりはないが、面圧が6.3kg/cm以上の実施例1~3では、理論密度が77.5%以上となり、比較例1、2よりも高い値となっている。すなわち、面圧を6.3kg/cm以上とすることで、複合磁性材料に含まれる空隙や、容器の隅々まで当該材料が行き渡ることにより密度が向上することが分かる。また、面圧が6.3kg/cm以上となると、理論密度はほぼ一定であることが分かる。 FIG. 3 is a graph of theoretical density versus surface pressure in Examples 1 to 3 and Comparative Examples 1 and 2. As shown in Table 1 and FIG. 3, the theoretical density with respect to the surface pressure in Examples 1 to 3 and Comparative Examples 1 and 2 is Comparative Example 2 in which the pressurizing step was performed, compared to Comparative Example 1 in which the pressurizing step was not performed. It can also be seen that Examples 1 to 3 are higher and tend to increase as the surface pressure increases. In Comparative Example 2 where the surface pressure is 1.6 kg / cm 2 , the theoretical density is not so different from Comparative Example 1 without pressure, but in Examples 1 to 3 where the surface pressure is 6.3 kg / cm 2 or more, The theoretical density is 77.5% or higher, which is higher than Comparative Examples 1 and 2. That is, when the surface pressure is 6.3 kg / cm 2 or more, it can be seen that the density is improved by spreading the material to the voids included in the composite magnetic material and every corner of the container. It can also be seen that the theoretical density is almost constant when the surface pressure is 6.3 kg / cm 2 or more.
 図4は、実施例2のコア断面のSEM写真(100倍)である。図5は、比較例1のコア断面のSEM写真(100倍)である。図4及び図5において、符号1は、第1の磁性粉末を示し、符号2は、第2の磁性粉末を示している。符号3は、樹脂を示し、符号4は空隙を示している。なお、空隙4は、SEM写真において濃い黒で表されている部分であり、これに対し、比較的薄い黒で表されている部分が樹脂3である。図4、図5から明らかなように、図4に示す実施例2の方が、図5に示す比較例1より、複合磁性材料中の空隙4の数が減少し、空隙4自体の大きさも小さくできることが分かる。 FIG. 4 is an SEM photograph (100 times) of the core cross section of Example 2. FIG. 5 is an SEM photograph (100 times) of the core cross section of Comparative Example 1. 4 and 5, reference numeral 1 indicates the first magnetic powder, and reference numeral 2 indicates the second magnetic powder. The code | symbol 3 shows resin and the code | symbol 4 has shown the space | gap. The void 4 is a portion represented by dark black in the SEM photograph, whereas the portion represented by relatively thin black is the resin 3. As apparent from FIGS. 4 and 5, the number of voids 4 in the composite magnetic material is smaller in Example 2 shown in FIG. 4 than in Comparative Example 1 shown in FIG. 5, and the size of the void 4 itself is also increased. You can see that it can be made smaller.
 透磁率は、振幅透磁率であり、前述のインピーダンスアナライザーを使用することで、20kHz、1.0Vにおける各磁界の強さのインダクタンスから算出した。表1中の「μ0」は、直流を重畳させていない状態、すなわち磁界の強さが0H(A/m)の時の初透磁率を示す。表1中の「μ12000」は、磁界の強さが12kH(kA/m)の時の透磁率を示す。 The magnetic permeability is an amplitude magnetic permeability, and was calculated from the inductance of the strength of each magnetic field at 20 kHz and 1.0 V by using the impedance analyzer described above. “Μ0” in Table 1 indicates the initial permeability when DC is not superimposed, that is, when the magnetic field strength is 0 H (A / m). “Μ12000” in Table 1 indicates the magnetic permeability when the magnetic field strength is 12 kH (kA / m).
 図6は、実施例1~3及び比較例1,2の面圧に対する透磁率のグラフである。表1及び図6に示すように、透磁率は、加圧しない比較例1に比べて、加圧した実施例1~3の方が高くなることが分かる。例えば、実施例1の初透磁率μ0は、比較例1と比べて、約8.7%上昇することが分かる。加圧する比較例2でも、加圧しない比較例1と比べて透磁率が高くなるが、コアの密度上昇に対する寄与が小さいことが分かる。 FIG. 6 is a graph of magnetic permeability with respect to the surface pressure in Examples 1 to 3 and Comparative Examples 1 and 2. As shown in Table 1 and FIG. 6, it can be seen that the magnetic permeability is higher in Examples 1 to 3 in which pressure is applied than in Comparative Example 1 in which pressure is not applied. For example, it can be seen that the initial permeability μ0 of Example 1 is increased by about 8.7% as compared with Comparative Example 1. It can be seen that even in Comparative Example 2 where pressure is applied, the magnetic permeability is higher than in Comparative Example 1 where pressure is not applied, but the contribution to the increase in the density of the core is small.
 図7は、実施例1~3及び比較例1,2の面圧に対する鉄損のグラフである。表1及び図7に示すように、鉄損については、加圧しない比較例1に比べて、加圧した実施例1~3の方が低くなることが分かる。特に、面圧を大きくすることにより、ヒステリシス損失(Phv)が低下する傾向にあることが分かる。加圧する比較例2でも、加圧しない比較例1と比べて鉄損が低減するが、実施例1~3の方がより鉄損が低減することが分かる。 FIG. 7 is a graph of iron loss versus surface pressure in Examples 1 to 3 and Comparative Examples 1 and 2. As shown in Table 1 and FIG. 7, it can be seen that the iron loss is lower in the pressurized examples 1 to 3 than in the comparative example 1 where no pressure is applied. In particular, it can be seen that the hysteresis loss (Phv) tends to decrease by increasing the surface pressure. In Comparative Example 2 in which pressurization is performed, the iron loss is reduced as compared with Comparative Example 1 in which pressurization is not performed, but it can be seen that Examples 1 to 3 further reduce the iron loss.
 面圧が6.3kg/cm以上となると、透磁率及び鉄損がともにほぼ一定となり、加圧することに依る磁気特性への効果が飽和する傾向にあることが分かる。言い換えれば、面圧が6.3~15.7kg/cmの範囲で、加圧工程を有することによる密度、透磁率の向上及び低鉄損化の効果が得られることが分かる。 It can be seen that when the surface pressure is 6.3 kg / cm 2 or more, both the magnetic permeability and the iron loss are almost constant, and the effect on the magnetic properties due to the pressurization tends to be saturated. In other words, when the surface pressure is in the range of 6.3 to 15.7 kg / cm 2 , it can be seen that the effect of improving the density and magnetic permeability and reducing the iron loss can be obtained by having the pressing step.
(b) 樹脂量
 実施例2の樹脂量を表2に示す条件として、実施例2と同様の手順でコアのサンプル(実施例4~8及び比較例3~5)を作製した。表2及び図8、図9に、実施例4~8及び比較例3~5の密度、透磁率、鉄損の結果を示す。なお、表2のμ0、μ12000は、表1のものと同じ意味である。
Figure JPOXMLDOC01-appb-T000002
(b) Resin Amount Core samples (Examples 4 to 8 and Comparative Examples 3 to 5) were prepared in the same procedure as in Example 2, with the resin amount in Example 2 shown in Table 2. Table 2 and FIGS. 8 and 9 show the results of density, magnetic permeability, and iron loss in Examples 4 to 8 and Comparative Examples 3 to 5. In Table 2, μ0 and μ12000 have the same meaning as in Table 1.
Figure JPOXMLDOC01-appb-T000002
 図8は、実施例4~8及び比較例3~5の樹脂量に対する透磁率のグラフである。図9は、実施例4~8及び比較例3~5の樹脂量に対する鉄損のグラフである。表2及び図8、9に示すように、樹脂量が、複合磁性材料に対して3wt%未満であると、コアの含まれる空隙が多くなり、密度が低下する。その結果、透磁率の低下及びヒステリシス損失増加の原因となる。また、樹脂量が3wt%未満であると、磁性粉末同士が点接触しやすく、渦電流損失の増加の原因となる。一方、樹脂量が、複合磁性材料に対して5wt%超であると、密度の低下が著しくなる。その結果、ヒステリシス損失が増大する。 FIG. 8 is a graph of magnetic permeability with respect to the resin amounts of Examples 4 to 8 and Comparative Examples 3 to 5. FIG. 9 is a graph of the iron loss against the resin amount of Examples 4 to 8 and Comparative Examples 3 to 5. As shown in Table 2 and FIGS. 8 and 9, when the resin amount is less than 3 wt% with respect to the composite magnetic material, the voids included in the core increase and the density decreases. As a result, it causes a decrease in magnetic permeability and an increase in hysteresis loss. On the other hand, if the amount of resin is less than 3 wt%, the magnetic powders are easily brought into point contact with each other, which causes an increase in eddy current loss. On the other hand, when the amount of resin is more than 5 wt% with respect to the composite magnetic material, the density is significantly reduced. As a result, hysteresis loss increases.
(c) 容器の温度
 容器の温度を異ならせてコアのサンプルを作製した。上記(a)の通り、実施例1~3及び比較例1では、容器の温度は25℃とした。また、容器の温度を70℃とし、容器の温度以外は上記(a)で行った工程と同じにして得たサンプルを、実施例9~11及び比較例6とした。表3及び図10、図11に、実施例1~3、9~11及び比較例1、2、6の密度、透磁率、鉄損の結果を示す。なお、表3の理論密度、μ0、μ12000は、表1のものと同じ意味である。
Figure JPOXMLDOC01-appb-T000003
(c) Container temperature Core samples were prepared by varying the container temperature. As described in (a) above, in Examples 1 to 3 and Comparative Example 1, the temperature of the container was 25 ° C. Samples obtained in the same manner as in the above step (a) except for the temperature of the container at 70 ° C. were used as Examples 9 to 11 and Comparative Example 6. Table 3, FIG. 10, and FIG. 11 show the results of density, magnetic permeability, and iron loss in Examples 1 to 3, 9 to 11, and Comparative Examples 1, 2, and 6. The theoretical density, μ0, and μ12000 in Table 3 have the same meaning as in Table 1.
Figure JPOXMLDOC01-appb-T000003
 図10は、実施例9~11及び比較例6の面圧に対する透磁率のグラフである。図11は、実施例9~11及び比較例6の面圧に対する鉄損のグラフである。表3及び図6、7、10、11に示すように、容器の温度を70℃にした実施例9~11、比較例6の方が、容器の温度を25℃にした実施例1~3、比較例2よりも、密度、理論密度が増加する傾向にあり、鉄損については低減する傾向にあることが分かる。透磁率は面圧によって増減する結果が見えられた。 FIG. 10 is a graph of magnetic permeability with respect to surface pressure in Examples 9 to 11 and Comparative Example 6. FIG. 11 is a graph of iron loss versus surface pressure in Examples 9 to 11 and Comparative Example 6. As shown in Table 3 and FIGS. 6, 7, 10, and 11, Examples 9 to 11 in which the container temperature was 70 ° C. and Comparative Examples 6 were examples 1 to 3 in which the container temperature was 25 ° C. It can be seen that the density and the theoretical density tend to increase as compared with Comparative Example 2, and the iron loss tends to decrease. The results showed that the permeability increased or decreased depending on the surface pressure.
