JP2007200962A - Composite material, method for manufacturing the same, magnetic core, and coil component - Google Patents

Composite material, method for manufacturing the same, magnetic core, and coil component Download PDF

Info

Publication number
JP2007200962A
JP2007200962A JP2006014699A JP2006014699A JP2007200962A JP 2007200962 A JP2007200962 A JP 2007200962A JP 2006014699 A JP2006014699 A JP 2006014699A JP 2006014699 A JP2006014699 A JP 2006014699A JP 2007200962 A JP2007200962 A JP 2007200962A
Authority
JP
Japan
Prior art keywords
powder
composite material
average particle
resin
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006014699A
Other languages
Japanese (ja)
Inventor
Takashi Yamaya
孝志 山家
Kazuyuki Ono
一之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006014699A priority Critical patent/JP2007200962A/en
Publication of JP2007200962A publication Critical patent/JP2007200962A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material and a method for manufacturing the same to ensure excellent manufacturing cost and productivity in order to improve the target volume occupation rate without use of a large amount of powder having fine grain size. <P>SOLUTION: In a composite material formed of resin and powder, a second powder formed of spherical particle having the average grain size of 1/400 to 1/20 of the average grain size of a first powder occupying the greater part of the powder is added in the volume percentage of 1 vol% or more to the composite material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数種の粉末と樹脂との混合物からなる複合材料と、この複合材料を成形して得られる種々の磁心、構造部品および機能部品、およびその製造方法に関する。   The present invention relates to a composite material composed of a mixture of a plurality of types of powders and a resin, various magnetic cores, structural parts and functional parts obtained by molding the composite material, and a method for manufacturing the same.

樹脂とフィラーとからなる複合材料は、成形により容易に目的とする形状が得られ、その生産性の高さから構造部品および機能部品として様々な分野で利用されている。ここで、前記複合材料の性能は含有するフィラーの物性値と生地となる樹脂の物性値によるが、特に生産可能な粘度または流動性を維持しつつ、最終成型品におけるフィラーの占積率を如何に高めるかが重要な課題の一つである。ここで、フィラーとは、針状、板状、球状、繊維状、不定形状の粉末等を示している。   A composite material composed of a resin and a filler can be easily formed into a desired shape by molding, and is used in various fields as a structural component and a functional component because of its high productivity. Here, the performance of the composite material depends on the physical property value of the filler to be contained and the physical property value of the resin used as the dough, but in particular, how much the filler space factor in the final molded product is maintained while maintaining the viscosity or fluidity that can be produced. It is one of the important issues. Here, the filler indicates needle-like, plate-like, spherical, fibrous, indefinite shape powder, or the like.

例えば、複合材料において機械的強度、弾性率、熱伝導率、線膨張係数、電気伝導率などの代表的な物性値は、一般的にはフィラー単体の物性値と、樹脂単体の物性値との中間の値となる。従って、目的とする物性がフィラーに多く依存する場合には、フィラーの占積率が高いほどフィラー自体の物性値に近いものとなり、複合材料の目的とする物性を、より高めることが可能となる。   For example, in a composite material, typical physical property values such as mechanical strength, elastic modulus, thermal conductivity, linear expansion coefficient, and electrical conductivity are generally the physical property values of a filler alone and the physical properties of a resin alone. Intermediate value. Therefore, when the target physical property depends largely on the filler, the higher the space factor of the filler, the closer to the physical property value of the filler itself, and the target physical property of the composite material can be further enhanced. .

また、磁性材料において重要な物性である比透磁率、飽和磁束密度等は磁性体の占積率に大きく依存するため、通常、材料開発においては空隙等のない高密度材料の開発、即ち磁性体の高占積率化が主要な指針のひとつであり、各種磁性材料において継続的な取り組みがなされている。樹脂と磁性体とからなる磁心(複合磁性材料)も例外ではなく、磁性体の占積率を高めることが重要であり、同様に種々の取り組みがなされてきている。   In addition, since the relative magnetic permeability and saturation magnetic flux density, which are important physical properties in magnetic materials, depend greatly on the space factor of the magnetic material, the development of high-density materials without voids or the like is usually used in material development. Is one of the main guidelines, and continuous efforts are being made in various magnetic materials. A magnetic core (composite magnetic material) made of a resin and a magnetic material is no exception, and it is important to increase the space factor of the magnetic material, and various efforts have been made in the same manner.

