JPS6315061B2 - - Google Patents

Info

Publication number
JPS6315061B2
JPS6315061B2 JP6709882A JP6709882A JPS6315061B2 JP S6315061 B2 JPS6315061 B2 JP S6315061B2 JP 6709882 A JP6709882 A JP 6709882A JP 6709882 A JP6709882 A JP 6709882A JP S6315061 B2 JPS6315061 B2 JP S6315061B2
Authority
JP
Japan
Prior art keywords
slab
cooling
limit position
casting
explosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6709882A
Other languages
Japanese (ja)
Other versions
JPS58184049A (en
Inventor
Wataru Oohashi
Masami Tenma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6709882A priority Critical patent/JPS58184049A/en
Publication of JPS58184049A publication Critical patent/JPS58184049A/en
Publication of JPS6315061B2 publication Critical patent/JPS6315061B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling

Description

【発明の詳細な説明】 本発明は湾曲型連続鋳造設備における鋼の連続
鋳造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting method for steel in curved continuous casting equipment.

周知の如く連続鋳造においては一般にタンデイ
ツシユに貯留された溶鋼を鋳型内に注入し、所定
の断面形状を有した鋳片とし、それを下方へ連続
的に引抜き、前記鋳片の芯部まで凝固せしめた
後、設定長さに切断することによつて鋼の製造が
行われる。前記鋳片は連続鋳造設備を引抜かれる
間に表面より順次凝固し、連続鋳造設備(以下、
連鋳機と云う)の機端までにその芯部まで完全に
凝固するよう機長が設定され、かつ、引抜速度お
よび冷却強度等が制御されている。
As is well known, in continuous casting, molten steel stored in a tundish is generally injected into a mold to form a slab with a predetermined cross-sectional shape, which is then continuously pulled downward and solidified to the core of the slab. After that, the steel is manufactured by cutting it to a predetermined length. While the slab is being pulled out of the continuous casting equipment, it solidifies sequentially from the surface, and is transferred to the continuous casting equipment (hereinafter referred to as
The machine length is set so that the core is completely solidified by the end of the continuous casting machine, and the drawing speed, cooling intensity, etc. are controlled.

ところで前記鋳型内への溶鋼の注入、即ち鋳造
を終了するにあたつては、鋳片のトツプ部(本発
明において鋳片トツプ部とは、鋳造終了時点にお
ける鋳型から引抜かれる鋳片の尻端部を云う)を
確実に凝固させて引抜く必要がある。つまり前記
鋳片トツプ部の凝固が不充分な状態で鋳片の引抜
きを行つた場合、鋳片表面に生成された凝固殻が
連鋳機内で破断し溶鋼の流出及びブリードを生
じ、設備損傷や水蒸気爆発を生じる事態が発生し
設備上および安全上に大きな問題となる。
By the way, when pouring molten steel into the mold, that is, when finishing the casting, the top part of the slab (in the present invention, the top part of the slab refers to the bottom end of the slab that is pulled out from the mold at the end of casting). It is necessary to reliably solidify the material before pulling it out. In other words, if the slab is pulled out when the top of the slab is insufficiently solidified, the solidified shell formed on the slab surface will break in the continuous caster, causing molten steel to flow out and bleed, resulting in equipment damage and damage. A situation that causes a steam explosion may occur, posing a major problem in terms of equipment and safety.

而して従来の連続鋳造においては鋳造末期に際
して鋳造速度を大巾に低下させ、極端な場合に
は、引抜きを停止し鋳片トツプ部を充分に凝固さ
せてから徐々に引抜くことが一般的であつた。こ
のため前記鋳造末期においては生産性が著しく低
下し、又連鋳機内に位置する鋳片の温度低下も当
然のことながら著しいものであつた。
Therefore, in conventional continuous casting, the casting speed is greatly reduced toward the end of casting, and in extreme cases, it is common practice to stop drawing and allow the top of the slab to sufficiently solidify before gradually pulling it out. It was hot. For this reason, in the final stage of casting, the productivity was significantly reduced, and the temperature of the slab located in the continuous casting machine was naturally also significantly reduced.

