JPH07227659A - Method for controlling cooling water of mold for continuous casting - Google Patents

Method for controlling cooling water of mold for continuous casting

Info

Publication number
JPH07227659A
JPH07227659A JP2267994A JP2267994A JPH07227659A JP H07227659 A JPH07227659 A JP H07227659A JP 2267994 A JP2267994 A JP 2267994A JP 2267994 A JP2267994 A JP 2267994A JP H07227659 A JPH07227659 A JP H07227659A
Authority
JP
Japan
Prior art keywords
cooling water
casting
continuous casting
mold
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2267994A
Other languages
Japanese (ja)
Inventor
Mutsumi Tada
田 睦 多
Shigeru Ogura
倉 滋 小
Mototatsu Sugisawa
澤 元 達 杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2267994A priority Critical patent/JPH07227659A/en
Publication of JPH07227659A publication Critical patent/JPH07227659A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the development of bleed, breakout, etc., caused by insufficient cooling by changing the casting speed at the unstable time, to suitably prevent the deformation of shell caused by excess cooling even in the case of the kind of steel having high solidified shrinkage ratio and to stably and safely execute the sequentially continuous casting after changing tundishes and the continuous casting of the different kinds of steels. CONSTITUTION:At the time of using DELTAT for difference between the temp. of cooling water supplied into a mold for continuous casting and the temp. of cooling water discharged, the cooling water quantity supplied to the mold is gradually reduced according to the lowering of the casting speed to gradually increase DELTAT. The supply of cooling water to the mold is controlled so as to gradually increase the cooling water quantity according to the increase of the casting speed to gradually reduce DELTAT.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、連続鋳造の一次冷却に
おいて、連続鋳造の停止や開始、取鍋交換等に伴って鋳
造速度が変更される連続鋳造の非定常時(鋳造停止時も
含む)に、過冷却による連続鋳造片の倒れ込みや、冷却
不足によるブリード等を発生することなく、安定かつ安
全に高品質の連続鋳造片を製造することを可能とする連
続鋳造用鋳型の冷却水制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an unsteady state of continuous casting (including when the casting is stopped) in which the casting speed is changed in the primary cooling of the continuous casting by stopping or starting the continuous casting or replacing the ladle. ), The cooling water control of the continuous casting mold that enables stable and safe production of high-quality continuous casting pieces without falling of the continuous casting pieces due to overcooling and bleeding due to insufficient cooling. Regarding the method.

【0002】[0002]

【従来の技術】スラブ等の連続鋳造においては、一般に
取鍋からタンディッシュと呼ばれる中間容器に溶鋼を注
入し、タンディッシュより溶鋼を連続鋳造用鋳型(以
下、モールドとする)に注入して、所定の断面形状を有
した連続鋳造片(以下、連鋳片とする)とし、それを下
方に連続的に引き抜いて連鋳片の芯部まで凝固せしめた
後、所定長さに切断することによって、ブルームやビレ
ットとされる。
In continuous casting of slabs and the like, molten steel is poured from a ladle into an intermediate container generally called a tundish, and the molten steel is poured from a tundish into a continuous casting mold (hereinafter referred to as a mold), A continuous cast piece having a predetermined cross-sectional shape (hereinafter referred to as a continuous cast piece) is continuously drawn downward to solidify the core of the continuous cast piece, and then cut into a predetermined length. , Bloom and billet.

【0003】このような連続鋳造において、溶鋼(連鋳
片)はモールドより引き抜かれて搬送されつつ、モール
ドでの一次冷却、二次冷却帯での二次冷却によって、表
面より順次凝固する。一般的に、一次冷却は溶鋼(連鋳
片)と接触するモールドを冷却水によって水冷すること
によって行われ、二次冷却は連鋳片を搬送しつつ水スプ
レー等を噴射することによって行われる。従って、連続
鋳造設備(以下、連鋳機とする)は、機端までに製造さ
れる連鋳片が芯部まで完全に凝固するように機長が設定
され、また、引き抜き速度、一次および二次冷却制御に
よって凝固速度が制御される。
In such continuous casting, molten steel (continuous cast piece) is drawn from the mold and conveyed, and is solidified sequentially from the surface by the primary cooling in the mold and the secondary cooling in the secondary cooling zone. Generally, primary cooling is performed by water-cooling a mold that contacts molten steel (continuous cast piece) with cooling water, and secondary cooling is performed by transporting the continuous cast piece and spraying a water spray or the like. Therefore, the continuous casting equipment (hereinafter referred to as a continuous casting machine) has a machine length set so that the continuous cast pieces manufactured up to the machine end are completely solidified to the core, and the drawing speed, primary and secondary The cooling control controls the solidification rate.

【0004】ところで、モールドへの溶鋼注入を停止し
て連続鋳造を停止・終了する際には、連鋳片のトップ部
(本発明において連鋳片のトップ部とは、鋳造終了時に
おいてモールドから引き抜かれる連鋳片の尻端部分をい
う)を確実に凝固させた後に引き抜きを行う必要があ
る。鋳造停止後に、連鋳片トップ部の凝固が不十分な状
態で引き抜きを行ってしまうと、連鋳片表面に形成され
たシェル(凝固殻)が破断して溶鋼が流出するブリード
を生じてしまう等の不都合が発生し、甚だしい場合には
設備破損や水蒸気爆発等の重大事故が発生する場合もあ
り、設備上および安全上非常に大きな問題となってしま
う。
By the way, when the continuous casting is stopped / finished by stopping the injection of molten steel into the mold, the top portion of the continuous cast piece (in the present invention, the top portion of the continuous cast piece is defined as It is necessary to surely solidify the bottom end portion of the continuous cast piece to be drawn out before the drawing. If the top of the continuous cast piece is not sufficiently solidified after the casting is stopped, the shell (solidified shell) formed on the surface of the continuous cast piece will break and bleeding of molten steel will occur. If such inconveniences occur, and in a serious case, a serious accident such as equipment damage or steam explosion may occur, which becomes a very serious problem in terms of equipment and safety.

【0005】そのため、通常の連続鋳造においてモール
ドへの溶鋼注入を停止して連続鋳造を終了する際には、
鋳造末期となった時点で鋳造速度を徐々に低下させ、極
端な場合には引き抜きを一旦停止して、連鋳片のトップ
を十分に凝固させた後に徐々に引き抜きを行う。
Therefore, when stopping the injection of molten steel into the mold and ending the continuous casting in normal continuous casting,
At the end of casting, the casting speed is gradually reduced, and in an extreme case, the drawing is temporarily stopped, and the top of the continuous cast piece is sufficiently solidified, and then gradually drawn.