ここで、前記磁心(複合磁性材料)を成形する代表的な方法として、常圧注型、加圧注型、加圧成形(乾式成形)等があるが、いずれの方法においても、磁性体の高占積率化を目的とし、樹脂の選定、潤滑剤または離型剤の選定、圧力、振動、温度等の最適化が旧来より盛んに行われている。   Here, typical methods for molding the magnetic core (composite magnetic material) include atmospheric pressure casting, pressure casting, pressure molding (dry molding), and the like. For the purpose of increasing the volume fraction, selection of resins, selection of lubricants or release agents, and optimization of pressure, vibration, temperature, etc. have been actively performed from the past.

また、米一升と豆一升の混合物の見かけ体積が減少することが昔から知られており、このように、空間的なすき間に配置されるような粒径の粉体の組み合わせを選定して粉体の高占積率化を図るような手段は、以前より幾何学等の書籍でも一般的に述べられており、事実上、各分野において一般的かつ経験的に採用されている。例えば、特許文献1には、粉末Aと粒度分布最頻値の比が1/5以下の粉末Bを配合比で粉末Bが体積百分率で15vol%〜60vol%となるように混合することにより占積率が向上することが述べられている。   In addition, it has been known for a long time that the apparent volume of a mixture of rice and rice is reduced. In this way, a combination of powders with particle sizes that can be arranged in a spatial gap is selected. Thus, means for increasing the space factor of powders have been generally described in geometric books and the like, and in fact, they are generally and empirically adopted in various fields. For example, in Patent Document 1, powder B having a ratio of the powder A and the particle size distribution mode of 1/5 or less is mixed by mixing so that the powder B is 15 vol% to 60 vol% by volume ratio. It is stated that the volume factor improves.

特開2001−68324号公報JP 2001-68324 A

特許文献1によると、占積率を向上させるため、粒度分布最頻値の比が1/5以下と粒径の異なる複数の粉末を配合させることになるが、これは15%以上を占める主たる粉末を2種類以上用いることとなり、製造管理、生産性の点で不利となることが予想される。   According to Patent Document 1, in order to improve the space factor, a plurality of powders having a particle size distribution mode ratio of 1/5 or less and different particle diameters are blended, but this mainly accounts for 15% or more. Two or more kinds of powders are used, which is expected to be disadvantageous in terms of production management and productivity.

また、軟磁性材料の場合については、基本的に構成粒子の粒径を、使用される周波数条件下において粒子内部を流れる渦電流半径より小さくする必要があるため、主たる粉末の粒径は渦電流半径より小さくなければならない。前述の手段では粒径の大きい方をこの粒径以下に抑える必要があり、さらにその1/5以下の粒径の粉体を15〜60%と多量に含有させる必要がある。しかしながら、一般的に粒径の小さな粒子ほど比透磁率が低いため特性面で不利であり、さらに粒径の小さな粒子ほど製造コストが高くなる。   In the case of soft magnetic materials, the particle size of the constituent particles must basically be smaller than the radius of the eddy current flowing inside the particles under the frequency conditions used. Must be smaller than the radius. In the above-mentioned means, it is necessary to keep the larger particle size below this particle size, and it is also necessary to contain a large amount of 15-60% of the powder having a particle size of 1/5 or less. However, generally, the smaller the particle size, the lower the relative permeability, which is disadvantageous in terms of characteristics, and the smaller the particle size, the higher the manufacturing cost.

また、複合磁性材料においては、例えば希土類永久磁石のように、含有する磁性粒子が酸化する事により磁気特性が劣化するものがある。このような場合、酸化を防止するために磁性体粒子表面への有機物コーティングや無機微粒子粉末等の添加等が行われているが、粒径の小さな粒子の場合は、比表面積が大きく、酸化しやすい上に前述の防止策もコスト高となる。   Some composite magnetic materials, such as rare earth permanent magnets, deteriorate in magnetic properties due to oxidation of contained magnetic particles. In such a case, an organic coating or inorganic fine particle powder is added to the surface of the magnetic particles to prevent oxidation. However, in the case of particles having a small particle size, the specific surface area is large and the magnetic particles are oxidized. Besides being easy, the above-mentioned preventive measures are also expensive.