 また、容器の温度を70℃とし、温度を高くした中でも、実施例9~11は、理論密度が77.9%以上となっており、面圧を上げることによって比較例6よりも高くなることが分かる。このように、容器を常温(25℃)よりも温めることで、複合磁性材料中の樹脂が柔らかくなり、当該材料中の空隙に当該材料が流れ込み易くなることにより、見かけ密度が向上し、理論密度が向上するものと考えられる。その結果として、低鉄損化の効果が得られることが分かった。 In addition, even when the temperature of the container was set to 70 ° C. and the temperature was increased, Examples 9 to 11 had a theoretical density of 77.9% or higher, and were higher than Comparative Example 6 by increasing the surface pressure. I understand. Thus, by heating the container from room temperature (25 ° C.), the resin in the composite magnetic material becomes soft, and the material easily flows into the voids in the material, thereby improving the apparent density and the theoretical density. Is thought to improve. As a result, it was found that the effect of reducing iron loss can be obtained.
 (d) 樹脂の粘度測定
 本実施例において使用した樹脂の粘度について、説明する。本実施例に使用した樹脂の粘度は、次のように複合磁性材料状に載せた分銅の沈み込みの深さを測定することにより、樹脂の粘度とした。
(d) Measurement of resin viscosity The viscosity of the resin used in this example will be described. The viscosity of the resin used in this example was determined as the resin viscosity by measuring the depth of sinking of the weight placed on the composite magnetic material as follows.
 すなわち、まず、樹脂の添加量を表4に示す条件とし、上記(a)の混合工程と同様にして複合磁性材料を作製した。次に、得られた複合磁性材料を、直径5mmのアルミニウム製の容器に厚さが3mmになるように投入し、その複合磁性材料の上の中央にJIS標準の10gの分銅を載せた。そして、分銅を載せてから10秒経過後、分銅を取り除き、分銅の重みで形成された複合磁性材料の凹みの深さを測定した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
That is, first, a composite magnetic material was prepared in the same manner as in the mixing step (a) under the conditions shown in Table 4 where the amount of resin added was the same. Next, the obtained composite magnetic material was put into an aluminum container having a diameter of 5 mm so as to have a thickness of 3 mm, and a JIS standard 10 g weight was placed on the center of the composite magnetic material. Then, 10 seconds after the weight was placed, the weight was removed, and the depth of the recess of the composite magnetic material formed with the weight of the weight was measured. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、樹脂の添加量が多くなる程、凹みの深さが深くなっており、複合磁性材料の粘性が低く、分銅が沈み込みやすくなっていることが分かる。 As shown in Table 4, it can be seen that the greater the amount of resin added, the deeper the recess, the lower the viscosity of the composite magnetic material, and the easier the sinking of the weight.
[4-2.実施例II]
 本発明の実施例IIを、表5~表11及び図13~図21を参照して、以下に説明する。
(1)測定項目
 測定項目は、密度、透磁率、鉄損、及びインダクタンス値(L値)である。作製された各コアのサンプルに対して、φ2.6mmの銅線で40ターンの巻線を施してリアクトルを作製した。各コアのサンプルの形状は、外径35mm、内径20mm、高さ11mmのトロイダル形状とした。また、作製したリアクトルの透磁率、鉄損及びインダクタンス値を下記の条件で算出した。
[4-2. Example II]
Embodiment II of the present invention will be described below with reference to Tables 5 to 11 and FIGS. 13 to 21.
(1) Measurement items Measurement items are density, magnetic permeability, iron loss, and inductance value (L value). Reactors were prepared by winding 40 turns of copper cores with a diameter of 2.6 mm on the prepared core samples. The shape of each core sample was a toroidal shape having an outer diameter of 35 mm, an inner diameter of 20 mm, and a height of 11 mm. Moreover, the magnetic permeability of the produced reactor, the iron loss, and the inductance value were computed on condition of the following.
<密度>
 コアの密度は、見かけ密度である。すなわち、各コアのサンプルの外径、内径、及び高さを測り、これらの値からサンプルの体積(cm)を、π×(外径-内径)×高さに基づき算出した。そして、サンプルの質量を測定し、測定した質量を算出した体積で除してコアの密度を算出した。
<Density>
The density of the core is the apparent density. That is, the outer diameter, inner diameter, and height of each core sample were measured, and the volume (cm 3 ) of the sample was calculated from these values based on π × (outer diameter 2 −inner diameter 2 ) × height. Then, the mass of the sample was measured, and the density of the core was calculated by dividing the measured mass by the calculated volume.
<透磁率及び鉄損>
 透磁率及び鉄損の測定条件は、周波数20kHz、最大磁束密度Bm=30mTとした。透磁率は、鉄損Pcv測定時に最大磁束密度Bmを設定したときの振幅透磁率とした。鉄損については、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY-8232)を用いて算出した。この算出は、鉄損の周波数曲線を次の(1)~(3)式で最小2乗法により、ヒステリシス損係数、渦電流損失係数を算出することで行った。
<Permeability and iron loss>
The measurement conditions for magnetic permeability and iron loss were a frequency of 20 kHz and a maximum magnetic flux density Bm = 30 mT. The magnetic permeability was the amplitude magnetic permeability when the maximum magnetic flux density Bm was set when measuring the iron loss Pcv. The iron loss was calculated using a BH analyzer (Iwatori Measurement Co., Ltd .: SY-8232), which is a magnetic measuring instrument. This calculation was performed by calculating the hysteresis loss coefficient and the eddy current loss coefficient of the iron loss frequency curve using the following formulas (1) to (3) by the least square method.
Pcv=Kh×f+Ke×f…(1)
Phv =Kh×f…(2)
Pev =Ke×f…(3)
Pcv:鉄損
Kh :ヒステリシス損係数
Ke :渦電流損係数
f  :周波数
Phv:ヒステリシス損失
Pev:渦電流損失
Pcv = Kh × f + Ke × f 2 (1)
Phv = Kh × f (2)
Pev = Ke × f 2 (3)
Pcv: Iron loss Kh: Hysteresis loss coefficient Ke: Eddy current loss coefficient f: Frequency Phv: Hysteresis loss Pev: Eddy current loss
<インダクタンス値>
 インダクタンス値は、作製されたコアのサンプルに1次巻線(20ターン)を施し、20kHz、1.0Vの条件下でインピーダンスアナライザー(アジレントテクノロジー社:4294A)を使用することで、測定した。
<Inductance value>
The inductance value was measured by applying a primary winding (20 turns) to the manufactured core sample and using an impedance analyzer (Agilent Technology: 4294A) under the conditions of 20 kHz and 1.0 V.
 なお、本実施例において、各粉末の平均粒子径と円形度は、下記装置を用いて3000個の平均値をとったものであり、ガラス基板上に粉末を分散して、顕微鏡で粉末写真を撮り一個毎自動で画像から測定した。
会社名:Malvern
装置名:morphologi G3S
 比表面積は、BET法により測定した。
In this example, the average particle diameter and the circularity of each powder are the average values of 3000 pieces using the following apparatus. The powder is dispersed on a glass substrate, and a powder photograph is taken with a microscope. Each shot was automatically measured from the image.
Company name: Malvern
Device name: morphologic G3S
The specific surface area was measured by the BET method.
(2)サンプルの作製方法
 コアのサンプルは、下記のように、(a)印加磁界の有無、(b)印加磁界の大きさ、(c)加圧工程の有無の観点から作製した。これらの作製方法と、その結果について下記に順に示す。
(2) Sample preparation method The core sample was prepared from the viewpoint of (a) presence / absence of applied magnetic field, (b) magnitude of applied magnetic field, and (c) presence / absence of pressurization step, as described below. These production methods and the results are shown below in order.
(a) 印加磁界の有無
 まず、混合工程として、平均粒径123μmのFe-6.5%Si合金粉末(円形度0.943)と、平均粒径5.1μmのFe-6.5%Si合金粉末(円形度0.908)を重量比率70:30でV型混合機にて30分混合して磁性粉末を構成した。そして、アルミカップに当該磁性粉末を入れ、当該磁性粉末に対して、表5に示す条件でエポキシ樹脂を添加し、2分間ヘラを用いて手動で混合した。これにより、磁性粉末と樹脂との混合物である複合磁性材料を得た。
(a) Presence / absence of applied magnetic field First, as a mixing step, Fe-6.5% Si alloy powder (circularity 0.943) having an average particle size of 123 μm and Fe-6.5% Si having an average particle size of 5.1 μm were used. Alloy powder (circularity: 0.908) was mixed at a weight ratio of 70:30 for 30 minutes with a V-type mixer to form a magnetic powder. And the said magnetic powder was put into the aluminum cup, the epoxy resin was added on the conditions shown in Table 5 with respect to the said magnetic powder, and it mixed manually using the spatula for 2 minutes. This obtained the composite magnetic material which is a mixture of magnetic powder and resin.
 次に、混合工程で得た複合磁性材料を、トロイダル形状の空間を有する樹脂製の容器に充填し、油圧プレス機を用いて容器内の複合磁性材料を600Nのプレス圧(面圧9.4kg/cm)で10秒間押圧し、トロイダル形状の成型体を作製した。この押圧の間、容器の温度は25℃に保った。 Next, the composite magnetic material obtained in the mixing step is filled into a resin container having a toroidal space, and the composite magnetic material in the container is pressed with a 600 N press pressure (surface pressure 9.4 kg) using a hydraulic press. / Cm 2 ) for 10 seconds to produce a toroidal shaped molded body. During this pressing, the temperature of the container was kept at 25 ° C.
 その後、得られた成型体に対し、上記の銅線を40ターン巻回してコイルを形成し、元となるリアクトルを作製した。 Thereafter, the obtained molded body was wound with the above copper wire for 40 turns to form a coil, and a reactor as a base was produced.
 そして、当該リアクトルを大気中にて、85℃で2時間乾燥させ、その後120℃で1時間乾燥させ、さらに150℃で4時間乾燥させて樹脂を硬化し、サンプルとなるトロイダルコアを作製した。その際、各温度における乾燥時間中4.85kA/mとなるようにコイルに通電し、実施例12~16のサンプルを得た。実施例12~16の違いは樹脂の添加量であり、それぞれ3.0~5.0wt%である。また、樹脂の硬化中に磁界を印加しないで作製したトロイダルコイルを作製し、比較例7~11のサンプルを得た。
Figure JPOXMLDOC01-appb-T000005
Then, the reactor was dried in the atmosphere at 85 ° C. for 2 hours, then dried at 120 ° C. for 1 hour, further dried at 150 ° C. for 4 hours to cure the resin, and a sample toroidal core was produced. At that time, the coil was energized so as to be 4.85 kA / m during the drying time at each temperature, and samples of Examples 12 to 16 were obtained. The difference between Examples 12 to 16 is the amount of resin added, which is 3.0 to 5.0 wt%, respectively. In addition, toroidal coils manufactured without applying a magnetic field during resin curing were prepared, and samples of Comparative Examples 7 to 11 were obtained.
Figure JPOXMLDOC01-appb-T000005
 図13は、磁界を印加する場合と印加しない場合の樹脂量に対する初透磁率のグラフである。表5及び図13に示すように、各樹脂量において、硬化工程中に磁界を印加した方が、初透磁率が向上していることが分かる。 FIG. 13 is a graph of initial permeability with respect to the amount of resin with and without application of a magnetic field. As shown in Table 5 and FIG. 13, it can be seen that the initial permeability is improved when a magnetic field is applied during the curing step in each resin amount.