【0006】また、異なる鋼種を続けて連続鋳造する、
いわゆる異鋼種連々鋳(あるいはタンディッシュ交換後
の同鋼種連々鋳)を行う際には、鋳造速度を低下して前
回鋼種(先に鋳造されている鋼種)の鋳込み終了後に一
旦鋳造を停止し、モールド中の湯面上に前回鋼種と次回
鋼種(続いて鋳造される鋼種)とを区分するための仕切
り材(接続治具)を挿入した後に、次回鋼種の鋳込みを
開始するのが一般的である。
Further, continuous casting of different steel types is carried out,
When performing so-called continuous casting of different steel types (or continuous casting of the same steel type after tundish exchange), the casting speed is reduced and the casting is temporarily stopped after the casting of the previous steel type (the steel type that was cast earlier) is completed. It is common to start casting the next steel type after inserting a partition material (connecting jig) to separate the previous steel type and the next steel type (steel type that is subsequently cast) on the molten metal surface in the mold. is there.

【0007】すなわち、異鋼種連々鋳を行う場合には、
図3に示されるように鋳造速度を徐々に低減した後に鋳
込みを停止して鋳造を停止し、前回鋼種のタンディッシ
ュを移動した後に、前述の仕切り材を挿入し、次回鋼種
のタンディッシュを所定の鋳込み位置に配置して、次回
鋼種の鋳込みを開始して鋳造を再開し、徐々に鋳造速度
を上昇して定常の連続鋳造とされる。なお、図3におい
て、M/D冷却水流量とはモールドに供給される冷却水
量、ΔTとはモールドに供給する冷却水とモールドから
排出された冷却水の水温差、T/D重量比とは定常鋳込
時のタンディッシュ重量に対するタンディッシュの重量
比率(%)である。
That is, when casting different steel types one after another,
As shown in FIG. 3, after gradually reducing the casting speed, the casting was stopped to stop the casting, the tundish of the previous steel grade was moved, and then the partition material described above was inserted, and the tundish of the next steel grade was specified. The casting is started at the next time, the casting of the next steel type is started and the casting is restarted, and the casting speed is gradually increased to achieve continuous continuous casting. In FIG. 3, the M / D cooling water flow rate is the cooling water amount supplied to the mold, ΔT is the water temperature difference between the cooling water supplied to the mold and the cooling water discharged from the mold, and the T / D weight ratio. It is the weight ratio (%) of the tundish to the weight of the tundish during steady casting.

【0008】異鋼種連々鋳に使用される仕切り材として
は、例えば特公昭49−42215号公報に開示される
平板状部材、特開昭54−142131号公報に開示さ
れる中空ブロック状の仕切り材、さらには特公昭63−
15056号公報に開示されるV型の仕切り材等、各種
のものが知られている。
As a partitioning material used for continuous casting of different steel types, for example, a flat plate-shaped member disclosed in JP-B-49-42215 and a hollow block-shaped partitioning material disclosed in JP-A-54-142131. , And Japanese Patent Publication Sho 63-
Various types are known, such as the V-type partitioning material disclosed in Japanese Patent No. 15056.

【0009】ところが、このような異鋼種連々鋳等を行
う場合、前回の鋼種がSUS304鋼等の凝固収縮率の
高い鋼種であると、鋳造速度低減時および鋳造停止時に
モールドと接触している連鋳片(溶鋼)が凝固によって
大きく収縮する、いわゆるシェルの鋳片内部側への倒れ
込みを生じてしまい、仕切り材を挿入できない、あるい
は次回鋼種の鋳込みを再開できないという問題が発生す
る場合がある。例えば、SUS304鋼を幅aが124
0mm、厚さbが200mmのモールド50(図4参照)を
用いて100ton 連続鋳造した際に、前述の図3の条件
で鋳造を停止した際には、図4に概念的に示されるよう
に、シェルの倒れ込みによって連鋳片のトップ部が先細
り状態となり、連鋳片52とモールド50との間に、幅
方向に3mm(矢印c)、厚さ方向に12mmおよび10mm
(それぞれ矢印dおよびe)の間隙が形成され、モール
ド50の上方より鋳片サポートロール54が見えるよう
な状態となって、注入した溶鋼がそのまま下方へ流出す
るため、再度溶鋼を注入することが不可能となる。
However, in the case where such different steel grades are successively cast, if the previous grade is a steel grade having a high solidification shrinkage rate such as SUS304 steel, it is in contact with the mold when the casting speed is reduced and the casting is stopped. There is a problem that a cast piece (molten steel) largely contracts due to solidification, a so-called shell falls to the inside of the cast piece, a partition material cannot be inserted, or casting of the next steel type cannot be restarted. For example, SUS304 steel has a width a of 124
When 100 ton continuous casting was performed using a mold 50 (see FIG. 4) having a thickness of 0 mm and a thickness b of 200 mm, when the casting was stopped under the conditions of FIG. 3 described above, as conceptually shown in FIG. , The top of the continuous cast piece becomes tapered due to the shell falling, and 3 mm in the width direction (arrow c) and 12 mm and 10 mm in the thickness direction between the continuous cast piece 52 and the mold 50.
A gap (indicated by arrows d and e, respectively) is formed so that the slab support roll 54 can be seen from above the mold 50, and the injected molten steel flows downward as it is. Therefore, the molten steel can be injected again. It will be impossible.

【0010】この原因の一つとして、連続鋳造停止後に
連鋳片トップ部の凝固が不十分な状態で連鋳片の引き抜
きを行った場合に、前述のブリード等のような問題点の
発生を恐れて鋳造停止に際して連鋳片トップ部を過冷却
としてしまうことにより、シェルの内側(鋳片内部側)
への倒れ込みが大きくなってしまうことが挙げられる。
As one of the causes of this, when the continuous cast piece is pulled out after the continuous casting is stopped and the solidification of the top portion of the continuous cast piece is insufficient, the above-mentioned problems such as bleeding occur. Fearfully, by overcooling the top of the continuous slab when the casting is stopped, the inside of the shell (inside the slab)
It can be mentioned that the collapse into

【0011】[0011]

【発明が解決しようとする課題】従来から実施されてい
るモールドの冷却水制御方法を大別すると、定値流量制
御方法、連鋳片表面温度を一定に制御する方法、さらに
は前述の冷却水水温差ΔTや溶鋼温度等を加味して総体
的に制御する方法とに分けることができる。
The conventional mold cooling water control methods are roughly classified into a constant value flow rate control method, a method for controlling the surface temperature of a continuous cast piece to a constant value, and further the cooling water water described above. It can be divided into a method for controlling the temperature as a whole by taking into consideration the temperature difference ΔT, the molten steel temperature, and the like.