さらに、粒径の小さな粉末自体は乾粉の状態では嵩密度が低く流れ性も悪く、一般にスラリーとした場合は粘度が上昇する傾向があり、このような粉末を多量に用いる場合は、占積率の向上が充分なされないことも予想される。このように、粒径の小さな粉末を多量に必要とすることは、ハンドリング等が難しくなり、コスト、生産性の点で不利となる。   Furthermore, a powder having a small particle size itself has a low bulk density and poor flowability in a dry powder state, and generally has a tendency to increase in viscosity when used as a slurry. When a large amount of such powder is used, the space factor is increased. It is expected that the improvement will not be sufficient. Thus, requiring a large amount of powder having a small particle size makes handling difficult, which is disadvantageous in terms of cost and productivity.

本発明の目的は、粒径の小さな粉末を多量に用いなくとも、目的とする粉末の占積率を向上させることができる、コスト、生産性に優れた、複合材料およびその製造方法を提供することである。   An object of the present invention is to provide a composite material excellent in cost and productivity, and a method for producing the same, which can improve the space factor of the target powder without using a large amount of powder having a small particle size. That is.

本発明では、粉末と樹脂からなる複合材料において、前記粉末の大部分を占める第1の粉末の平均粒径に対し、1/400〜1/20の平均粒径の第2の粉末を複合材料に対して体積百分率1vol%以上添加することにより、樹脂と混合したときの粘度が顕著に低下し、結果として粉末の占積率を高めることが可能であることを見いだした。   In the present invention, in the composite material composed of powder and resin, the second powder having an average particle size of 1/400 to 1/20 of the average particle size of the first powder occupying most of the powder is used as the composite material. It was found that by adding 1 vol% or more of the volume percentage, the viscosity when mixed with the resin is remarkably lowered, and as a result, the space factor of the powder can be increased.

また、前記第1の粉末の平均粒径に対し、1/20〜1/2の平均粒径の第3の粉末を複合材料に対して体積百分率1vol%以上添加することにより、さらに粉末の占積率を高めることが可能であることを見いだした。   Further, by adding a third powder having an average particle size of 1/20 to 1/2 to the composite material in an amount of 1 vol% or more with respect to the average particle size of the first powder, the powder is further occupied. We found that it is possible to increase the product ratio.

さらに、第2の粉末として球状粒子からなる粉末を用いる事により、さらに粉末の占積率を高めることが可能であることを見いだした。   Furthermore, it has been found that the space factor of the powder can be further increased by using a powder composed of spherical particles as the second powder.

即ち、本発明は、複数種の粉末と樹脂との混合物が固化された複合材料であり、前記複数種の粉末の体積百分率が前記複合材料の全体積に対して60〜90vol%である複合材料において、前記複数種の粉末の大部分を占める第1の粉末の平均粒径D1に対する第2の粉末の平均粒径D2の比率D2/D1が1/400〜1/20の範囲となるような前記第2の粉末が前記複合材料の全体積に対して1.0vol%以上含まれている複合材料である。   That is, the present invention is a composite material in which a mixture of a plurality of types of powder and resin is solidified, and the volume percentage of the plurality of types of powder is 60 to 90 vol% with respect to the total volume of the composite material The ratio D2 / D1 of the average particle diameter D2 of the second powder to the average particle diameter D1 of the first powder occupying most of the plurality of types of powders is in the range of 1/400 to 1/20. In the composite material, the second powder is contained in an amount of 1.0 vol% or more based on the total volume of the composite material.

また、本発明は、第1の粉末の平均粒径D1に対する第3の粉末の平均粒径D3の比率D3/D1が 1/20〜1/2の範囲となるような前記第3の粉末が前記複合材料の全体積に対して1.0vol%以上含まれている複合材料である。   The present invention also provides the third powder in which the ratio D3 / D1 of the average particle diameter D3 of the third powder to the average particle diameter D1 of the first powder is in the range of 1/20 to 1/2. The composite material is 1.0 vol% or more with respect to the total volume of the composite material.

また、本発明は、第2の粉末が球状である複合材料である。   Further, the present invention is a composite material in which the second powder is spherical.

また、本発明は、第1の粉末が、その材質を、Fe−Si系合金、Fi−Si−Al系合金、鉄系アモルファス合金、コバルト系アモルファス合金の少なくとも一つとする複合材料である。   In the present invention, the first powder is a composite material whose material is at least one of an Fe-Si alloy, a Fi-Si-Al alloy, an iron amorphous alloy, and a cobalt amorphous alloy.