特に、近年前記連鋳機で製造された鋳片を切断
することなく、直ちに圧延工程へ送給し圧延する
直送圧延(以下CC−DRと云う)が積極的に採用
されているが、CC−DRの実施にあたつては、鋳
片の温度を高温に保持することが極めて重要であ
る。而して前記鋳造末期の温度低下によつてCC
−DRを実施できないCC−DRハネが多くなり、
CC−DRを実施するうえでの大きな障害となつて
いた。
In particular, in recent years direct rolling (hereinafter referred to as CC-DR), in which slabs produced in the continuous casting machine are immediately sent to the rolling process and rolled without cutting them, has been actively adopted. When performing DR, it is extremely important to maintain the temperature of the slab at a high temperature. Therefore, due to the temperature drop at the end of the casting process, CC
-There are many CC-DR cases where DR cannot be implemented,
This was a major obstacle to implementing CC-DR.

本発明は前記鋳造末期における問題点の抜本的
な解決を計るため種々実験を繰返した結果発明さ
れたものであつて、その要旨は、鋳造終了時にあ
たり鋳片トツプ部について該鋳片トツプ部が鋳型
を出てから2次冷却ゾーンの爆発限界位置に達す
るまで強制冷却を停止し、該爆発限界位置を過ぎ
てから未凝固部流出限界位置に達するまでに、強
制冷却して頭固めを行なうことを特徴とする鋼の
湾曲型連続鋳造方法に関するものである。
The present invention was developed as a result of repeated various experiments in order to fundamentally solve the problems at the final stage of casting. Forced cooling is stopped after leaving the mold until the explosive limit position of the secondary cooling zone is reached, and forced cooling is performed to perform head hardening after passing the explosion limit position and before reaching the unsolidified part outflow limit position. The present invention relates to a curved continuous casting method for steel, which is characterized by the following.

以下実施例に基づき本発明を詳述する。 The present invention will be described in detail below based on Examples.

第1図は周知の一般的な連鋳機の断面構造図で
ある。図において1は溶鋼2を貯留する鍋であ
り、3はタンデイツシユである。タンデイツシユ
3には注入ノズル4が装着されており該注入ノズ
ル4を介してタンデイツシユ3内の溶鋼2は鋳型
5に注入される。6は鋳型5より引抜かれた鋳
片、7は鋳片6を冷却するための冷却装置であ
り、8は鋳片6を連続的に引き抜くと共に鋳片6
を水平に矯正せしめつゝ搬送するガイドロール
群、9は鋳片6を設定長さに切断する切断装置、
10は設定長さに切断された鋼をそれぞれ示す。
FIG. 1 is a cross-sectional structural diagram of a well-known general continuous casting machine. In the figure, 1 is a pot for storing molten steel 2, and 3 is a tundish. An injection nozzle 4 is attached to the tundish 3, and the molten steel 2 in the tundish 3 is injected into the mold 5 through the injection nozzle 4. 6 is a slab pulled out from the mold 5, 7 is a cooling device for cooling the slab 6, and 8 is a cooling device for continuously pulling out the slab 6 and cooling the slab 6.
a group of guide rolls that straighten and convey the slab horizontally; 9 a cutting device that cuts the slab 6 to a set length;
10 each shows a piece of steel cut to a set length.

而して通常の連続鋳造作業においては、タンデ
イツシユ3の溶鋼2を注入ノズル4を介して鋳型
5に注入することにより所定の断面形状を有する
鋳片6とすると共に、該鋳片6を連続的に引抜き
連鋳機の機端近傍に設けられた切断装置9で、設
定長さに切断して鋼10の製造が行われる。
In normal continuous casting operations, the molten steel 2 in the tundish 3 is injected into the mold 5 through the injection nozzle 4 to form a slab 6 having a predetermined cross-sectional shape, and the slab 6 is continuously cast. Then, the steel 10 is manufactured by cutting the steel 10 to a set length using a cutting device 9 provided near the end of the continuous drawing casting machine.

ところがタンデイツシユ3内溶鋼2の残量が所
定量以下となるかあるいは零となると、例えばス
ライデイングノズル30が閉鎖され鋳造が終了す
る。第2図は前記鋳造終了後、鋳型5より引抜か
れた直後の鋳片トツプ部を示す斜視図である。
However, when the remaining amount of molten steel 2 in the tundish 3 becomes less than a predetermined amount or becomes zero, for example, the sliding nozzle 30 is closed and casting is completed. FIG. 2 is a perspective view showing the top portion of the slab immediately after it has been pulled out from the mold 5 after the completion of the casting.