【0012】定値流量制御方法とは、モールドに供給す
る冷却水量が常時一定量となるように制御する方法であ
り、前述の図3に示される例であるが、この方法では定
常状態の連続鋳造でも、鋳造速度低減時等の非定常状態
でも冷却水の設定流量は同一であるので、安全率を大き
く取った過剰冷却水量となってしまう。そのため、鋳造
を停止するための鋳造速度低下や鋳造停止時には連鋳片
トップ部が過冷却となるのを免れず、凝固収縮率の大き
な鋼種で異鋼種連々鋳等を行う場合には先に述べたよう
なシェルの倒れ込みによる問題が発生する。
The constant value flow rate control method is a method of controlling the amount of cooling water supplied to the mold so that it is always a constant amount, and is the example shown in FIG. 3 described above. However, since the set flow rate of the cooling water is the same even in an unsteady state such as when the casting speed is reduced, the amount of excess cooling water has a large safety factor. Therefore, when the casting speed is lowered to stop casting and the top of the continuous cast piece is subject to overcooling when casting is stopped, it is necessary to continuously cast different steel grades with a large solidification shrinkage rate. The problem occurs due to the collapse of the shell.

【0013】連鋳片表面温度を一定に制御する方法と
は、文字通り製造された連鋳片の表面温度が一定となる
ように、主として二次冷却帯で冷却速度を制御する方法
であるため、モールドにおける一次冷却の過冷却、およ
びそれに起因するシェルの倒れ込みを防止することはで
きない。
The method of controlling the surface temperature of the continuous cast piece to be constant is a method of controlling the cooling rate mainly in the secondary cooling zone so that the surface temperature of the continuously cast piece produced literally becomes constant. It is not possible to prevent overcooling of the primary cooling in the mold and the resulting collapse of the shell.

【0014】さらに、冷却水水温差ΔTや溶鋼温度等を
加味して総体的に制御する方法としては、例えば、特開
昭49−107928号、同52−46331号の各公
報に開示されるように、モールドを通過する冷却水量お
よびΔTより得られる抜熱量と、連続鋳造速度等の関係
とを一定条件とする方法が知られている。しかしなが
ら、これらの方法は、主にΔTの変化が検出された際、
すなわちΔTが変化した後に冷却水量や鋳造速度等の制
御を行うので、特に前述の鋳造停止のための鋳造速度低
減のような急激な条件変化には対応することはできな
い。
Further, as a method of controlling the temperature as a whole by taking into consideration the cooling water temperature difference ΔT, the molten steel temperature, etc., it is disclosed, for example, in Japanese Patent Laid-Open Nos. 49-107928 and 52-46331. In addition, a method is known in which the relationship between the amount of cooling water passing through the mold and the amount of heat removal obtained from ΔT, and the relationship between the continuous casting speed and the like are set as constant conditions. However, these methods are mainly used when a change in ΔT is detected.
That is, since the amount of cooling water, the casting speed, and the like are controlled after the change in ΔT, it is not possible to deal with a sudden change in conditions such as the above-described reduction in casting speed for stopping the casting.

【0015】他方、特開昭60−187457号公報に
は、冷却水量とΔTに加え、さらに溶鋼の鋳込み温度を
検出して、溶鋼成分やその凝固点より求められる溶鋼加
熱度(タンディッシュ内溶鋼温度と、溶鋼成分より求め
られる凝固点との差)に従って、ΔTおよびモールド内
溶鋼レベルを基に冷却水量を調整する方法が開示されて
いる。しかしながら、鋳造停止時等の鋳込み末期には溶
鋼加熱度はほとんど変化しないので、この方法ではこれ
らの非定常時に良好に対応することはできず、また先の
方法と同様、ΔTの変化等に応じて制御を行うので、鋳
造停止のための鋳造速度低減のような急激な条件変化に
は対応することはできない。
On the other hand, in Japanese Patent Laid-Open No. 187457/1985, in addition to the cooling water amount and ΔT, the casting temperature of the molten steel is further detected, and the molten steel heating degree (the molten steel temperature in the tundish obtained from the molten steel composition and its freezing point) is detected. And the difference between the freezing point obtained from the molten steel component) and the amount of cooling water based on the ΔT and the molten steel level in the mold. However, since the molten steel heating degree hardly changes at the end of casting, such as when the casting is stopped, this method cannot respond well to these unsteady times, and like the previous method, it does not respond to changes in ΔT, etc. Therefore, it is not possible to cope with a sudden change in conditions such as a reduction in casting speed for stopping casting.

【0016】すなわち、これらの従来のモールド冷却水
の制御方法は、定常状態の連続鋳造における健全かつ安
定な連続鋳造の操業を目的としたものであり、非定常
時、例えば、前述の図3に示されるような鋳造停止のた
めの鋳造速度低減等の急激な鋳造速度変化等に対応する
ことはできない。そのため、非定常時、特に異鋼種連々
鋳の鋼種変更時やタンディッシュ交換後の同鋼種連々鋳
などにおける鋳造速度変化や鋳造停止時等に、過冷却あ
るいは冷却不足を生じてしまい、シェルの倒れ込み、ブ
レークアウトやブリード等を防止することができず、こ
れらを解決したモールド冷却水制御方法の実現が切望さ
れている。
That is, these conventional control methods for mold cooling water are intended for the operation of sound and stable continuous casting in steady-state continuous casting, and in the non-steady state, for example, as shown in FIG. It is not possible to cope with a sudden change in casting speed such as a decrease in casting speed for stopping casting as shown. Therefore, during non-steady state, especially when changing the steel type for continuous casting of different steel types or during casting speed change or casting stoppage during continuous casting of the same steel type after tundish exchange, etc., supercooling or insufficient cooling occurs, and the shell collapses. However, breakout and bleeding cannot be prevented, and a mold cooling water control method that solves these problems is desired.

【0017】本発明の目的は、前記従来技術の問題点を
解決することにあり、非定常時における鋳造速度の変
化、特に、異鋼種連々鋳等における鋳造速度低減や鋳造
停止等の際に、冷却不足によるブリードやブレークアウ
ト等を生じることがなく、しかも、たとえ凝固収縮率の
高い鋼種であっても過冷却に起因するシェルの倒れ込み
等を好適に防止し、タンディッシュ交換後の同鋼種や異
鋼種連々鋳等を、安定かつ安全に行うことができる連続
鋳造用鋳型の冷却水制御方法を提供する。
An object of the present invention is to solve the above-mentioned problems of the prior art. When the casting speed changes during non-steady state, especially when the casting speed is reduced or the casting is stopped in continuous casting of different steel types, It does not cause bleeding or breakout due to insufficient cooling, and even if it has a high solidification shrinkage ratio, it can prevent the shell from collapsing due to overcooling, etc. Provided is a cooling water control method for a continuous casting mold, which is capable of stably and safely performing continuous casting of different steel types.