また、本発明は、上記の複合材料で形成された磁心である。   Moreover, this invention is a magnetic core formed with said composite material.

また、本発明は、上記の磁心と巻線で形成された線輪部品である。   Moreover, this invention is a wire ring component formed with said magnetic core and coil | winding.

また、本発明は、上記の複合材料を前記複数種の粉末と樹脂との混合物を常圧注型、加圧注型、加圧(圧縮)成形のいずれかにより成形して固化させる複合材料の製造方法である。   Further, the present invention provides a method for producing a composite material, wherein the composite material is formed by solidifying the mixture of the plurality of types of powder and resin by any one of normal pressure casting, pressure casting, and pressure (compression) molding. It is.

本発明によれば、粒径の小さな粉末を多量に用いなくとも粉末の占積率を向上させることができ、コスト、生産性に優れた複合材料、およびその製造方法を提供できる。   According to the present invention, it is possible to improve the space factor of the powder without using a large amount of powder having a small particle size, and it is possible to provide a composite material excellent in cost and productivity, and a method for producing the same.

また、粉末の占積率を高めることが可能なため、複合材料の物性値を粉体の物性値に近付ける事が可能となり、目的とする物性を持つ粉体を用いて、複合材料の目的とする物性値を高める事が可能となる。磁心、線輪部品の場合は、樹脂との複合材料であるための、絶縁性、強度面での優位性を持たせることができると共に、磁気特性が良好な磁心、線輪部品を提供できる。   In addition, since it is possible to increase the space factor of the powder, it is possible to bring the physical property value of the composite material close to the physical property value of the powder. It is possible to increase the physical property value. In the case of a magnetic core and a wire ring component, since it is a composite material with a resin, it can be given superiority in insulation and strength, and a magnetic core and wire ring component with good magnetic properties can be provided.

本発明の複合材料およびその製造方法について説明する。本発明の複合材料は、複数種の粉末と樹脂との混合物が固化された複合材料であり、この複数種の粉末の体積百分率が複合材料の全体積に対して60〜90vol%である複合材料である。この複数種の粉末は、大部分を占める第1の粉末と、第1の粉末の平均粒径がD1であるとき、第2の粉末の平均粒径をD2として、平均粒系の比率D2/D1が1/400〜1/20の範囲となるような第2の粉末とからなる。この第2の粉末は、前記複合材料の全体積に対して1.0vol%以上含まれるようにする。なお、第2の粉末が15vol%を越えると粉末の占積率を高くする効果があまりなく、微粉末を多量に使用するとハンドリング性等で問題となるので、これ以下が望ましい。この複数種の粉末には、さらに少量の第3、第4、第5等の粉末が含まれていてもよい。   The composite material of the present invention and the manufacturing method thereof will be described. The composite material of the present invention is a composite material in which a mixture of a plurality of types of powder and resin is solidified, and the volume percentage of the plurality of types of powder is 60 to 90 vol% with respect to the total volume of the composite material It is. When the average particle size of the first powder occupying most of the plurality of types of powders and the first powder is D1, the average particle size of the second powder is D2, and the average particle system ratio D2 / It consists of the 2nd powder that D1 becomes the range of 1/400-1/20. This second powder is contained in an amount of 1.0 vol% or more with respect to the total volume of the composite material. In addition, if the second powder exceeds 15 vol%, the effect of increasing the space factor of the powder is not so much, and if a large amount of fine powder is used, there is a problem in handling properties and the like. The plurality of types of powders may further contain a small amount of third, fourth, fifth, etc. powders.

また、この複数種の粉末は、第1の粉末と第2の粉末とを粒径と配合の比率が合致するように混合したものと粒度分布が同じであれば良く、同一種と見なせる粉末であっても粒径、配合比率で複数種に分けて、混合したものとみなして取り扱えば良い。なぜなら、一種類の粉末を一度篩い分けして2種の粉末とし再度混合したものと、最初の一種類の粉末では、本願発明の作用効果において、変わりがないからである。また、本発明の明細書中では、粉末の粒径は乾式レーザー散乱法で測定を行っており、粉末の平均粒径としては、体積基準の累積50%径を用いている。   The plurality of types of powders may be regarded as the same type as long as the particle size distribution is the same as that obtained by mixing the first powder and the second powder so that the particle size and the mixing ratio match. Even if it exists, it divides into several types by a particle size and a compounding ratio, and should just treat it as what was mixed. This is because there is no change in the function and effect of the present invention between one type of powder once sieved and mixed again as two types of powder, and the first type of powder. In the specification of the present invention, the particle diameter of the powder is measured by a dry laser scattering method, and the volume-based cumulative 50% diameter is used as the average particle diameter of the powder.