鋳片6は鋳型5内における一次冷却によつて、
側面には所定厚の凝固殻61が形成されている
が、頂面62はパウダーやスラグで覆われること
から凝固が充分に進行せず、未凝固部分が露出し
たり、極めて薄層の凝固殻が生成された程度とな
つている。而して該状態で冷却水を噴射すると多
量の水蒸気が発生し、爆発を生ずる恐れがある。
The slab 6 is primarily cooled in the mold 5,
A solidified shell 61 of a predetermined thickness is formed on the side surface, but since the top surface 62 is covered with powder and slag, solidification does not progress sufficiently, and unsolidified portions are exposed or an extremely thin layer of solidified shell is formed. has been generated. If cooling water is injected in this state, a large amount of water vapor will be generated, which may cause an explosion.

一方、湾曲型の連鋳機では、前述の如く鋳型5
を出た鋳型6を垂直方向から徐々に湾曲させ最終
的に水平方向になるよう矯正しつゝ引抜かれる。
このため前記頂面62の凝固殻61が、ほぼ垂直
方向へ引抜かれる間に所定厚に達しない状態で湾
曲部に到達すると、第3図に示すように頂面62
が水平線に対して傾斜し、未凝固の溶鋼63が流
出し、いずれも重大な事故を生ずる結果となる。
On the other hand, in a curved continuous casting machine, the mold 5
The mold 6 that has exited the mold 6 is gradually curved from the vertical direction, and is finally straightened to the horizontal direction and then pulled out.
Therefore, if the solidified shell 61 of the top surface 62 reaches the curved part while being pulled out in a substantially vertical direction and does not reach a predetermined thickness, the top surface 61 will be damaged as shown in FIG.
is tilted with respect to the horizontal line, and unsolidified molten steel 63 flows out, both of which result in a serious accident.

本発明において爆発限界位置とは前述の如く鋳
片トツプ部に所定厚以上の凝固殻61が形成さ
れ、強制冷却を行つても爆発を生ずる恐れのない
位置を云い、同様に流出限界位置とは、頂面62
が傾斜し、溶鋼63の静圧が前記凝固殻61に加
わつても溶鋼63の流出が生じない位置を云うも
のである。
In the present invention, the explosion limit position refers to the position where a solidified shell 61 of a predetermined thickness or more is formed at the top of the slab and there is no risk of explosion even if forced cooling is performed, as described above, and the outflow limit position is the same. , top surface 62
is inclined and the molten steel 63 does not flow out even if the static pressure of the molten steel 63 is applied to the solidified shell 61.

而して本発明においては、鋳片トツプ部60が
鋳型5を出てから、2次冷却ゾーンの爆発限界位
置に達するまで強制冷却を停止し、該爆発限界位
置を過ぎてから未凝固部流出限界位置に達するま
でに強制冷却して、前記頂面62および側面の凝
固殻61を所定厚以上に生長せしめる頭固めを行
なうものである。
Therefore, in the present invention, forced cooling is stopped after the top part 60 of the slab leaves the mold 5 until it reaches the explosion limit position in the secondary cooling zone, and after the explosion limit position has been passed, the unsolidified part flows out. It performs head hardening in which the top surface 62 and the solidified shell 61 on the side surfaces grow to a predetermined thickness or more by forced cooling until the limit position is reached.

第4図は、湾曲半径Rが5mと、10.5mの連鋳
機において、爆発限界と未凝固部流出限界(以下
単に流出限界と云う)を調査した結果の一例を示
す図表である。図において実線aは爆発限界、破
線bは湾曲半径Rが5mのときの流出限界、同様
に破線cはRが10.5mのときの流出限界である。
FIG. 4 is a chart showing an example of the results of investigating the explosion limit and unsolidified part outflow limit (hereinafter simply referred to as outflow limit) in continuous casting machines with curvature radii R of 5 m and 10.5 m. In the figure, the solid line a is the explosion limit, the broken line b is the outflow limit when the radius of curvature R is 5 m, and similarly the broken line c is the outflow limit when R is 10.5 m.