【0018】[0018]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、定常状態および非定常状態が繰り返し操
業される連続鋳造における、非定常状態における連続鋳
造用鋳型の冷却水制御方法であって、前記連続鋳造用鋳
型に供給する冷却水の温度と前記連続鋳造用鋳型から排
出された冷却水の温度との差をΔTとした際に、連続鋳
造速度の低下に応じて前記連続鋳造用鋳型に供給する冷
却水量を逓減して前記ΔTを逓増し、連続鋳造速度の上
昇に応じて前記連続鋳造用鋳型に供給する冷却水量を逓
増して前記ΔTを逓減するように、前記連続鋳造用鋳型
への冷却水供給を制御することを特徴とする連続鋳造用
鋳型の冷却水制御方法を提供する。
In order to achieve the above object, the present invention provides a cooling water control method for a continuous casting mold in an unsteady state in continuous casting in which a steady state and an unsteady state are repeatedly operated. Then, when the difference between the temperature of the cooling water supplied to the continuous casting mold and the temperature of the cooling water discharged from the continuous casting mold is ΔT, the continuous casting is performed in accordance with the decrease in the continuous casting speed. The continuous casting so as to gradually decrease the amount of cooling water supplied to the casting mold and gradually increase the ΔT, and gradually increase the amount of cooling water supplied to the continuous casting mold and gradually decrease the ΔT according to an increase in the continuous casting speed. Provided is a cooling water control method for a continuous casting mold, which comprises controlling the supply of cooling water to the casting mold.

【0019】また、前記冷却水供給の制御を連続鋳造の
停止および開始のための鋳造速度変化に応じて行うのが
好ましい。
Further, it is preferable to control the supply of the cooling water according to a change in casting speed for stopping and starting continuous casting.

【0020】以下、本発明の連続鋳造用鋳型(モール
ド)の冷却水制御方法(以下、冷却水制御方法とする)
について詳細に説明する。図1に、本発明の冷却水制御
方法を実施する連続鋳造設備(以下、連鋳機とする)の
上部を概念的に示す。図1に示される連鋳機10におい
て、溶鋼は取鍋(図示省略)から、タンディッシュ16
に注入され、このタンディッシュ16から浸漬ノズル1
8によってモールド20に注入される。
Hereinafter, a cooling water control method for the continuous casting mold of the present invention (hereinafter referred to as a cooling water control method)
Will be described in detail. FIG. 1 conceptually shows an upper portion of a continuous casting facility (hereinafter referred to as a continuous casting machine) for carrying out the cooling water control method of the present invention. In the continuous casting machine 10 shown in FIG. 1, molten steel is fed from a ladle (not shown) to a tundish 16
Is injected into the tundish 16 from the immersion nozzle 1
8 is injected into the mold 20.

【0021】モールド20に注入された溶鋼は、一次冷
却により凝固を開始して(いわゆるシェルを形成し)連
鋳片12となり、二次冷却帯22に引き抜かれる。二次
冷却帯22は、通常の連鋳機と同様、多数の鋳片サポー
トローラ24,24,24……や、鋳片サポートローラ
24の間隙に配置されるスプレーノズル等より構成さ
れ、連鋳片12を引き抜き、搬送しつつ水スプレーやミ
ストスプレー等によって二次冷却する。二次冷却帯22
には、任意の間隔で連鋳片12引き抜き搬送の駆動力と
なるピンチローラ対26a,26b……が配置され、ピ
ンチローラ対26a,26b……の駆動を制御する搬送
制御装置28によって、連鋳片12の搬送速度すなわち
鋳造速度(引き抜き速度)が制御される。
The molten steel injected into the mold 20 starts solidification (forms a so-called shell) by primary cooling and becomes a continuous cast piece 12, which is drawn out to the secondary cooling zone 22. The secondary cooling zone 22 is composed of a large number of slab support rollers 24, 24, 24, ..., Spray nozzles arranged in the gaps between the slab support rollers 24, and the like, as in a normal continuous casting machine. The piece 12 is pulled out, and while being conveyed, secondary cooling is performed by water spray, mist spray, or the like. Secondary cooling zone 22
Are provided with pinch roller pairs 26a, 26b ... Which serve as a driving force for pulling and transporting the continuous cast slab 12 at arbitrary intervals, and the transport controller 28 that controls the driving of the pinch roller pairs 26a, 26b. The transport speed of the slab 12, that is, the casting speed (drawing speed) is controlled.

【0022】図示例の連鋳機10において、一次冷却の
ためのモールド20の冷却水は、冷却水供給装置30よ
り供給ライン32を経てモールド20に供給され、排水
ライン34より廃棄あるいは冷却機に供される。供給ラ
イン32にはモールド20に供給する冷却水の温度(入
口温度)を測定する温度計36が、他方、排水ライン3
4には、モールド20から排出される冷却水の温度(出
口温度)を測定する温度計38が、それぞれ配置され
る。
In the continuous casting machine 10 of the illustrated example, the cooling water for the mold 20 for primary cooling is supplied from the cooling water supply device 30 to the mold 20 via the supply line 32, and is discharged from the drain line 34 to the cooling machine. Be served. A thermometer 36 for measuring the temperature (inlet temperature) of the cooling water supplied to the mold 20 is provided in the supply line 32, while the thermometer 36 is provided for the drain line 3
4, thermometers 38 for measuring the temperature (outlet temperature) of the cooling water discharged from the mold 20 are arranged.

【0023】このような連鋳機10において、搬送制御
装置28および冷却水供給装置30は制御装置40に接
続され、この制御装置40の指示に応じて連鋳片12の
鋳造速度、およびモールド20への冷却水供給量を調整
する。また、制御装置40には、温度計36および38
が接続され、モールド20の冷却水の入口温度および出
口温度の計測結果が送られる。
In such a continuous casting machine 10, the transfer control device 28 and the cooling water supply device 30 are connected to the control device 40, and according to the instruction of the control device 40, the casting speed of the continuous cast piece 12 and the mold 20. Adjust the cooling water supply to the. Further, the control device 40 includes thermometers 36 and 38.
Is connected, and the measurement results of the inlet temperature and the outlet temperature of the cooling water of the mold 20 are sent.