 図14は、樹脂量に対する透磁率の変化率のグラフである。表5及び図14に示す「変化率」は、各樹脂量における磁界印加ありの場合と磁界印加なしの場合の初透磁率μ0の変化率であり、式(4)で算出して得た値である。当該変化率は、磁界を印加した効果の度合いを示す。
 変化率=μ0(H)/μ0(0)-1…(4)
 μ0(H):磁界印加ありの場合の初透磁率
 μ0(0):磁界印加なしの場合の初透磁率
FIG. 14 is a graph of the rate of change of magnetic permeability with respect to the amount of resin. The “change rate” shown in Table 5 and FIG. 14 is the change rate of the initial permeability μ0 when the magnetic field is applied and when the magnetic field is not applied in each resin amount, and is a value obtained by calculation using Expression (4). It is. The rate of change indicates the degree of effect of applying a magnetic field.
Rate of change = μ0 (H) / μ0 (0) −1 (4)
μ0 (H): Initial permeability when a magnetic field is applied μ0 (0): Initial permeability when a magnetic field is not applied
 図14に示すように、変化率は樹脂量が多くなる程大きくなっている。樹脂量が多くなる程、印加された磁界により磁性粉末が配向しやすくなるためである。樹脂量が3.3~5.0wt%の範囲で変化率が10%以上であり、初透磁率が向上する効果が高いことが分かる。 As shown in FIG. 14, the rate of change increases as the amount of resin increases. This is because the larger the amount of resin, the easier the magnetic powder is oriented by the applied magnetic field. It can be seen that the rate of change is 10% or more when the resin amount is in the range of 3.3 to 5.0 wt%, and the effect of improving the initial permeability is high.
(b) 印加磁界の大きさ
 樹脂量をそれぞれ3wt%、4wt%、5wt%とし、印加磁界を表6の通りとして、樹脂量及び印加磁界以外を上記(a)と同様の工程としてリアクトルのサンプルを作製した。そして、各サンプルに対して、上記「(1)測定項目」で示したように、インダクタンス値を測定した。また、測定したインダクタンス値L0から式(5)に基づき、L0値変化率を算出した。その結果を表6に示す。
(b) The magnitude of the applied magnetic field The resin amount is 3 wt%, 4 wt%, and 5 wt% respectively, the applied magnetic field is as shown in Table 6, and the sample of the reactor is the same as the above (a) except for the resin amount and the applied magnetic field. Was made. Then, as shown in the above “(1) Measurement item”, the inductance value was measured for each sample. Further, the L0 value change rate was calculated from the measured inductance value L0 based on the equation (5). The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 L0値変化率=L0(H)/L0(0)-1…(5)
 L0(H):硬化工程中の各印加磁界Hで作製したリアクトルの初期インダクタンス値
 L0(0):硬化工程中の印加磁界を0として作製したリアクトルの初期インダクタンス値
L0 value change rate = L0 (H) / L0 (0) −1 (5)
L0 (H): Initial inductance value of the reactor manufactured with each applied magnetic field H during the curing process L0 (0): Initial inductance value of the reactor manufactured with zero applied magnetic field during the curing process
 図15は、硬化工程中の印加磁界に対するL0値変化率のグラフであり、表6をグラフ化したものである。表6及び図15に示すように、L0値変化率は、樹脂量が多い程大きくなる傾向にあることが分かる。L0値変化率は、磁界の小さな領域で上がりやすく、磁界の大きな領域で上がりにくくなっている。すなわち、印加磁界が10kA/m前後でL0値向上が飽和し始める。 FIG. 15 is a graph of the L0 value change rate with respect to the applied magnetic field during the curing process, and Table 6 is graphed. As shown in Table 6 and FIG. 15, it can be seen that the L0 value change rate tends to increase as the amount of resin increases. The L0 value change rate is likely to increase in a region where the magnetic field is small, and is difficult to increase in a region where the magnetic field is large. That is, the L0 value improvement starts to saturate when the applied magnetic field is around 10 kA / m.
 表7は、各樹脂量についてのL値飽和増加率とL値飽和増加率の半価磁界を示す表である。L値飽和増加率とは、硬化工程中の印加磁界を14.56kA/mとして作製したサンプルのL0値変化率であり、L値飽和増加率の半価磁界とは、L値飽和増加率の半分のL0値変化率が得られる、硬化工程中の印加磁界の値である。
Figure JPOXMLDOC01-appb-T000007
Table 7 is a table | surface which shows the half value magnetic field of L value saturation increase rate and L value saturation increase rate about each resin amount. The L value saturation increase rate is the L0 value change rate of the sample produced with the applied magnetic field during the curing process being 14.56 kA / m, and the half value magnetic field of the L value saturation increase rate is the L value saturation increase rate. This is the value of the applied magnetic field during the curing process, at which half the L0 value change rate is obtained.
Figure JPOXMLDOC01-appb-T000007
 表7、図15に示すように、樹脂量3wt%の時は、印加磁界が3.0kA/m以上で十分なL0値の向上効果が得られる。樹脂量4~5wt%の時は、印加磁界が2kA/m以上で十分なL0値の向上効果が得られることが分かった。これらのことから、印加磁界は2kA/m以上とすることで、硬化中の磁界印加による効果が飽和するときの半分以上のL0値変化率を得ることができる。 As shown in Table 7 and FIG. 15, when the resin amount is 3 wt%, a sufficient L0 value improvement effect can be obtained when the applied magnetic field is 3.0 kA / m or more. It was found that when the resin amount was 4 to 5 wt%, a sufficient L0 value improvement effect was obtained when the applied magnetic field was 2 kA / m or more. From these facts, by setting the applied magnetic field to 2 kA / m or more, it is possible to obtain an L0 value change rate of half or more when the effect of applying the magnetic field during curing is saturated.
(c) 加圧工程の有無
 複合磁性材料を押圧する場合と、しない場合とで、樹脂量3~5wt%において、下記の通りサンプルを作製し、得られる初期インダクタンス値(L0)の違いについて調べた。
(c) Presence / absence of pressurization process Samples were prepared as shown below for the amount of resin 3 to 5 wt% with and without pressing the composite magnetic material, and the difference in the obtained initial inductance value (L0) was investigated. It was.
(c-1) 樹脂量3wt%の場合
<加圧工程あり>
 樹脂量を磁性粉末に対して3wt%とし、上記(a)と同様の工程でリアクトルのサンプルを作製した。但し、硬化工程時の印加磁界は、表8に示す通りとした。
<加圧工程なし>
 樹脂量を磁性粉末に対して3wt%とし、上記(a)と同様の工程でリアクトルのサンプルを作製した。但し、複合磁性材料のプレスはしていない。すなわち、混合工程で得た複合磁性材料を、トロイダル形状の空間を有する樹脂製の容器に充填し、プレスしないでトロイダル形状の成型体を作製した。この間、容器の温度は25℃に保った。
(c-1) When the amount of resin is 3wt% <With pressurization process>
The amount of resin was 3 wt% with respect to the magnetic powder, and a reactor sample was prepared in the same process as in (a) above. However, the applied magnetic field during the curing process was as shown in Table 8.
<No pressurization process>
The amount of resin was 3 wt% with respect to the magnetic powder, and a reactor sample was prepared in the same process as in (a) above. However, the composite magnetic material is not pressed. That is, the composite magnetic material obtained in the mixing step was filled in a resin container having a toroidal-shaped space, and a toroidal-shaped molded body was produced without pressing. During this time, the temperature of the container was kept at 25 ° C.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 次に、作製したサンプルに対し、加圧工程ありの場合と、加圧工程なしの場合とで、それぞれ初期のインダクタンス値(L0)を算出した。また、算出したインダクタンス値(L0)からその変化率を式(5)に基づいて算出した。その結果を表8及び図16、17に示す。 Next, an initial inductance value (L0) was calculated for each of the prepared samples with and without the pressurization process. The rate of change was calculated from the calculated inductance value (L0) based on equation (5). The results are shown in Table 8 and FIGS.
 図16は、硬化工程中の各印加磁界で作製したリアクトルの初期インダクタンス値のグラフである。図16に示すように、L0は、加圧工程ありの方が高いことが分かった。これは、複合磁性材料をプレスすることで、当該材料中の空隙が押し潰され、空隙の数が減少し、或いは、空隙の大きさが小さくなったことにより、コアの見かけ密度が向上する結果、初透磁率が向上することが要因であると考えられる。 FIG. 16 is a graph of the initial inductance value of the reactor manufactured with each applied magnetic field during the curing process. As shown in FIG. 16, it was found that L0 is higher when there is a pressurizing step. This is the result of pressing the composite magnetic material to crush the voids in the material, reducing the number of voids, or reducing the size of the voids, thereby improving the apparent density of the core. It is considered that the initial permeability is a factor.
 図17は、硬化工程中の各印加磁界で作製したリアクトルの初期インダクタンス値の変化率を示すグラフである。図17に示すように、硬化工程中の印加磁界が5kA/m程度までの低い方では加圧工程の有無に違いは見られないが、これより磁界が高くなると、加圧工程ありの方が、L0の変化率が高くなることが分かった。特に、9.27kA/m以上となると、加圧工程による効果が顕著に現れることが分かる。 FIG. 17 is a graph showing the rate of change of the initial inductance value of the reactor manufactured with each applied magnetic field during the curing process. As shown in FIG. 17, there is no difference in the presence or absence of the pressurizing step when the applied magnetic field during the curing step is as low as about 5 kA / m. It was found that the rate of change of L0 was high. In particular, it can be seen that when the pressure is 9.27 kA / m or more, the effect of the pressurizing step appears significantly.
(c-2) 樹脂量4wt%の場合
 加圧工程ありの場合となしの場合でサンプルを作製する工程は、樹脂量を4wt%とする以外は、上記の(c-1)樹脂量3wt%の場合と同じである。また、上記(c-1)と同様に初期のインダクタンス値(L0)を算出した。算出したインダクタンス値(L0)からその変化率を式(5)に基づいて算出した。その結果を表9及び図18、19に示す。
(c-2) When the amount of resin is 4 wt% The above-mentioned (c-1) resin amount is 3 wt% except that the amount of resin is 4 wt% in the step of preparing the sample with and without the pressurizing step. Is the same as Further, the initial inductance value (L0) was calculated in the same manner as (c-1) above. The rate of change was calculated from the calculated inductance value (L0) based on equation (5). The results are shown in Table 9 and FIGS.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 図18は、硬化工程中の各印加磁界で作製したリアクトルの初期インダクタンス値のグラフである。図18に示すように、L0は、加圧工程ありの方が高いことが分かった。これは、複合磁性材料をプレスすることで、当該材料中の空隙が押し潰され、空隙の数が減少し、或いは、空隙の大きさが小さくなったことにより、コアの見かけ密度が向上する結果、初透磁率が向上することが要因であると考えられる。 FIG. 18 is a graph of the initial inductance value of the reactor manufactured with each applied magnetic field during the curing process. As shown in FIG. 18, it was found that L0 is higher when there is a pressurizing step. This is the result of pressing the composite magnetic material to crush the voids in the material, reducing the number of voids, or reducing the size of the voids, thereby improving the apparent density of the core. It is considered that the initial permeability is a factor.
 図19は、硬化工程中の各印加磁界で作製したリアクトルの初期インダクタンス値の変化率を示すグラフである。図19に示すように、L0の変化率においても、加圧工程ありの方が変化率が高くなることが分かった。 FIG. 19 is a graph showing the rate of change of the initial inductance value of the reactor manufactured with each applied magnetic field during the curing process. As shown in FIG. 19, also in the change rate of L0, it turned out that a change rate becomes high with a pressurization process.