即ち該第4図は、鋳造速度(m/分)と、メニ
スカスからの経過時間(分)との関数として表わ
し、実線aより下方の域(斜線部)において強制
冷却を行うと、爆発を生ずる危険性の高い範囲を
示すものである。従つて該第4図に基づいて当該
操業条件下において、鋳造速度Vcが把握される
とそれに対応して、爆発限界位置が設定される。
That is, Fig. 4 shows the results as a function of casting speed (m/min) and elapsed time from the meniscus (min), and if forced cooling is performed in the area below the solid line a (shaded area), an explosion will occur. This indicates a high-risk area. Therefore, when the casting speed Vc is determined under the operating conditions based on FIG. 4, the explosion limit position is set accordingly.

例えば鋳造速度Vcが1.6m/分のとき、メニス
カスより約2.1m(1.6m/分×1.3分)の位置が爆
発限界位置となる。同様に流出限界位置も鋳造速
度Vcを把握することにより、前記流出限界b、
cより設定される。而して鋳片トツプ部60が爆
発限界位置に達した時点で、鋳片トツプ部60に
強制冷却を開始する。該強制冷却は、鋳片トツプ
部60が流出限界位帯に達するまで行われる。該
強制冷却によつて、鋳片トツプ部60の凝固殻6
1は、前記第3図に示すように鋳片6が湾曲し、
頂面62が傾斜した状態においても未凝固の溶鋼
63による静圧に充分耐え得る強度を有する程度
の厚みまで生長し、本発明で称する頭固めが行わ
れる。
For example, when the casting speed Vc is 1.6 m/min, the explosion limit position is approximately 2.1 m (1.6 m/min x 1.3 min) from the meniscus. Similarly, by understanding the casting speed Vc, the outflow limit position can be determined by determining the outflow limit b,
It is set from c. When the top portion of the slab 60 reaches the explosion limit position, forced cooling of the top portion of the slab 60 is started. The forced cooling is continued until the top portion 60 of the slab reaches the outflow limit zone. Due to the forced cooling, the solidified shell 6 of the slab top portion 60
1, the slab 6 is curved as shown in FIG.
Even when the top surface 62 is inclined, it grows to a thickness that is strong enough to withstand the static pressure caused by the unsolidified molten steel 63, and the head hardening referred to in the present invention is performed.

本発明において鋳片トツプ部60とは、前記頂
面62およびその近傍の側面の凝固殻61が前記
強度を有する厚みを形成し得る長さ(頂面62よ
りの長さl)であればよく、実用的には一般にク
ロツプ片として切断除去される400〜500mm以下と
することが好ましい。(該鋳片トツプ部60に対
し、他の正常な鋳片を以下M片と云う) さて、第5図は本発明に基づく具体的構成の一
例を説明するための構成図であり、第6図は第5
図に対応した冷却制御を示す図表である。即ち第
5図において、2次冷却ゾーン70はストランド
方向に7分割された冷却装置7a〜7gより構成
されており、Xは爆発限界位置を、Yは流出限界
位置を示す。
In the present invention, the slab top portion 60 may have a length (length l from the top surface 62) that allows the top surface 62 and the solidified shell 61 on the side surfaces in the vicinity thereof to form the thickness with the above-mentioned strength. Practically speaking, it is preferable that the length be 400 to 500 mm or less, which is generally cut off and removed as cropped pieces. (A normal slab other than the slab top portion 60 is hereinafter referred to as an M piece.) Now, FIG. 5 is a configuration diagram for explaining an example of a specific configuration based on the present invention, and FIG. The figure is number 5
3 is a chart showing cooling control corresponding to the figure. That is, in FIG. 5, the secondary cooling zone 70 is composed of cooling devices 7a to 7g divided into seven parts in the strand direction, where X indicates the explosion limit position and Y indicates the outflow limit position.

而して鋳片トツプ部60が鋳型5より引抜か
れ、それぞれの冷却装置を通過するに際しては、
第6図に示すように、まず冷却装置7a,7bを
通過する間には、例えば給水用制御弁11を閉と
する等して冷却が停止される。鋳片トツプ部60
が爆発限定位置Xを通過し、冷却装置7c,7d
に達したら、鋳片トツプ部60のみに、通常のM
片に対する冷却(以下通常冷却と云う)以上の冷
却強度で強制冷却が行われる。図中A:通常冷
却、B:冷却停止、C:鋳片トツプ部通過時を示
す。
When the slab top part 60 is pulled out from the mold 5 and passes through each cooling device,
As shown in FIG. 6, first, while passing through the cooling devices 7a and 7b, cooling is stopped by, for example, closing the water supply control valve 11. Slab top part 60
passes the explosion limited position X, and the cooling devices 7c and 7d
When it reaches the normal M
Forced cooling is performed with a cooling intensity higher than that of cooling the piece (hereinafter referred to as normal cooling). In the figure, A: normal cooling, B: cooling stopped, and C: when the slab passes through the top.