【0024】図1に示される連鋳機10は、本発明の冷
却水制御方法を利用する設備であるので、タンディッシ
ュ16の交換や異鋼種連鋳々等の際の鋳造停止および鋳
造再開のための鋳造速度変化(鋳造停止時も含む)や、
取鍋交換時等、各種の非定常時における鋳造速度の変
化、すなわち、鋳造速度の低下に応じて冷却水量を逓減
してΔTを逓増し、鋳造速度の上昇に応じて冷却水量を
逓増してΔTを低減するように、モールド20への冷却
水供給量を調整する。
Since the continuous casting machine 10 shown in FIG. 1 is a facility that utilizes the cooling water control method of the present invention, it is possible to stop and restart casting when replacing the tundish 16 or continuously casting different steel types. To change the casting speed (including when the casting is stopped),
When the casting speed changes in various unsteady conditions such as when changing the ladle, that is, the cooling water amount is gradually decreased according to the decrease of the casting speed to gradually increase ΔT, and the cooling water amount is gradually increased according to the increase of the casting speed. The cooling water supply amount to the mold 20 is adjusted so as to reduce ΔT.

【0025】すなわち、図示例の連鋳機10において
は、例えば、鋳造停止のために鋳造末期に鋳造速度を低
下する際には、制御装置40は搬送制御装置28に鋳造
速度を低下する指示を出すと共に、冷却水供給装置30
からの冷却水供給量を制御(減少)して、ΔTを大きく
するものである。
That is, in the continuous casting machine 10 of the illustrated example, for example, when the casting speed is lowered at the end of casting for the purpose of stopping the casting, the controller 40 instructs the transfer controller 28 to lower the casting speed. Cooling water supply device 30
The amount of cooling water supplied from is controlled (decreased) to increase ΔT.

【0026】図2に、異鋼種連々鋳における前回鋼種の
鋳造停止(終了)、および次回の鋳造開始の際の鋳造速
度変化、および、それに伴う本発明の冷却水供給量の制
御の一例を示す。
FIG. 2 shows an example of the control of the cooling water supply amount of the present invention accompanied by the change in the casting speed at the time of stopping (ending) the casting of the previous steel type and starting the next casting in the successive casting of different steel types. .

【0027】図2に示される例においては、定常状態で
は鋳造速度が0.8m/分であり、その際のモールド冷
却水の供給量は2200L(リットル)/分、ΔTが4
℃である。取鍋からタンディッシュ16への溶鋼注入が
終了し、さらに、鋳造末期となってT/D重量比(定常
鋳込時のタンディッシュ重量に対するタンディッシュの
重量比率)が58%となった旨の信号を制御装置40が
受けると、制御装置40は搬送制御装置28に鋳造速度
を0.6m/分とする指示を出して鋳造速度を低下し、
同時に冷却水供給装置30からの冷却水供給量を110
0L/分として、ΔTを7℃に上昇する。
In the example shown in FIG. 2, the casting speed is 0.8 m / min in the steady state, the mold cooling water supply amount is 2200 L (liter) / min, and ΔT is 4 at that time.
℃. The injection of molten steel from the ladle to the tundish 16 was completed, and at the end of casting, the T / D weight ratio (weight ratio of tundish to tundish weight during steady casting) was 58%. When the control device 40 receives the signal, the control device 40 instructs the transfer control device 28 to set the casting speed to 0.6 m / min to decrease the casting speed,
At the same time, the cooling water supply amount from the cooling water supply device 30 is set to 110
At 0 L / min, ΔT is raised to 7 ° C.

【0028】鋳造が進行して、制御装置40がT/D重
量比が50%となった信号を受けると、制御装置40は
搬送制御装置28に鋳造速度を0.4m/分とする指示
を出して鋳造速度を低下し、同時に冷却水供給装置30
からの冷却水供給量を1000L/分として、ΔTを7
℃に保持する。
When the control device 40 receives a signal that the T / D weight ratio reaches 50% as the casting progresses, the control device 40 instructs the transfer control device 28 to set the casting speed to 0.4 m / min. To reduce the casting speed, and at the same time, the cooling water supply device 30
ΔT is 7 when the cooling water supply from
Hold at ° C.

【0029】さらに鋳造が進行して、制御装置40がT
/D重量比が42%となった信号を受けると、制御装置
40は搬送制御装置28に鋳造速度を0.2m/分とす
る指示を出して鋳造速度を低下し、同時に冷却水供給装
置30からの冷却水供給量を800L/分として、ΔT
を7.5℃に上昇する。T/D重量比が33%となった
時点で、タンディッシュ16の浸漬ノズル18が閉塞さ
れ鋳込が終了し、さらに制御装置40は搬送制御装置2
8に鋳造速度を0m/分(すなわち搬送停止)とする指
示を出し、同時に冷却水供給装置30からの冷却水供給
量を750L/分としてΔTを7.5℃に保持する。す
なわち、この際における定常状態からのΔTの変化は
3.5℃である。
As the casting further progresses, the control device 40 changes to T
When the signal that the / D weight ratio becomes 42% is received, the control device 40 instructs the transfer control device 28 to set the casting speed to 0.2 m / min to reduce the casting speed, and at the same time, the cooling water supply device 30. ΔT when the cooling water supply from the tank is 800 L / min
To 7.5 ° C. When the T / D weight ratio becomes 33%, the immersion nozzle 18 of the tundish 16 is closed and the pouring is completed, and the control device 40 causes the transfer control device 2 to operate.
An instruction to set the casting speed to 0 m / min (that is, conveyance stop) is issued to 8, and at the same time, the cooling water supply amount from the cooling water supply device 30 is set to 750 L / min and ΔT is maintained at 7.5 ° C. That is, the change in ΔT from the steady state at this time is 3.5 ° C.

【0030】鋳造が停止すると、『前回鋼種のタンディ
ッシュ16移動』→『仕切り材(接続治具)挿入』→
『シェル倒れ込み部シール実施(ウイスカー添加)』→
『新タンディッシュ16配置』→『次回鋼種の取鍋より
新タンディッシュ16への溶鋼注入開始』→『新タンデ
ィッシュ16の浸漬ノズル18開放(鋳込開始)』等の
各種作業が行われる。
When casting is stopped, "Tundish 16 movement of previous steel type" → "Partition material (connecting jig) insertion" →
"Shell collapse part seal implementation (whisker addition)" →
Various operations such as "arrangement of new tundish 16" → "start of injection of molten steel from new ladle into new tundish 16" → "open immersion nozzle 18 of new tundish 16 (start pouring)" are performed.