(c-3) 樹脂量5wt%の場合
 加圧工程ありの場合となしの場合でサンプルを作製する工程は、樹脂量を5wt%とする以外は、上記の(c-1)樹脂量3wt%の場合と同じである。また、上記(c-1)と同様に初期のインダクタンス値(L0)を算出した。算出したインダクタンス値(L0)からその変化率を式(5)に基づいて算出した。その結果を表10及び図20、21に示す。
(c-3) When the resin amount is 5 wt% The above-mentioned (c-1) resin amount is 3 wt% except that the resin amount is 5 wt% in the process of preparing the sample with and without the pressurizing step. Is the same as Further, the initial inductance value (L0) was calculated in the same manner as (c-1) above. The rate of change was calculated from the calculated inductance value (L0) based on equation (5). The results are shown in Table 10 and FIGS.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 図20は、硬化工程中の各印加磁界で作製したリアクトルの初期インダクタンス値のグラフである。図21は、硬化工程中の各印加磁界で作製したリアクトルの初期インダクタンス値の変化率を示すグラフである。図20、21に示すように、初期インダクタンス値とその変化率は、共に加圧工程ありの方が加圧工程なしと比べて、高くなっていることが分かる。ただし、その差は小さい。これは、樹脂量が多くなったことにより、複合磁性材料中に占める樹脂の割合が高くなり、加圧して見かけ密度が向上したことによる初透磁率向上の効果を相殺するものと考えられる。 FIG. 20 is a graph of the initial inductance value of the reactor manufactured with each applied magnetic field during the curing process. FIG. 21 is a graph showing the rate of change of the initial inductance value of the reactor manufactured with each applied magnetic field during the curing process. As shown in FIGS. 20 and 21, it can be seen that both the initial inductance value and the rate of change thereof are higher when the pressurization process is performed than when the pressurization process is not performed. However, the difference is small. This is considered to be because the proportion of the resin in the composite magnetic material increases as the amount of the resin increases, and offsets the effect of improving the initial magnetic permeability due to the increase in the apparent density by pressurization.
 図21に示すように、L0の変化率は、硬化工程中の印加磁界が高くなる程、加圧工程ありの方が、加圧工程なしの場合と比べて高くなっていることが分かる。これは、樹脂量が多く含まれることにより、印加された磁界によって磁性粉末の配向性が揃いやすいことが要因であると考えられる。 As shown in FIG. 21, it can be seen that the rate of change of L0 is higher when the applied magnetic field is higher during the curing process than when the pressurized process is not performed. This is considered to be caused by the fact that the orientation of the magnetic powder is easily aligned by the applied magnetic field due to the presence of a large amount of resin.
(d) 樹脂の粘度測定
 本実施例において使用した樹脂の粘度について、説明する。本実施例に使用した樹脂の粘度は、次のように複合磁性材料状に載せた分銅の沈み込みの深さを測定することにより、樹脂の粘度とした。
(d) Measurement of resin viscosity The viscosity of the resin used in this example will be described. The viscosity of the resin used in this example was determined as the resin viscosity by measuring the depth of sinking of the weight placed on the composite magnetic material as follows.
 すなわち、まず、樹脂の添加量を表11に示す条件とし、上記(a)の混合工程と同様にして複合磁性材料を作製した。次に、得られた複合磁性材料を、直径5mmのアルミニウム製の容器に厚さが3mmになるように投入し、その複合磁性材料の上の中央にJIS標準の10gの分銅を載せた。そして、分銅を載せてから10秒経過後、分銅を取り除き、分銅の重みで形成された複合磁性材料の凹みの深さを測定した。その結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
That is, first, a composite magnetic material was produced in the same manner as in the mixing step (a), with the amount of resin added as shown in Table 11. Next, the obtained composite magnetic material was put into an aluminum container having a diameter of 5 mm so as to have a thickness of 3 mm, and a JIS standard 10 g weight was placed on the center of the composite magnetic material. Then, 10 seconds after the weight was placed, the weight was removed, and the depth of the recess of the composite magnetic material formed with the weight of the weight was measured. The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
 表11に示すように、樹脂の添加量が多くなる程、凹みの深さが深くなっており、複合磁性材料の粘性が低く、分銅が沈み込みやすくなっていることが分かる。 As shown in Table 11, it can be seen that the greater the amount of resin added, the deeper the recess, the lower the viscosity of the composite magnetic material, and the easier the sinking of the weight.
[4-3.実施例III]
 本発明の実施例IIIを、表12~表14及び図23を参照して、以下に説明する。
[4-3. Example III]
Example III of the present invention will be described below with reference to Tables 12 to 14 and FIG.
<樹脂(加熱減量について)>
 加熱減量が異なる4種類の樹脂A~Dを用意し、樹脂A~Dを使用してサンプルとなる試験片を作製し、各樹脂の加熱減量の測定を行った。樹脂の加熱減量は、以下の方法により測定した。樹脂の加熱減量は、サンプルの寸法によって異なるため、比較する樹脂のサンプルの寸法は統一する必要がある。本実施例では、「直径40×高さ10(mm)」の円柱サンプルを使用して樹脂A~Dの加熱減量を計測した。
<Resin (about loss on heating)>
Four types of resins A to D having different heating losses were prepared, test pieces serving as samples were prepared using the resins A to D, and the heating loss of each resin was measured. The loss on heating of the resin was measured by the following method. Since the loss on heating of the resin varies depending on the size of the sample, the size of the resin sample to be compared needs to be unified. In this example, the weight loss of the resins A to D was measured using a cylindrical sample of “diameter 40 × height 10 (mm)”.
(1)加熱減量の測定方法
(a)試験片の準備
 初めに、所定の寸法の内径を有する金型や容器を用意した。本実施例では、所定の寸法を「直径40×高さ10(mm)」の内径を有する金型とした。樹脂A~Dの材料となる、成形材料を金型内部に投入し、金型を150℃に加熱した。加えられた熱により成形材料は融解し、その後化学反応が起きて金型の形に合わせて固化する。サンプル作成の際の樹脂A~Dの加熱時間は、4時間とする。
(1) Measuring method of heat loss (a) Preparation of test piece First, a mold and a container having an inner diameter of a predetermined dimension were prepared. In this embodiment, the predetermined dimension is a mold having an inner diameter of “diameter 40 × height 10 (mm)”. A molding material, which is a material for resins A to D, was put into the mold, and the mold was heated to 150 ° C. The molding material is melted by the applied heat, and then a chemical reaction occurs to solidify in accordance with the shape of the mold. The heating time of the resins A to D during sample preparation is 4 hours.
(b)加熱前の質量測定
 固化した樹脂A~Dを金型より取り出し、試験片A~Dとした。この試験片A~Dの質量を1mgまで計測した。この値をM0とした。
(B) Mass measurement before heating Solidified resins A to D were taken out of the mold and used as test pieces A to D. The mass of these test pieces A to D was measured to 1 mg. This value was designated as M0.
(c)高温放置試験
 試験片A~Dを、220℃まで加熱させる。加熱時間は、20時間または40時間とする。
(C) High temperature storage test The test pieces A to D are heated to 220 ° C. The heating time is 20 hours or 40 hours.
(d)加熱後の質量測定
 所定時間経過した試験片A~Dを、取り出し、放熱後、質量を1mgまで計測した。この値をM1とした。
(D) Mass measurement after heating Test pieces A to D after a predetermined time were taken out, and after heat radiation, the mass was measured to 1 mg. This value was designated as M1.
(e)加熱減量の計算
 以下の式により、加熱減量を計算した。
(M0-M1)÷M0×100=加熱減量(%)
(E) Calculation of heat loss Heat loss was calculated by the following equation.
(M0-M1) ÷ M0 × 100 = Heating loss (%)
Figure JPOXMLDOC01-appb-T000012
 表12は、樹脂A~Dを20時間または40時間、220℃の雰囲気で高温放置試験を実施した際の加熱減量を示すグラフである。表12に示すように、樹脂Aは、20時間晒した際の加熱減量が0.09%、40時間晒した際の加熱減量が0.12%、樹脂Bは、20時間晒した際の加熱減量が0.07%、40時間晒した際の加熱減量が0.08%、樹脂Cは、20時間晒した際の加熱減量が0.05%、40時間晒した際の加熱減量が0.05%、樹脂Dは、20時間晒した際の加熱減量が0.08%、40時間晒した際の加熱減量が0.10%となる。
Figure JPOXMLDOC01-appb-T000012
Table 12 is a graph showing the loss on heating when the high temperature storage test is performed on the resins A to D in an atmosphere of 220 ° C. for 20 hours or 40 hours. As shown in Table 12, resin A has a heating loss of 0.09% when exposed to 20 hours, 0.12% of heat loss when exposed to 40 hours, and resin B has a heating loss when exposed to 20 hours. The weight loss is 0.07%, the heat loss when exposed for 40 hours is 0.08%, and the resin C has a heat loss of 0.05% when exposed for 20 hours, and the heat loss when exposed for 40 hours is 0.00. 05%, Resin D has a loss on heating of 0.08% when exposed to 20 hours, and a loss of heat of 0.10% when exposed to 40 hours.
[第1の特性比較(加熱減量の違いによる鉄損への影響の比較)]
 第1の特性比較では、加熱減量が異なる樹脂A~Dを使用し作成したリアクトルの特性の比較を行う。
[First characteristic comparison (comparison of effects on iron loss due to differences in heat loss)
In the first characteristic comparison, the characteristics of reactors made using resins A to D with different heating losses are compared.
(2)測定項目
 測定項目は、鉄損である。作製された各コアのサンプルに対して、φ1.2mmの銅線で1次巻線40ターン、2次巻線3ターンの巻線を施してリアクトルを作製した。各コアのサンプルの形状は、外径35mm、内径20mm、高さ11mmのトロイダル形状とした。また、作製したリアクトルの鉄損を下記の条件で算出した。
(2) Measurement item The measurement item is iron loss. Reactors were prepared by applying 40 turns of the primary winding and 3 turns of the secondary winding to each of the core samples thus prepared with a copper wire of φ1.2 mm. The shape of each core sample was a toroidal shape having an outer diameter of 35 mm, an inner diameter of 20 mm, and a height of 11 mm. Moreover, the iron loss of the produced reactor was computed on condition of the following.
<鉄損>
 鉄損の測定条件は、周波数20kHz、最大磁束密度Bm=30mTとした。鉄損は、磁気計測機器であるBHアナライザ(岩通計測株式会社:SY-8232)を用いて算出した。この算出は、鉄損の周波数曲線を次の(1)~(3)式で最小2乗法により、ヒステリシス損係数、渦電流損失係数を算出することで行った。
<Iron loss>
The iron loss measurement conditions were a frequency of 20 kHz and a maximum magnetic flux density Bm = 30 mT. The iron loss was calculated using a BH analyzer (Iwatori Measurement Co., Ltd .: SY-8232), which is a magnetic measuring instrument. This calculation was performed by calculating the hysteresis loss coefficient and the eddy current loss coefficient of the iron loss frequency curve using the following formulas (1) to (3) by the least square method.