次いで鋳片トツプ部60が流出限界位置Yの位
置する冷却装置7eおよび7f,7gに達したら
通常冷却に戻し、鋳片トツプ部60がそれぞれの
冷却装置7を通過したら、当然のことながら制御
弁11が閉となり、強制冷却は停止される。尚、
前記第5図の冷却装置7は、その冷却制御ブロツ
クをストランド方向に7分割されたもので説明し
たが、該分割数をさらに多くする等して、鋳造速
度変化で変動する爆発限界位置Xおよび流出限界
位置Yに対応して、冷却制御ブロツクを変化させ
ることも可能である。さらに爆発限界位置Xと流
出限界位置Yの距離が長く、通常冷却で前述した
頭固めが可能であれば、前記実施例の如く通常冷
却以上の強冷却を行う必要のないことも又当然で
ある。本発明において強制冷却とは前述のように
鋳片トツプ部60に水等の冷却媒体を噴射し、強
制的に冷却することを云うものである。
Next, when the slab top portion 60 reaches the cooling devices 7e, 7f, and 7g where the outflow limit position Y is located, normal cooling is resumed, and when the slab top portion 60 passes through each cooling device 7, the control valves are closed. 11 is closed and forced cooling is stopped. still,
The cooling device 7 shown in FIG. 5 has been described with its cooling control block divided into seven parts in the strand direction, but by increasing the number of divisions, the explosion limit position It is also possible to change the cooling control block depending on the outflow limit position Y. Furthermore, if the distance between the explosion limit position . In the present invention, forced cooling refers to forcibly cooling the slab top portion 60 by injecting a cooling medium such as water to the top portion 60, as described above.

さて、次に第7図は本発明に基づき巾950mm、
厚250mmの低炭Alキルド鋼を、湾曲半径が10.5m
の連鋳機において製造した実施例における鋳造速
度の変化を従来法と比較して示したものである。
図中S:スライデイングノズル閉を示す。
Next, Figure 7 shows a width of 950 mm based on the present invention.
250mm thick low carbon Al killed steel with a bending radius of 10.5m
This figure shows the change in casting speed in an example manufactured using a continuous casting machine of 2005 in comparison with a conventional method.
S in the figure indicates the sliding nozzle is closed.

本実施例において連鋳機の機長は37m、2次冷
却ゾーン70の長さは18m、冷却制御ブロツクは
前記第5図に示す如く7つの冷却装置7a〜7g
に分割されており、鋳造速度1.6m/分の操作条
件下で鋳造終了を迎えた時の実施例である。
In this embodiment, the length of the continuous casting machine is 37 m, the length of the secondary cooling zone 70 is 18 m, and the cooling control block includes seven cooling devices 7a to 7g as shown in FIG.
This is an example when the casting is completed under operating conditions of a casting speed of 1.6 m/min.

而して本発明においては、スライデイングノズ
ル30を閉とするに際し、スラグ捲き込みを防止
すると共に、鋳片トツプ部60が爆発限界位置X
に達する間(第7図のx)に所定の自然冷却を行
わせるため、鋳造速度を1.6m/分から1.2m/分
まで低下させた。しかしながら鋳片トツプ部60
が爆発限界位置Xを過ぎると、鋳造速度は1.6
m/分まで高め、冷却装置7c,7dを通過する
間(第7図のy)冷却強度80/min・m2の強制
冷却を行なつた。鋳片トツプ部60が冷却装置7
c,7dを過ぎ、流出限界位置Yに達し、冷却装
置7e,7f,7gを通過する間は、M片と同様
冷却強度40/min・m2の通常冷却を行つた。
Accordingly, in the present invention, when the sliding nozzle 30 is closed, slag is prevented from being drawn in, and the slab top portion 60 is moved to the explosion limit position X.
The casting speed was reduced from 1.6 m/min to 1.2 m/min in order to allow a certain amount of natural cooling to occur while reaching the desired temperature (x in Fig. 7). However, the slab top part 60
passes the explosive limit position X, the casting speed is 1.6
m/min, and forced cooling was performed at a cooling intensity of 80/min·m 2 while passing through cooling devices 7c and 7d (y in FIG. 7). The slab top part 60 is the cooling device 7
After passing through points c and 7d, reaching the outflow limit position Y, and passing through cooling devices 7e, 7f, and 7g, normal cooling was performed at a cooling intensity of 40/min·m 2 similar to the M piece.