また、本願発明によれば、さらに、第3の粉末の平均粒径をD3とした時、平均粒径の比率D3/D1が 1/20〜1/2の範囲である第3の粉末を前記複合材料の全体積に対して1.0vol%以上含むことにより、より占積率を高めた複合材料を得ることができる。   Further, according to the present invention, when the average particle diameter of the third powder is D3, the third powder having an average particle diameter ratio D3 / D1 in the range of 1/20 to 1/2 By including 1.0 vol% or more with respect to the total volume of the composite material, a composite material with a higher space factor can be obtained.

ここで、粉末の粒子は、針状、板状、球状、繊維状、不定形状等のいずれの形状であっても、粉末の粒径と配合比率を上記の設定にすることにより占積率を高める効果が得られるが、粒子形状が球状の粉末を用いると粉末の乾粉およびスラリーの流動性が高く、占積率を高めるのに有利である。しかしながら、全部の粉末を球状の粒子とするのは必須ではなく、第2の粉末を球状の粒子とするだけでも、全体の粉末の流動性を高める効果が顕著であるため、少なくとも第2の粉末としては粒子形状が球状の粉末を用いる事が望ましい。   Here, even if the powder particles have any shape such as needle shape, plate shape, spherical shape, fiber shape, and indefinite shape, the space factor can be increased by setting the particle size and blending ratio of the powder to the above settings. Although the effect of increasing is obtained, the use of a powder having a spherical particle shape is advantageous in increasing the fluidity of the dry powder and slurry and increasing the space factor. However, it is not essential that all the powders are spherical particles, and even if the second powder is only spherical particles, the effect of increasing the fluidity of the entire powder is significant, so at least the second powder It is desirable to use a powder having a spherical particle shape.

ここで、第1の粉末は、その材質として、Fe−Si系合金、Fi−Si−Al系合金、鉄系アモルファス合金、コバルト系アモルファス合金の少なくとも一つを用いることにより、軟磁性材料としての磁気特性に優れた複合材料を得ることができる。   Here, the first powder is made of at least one of Fe-Si based alloy, Fi-Si-Al based alloy, iron based amorphous alloy, and cobalt based amorphous alloy as a material thereof. A composite material having excellent magnetic properties can be obtained.

ここで、本発明の複合材料は粉末の占積率が高いため、飽和磁束密度、透磁率の高い材料を得ることができ、この複合材料を磁心として用いることにより、磁気特性の優れた磁心が得られる。   Here, since the composite material of the present invention has a high powder space factor, a material having a high saturation magnetic flux density and high magnetic permeability can be obtained. By using this composite material as a magnetic core, a magnetic core having excellent magnetic properties can be obtained. can get.

ここで、本発明の磁心と巻線により線輪部品を構成すると、磁心の磁気特性が優れるため、良好な特性を有するトランスや電子コイル等のインダクタンス部品を得ることができる。巻線は、一般的な線輪部品のように磁心に導線を巻きまわすことによって形成することができるが、磁心を形成する際に、磁心中に導線コイルを埋め込んで製造することも可能である。   Here, when the wire ring component is constituted by the magnetic core and the winding according to the present invention, the magnetic property of the magnetic core is excellent, so that an inductance component such as a transformer or an electronic coil having good characteristics can be obtained. The winding can be formed by winding a conducting wire around a magnetic core like a general wire ring part, but it is also possible to embed a conducting coil into the magnetic core when manufacturing the magnetic core. .

また、本発明では、複数種の粉末と樹脂との混合物を圧注型、加圧注型、加圧(圧縮)成形のいずれかにより成形して固化させることにより、上記のような複合材料を製造することができる。   In the present invention, a composite material as described above is produced by molding and solidifying a mixture of a plurality of types of powder and resin by any one of a pressure casting, pressure casting, and pressure (compression) molding. be able to.