Pcv=Kh×f+Ke×f2…(1)
Phv =Kh×f…(2)
Pev =Ke×f2…(3)
Pcv:鉄損
Kh :ヒステリシス損失係数
Ke :渦電流損失係数
f  :周波数
Phv:ヒステリシス損失
Pev:渦電流損失
Pcv = Kh × f + Ke × f2 (1)
Phv = Kh × f (2)
Pev = Ke × f2 (3)
Pcv: Iron loss Kh: Hysteresis loss coefficient Ke: Eddy current loss coefficient f: Frequency Phv: Hysteresis loss Pev: Eddy current loss
 なお、本実施例において、各粉末の平均粒子径と円形度は、下記装置を用いて3000個の平均値をとったものであり、ガラス基板上に粉末を分散して、顕微鏡で粉末写真を撮り一個毎自動で画像から測定した。
会社名:Malvern
装置名:morphologi G3S
 比表面積は、BET法により測定した。
In this example, the average particle diameter and the circularity of each powder are the average values of 3000 pieces using the following apparatus. The powder is dispersed on a glass substrate, and a powder photograph is taken with a microscope. Each shot was automatically measured from the image.
Company name: Malvern
Device name: morphologic G3S
The specific surface area was measured by the BET method.
(3)サンプルの作製方法
 コアのサンプルは、第1の磁性粉末として平均粒子径が123μmのFe6.5Siを使用する。次に、第2の磁性粉末として平均粒子径が5.1μmのFe6.5Siを用意する。そして、第1の磁性粉末と第2の磁性粉末とを、重量比率70:30の割合で混合し、平均粒子径が異なる2つの磁性粉末の混合物を得る。
(3) Sample preparation method The core sample uses Fe6.5Si having an average particle size of 123 μm as the first magnetic powder. Next, Fe6.5Si having an average particle diameter of 5.1 μm is prepared as the second magnetic powder. Then, the first magnetic powder and the second magnetic powder are mixed at a weight ratio of 70:30 to obtain a mixture of two magnetic powders having different average particle diameters.
 そして、アルミカップに当該磁性粉末を入れ、当該磁性粉末に対して、樹脂A~Dを添加し、2分間ヘラを用いて手動で混合した。これにより、磁性粉末と樹脂との混合物である複合磁性材料を得た。 Then, the magnetic powder was put into an aluminum cup, and the resins A to D were added to the magnetic powder and mixed manually using a spatula for 2 minutes. This obtained the composite magnetic material which is a mixture of magnetic powder and resin.
 次に、混合工程で得た複合磁性材料を、トロイダル形状の空間を有する樹脂製の容器に充填し、油圧プレス機を用いて容器内の複合磁性材料を600Nのプレス圧(面圧9.4kg/cm2)で10秒間押圧し、トロイダル形状の成型体を作製した。この押圧の間、容器の温度は25℃に保った。 Next, the composite magnetic material obtained in the mixing step is filled into a resin container having a toroidal space, and the composite magnetic material in the container is pressed with a 600 N press pressure (surface pressure 9.4 kg) using a hydraulic press. / Cm 2) for 10 seconds to produce a toroidal shaped molded body. During this pressing, the temperature of the container was kept at 25 ° C.
 そして、当該成型体を大気中にて、85℃で2時間乾燥させ、その後120℃で1時間乾燥させ、さらに150℃で4時間乾燥させて樹脂を硬化し、サンプルとなるトロイダルコアを作製し、樹脂Aを使用したサンプル(比較例12)、樹脂Bを使用したサンプル(実施例17)、樹脂Cを使用したサンプル(実施例18)、樹脂Dを使用したサンプル(実施例19)を得た。その後、得られたトロイダルコアに対し、上記の銅線で1次巻線40ターン、2次巻線3ターンの巻線を施し、元となるリアクトルを作製した。 The molded body is dried in the atmosphere at 85 ° C. for 2 hours, then dried at 120 ° C. for 1 hour, further dried at 150 ° C. for 4 hours to cure the resin, and a toroidal core as a sample is produced. A sample using Resin A (Comparative Example 12), a sample using Resin B (Example 17), a sample using Resin C (Example 18), and a sample using Resin D (Example 19) are obtained. It was. Thereafter, the obtained toroidal core was wound with 40 turns of the primary winding and 3 turns of the secondary winding with the above-described copper wire, and the original reactor was produced.
(4)耐熱試験
 次に実施例17~19及び比較例12のサンプルを用いて高温放置試験を行った。高温放置試験は、実施例17~19及び比較例12のサンプルを155℃の雰囲気下に、24時間~1000時間晒し、その後の鉄損Pcvを測定した。
(4) Heat resistance test Next, the samples of Examples 17 to 19 and Comparative Example 12 were subjected to a high temperature storage test. In the high temperature standing test, the samples of Examples 17 to 19 and Comparative Example 12 were exposed to an atmosphere of 155 ° C. for 24 hours to 1000 hours, and the iron loss Pcv thereafter was measured.
Figure JPOXMLDOC01-appb-T000013
 表13は、実施例17~19及び比較例12のサンプルに対して高温放置試験を実施した際の鉄損(Pcv)の変化率を示す表である。鉄損(Pcv)の変化率とは、試験開始時の鉄損(Pcv0)と所定時間経過後の鉄損(Pcv1)とし、以下の式により算出した。
    (Pcv1-Pcv0)÷Pcv0×100=Pcvの変化率(%)
Figure JPOXMLDOC01-appb-T000013
Table 13 is a table showing the rate of change in iron loss (Pcv) when the high temperature storage test is performed on the samples of Examples 17 to 19 and Comparative Example 12. The rate of change of iron loss (Pcv) was calculated by the following equation, with iron loss (Pcv0) at the start of the test and iron loss (Pcv1) after a predetermined time elapsed.
(Pcv1-Pcv0) ÷ Pcv0 × 100 = Pcv change rate (%)
 図23は、表13に基づいて作成したグラフである。図23の縦軸は、鉄損(Pcv)の変化率を示し、横軸は、高温放置試験における経過時間を示す。 FIG. 23 is a graph created based on Table 13. The vertical axis in FIG. 23 indicates the rate of change of iron loss (Pcv), and the horizontal axis indicates the elapsed time in the high temperature storage test.
 図23に示すように、実施例17~19及び比較例12のサンプルを155℃に晒すと、試験開始から試験開始後24時間までの間に、全てのサンプルにおいて鉄損(Pcv)の変化率が大幅に上昇する。実施例17~19及び比較例12のサンプルにおける、試験開始から24時間経過時における鉄損(Pcv)の変化率は、6.3~9.3%である。これは、樹脂の加熱減量に関わりなく起きる現象であり、樹脂を加熱することで再度樹脂が固まり、その際に発生する応力が(Pcv)に影響を与える。 As shown in FIG. 23, when the samples of Examples 17 to 19 and Comparative Example 12 were exposed to 155 ° C., the change rate of iron loss (Pcv) in all samples from the start of the test to 24 hours after the start of the test. Will rise significantly. In the samples of Examples 17 to 19 and Comparative Example 12, the rate of change in iron loss (Pcv) after 24 hours from the start of the test is 6.3 to 9.3%. This is a phenomenon that occurs regardless of the heat loss of the resin, and the resin is solidified again by heating the resin, and the stress generated at that time affects (Pcv).
 試験開始から試験開始後400時間までの間は、全てのサンプルにおいて鉄損(Pcv)の変化率は大きく変わらない。しかしながら、試験開始後400時間を経過した時点で、比較例12のサンプル(樹脂A)の鉄損(Pcv)の変化率が大きくなる。一方、試験開始後400時間を経過した時点で、実施例17~19のサンプル(樹脂B~D)の鉄損(Pcv)の変化率に大きな変化はない。これは、比較例12のサンプルに含まれる樹脂が、熱により分解または消失し、磁性粉末同士の接触し、渦電流損失Pevが上昇するのに対して、実施例17~19のサンプルに含まれる樹脂では分解や消失が起こらないためである。 During the period from the start of the test to 400 hours after the start of the test, the rate of change in iron loss (Pcv) does not change significantly in all samples. However, when 400 hours have elapsed after the start of the test, the rate of change in iron loss (Pcv) of the sample of Comparative Example 12 (resin A) increases. On the other hand, when 400 hours have elapsed after the start of the test, there is no significant change in the rate of change in iron loss (Pcv) of the samples (resins B to D) of Examples 17 to 19. This is because the resin contained in the sample of Comparative Example 12 decomposes or disappears due to heat, the magnetic powders come into contact with each other, and the eddy current loss Pev increases, whereas it is contained in the samples of Examples 17-19. This is because the resin does not decompose or disappear.
 更に、試験開始後500時間を経過すると実施例19のサンプル(樹脂D)の鉄損(Pcv)の変化率(%)が大きくなる。これは、40時間における加熱減量0.08%の樹脂Bや、40時間における加熱減量0.05%の樹脂と比較して、40時間における加熱減量が若干高い樹脂Dにおいて、熱による樹脂の分解または消失が開始されたことに起因すると考えられる。 Furthermore, the change rate (%) of the iron loss (Pcv) of the sample (resin D) of Example 19 increases after 500 hours have elapsed since the start of the test. This is because the heat loss in Resin B with 0.08% loss on heating in 40 hours or Resin D with 0.05% loss on heating in 40 hours is slightly decomposed by heat. Or it may be due to the start of disappearance.
 一方、155℃で40時間加熱した際の加熱減量が0.08%以下の樹脂B、Cを使用した実施例17及び18のサンプルでは、試験開始から1000時間経過しても、鉄損(Pcv)の変化率(%)の大きな変化は現れない。これは、実施例17及び実施例18のサンプルに含まれる樹脂が、熱により分解または消失せず、磁性粉末同士の絶縁を確保しているため、渦電流損失Pevが上昇を抑制するためである。 On the other hand, in the samples of Examples 17 and 18 using the resins B and C having a heating loss of 0.08% or less when heated at 155 ° C. for 40 hours, the iron loss (Pcv) ) The rate of change (%) does not change significantly. This is because the resin contained in the samples of Example 17 and Example 18 does not decompose or disappear due to heat and secures insulation between the magnetic powders, so that the eddy current loss Pev is suppressed from increasing. .
 以上より、220℃の雰囲気に40時間晒した際の加熱減量が0.1%以下の樹脂を使用することにより、磁性コアを155℃の雰囲気に400時間超晒した場合でも鉄損(Pcv)の変化を抑制することができる。さらに、220℃の雰囲気に40時間晒した際の加熱減量が0.08%以下の樹脂を使用することで、磁性コアを155℃の雰囲気に1000時間超晒した場合でも鉄損(Pcv)の変化を抑制することができる。 As mentioned above, even when the magnetic core is exposed to an atmosphere at 155 ° C. for more than 400 hours by using a resin having a weight loss of 0.1% or less when exposed to an atmosphere at 220 ° C. for 40 hours, iron loss (Pcv) Can be suppressed. Furthermore, by using a resin having a loss on heating of 0.08% or less when exposed to an atmosphere of 220 ° C. for 40 hours, even when the magnetic core is exposed to an atmosphere of 155 ° C. for more than 1000 hours, the iron loss (Pcv) Change can be suppressed.
(詳細な鉄損Pcvの変化について)
 鉄損Pcvは、ヒステリシス損失Phvと渦電流損失Pevとの合計の値である。表12及び図23における高温放置試験において、鉄損Pcvが上昇する原因として、渦電流損失Pevを挙げた。以下では、樹脂Aを使用した比較例12及び実施例18のサンプルを例にとり、Pcvの変化率(%)の上昇と、ヒステリシス損失Phv及び渦電流損失Pevの変化量について検証する。
(Detailed changes in iron loss Pcv)
The iron loss Pcv is a total value of the hysteresis loss Phv and the eddy current loss Pev. In the high temperature storage test in Table 12 and FIG. 23, eddy current loss Pev was cited as the cause of the increase in iron loss Pcv. Below, taking the samples of Comparative Example 12 and Example 18 using Resin A as examples, the increase in the change rate (%) of Pcv and the amount of change in hysteresis loss Phv and eddy current loss Pev will be verified.