この結果鋳片6は、第8図に示すように鋳片ト
ツプ部60を除き、機端部においても950℃以上
(鋳片端面より40mmの部分の温度)の極めて高温
を確保することが可能となつた。図中l:鋳片ト
ツプ部を示す。これに対して従来法においては、
第7図に破線で示すように、鋳造末期に鋳造速度
を大巾に低下させ、該低速状態での鋳造時間が長
いことから、第8図に破線で示すように連鋳機内
に位置する鋳片6の全域で温度が大巾に低下し、
従つて該部分の鋳片6はCC−DRハネとなつてい
た。
As a result, as shown in Figure 8, the slab 6 can maintain an extremely high temperature of 950°C or higher (temperature at the part 40 mm from the slab end surface) even at the machine end, excluding the slab top part 60. It became. In the figure, l indicates the top of the slab. In contrast, in the conventional method,
As shown by the broken line in Fig. 7, the casting speed is drastically reduced at the end of casting, and the casting time at this low speed is long. The temperature drops significantly across the entire area of piece 6,
Therefore, the slab 6 in this area had become a CC-DR blade.

以上詳述したように、本発明においては連鋳機
の機長、湾曲半径、2次冷却ゾーンの長さ、冷却
装置の冷却能力等に応じ、かつ鋳造速度に対応し
た爆発限界位置Xおよび流出限界位置Yを、あら
かじめ設定しておくと共に、鋳片トツプ部60が
前記爆発限界位置Xに達するまでは強制冷却を停
止し、鋳片トツプ部60が爆発限界位置Xを過
ぎ、流出限界位置Yに達するまで強制冷却し、鋳
片の頭固めをするもので、本発明によつて、鋳造
末期においても鋳造速度の低下をほとんど零ある
いは若干の低下で極めて安全に鋳片製造が可能と
なつた。このため生産性の向上は勿論、鋳造末期
に製造される鋳片の温度低下も防止でき、クロツ
プ片として除去される程度の鋳片トツプ部を除
き、鋳片全量のCC−DRが可能となつた。
As detailed above, in the present invention, the explosion limit position The position Y is set in advance, and forced cooling is stopped until the slab top portion 60 reaches the explosion limit position X, and the slab top portion 60 passes the explosion limit position X and reaches the outflow limit position Y. The present invention makes it possible to manufacture slabs extremely safely with almost no or only a slight decrease in casting speed even in the final stages of casting. This not only improves productivity, but also prevents the temperature of the slab manufactured at the final stage of casting from decreasing, making it possible to perform CC-DR on the entire slab, except for the top part of the slab, which is removed as a cropped piece. Ta.