【0031】鋳込開始後、T/D重量比が33%となっ
た時点で、制御装置40は搬送制御装置28に鋳造速度
を0.2m/分(すなわち搬送開始)とする指示を出
し、同時に冷却水供給装置30からの冷却水供給量を8
00L/分とし、ΔTを7.5℃に保持して、次回鋼種
の鋳造が開始される。その後、制御装置40はタンディ
ッシュ16の溶鋼注入量に応じて順次鋳造速度を向上
し、それに応じて冷却水供給装置30からの冷却水供給
量を調整してΔTを小さくする。
At the time when the T / D weight ratio reaches 33% after the start of casting, the control device 40 instructs the transfer control device 28 to set the casting speed to 0.2 m / min (that is, start the transfer). At the same time, the cooling water supply amount from the cooling water supply device 30 is set to 8
Then, the casting of the next steel grade is started with ΔT set to 00 L / min and ΔT kept at 7.5 ° C. After that, the control device 40 sequentially increases the casting speed according to the molten steel injection amount of the tundish 16, and accordingly adjusts the cooling water supply amount from the cooling water supply device 30 to reduce ΔT.

【0032】従来のモールドの冷却水制御方法は、定常
状態における健全かつ安定な連続鋳造の操業を目的とし
たものであり、主にΔTの変化を検出して、それに応じ
て冷却水供給量や鋳造速度を調整することにより、連続
鋳造の定常状態において、一定条件の一次冷却の基にお
ける安定した操業を目的とするものである。しかしなが
ら、これらの冷却水制御方法では、鋳造停止のための鋳
造速度低下等の各種の非定常時における鋳造速度の急激
な変化に対応することはできず、例えば、異鋼種連々鋳
の鋼種変更の際に、前回の鋼種が凝固収縮率が高いもの
であると、鋳造を停止した際における連鋳片トップ部の
シェルの倒れ込みが大きく、仕切り材を挿入できない、
次回鋼種の鋳込みができない等の問題点があるのは前述
のとおりである。
The conventional mold cooling water control method is intended for a sound and stable continuous casting operation in a steady state, and mainly detects a change in ΔT and accordingly supplies the cooling water or the cooling water. By adjusting the casting speed, it is intended to perform stable operation under constant conditions of primary cooling in the steady state of continuous casting. However, in these cooling water control methods, it is not possible to cope with a sudden change in the casting speed at various unsteady times such as a decrease in the casting speed for stopping the casting, and for example, in the case of changing the steel type of different steel types one after another. At this time, if the previous steel type has a high solidification shrinkage, the shell of the continuous cast piece top part collapses greatly when the casting is stopped, and the partition material cannot be inserted.
As described above, there are problems such as the inability to cast the next steel grade.

【0033】これに対し、本発明の冷却水制御方法にお
いては、従来のようなΔTの変化ではなく、非定常時に
おける鋳造速度の変化、特に鋳造停止のための急激な速
度低下等に応じて、鋳造速度の低下に応じて冷却水量を
逓減してΔTを逓増し、鋳造速度の上昇に応じて冷却水
量を逓増してΔTを逓減するように、モールド20への
冷却水供給量を制御する。このような本発明によれば、
図2に示される鋳造停止のための鋳造速度低減等の急激
な鋳造速度変化を伴う非定常時においても、連鋳片12
(溶鋼)の過冷却によるシェルの大幅な倒れ込みや、冷
却不足によるブリードやブレークアウト等を好適に防止
し、前述のような異鋼種連々鋳やタンディッシュ16交
換後の連々鋳を安定かつ安全に行うことができる。
On the other hand, in the cooling water control method of the present invention, instead of the change of ΔT as in the conventional case, the change of the casting speed at the non-steady state, especially the rapid decrease of the speed for stopping the casting, etc. The amount of cooling water supplied to the mold 20 is controlled so that the cooling water amount is gradually decreased to gradually increase ΔT according to the decrease in the casting speed, and the cooling water amount is gradually increased to gradually decrease ΔT according to the increase in the casting speed. . According to the present invention as described above,
Even in a non-steady state involving a rapid change in casting speed such as a reduction in casting speed for stopping the casting shown in FIG.
Stable and safe continuous casting of different steel types and continuous casting after replacement of the tundish 16 as described above, by suitably preventing large collapse of the shell due to supercooling of (molten steel) and bleeding or breakout due to insufficient cooling. It can be carried out.

【0034】本発明の冷却水制御方法において、鋼種
(凝固収縮率)や鋳片幅等により多少前後するがΔTの
最大値は12℃以内とするのが好ましい。鋼種等によっ
ても異なるが、ΔTが12℃を超えると、ブリードやブ
レークアウトを発生する可能性が増し、安全かつ安定な
連続鋳造を行うことができない場合がある。
In the cooling water control method of the present invention, the maximum value of ΔT is preferably 12 ° C. or less, although it is somewhat different depending on the type of steel (solidification shrinkage ratio), the width of the slab, and the like. When ΔT exceeds 12 ° C, the possibility of bleeding or breakout increases, and safe and stable continuous casting may not be performed in some cases, although it depends on the type of steel and the like.

【0035】本発明の冷却水制御方法において、鋳造速
度の低下に応じて冷却水量を逓減してΔTを逓増し、鋳
造速度の上昇に応じて冷却水量を逓増してΔTを逓減す
るようにして一次冷却を行うことによって、冷却不足に
よるブリードやブレークアウトの防止、さらにはシェル
の大幅な倒れ込みを防止できる理由については定かでは
ないが、本発明者らの推測によると、鋳片トップ部のシ
ェルが過冷された場合は、凝固収縮率の高い鋼種ではト
ップ部の4周が収縮し、シェルが内側へ倒れ込んで先細
り状となる。従って、冷却量を減少させ、鋳片からの技
熱量を減らしていくことで、収縮を防止できる。なお、
本発明は収縮率の高い場合、特に0.980(実績巾/
命令巾)以下の場合に有効であるが、鋳込巾が小さい程
鋳片の温度低下量が大きくなり、収縮量が増えることか
ら巾狭材にも有効である。
In the cooling water control method of the present invention, the cooling water amount is gradually decreased to increase ΔT in accordance with the decrease of the casting speed, and the cooling water amount is gradually increased to decrease ΔT in accordance with the increase of the casting speed. It is not clear why primary cooling can prevent bleeding and breakout due to insufficient cooling, and further prevent significant collapse of the shell. When the steel is supercooled, four rounds of the top portion shrink in the steel type having a high solidification shrinkage rate, and the shell falls inward to form a tapered shape. Therefore, shrinkage can be prevented by reducing the cooling amount and the amount of heat from the slab. In addition,
In the present invention, when the shrinkage ratio is high, 0.980 (actual width /
It is effective when the width is less than or equal to the command width, but the smaller the casting width is, the larger the temperature decrease amount of the slab becomes and the more the shrinkage amount is, so that the narrow width material is also effective.