 表14は、樹脂Aを使用した比較例12のサンプル、及び樹脂Cを理由した実施例18のサンプルにおける試験開始から試験開始後1000時間までの鉄損Pcv、ヒステリシス損失Phv、及び渦電流損失Pevの値を示す表である。
Figure JPOXMLDOC01-appb-T000014
 表14に示すように比較例12のサンプルでは、試験開始から試験開始後400時間経過後の渦電流損失Pevが6.2であるのに対して、試験開始から試験開始後1000時間経過後の渦電流損失Pevが9.0となる。この時の渦電流損失Pevの変化率は(9.0-6.2)/6.2×100より45%である。一方、試験開始から試験開始後400時間経過後のヒステリシス損失Phvが21.3であるのに対して、試験開始から試験開始後1000時間経過後のヒステリシス損失Phvが23.1となる。この時のヒステリシス損失Phv変化率は(23.1-21.3)/21.3×100より約8.5%であることがわかる。すなわち、表14及び図23において、Pcvの変化率が大きく変化している場合には、渦電流損失Pevが大きく変化していることがわかる。
Table 14 shows the iron loss Pcv, hysteresis loss Phv, and eddy current loss Pev from the start of the test to 1000 hours after the start of the test in the sample of Comparative Example 12 using Resin A and the sample of Example 18 for Resin C. It is a table | surface which shows the value of.
Figure JPOXMLDOC01-appb-T000014
As shown in Table 14, in the sample of Comparative Example 12, the eddy current loss Pev after the lapse of 400 hours from the start of the test is 6.2, whereas the eddy current loss Pev after the start of the test is 1000 hours after the start of the test. The eddy current loss Pev is 9.0. The change rate of the eddy current loss Pev at this time is 45% from (9.0-6.2) /6.2×100. On the other hand, the hysteresis loss Phv after the lapse of 400 hours from the start of the test is 21.3, whereas the hysteresis loss Phv after the lapse of 1000 hours from the start of the test is 23.1. It can be seen that the change rate of hysteresis loss Phv at this time is about 8.5% from (23.1-21.3) /21.3×100. That is, in Table 14 and FIG. 23, it can be seen that when the rate of change of Pcv changes greatly, the eddy current loss Pev changes greatly.
 一方、実施例18のサンプルでは、試験開始から試験開始後400時間経過後の渦電流損失Pevが6.0であるのに対して、試験開始から試験開始後1000時間経過後の渦電流損失Pevが6.1となる。渦電流損失Pevの変化率は(6.1-6.0)/6.0×100より1.7%である。一方、試験開始から試験開始後400時間経過後のヒステリシス損失Phvが20.1であるのに対して、試験開始から試験開始後1000時間経過後のヒステリシス損失Phvが20.2となる。ヒステリシス損失Phvの変化率は(20.2-20.1)/20.1×100より約0.5%である。表14において、実施例18のサンプルでは、渦電流損失Pev、及びヒステリシス損失Phv共に大きく変化していない。故に、表14及び図23においても鉄損Pcvの変化率(%)も少ないことがわかる。 On the other hand, in the sample of Example 18, the eddy current loss Pev after the lapse of 400 hours from the start of the test is 6.0, whereas the eddy current loss Pev after the lapse of 1000 hours from the start of the test. Becomes 6.1. The change rate of the eddy current loss Pev is 1.7% from (6.1-6.0) /6.0×100. On the other hand, the hysteresis loss Phv after the lapse of 400 hours from the start of the test is 20.1, whereas the hysteresis loss Phv after the lapse of 1000 hours from the start of the test is 20.2. The change rate of the hysteresis loss Phv is about 0.5% from (20.2-20.1) /20.1×100. In Table 14, in the sample of Example 18, both the eddy current loss Pev and the hysteresis loss Phv are not significantly changed. Therefore, it can be seen that the change rate (%) of the iron loss Pcv is also small in Table 14 and FIG.
(結論)
 以上より、220℃で40時間加熱した際の加熱減量が0.1%以下である樹脂を含む軟磁性複合材料より作成した磁性コアは、155℃で長時間使用しても、鉄損Pcvの変化率(%)が小さく抑えられることがわかる。これは、220℃で40時間加熱した際の加熱減量が小さい樹脂は、高温の雰囲気下に長時間晒しても樹脂が分解または消失しないため、磁性粉末同士の接触を抑制することができるためであり、このことにより低渦電流損失を実現することが可能となる。
(Conclusion)
From the above, a magnetic core made from a soft magnetic composite material containing a resin having a loss on heating of 0.1% or less when heated at 220 ° C. for 40 hours has an iron loss Pcv even when used at 155 ° C. for a long time. It can be seen that the rate of change (%) can be kept small. This is because a resin with a small loss on heating when heated at 220 ° C. for 40 hours does not decompose or disappear even when exposed to a high temperature atmosphere for a long time, so that contact between magnetic powders can be suppressed. Yes, this makes it possible to realize low eddy current loss.
[5.他の実施形態]
 本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
[5. Other Embodiments]
The present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 例えば、実施形態IIでは、リアクトルにコイルを設ける方法として、成型工程においてコイルを容器に入れ、複合磁性材料に埋設する方法を説明したが、予め複合磁性材料からなる所定形状の成型体を成形しておき、当該成型体にコイルを構成する導線を巻回する巻回工程を備える方法を採用しても良い。 For example, in Embodiment II, as a method of providing a coil in a reactor, a method of placing a coil in a container and embedding it in a composite magnetic material in a molding process has been described. In addition, a method including a winding step of winding a conductive wire constituting the coil around the molded body may be adopted.
 また、実施形態IIIでは、リアクトルにコイルを設ける方法として、成型工程においてコイルを容器に入れ、複合磁性材料に埋設する方法を説明したが、予め複合磁性材料からなる所定形状の成型体を成型しておき、当該成型体にコイルを構成する導線を巻回する巻回工程を備える方法を採用しても良い。 In Embodiment III, as a method of providing a coil in a reactor, a method of placing a coil in a container and embedding it in a composite magnetic material in the molding process has been described. However, a molded body of a predetermined shape made of a composite magnetic material is molded in advance. In addition, a method including a winding step of winding a conductive wire constituting the coil around the molded body may be adopted.
 また、磁性コアは、本実施形態IIIでは軟磁性粉末と樹脂とを予め混合した軟磁性複合材料を容器に流し込むことにより作成したが、以下の方法により作成してもよい。容器内に第1粉末と第2粉末との混合粉末を充填した後、容器全体を振動させることで、容器内の混合粉末の密度を高める。その後、振動により密度を高めた混合粉末に対して樹脂を浸透させ、樹脂の種類による硬化法により硬化させる。振動の方法としては、容器全体をモータやカムなどを利用して上下または/及び前後左右に振動させたり、タッピングしたり、容器をハンマー状の部材で細かく叩く方法でも良い。容器全体を超音波振子で振動させても良い。 In addition, in the present embodiment III, the magnetic core is formed by pouring a soft magnetic composite material in which soft magnetic powder and resin are mixed in advance into a container, but may be formed by the following method. After the mixed powder of the first powder and the second powder is filled in the container, the density of the mixed powder in the container is increased by vibrating the entire container. Thereafter, the resin is infiltrated into the mixed powder whose density is increased by vibration, and is cured by a curing method depending on the type of resin. As a vibration method, the whole container may be vibrated up and down or / and back and forth, and left and right using a motor, a cam, or the like, or a container may be tapped with a hammer-like member. The entire container may be vibrated with an ultrasonic pendulum.
 さらに、本実施形態IIIでは、成型工程と硬化工程との間に、容易に入れられた複合磁性材料を押圧部材で押圧する加圧工程を含めたが、加圧工程を省略しても良い。使用する磁性粉末や樹脂の種類や、成形工程の方法によっては、加圧工程を省略しても優れた磁気特性の磁性コアを成型することが可能となる。この場合には、工程数やコストの減少を目的として加圧工程を省略することが可能となる。 Furthermore, in the present embodiment III, a pressing step of pressing the easily put composite magnetic material with a pressing member is included between the molding step and the curing step, but the pressing step may be omitted. Depending on the type of magnetic powder and resin used and the method of the molding process, it is possible to mold a magnetic core having excellent magnetic properties even if the pressing process is omitted. In this case, the pressurization step can be omitted for the purpose of reducing the number of steps and cost.
1     第1の磁性粉末
2     第2の磁性粉末
3     樹脂
4     空隙
1 1st magnetic powder 2 2nd magnetic powder 3 Resin 4 Void

Claims (41)

  1.  磁性粉末及び樹脂を含むコアと、前記コアに装着されたコイルとを備えたリアクトルの製造方法であって、
     前記磁性粉末に対して3~5wt%の樹脂を混合する混合工程と、
     前記混合工程で得た混合物と前記コイルとを所定の容器に入れて成型する成型工程と、
     前記成型工程時に、前記混合物を押圧する加圧工程と、
     前記成型工程で得た成型体中の樹脂を硬化させる硬化工程と、
     を備えること、
     を特徴とするリアクトルの製造方法。
    A reactor manufacturing method comprising a core including magnetic powder and resin, and a coil mounted on the core,
    A mixing step of mixing 3 to 5 wt% resin with respect to the magnetic powder;
    A molding step of molding the mixture obtained in the mixing step and the coil in a predetermined container;
    A pressing step of pressing the mixture during the molding step;
    A curing step of curing the resin in the molded body obtained in the molding step;
    Providing
    A method for manufacturing a reactor, characterized in that
  2.  前記加圧工程は、前記混合物を押圧する圧力が、6.3kg/cm以上であること、
     を特徴とする請求項1に記載のリアクトルの製造方法。
    In the pressing step, the pressure for pressing the mixture is 6.3 kg / cm 2 or more,
    The manufacturing method of the reactor of Claim 1 characterized by these.
  3.  前記加圧工程は、前記混合物を押圧する部材又は前記容器を常温よりも高い温度にして行うこと、
     を特徴とする請求項1又は2に記載のリアクトルの製造方法。
    The pressurizing step is performed by setting the member or the container for pressing the mixture to a temperature higher than room temperature;
    The manufacturing method of the reactor of Claim 1 or 2 characterized by these.
  4.  前記加圧工程は、常温よりも高い温度に温めた前記混合物を前記容器に入れて行うこと、
     を特徴とする請求項1~3の何れかに記載のリアクトルの製造方法。
    The pressurizing step is performed by putting the mixture heated to a temperature higher than room temperature into the container,
    The method for producing a reactor according to any one of claims 1 to 3, wherein:
  5.  前記磁性粉末は、平均粒子径の異なる2種類の磁性粉末を混合してなること、
     を特徴とする請求項1~4の何れかに記載のリアクトルの製造方法。
    The magnetic powder is formed by mixing two kinds of magnetic powders having different average particle diameters,
    The method for producing a reactor according to any one of claims 1 to 4, wherein:
  6.  前記磁性粉末は、第1の磁性粉末と、前記第1の磁性粉末より平均粒子径の小さい第2の磁性粉末とが混合されてなり、
     前記磁性粉末における前記第1の磁性粉末の添加量が60~80wt%、前記第2の磁性粉末が20~40wt%であること、
     を特徴とする請求項1~5の何れかに記載のリアクトルの製造方法。
    The magnetic powder is a mixture of a first magnetic powder and a second magnetic powder having an average particle size smaller than that of the first magnetic powder,
    The addition amount of the first magnetic powder in the magnetic powder is 60 to 80 wt%, and the second magnetic powder is 20 to 40 wt%.