以上のように本発明の効果は極めて大である。 As described above, the effects of the present invention are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は周知の一般的な連鋳機の断面図、第2
図は鋳片トツプ部の斜視図、第3図は鋳片トツプ
の断面図、第4図〜第8図は本発明の実施例を示
すもので、第4図は爆発限界および流出限界を示
す線図、第5図は2次冷却ゾーンを示す構造図、
第6図は2次冷却制御状況を示す図表、第7図は
鋳造末期の鋳造速度変化を示す線図、第8図は第
7図に対応する鋳片の温度推移を示す線図であ
る。 1:鍋、2:溶鋼、3:タンデイツシユ、4:
注入ノズル、5:鋳型、6:鋳片、7:冷却装
置、8:ガイドロール群、9:切断装置、10:
鋼、11:制御弁。
Figure 1 is a sectional view of a well-known general continuous casting machine, Figure 2
The figure is a perspective view of the top of the slab, Figure 3 is a sectional view of the top of the slab, Figures 4 to 8 show embodiments of the present invention, and Figure 4 shows the explosion limit and outflow limit. Diagram, Figure 5 is a structural diagram showing the secondary cooling zone,
FIG. 6 is a chart showing the secondary cooling control situation, FIG. 7 is a chart showing changes in casting speed at the final stage of casting, and FIG. 8 is a chart showing changes in temperature of the slab corresponding to FIG. 1: pot, 2: molten steel, 3: tundish, 4:
Injection nozzle, 5: Mold, 6: Slab, 7: Cooling device, 8: Guide roll group, 9: Cutting device, 10:
Steel, 11: Control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 鋳造終了時にあたり、鋳片トツプ部について
該鋳片トツプ部が鋳型を出てから2次冷却ゾーン
の爆発限界位置に達するまで強制冷却を停止し、
該爆発限界位置を過ぎてから未凝固部流出限界位
置に達するまでに強制冷却して頭固めを行なうこ
とを特徴とする鋼の湾曲型連続鋳造方法。
1. At the end of casting, forced cooling of the top part of the slab is stopped from the time the top part of the slab leaves the mold until it reaches the explosion limit position in the secondary cooling zone,
A curved continuous casting method for steel, characterized in that head hardening is performed by forced cooling after passing the explosion limit position and before reaching the unsolidified part outflow limit position.
JP6709882A 1982-04-23 1982-04-23 Continuous casting method of steel in curbed type Granted JPS58184049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6709882A JPS58184049A (en) 1982-04-23 1982-04-23 Continuous casting method of steel in curbed type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6709882A JPS58184049A (en) 1982-04-23 1982-04-23 Continuous casting method of steel in curbed type

Publications (2)

Publication Number Publication Date
JPS58184049A JPS58184049A (en) 1983-10-27
JPS6315061B2 true JPS6315061B2 (en) 1988-04-02

Family

ID=13335065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6709882A Granted JPS58184049A (en) 1982-04-23 1982-04-23 Continuous casting method of steel in curbed type

Country Status (1)

Country Link
JP (1) JPS58184049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105697A1 (en) * 2016-12-08 2018-06-14 株式会社タムラ製作所 Method for producing reactor, method for producing core, core, reactor, soft magnetic composite material, magnetic core using soft magnetic composite material, and reactor using soft magnetic composite material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523816B1 (en) * 2001-12-22 2005-10-25 주식회사 포스코 Casting method of continuous casting plant in steady speed
JP5365920B2 (en) * 2009-07-08 2013-12-11 新日鐵住金株式会社 Bleed prevention method in continuous casting
JP7234785B2 (en) * 2019-05-08 2023-03-08 日本製鉄株式会社 Casting end control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105697A1 (en) * 2016-12-08 2018-06-14 株式会社タムラ製作所 Method for producing reactor, method for producing core, core, reactor, soft magnetic composite material, magnetic core using soft magnetic composite material, and reactor using soft magnetic composite material

Also Published As

Publication number Publication date
JPS58184049A (en) 1983-10-27

Similar Documents

Publication Publication Date Title
US4493363A (en) Method at continuous casting of steels and metal alloys with segregation tendency and apparatus for carrying out the method
JPS6315061B2 (en)
WO1996001710A1 (en) Method of casting and rolling steel using twin-roll caster
US4911226A (en) Method and apparatus for continuously casting strip steel
CN1319678C (en) Method and device for the production of a trimmed metal strip
JPS6021150A (en) Production of billet having high quality
JP4019476B2 (en) Slab cooling method in continuous casting
KR101862146B1 (en) Method for casting
JP3390606B2 (en) Steel continuous casting method
GB1576304A (en) Method of continuous casting
JP2770691B2 (en) Steel continuous casting method
JP3237177B2 (en) Continuous casting method
JP7234785B2 (en) Casting end control method
JPH08206806A (en) Vertical type continuous casting method of large cross sectional cast bloom
JP3528505B2 (en) Continuous casting method of steel with high hot strength
JPH07227659A (en) Method for controlling cooling water of mold for continuous casting
JPS58187254A (en) Continuous casting method of steel
JP3377340B2 (en) Continuous casting method
JPS60162560A (en) Continuous casting method of steel
JP3507263B2 (en) Continuous casting method of molten steel
JP2720692B2 (en) High-speed casting end method in continuous casting
JP2903844B2 (en) Method of finishing casting in continuous casting
JPS61189850A (en) Continuous casting method of steel slab
CA1104323A (en) Method and apparatus for the continuous casting of steel slabs
JPS583787B2 (en) How to change slab width during continuous casting