【0036】また、このような本発明の冷却水制御方法
は、鋳造速度が0.7m/分以下となった際に行うと、
特に好適な効果が得られる。
If the cooling water control method of the present invention is performed when the casting speed is 0.7 m / min or less,
A particularly suitable effect is obtained.

【0037】このような本発明のモールドの冷却水制御
方法は、垂直型連鋳機、垂直曲げ型連鋳機、湾曲型連鋳
機等、公知の各種連鋳機にいずれも利用可能である。ま
た、本発明の冷却水制御方法を非定常時のみに利用し、
定常時には前述の特開昭60−178457号公報等に
開示される、従来の冷却水制御方法を併用してもよい。
さらに、モールド冷媒としては、水以外にも各種の冷媒
が利用可能である。
The mold cooling water control method of the present invention as described above can be applied to various known continuous casting machines such as a vertical continuous casting machine, a vertical bending continuous casting machine, and a curved continuous casting machine. . In addition, the cooling water control method of the present invention is used only in the non-steady state,
In the steady state, the conventional cooling water control method disclosed in the above-mentioned JP-A-60-178457 may be used together.
Further, as the mold refrigerant, various refrigerants other than water can be used.

【0038】以上、本発明の連続鋳造用鋳型の冷却制御
方法について詳細に説明したが、本発明は以上の例に限
定はされず、本発明の要旨を逸脱しない範囲において各
種の改良および変更を行ってもよいのはもちろんであ
る。
Although the cooling control method for the continuous casting mold of the present invention has been described in detail above, the present invention is not limited to the above examples, and various improvements and changes can be made without departing from the scope of the present invention. Of course you can go.

【0039】[0039]

【実施例】以下、本発明の具体的実施例を挙げ、本発明
をより詳細に説明する。 <発明例>機長19.6mの全湾曲型連鋳機を用いて、
C:0.06,Si:0.45,Mn:0.60,Ni:8.4,Cr:18.4 (各wt%)
の組成を有するSUS304鋼の溶鋼を110ton 連続
鋳造した。モールド(スラブサイズ)は幅1240mm、
厚さが200mm(すなわち、前述の図4に示される例と
同様)のものを用いた。
EXAMPLES The present invention will be described in more detail with reference to specific examples of the present invention. <Invention example> Using a fully curved continuous casting machine with a machine length of 19.6 m,
C: 0.06, Si: 0.45, Mn: 0.60, Ni: 8.4, Cr: 18.4 (each wt%)
110 ton of continuous molten SUS304 steel having the composition The width of the mold (slab size) is 1240 mm,
A thickness of 200 mm (that is, similar to the example shown in FIG. 4 described above) was used.

【0040】取鍋からタンディッシュへの溶鋼の注入終
了後、前述の図2に示される例と全く同様にして鋳造速
度を低下し、かつモールド冷却水の制御(すなわち本発
明の冷却水制御方法)を行って鋳造を停止した。なお、
この際のΔTの最大値は7.5℃、定常状態からのΔT
の変化は3.5℃であるのは、図2に示される。鋳造停
止後、『旧タンディッシュ移動』→『仕切り材挿入』→
『シェル倒れ込み部シール実施』→『新タンディッシュ
配置』の各操作を行い、取鍋から新タンディッシュに同
組成のSUS304鋼を注入し、新タンディッシュから
モールドに溶鋼の注入を再開して、SUS304鋼の連
々鋳を行った。その結果、ブリードやブレークアウト、
シェルの大幅な倒れ込み等を発生することなく、全く問
題なくタンディッシュ交換後の連々鋳を行うことができ
た。
After the injection of the molten steel from the ladle into the tundish is completed, the casting speed is lowered and the mold cooling water is controlled (that is, the cooling water control method of the present invention) in exactly the same manner as the example shown in FIG. ) Was performed and the casting was stopped. In addition,
The maximum value of ΔT at this time is 7.5 ° C, ΔT from the steady state
It is shown in FIG. 2 that the change in is 3.5 ° C. After stopping casting, "Move old tundish" → "Insert partition material" →
Perform each operation of "Implementation of shell collapse part" → "New tundish arrangement", inject SUS304 steel of the same composition from the ladle into the new tundish, restart the injection of molten steel into the mold from the new tundish, Successive casting of SUS304 steel was performed. As a result, bleed and breakout,
It was possible to perform continuous casting after the tundish replacement without any problem without causing the shell to collapse significantly.

【0041】<比較例>比較のために、冷却水制御を変
更した以外は、前記本発明例と全く同様にして連々鋳を
行った。冷却水制御条件は下記のとおりである。 A法;冷却水量を常時一定とした(すなわち前述の図3
に示される例)その結果、A法では図4に示される様
に、シェルが大幅に倒れ込み、モールドの上方より鋳片
サポートロールが見えるような状態となってしまった。
以上の結果より、本発明の効果は明らかである。
<Comparative Example> For comparison, continuous casting was performed in exactly the same manner as in the Example of the present invention except that the cooling water control was changed. The cooling water control conditions are as follows. Method A: The amount of cooling water was always constant (that is, FIG.
As a result, in the method A, as shown in FIG. 4, the shell fell significantly, and the slab support roll could be seen from above the mold.
From the above results, the effect of the present invention is clear.

【0042】[0042]

【発明の効果】以上、詳細に説明したように、本発明の
連続鋳造用鋳型の冷却水制御方法によれば、鋳造停止時
のように急激な鋳造速度変化を伴う場合において、連鋳
片(溶鋼)の過冷却によるシェルの大幅な倒れ込みや、
冷却不足によるブリードやブレークアウト等を好適に防
止し、前述のような異鋼種連々鋳やタンディッシュ交換
後の連々鋳を安定かつ安全に行うことができ、生産性に
寄与する効果が極めて大きい。
As described above in detail, according to the cooling water control method of the continuous casting mold of the present invention, the continuous cast piece ( A large collapse of the shell due to supercooling of molten steel,
Bleeds, breakouts, etc. due to insufficient cooling can be suitably prevented, and continuous casting of different steel types as described above or continuous casting after the tundish replacement can be stably and safely performed, which is extremely effective in contributing to productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の連続鋳造用鋳型の冷却水制御方法を実
施する連続鋳造設備の一例を概念的に示す図である。
FIG. 1 is a view conceptually showing an example of a continuous casting facility for carrying out the cooling water control method for a continuous casting mold of the present invention.