    The method for producing a reactor according to any one of claims 1 to 5, wherein:
  7.  前記第1の磁性粉末は、平均粒子径が100μm~200μmであり、
     前記第2の磁性粉末は、平均粒子径が3μm~10μmであること、
     を特徴とする請求項6に記載のリアクトルの製造方法。
    The first magnetic powder has an average particle size of 100 μm to 200 μm,
    The second magnetic powder has an average particle size of 3 μm to 10 μm;
    The manufacturing method of the reactor of Claim 6 characterized by these.
  8.  前記樹脂は、エポキシ樹脂、シリコーン樹脂、又はアクリル樹脂であること、
     を特徴とする請求項1~7の何れかに記載のリアクトルの製造方法。
    The resin is an epoxy resin, a silicone resin, or an acrylic resin;
    The method for producing a reactor according to any one of claims 1 to 7, wherein:
  9.  磁性粉末及び樹脂を含むコアの製造方法であって、
     前記磁性粉末に対して3~5wt%の樹脂を混合する混合工程と、
     前記混合工程で得た混合物を所定の容器に入れて成型する成型工程と、
     前記成型工程時に、前記混合物を押圧する加圧工程と、
     前記成型工程で得た成型体中の前記樹脂を硬化させる硬化工程と、
     を備えること、
     を特徴とするコアの製造方法。
    A method for producing a core comprising magnetic powder and resin,
    A mixing step of mixing 3 to 5 wt% resin with respect to the magnetic powder;
    A molding step of molding the mixture obtained in the mixing step into a predetermined container; and
    A pressing step of pressing the mixture during the molding step;
    A curing step of curing the resin in the molded body obtained in the molding step;
    Providing
    A method for producing a core characterized by the above.
  10.  前記加圧工程は、前記混合物を押圧する圧力が、6.3kg/cm以上であること、
     を特徴とする請求項9に記載のコアの製造方法。
    In the pressing step, the pressure for pressing the mixture is 6.3 kg / cm 2 or more,
    The core manufacturing method according to claim 9.
  11.  前記加圧工程は、前記混合物を押圧する部材又は前記容器を常温よりも高い温度にして行うこと、
     を特徴とする請求項9又は10に記載のコアの製造方法。
    The pressurizing step is performed by setting the member or the container for pressing the mixture to a temperature higher than room temperature;
    The method for producing a core according to claim 9 or 10, wherein:
  12.  前記加圧工程は、常温よりも高い温度に温めた前記混合物を前記容器に入れて行うこと、
     を特徴とする請求項9~11の何れかに記載のコアの製造方法。
    The pressurizing step is performed by putting the mixture heated to a temperature higher than room temperature into the container,
    The method for producing a core according to any one of claims 9 to 11, wherein:
  13.  前記磁性粉末は、平均粒子径の異なる2種類の磁性粉末を混合してなること、
     を特徴とする請求項9~12の何れかに記載のコアの製造方法。
    The magnetic powder is formed by mixing two kinds of magnetic powders having different average particle diameters,
    The method for producing a core according to any one of claims 9 to 12, wherein:
  14.  前記磁性粉末は、第1の磁性粉末と、前記第1の磁性粉末より平均粒子径の小さい第2の磁性粉末とが混合されてなり、
     前記磁性粉末における前記第1の磁性粉末の添加量が60~80wt%、前記第2の磁性粉末が20~40wt%であること、
     を特徴とする請求項9~13の何れかに記載のコアの製造方法。
    The magnetic powder is a mixture of a first magnetic powder and a second magnetic powder having an average particle size smaller than that of the first magnetic powder,
    The addition amount of the first magnetic powder in the magnetic powder is 60 to 80 wt%, and the second magnetic powder is 20 to 40 wt%.
    The method for producing a core according to any one of claims 9 to 13, wherein:
  15.  前記第1の磁性粉末は、平均粒子径が100μm~200μmであり、
     前記第2の磁性粉末は、平均粒子径が3μm~10μmであること、
     を特徴とする請求項14に記載のコアの製造方法。
    The first magnetic powder has an average particle size of 100 μm to 200 μm,
    The second magnetic powder has an average particle size of 3 μm to 10 μm;
    The method of manufacturing a core according to claim 14.
  16.  前記樹脂は、エポキシ樹脂、シリコーン樹脂、又はアクリル樹脂であること、
     を特徴とする請求項9~15の何れかに記載のコアの製造方法。
    The resin is an epoxy resin, a silicone resin, or an acrylic resin;
    The method for producing a core according to any one of claims 9 to 15, wherein:
  17.  磁性粉末と樹脂とからなるコアであって、
     前記磁性粉末は、第1の磁性粉末と、前記第1の磁性粉末より平均粒子径の小さい第2の磁性粉末とを有し、
     前記磁性粉末における前記第1の磁性粉末の添加量が60~80wt%、前記第2の磁性粉末が20~40wt%であり、
     前記第1の磁性粉末は、平均粒子径が100μm~200μmであり、
     前記第2の磁性粉末は、平均粒子径が3μm~10μmであり、
     前記磁性粉末に対する前記樹脂の含有量が3~5wt%であり、
     前記磁性粉末の真密度に対する前記コアの見かけ密度の割合が、76.47%超であること、
     を特徴とするコア。
    A core made of magnetic powder and resin,
    The magnetic powder has a first magnetic powder and a second magnetic powder having an average particle size smaller than that of the first magnetic powder,
    The addition amount of the first magnetic powder in the magnetic powder is 60 to 80 wt%, the second magnetic powder is 20 to 40 wt%,
    The first magnetic powder has an average particle size of 100 μm to 200 μm,
    The second magnetic powder has an average particle size of 3 μm to 10 μm,
    The content of the resin with respect to the magnetic powder is 3 to 5 wt%,
    The ratio of the apparent density of the core to the true density of the magnetic powder is more than 76.47%;
    Core characterized by
  18.  前記磁性粉末の真密度に対する前記コアの見かけ密度の割合が、77.5%以上であること、
     を特徴とする請求項17に記載のコア。
    The ratio of the apparent density of the core to the true density of the magnetic powder is 77.5% or more,
    The core according to claim 17.
  19.  前記樹脂は、エポキシ樹脂、シリコーン樹脂、又はアクリル樹脂であること、
     を特徴とする請求項17又は18に記載のコア。
    The resin is an epoxy resin, a silicone resin, or an acrylic resin;
    The core according to claim 17 or 18, characterized by the above.
  20.  請求項17~19の何れかに記載のコアと、コイルとを備えたことを特徴とするリアクトル。 A reactor comprising the core according to any one of claims 17 to 19 and a coil.
  21.  磁性粉末及び樹脂を含むコアと、前記コアに装着されたコイルとを備えたリアクトルの製造方法であって、
     前記磁性粉末に対して3~5wt%の樹脂を混合する混合工程と、
     前記混合工程で得た混合物と前記コイルとを所定の容器に入れて成型する成型工程と、
     前記成型工程で得た成型体中の前記樹脂を硬化させる硬化工程と、
     前記硬化工程時に前記成型体の前記コイルを通電し、前記成型体に磁界を印加する磁界印加工程と、
     を備えること、
     を特徴とするリアクトルの製造方法。
    A reactor manufacturing method comprising a core including magnetic powder and resin, and a coil mounted on the core,
    A mixing step of mixing 3 to 5 wt% resin with respect to the magnetic powder;
    A molding step of molding the mixture obtained in the mixing step and the coil in a predetermined container;
    A curing step of curing the resin in the molded body obtained in the molding step;
    A magnetic field applying step of energizing the coil of the molded body during the curing step and applying a magnetic field to the molded body;
    Providing
    A method for manufacturing a reactor, characterized in that
  22.  磁性粉末及び樹脂を含むコアと、前記コアに装着されたコイルとを備えたリアクトルの製造方法であって、
     前記磁性粉末に対して3~5wt%の樹脂を混合する混合工程と、
     前記混合工程で得た混合物を所定の容器に入れて成型する成型工程と、
     前記成型工程で得た成型体に前記コイルを構成する導線を巻回する巻回工程と、
     前記導線が巻回された前記成型体中の前記樹脂を硬化させる硬化工程と、
     前記硬化工程時に前記導線に通電し、前記成型体に磁界を印加する磁界印加工程と、
     を備えること、
     を特徴とするリアクトルの製造方法。
    A reactor manufacturing method comprising a core including magnetic powder and resin, and a coil mounted on the core,
    A mixing step of mixing 3 to 5 wt% resin with respect to the magnetic powder;
    A molding step of molding the mixture obtained in the mixing step into a predetermined container; and
    A winding step of winding a conductive wire constituting the coil around the molded body obtained in the molding step;
    A curing step of curing the resin in the molded body around which the conductive wire is wound;
    A magnetic field application step of energizing the conducting wire during the curing step and applying a magnetic field to the molded body;
    Providing
    A method for manufacturing a reactor, characterized in that
  23.  前記磁界印加工程は、前記磁界が2kA/m以上であること、
     を特徴とする請求項21又は22に記載のリアクトルの製造方法。
    In the magnetic field application step, the magnetic field is 2 kA / m or more,
    The method for manufacturing a reactor according to claim 21 or 22, wherein:
  24.  前記成型工程時に、前記混合物を押圧する加圧工程を備えること、
     を特徴とする請求項21~23の何れかに記載のリアクトルの製造方法。
    Including a pressing step of pressing the mixture during the molding step;
    The method for producing a reactor according to any one of claims 21 to 23.
  25.  前記加圧工程は、前記混合物を押圧する部材又は前記容器を常温よりも高い温度に保って行うこと、
     を特徴とする請求項24に記載のリアクトルの製造方法。
    The pressurizing step is performed by maintaining the member or the container for pressing the mixture at a temperature higher than room temperature;
    The method for manufacturing a reactor according to claim 24.
  26.  前記加圧工程は、常温よりも高い温度に温めた前記混合物を前記容器に入れて行うこと、
     を特徴とする請求項24又は25に記載のリアクトルの製造方法。
    The pressurizing step is performed by putting the mixture heated to a temperature higher than room temperature into the container,
    The method for manufacturing a reactor according to claim 24 or 25.
  27.  前記磁性粉末は、平均粒子径の異なる2種類の磁性粉末を混合してなること、
     を特徴とする請求項21~26の何れかに記載のリアクトルの製造方法。
    The magnetic powder is formed by mixing two kinds of magnetic powders having different average particle diameters,
    The method for producing a reactor according to any one of claims 21 to 26.
  28.  前記磁性粉末は、第1の磁性粉末と、前記第1の磁性粉末より平均粒子径の小さい第2の磁性粉末とが混合されてなり、
     前記磁性粉末における前記第1の磁性粉末の添加量が60~80wt%、前記第2の磁性粉末が20~40wt%であること、
     を特徴とする請求項21~27の何れかに記載のリアクトルの製造方法。
    The magnetic powder is a mixture of a first magnetic powder and a second magnetic powder having an average particle size smaller than that of the first magnetic powder,
    The addition amount of the first magnetic powder in the magnetic powder is 60 to 80 wt%, and the second magnetic powder is 20 to 40 wt%.
    The method for producing a reactor according to any one of claims 21 to 27.
  29.  前記第1の磁性粉末は、平均粒子径が100μm~200μmであり、
     前記第2の磁性粉末は、平均粒子径が3μm~10μmであること、
     を特徴とする請求項28に記載のリアクトルの製造方法。
    The first magnetic powder has an average particle size of 100 μm to 200 μm,
    The second magnetic powder has an average particle size of 3 μm to 10 μm;
    The method for manufacturing a reactor according to claim 28.
  30.  前記樹脂は、エポキシ樹脂、シリコーン樹脂、又はアクリル樹脂であること、
     を特徴とする請求項21~29の何れかに記載のリアクトルの製造方法。
    The resin is an epoxy resin, a silicone resin, or an acrylic resin;
    The method for producing a reactor according to any one of claims 21 to 29.
  31.  磁性粉末と樹脂とを混合してなる軟磁性複合材料であって、
     当該樹脂を220℃の雰囲気に40時間晒した際の減少率が0.1%以下であることを特徴とする軟磁性複合材料。
    A soft magnetic composite material obtained by mixing magnetic powder and resin,
    A soft magnetic composite material having a reduction rate of 0.1% or less when the resin is exposed to an atmosphere of 220 ° C. for 40 hours.
  32.  前記減少率が、0.08%以下であることを特徴とする請求項31に記載の軟磁性複合材料。 The soft magnetic composite material according to claim 31, wherein the reduction rate is 0.08% or less.
  33.  前記減少率は、前記樹脂の重量の減少率であることを特徴とする請求項31又は32に記載の軟磁性複合材料。 The soft magnetic composite material according to claim 31 or 32, wherein the decreasing rate is a decreasing rate of the weight of the resin.
  34.  前記磁性粉末は、
     所定の平均粒子径の第1の磁性粉末と、
     平均粒子径が前記第1の磁性粉末より小さい第2の磁性粉末と、
     を含むことを特徴とする請求項31~33の何れかに記載の軟磁性複合材料。
    The magnetic powder is
    A first magnetic powder having a predetermined average particle size;
    A second magnetic powder having an average particle size smaller than the first magnetic powder;
    The soft magnetic composite material according to any one of claims 31 to 33, comprising:
  35.  前記第1の磁性粉末の平均粒子径は100~200μmであり、
     前記第2の磁性粉末の平均粒子径は5~10μmであることを特徴とする請求項34に記載の軟磁性複合材料。
    The average particle diameter of the first magnetic powder is 100 to 200 μm,
    The soft magnetic composite material according to claim 34, wherein the second magnetic powder has an average particle size of 5 to 10 袖 m.
  36.  前記磁性粉末における前記第1の磁性粉末の添加量が60~80wt%、前記第2の磁性粉末が20~40wt%であることを特徴とする請求項34又は35に記載の軟磁性複合材料。 36. The soft magnetic composite material according to claim 34 or 35, wherein the addition amount of the first magnetic powder in the magnetic powder is 60 to 80 wt%, and the second magnetic powder is 20 to 40 wt%.
  37.  前記樹脂は、熱硬化性樹脂であることを特徴とする請求項31~36の何れかに記載の軟磁性複合材料。 The soft magnetic composite material according to any one of claims 31 to 36, wherein the resin is a thermosetting resin.
  38.  前記樹脂は、エポキシ樹脂であることを特徴とする請求項31~37の何れかに記載の軟磁性複合材料。 The soft magnetic composite material according to any one of claims 31 to 37, wherein the resin is an epoxy resin.
  39.  前記請求項31~38の何れかに記載の軟磁性複合材料によって構成された磁性コア。 A magnetic core made of the soft magnetic composite material according to any one of claims 31 to 38.
  40.  前記磁性体コアを、155℃の雰囲気に500時間以上晒した際の鉄損の変化率が10%以下であることを特徴とする請求項39に記載の磁性コア。 40. The magnetic core according to claim 39, wherein the rate of change in iron loss when the magnetic core is exposed to an atmosphere at 155 [deg.] C. for 500 hours or more is 10% or less.
  41.  前記請求項39又は40に記載の磁性コアと、コイルを備えるリアクトル。 A reactor comprising the magnetic core according to claim 39 or 40 and a coil.
PCT/JP2017/044027 2016-12-08 2017-12-07 Method for producing reactor, method for producing core, core, reactor, soft magnetic composite material, magnetic core using soft magnetic composite material, and reactor using soft magnetic composite material WO2018105697A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780075640.0A CN110062948B (en) 2016-12-08 2017-12-07 Method for manufacturing reactor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-238715 2016-12-08
JP2016238715A JP6840523B2 (en) 2016-12-08 2016-12-08 Reactor manufacturing method, core manufacturing method
JP2016238718A JP6817802B2 (en) 2016-12-08 2016-12-08 Reactor manufacturing method
JP2016-238718 2016-12-08
JP2017-046798 2017-03-10
JP2017046798A JP6506788B2 (en) 2017-03-10 2017-03-10 Magnetic core using soft magnetic composite material and reactor using magnetic core

Publications (1)

Publication Number Publication Date
WO2018105697A1 true WO2018105697A1 (en) 2018-06-14

Family

ID=62491215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044027 WO2018105697A1 (en) 2016-12-08 2017-12-07 Method for producing reactor, method for producing core, core, reactor, soft magnetic composite material, magnetic core using soft magnetic composite material, and reactor using soft magnetic composite material

Country Status (2)

Country Link
CN (2) CN112992453A (en)
WO (1) WO2018105697A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6858158B2 (en) * 2018-06-13 2021-04-14 株式会社タムラ製作所 Core, reactor, core manufacturing method and reactor manufacturing method
CN111151740B (en) * 2020-01-21 2022-03-18 柯昕 Manufacturing method of integrally formed inductor
CN111548759A (en) * 2020-05-18 2020-08-18 文登卡尔马斯特电子有限公司 Thermo-reversible adhesive material
CN112397295B (en) * 2020-09-25 2023-03-24 宁波中科毕普拉斯新材料科技有限公司 Manufacturing method of integrally formed inductor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739516A (en) * 1980-08-22 1982-03-04 Tohoku Metal Ind Ltd Manufacture of dust magnetic core and dust magnetic core coil
JPS6315061B2 (en) * 1982-04-23 1988-04-02 Nippon Steel Corp
JPH04165605A (en) * 1990-10-30 1992-06-11 Tokin Corp Inductor and manufacture thereof
JP2008243967A (en) * 2007-03-26 2008-10-09 Tdk Corp Powder magnetic core
JP2010518182A (en) * 2007-02-09 2010-05-27 株式会社日本触媒 Silane compound, production method thereof, and resin composition containing silane compound
JP2011023673A (en) * 2009-07-21 2011-02-03 Nec Tokin Corp Amorphous soft magnetic powder, toroidal core, inductor and choke coil
WO2012147644A1 (en) * 2011-04-28 2012-11-01 住友電気工業株式会社 Reactor, composite material, reactor core, converter, and power conversion device
JP2016039330A (en) * 2014-08-08 2016-03-22 株式会社タムラ製作所 Soft magnetic composite material, magnetic core arranged by use thereof, reactor, and manufacturing method of reactor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627043A (en) * 2007-02-09 2010-01-13 株式会社日本触媒 Silane compound, production method thereof, and resin composition containing silane compound
JP4883706B2 (en) * 2007-08-10 2012-02-22 Necトーキン株式会社 Wire ring parts
JP2010034102A (en) * 2008-07-25 2010-02-12 Toko Inc Composite magnetic clay material, and magnetic core and magnetic element using the same
CN101593620A (en) * 2009-03-23 2009-12-02 佛山市南海展晴玩具有限公司 A kind of method for packing of electronic transformer cores and encapsulation metal molding die
JP6159512B2 (en) * 2012-07-04 2017-07-05 太陽誘電株式会社 Inductor
JP6532198B2 (en) * 2014-08-08 2019-06-19 株式会社タムラ製作所 Method of manufacturing magnetic core using soft magnetic composite material, method of manufacturing reactor
CN104300767A (en) * 2014-09-05 2015-01-21 胜美达电机(香港)有限公司 Power module and manufacturing method thereof
JP6730785B2 (en) * 2015-05-26 2020-07-29 株式会社タムラ製作所 Metal composite core manufacturing method and reactor manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739516A (en) * 1980-08-22 1982-03-04 Tohoku Metal Ind Ltd Manufacture of dust magnetic core and dust magnetic core coil
JPS6315061B2 (en) * 1982-04-23 1988-04-02 Nippon Steel Corp
JPH04165605A (en) * 1990-10-30 1992-06-11 Tokin Corp Inductor and manufacture thereof
JP2010518182A (en) * 2007-02-09 2010-05-27 株式会社日本触媒 Silane compound, production method thereof, and resin composition containing silane compound
JP2008243967A (en) * 2007-03-26 2008-10-09 Tdk Corp Powder magnetic core
JP2011023673A (en) * 2009-07-21 2011-02-03 Nec Tokin Corp Amorphous soft magnetic powder, toroidal core, inductor and choke coil
WO2012147644A1 (en) * 2011-04-28 2012-11-01 住友電気工業株式会社 Reactor, composite material, reactor core, converter, and power conversion device
JP2016039330A (en) * 2014-08-08 2016-03-22 株式会社タムラ製作所 Soft magnetic composite material, magnetic core arranged by use thereof, reactor, and manufacturing method of reactor

Also Published As

Publication number Publication date
CN110062948A (en) 2019-07-26
CN110062948B (en) 2021-11-09
CN112992453A (en) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2018105697A1 (en) Method for producing reactor, method for producing core, core, reactor, soft magnetic composite material, magnetic core using soft magnetic composite material, and reactor using soft magnetic composite material
JP6229499B2 (en) Dust core, coil component, and method for manufacturing dust core
JP4924811B2 (en) Method for producing soft magnetic composite material
JP4723442B2 (en) Powder cores and iron-based powders for dust cores
JP6858158B2 (en) Core, reactor, core manufacturing method and reactor manufacturing method
JP6730785B2 (en) Metal composite core manufacturing method and reactor manufacturing method
JP5110624B2 (en) Wire ring parts
JP2022028777A (en) Alloy powder composition, molded body and its manufacturing method, as well as inductor
JP2007200962A (en) Composite material, method for manufacturing the same, magnetic core, and coil component
JP6615850B2 (en) Composite magnetic material and core manufacturing method
JP6545733B2 (en) Composite magnetic powder material, metal composite core and method of manufacturing metal composite core
JP5660164B2 (en) Method for producing soft magnetic composite material
JP6545732B2 (en) Composite magnetic powder material, metal composite core and method of manufacturing metal composite core
JP6545734B2 (en) Composite magnetic powder material, metal composite core and method of manufacturing metal composite core
JP7066586B2 (en) Manufacturing method of composite magnetic material, metal composite core, reactor, and metal composite core
JP2011049586A (en) Reactor
JP5945994B2 (en) Soft magnetic composite material and reactor
JP6817802B2 (en) Reactor manufacturing method
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP6506788B2 (en) Magnetic core using soft magnetic composite material and reactor using magnetic core
JP6840523B2 (en) Reactor manufacturing method, core manufacturing method
JP2018142642A (en) Powder magnetic core
JP2012199580A (en) Method of manufacturing soft magnetic composite material
JP6961359B2 (en) Powder magnetic core
JP7138736B2 (en) CORE, REACTOR, CORE MANUFACTURING METHOD AND REACTOR MANUFACTURING METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17879541

Country of ref document: EP

Kind code of ref document: A1