【図2】本発明の連続鋳造用鋳型の冷却水制御方法の一
例を示すグラフである。
FIG. 2 is a graph showing an example of a cooling water control method for a continuous casting mold according to the present invention.

【図3】従来の連続鋳造用鋳型の冷却水制御方法の一例
を示すグラフである。
FIG. 3 is a graph showing an example of a conventional cooling water control method for a continuous casting mold.

【図4】従来の連続鋳造用鋳型の冷却水制御方法による
シェルの倒れ込みの一例を概念的に示す図である。
FIG. 4 is a diagram conceptually showing an example of the collapse of a shell by a conventional cooling water control method for a continuous casting mold.

【符号の説明】[Explanation of symbols]

10 連続鋳造設備(連鋳機) 12 連続鋳造片(連鋳片) 16 タンディッシュ 18 浸漬ノズル 20 連続鋳造用鋳型(モールド) 22 二次冷却帯 24 鋳片サポートローラ 26a,26b ピンチローラ 28 搬送制御装置 30 冷却水供給装置 32 供給ライン 34 排水ライン 36,38 温度計 40 制御装置 10 Continuous casting equipment (continuous casting machine) 12 Continuous cast pieces (continuous cast pieces) 16 Tundish 18 Immersion nozzle 20 Continuous casting mold (mold) 22 Secondary cooling zone 24 Cast piece support rollers 26a, 26b Pinch roller 28 Transfer control Device 30 Cooling water supply device 32 Supply line 34 Drain line 36, 38 Thermometer 40 Control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】定常状態および非定常状態が繰り返し操業
される連続鋳造における、非定常状態における連続鋳造
用鋳型の冷却水制御方法であって、 前記連続鋳造用鋳型に供給する冷却水の温度と前記連続
鋳造用鋳型から排出された冷却水の温度との差をΔTと
した際に、連続鋳造速度の低下に応じて前記連続鋳造用
鋳型に供給する冷却水量を逓減して前記ΔTを逓増し、
連続鋳造速度の上昇に応じて前記連続鋳造用鋳型に供給
する冷却水量を逓増して前記ΔTを逓減するように、前
記連続鋳造用鋳型への冷却水供給を制御することを特徴
とする連続鋳造用鋳型の冷却水制御方法。
1. A method of controlling cooling water for a continuous casting mold in a non-steady state in continuous casting in which a steady state and an unsteady state are repeatedly operated, the temperature of cooling water being supplied to the continuous casting mold. When the difference from the temperature of the cooling water discharged from the continuous casting mold is ΔT, the amount of cooling water supplied to the continuous casting mold is gradually decreased according to the decrease in the continuous casting speed to gradually increase ΔT. ,
Continuous casting characterized in that the cooling water supply to the continuous casting mold is controlled so that the amount of cooling water supplied to the continuous casting mold is gradually increased and the ΔT is gradually decreased according to an increase in the continuous casting speed. Water control method for casting mold.
【請求項2】前記冷却水供給の制御を連続鋳造の停止お
よび開始のための鋳造速度変化に応じて行う請求項1に
記載の連続鋳造用鋳型の冷却水制御方法。
2. The cooling water control method for a continuous casting mold according to claim 1, wherein the control of the cooling water supply is performed according to a casting speed change for stopping and starting the continuous casting.
JP2267994A 1994-02-21 1994-02-21 Method for controlling cooling water of mold for continuous casting Withdrawn JPH07227659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2267994A JPH07227659A (en) 1994-02-21 1994-02-21 Method for controlling cooling water of mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2267994A JPH07227659A (en) 1994-02-21 1994-02-21 Method for controlling cooling water of mold for continuous casting

Publications (1)

Publication Number Publication Date
JPH07227659A true JPH07227659A (en) 1995-08-29

Family

ID=12089554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2267994A Withdrawn JPH07227659A (en) 1994-02-21 1994-02-21 Method for controlling cooling water of mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH07227659A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020192A (en) * 2013-07-19 2015-02-02 株式会社神戸製鋼所 Cooling method of cast slab
JP2018192500A (en) * 2017-05-17 2018-12-06 Jfe条鋼株式会社 Continuous casting method for square billet or square bloom
JP2020006425A (en) * 2018-07-11 2020-01-16 日本製鉄株式会社 Continuous casting method of metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015020192A (en) * 2013-07-19 2015-02-02 株式会社神戸製鋼所 Cooling method of cast slab
JP2018192500A (en) * 2017-05-17 2018-12-06 Jfe条鋼株式会社 Continuous casting method for square billet or square bloom
JP2020006425A (en) * 2018-07-11 2020-01-16 日本製鉄株式会社 Continuous casting method of metal

Similar Documents

Publication Publication Date Title
KR101507456B1 (en) A process and a plant for the production of metal strip
KR100304759B1 (en) Continuous casting equipment operation method
JP4507887B2 (en) Steel continuous casting method
WO1996001710A1 (en) Method of casting and rolling steel using twin-roll caster
JPH07227659A (en) Method for controlling cooling water of mold for continuous casting
KR101974566B1 (en) Method for casting slab and casting apparatus
WO1996001708A1 (en) Twin-roll caster and rolling mill for use therewith
KR100241404B1 (en) Method and device for control of tundish nozzle
JPH09141408A (en) Secondary cooling method in continuous casting
JP3528505B2 (en) Continuous casting method of steel with high hot strength
JPS6315061B2 (en)
JP3377340B2 (en) Continuous casting method
KR101185228B1 (en) Method of controlling casting speed in continuous casting
KR101388071B1 (en) Cooling method of mold for continuous casting
KR100986931B1 (en) Continuous casting method for reducing width deviation of ferritic stainless steel last-slab
JP4461029B2 (en) Billet slab cutting method in continuous casting machine
JP2874567B2 (en) Level control method for start-up of continuous casting with multiple molds
JP2002239696A (en) Secondary cooling method for continuous casting
JP2903844B2 (en) Method of finishing casting in continuous casting
JP4706507B2 (en) Continuous casting method
KR101377484B1 (en) Method for estimating carbon-increasing of molten steel
KR20060073215A (en) Drawing method of final slab in continuous casting of thin slab
JPH0515404Y2 (en)
JPS60115351A (en) Continuous casting method
KR101443587B1 (en) Continuous casting method of ultralow carbon steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508