ここで、常圧注型で成形する場合は、次のようにして行えば良い。即ち、所定の比率の第1の粉末と、第2の粉末と、第3の粉末と、液状の樹脂とをミキサーで混練しスラリーを作製する。前記樹脂は、例えば2液混合タイプの熱硬化型のエポキシ樹脂である。作製したスラリーを所定の型に注型(流し込み)し、必要に応じ、振動等の付与により流動性を向上させ、また、減圧による脱泡を行う。その後、例えば150℃×3時間の条件にて、加熱し硬化させたのち、型から取り出して複合材料を得る。   Here, when molding by normal pressure casting, it may be performed as follows. That is, a first powder, a second powder, a third powder, and a liquid resin in a predetermined ratio are kneaded with a mixer to prepare a slurry. The resin is, for example, a two-component mixed thermosetting epoxy resin. The prepared slurry is cast (poured) into a predetermined mold, and if necessary, fluidity is improved by applying vibration or the like, and defoaming is performed by decompression. Then, for example, after heating and curing under conditions of 150 ° C. × 3 hours, the composite material is obtained by removing from the mold.

また、加圧注型で成形する場合は、次のようにして行えば良い。即ち、第1の粉末と、第2の粉末と、第3の粉末と樹脂とを加熱混練し、樹脂が溶融した状態のペースト状の混練物を作製する。この混練物を型に高圧で注型し、樹脂として熱可塑樹脂を用いる場合は冷却固化、または樹脂として熱硬化樹脂を用いる場合は反応固化したのち型から取り出して複合材料を得る。   Moreover, what is necessary is just to carry out as follows, when shape | molding by pressure casting. That is, the first powder, the second powder, the third powder, and the resin are heat-kneaded to produce a paste-like kneaded material in which the resin is melted. This kneaded product is poured into a mold at a high pressure, and when a thermoplastic resin is used as a resin, it is cooled and solidified. When a thermosetting resin is used as a resin, it is solidified by reaction and then taken out from the mold to obtain a composite material.

また、加圧(圧縮)成形で成形する場合は、次のようにして行えば良い。即ち、予め、第1の粉末と、第2の粉末と、第3の粉末の表面に結合材層を形成する。その方法は、例えば、溶剤希釈した結合材を粉末に滴下または噴霧または浸績したのち溶剤を揮発させる、または結合剤と溶剤(水も含む)とのスラリーを作製し、スプレー乾燥等により行われる。また、粉末が細かすぎる場合、数十〜数百μmの大きさに造粒し、粉末を型に充填する際の流れ性の改善、および嵩密度の調整を行う。前述の結合材で覆われ、流れ性と嵩密度が調整された粉末を型(ダイス)に充填し上下型(パンチ)にて数トン〜数十トン/cm2の圧力にて成形し型から抜き出す。 Moreover, what is necessary is just to carry out as follows, when shape | molding by pressurization (compression) shaping | molding. That is, a binder layer is formed in advance on the surfaces of the first powder, the second powder, and the third powder. The method is performed by, for example, dropping or spraying or soaking a solvent-diluted binder to volatilize the solvent, or preparing a slurry of the binder and the solvent (including water), and spray drying. . When the powder is too fine, it is granulated to a size of several tens to several hundreds of μm, and the flowability when filling the mold with the powder is adjusted and the bulk density is adjusted. Fill the mold (die) with the powder covered with the above-mentioned binder and adjusted flowability and bulk density, and mold it with the upper and lower molds (punch) at a pressure of several tons to several tens of tons / cm 2 Extract.

(実施例1)
第1の粉末としてFe−6.5Si材のガスアトマイズ粉末を用い、その平均粒径D1は120μm、体積百分率は70vol%の配合とした。第2の粉末としてSiO2粉末を用い、その平均粒径D2は0.5μm、体積百分率は 5vol%の配合とした。このときの平均粒径の比率D2/D1は1/240である。上記粉末を適量のカップリング剤で表面処理をした後、樹脂との混合を行った。樹脂は熱硬化性のエポキシ樹脂を用い、体積百分率は粉末とカップリング剤の残分とした。
Example 1
A gas atomized powder of Fe-6.5Si material was used as the first powder, the average particle diameter D1 was 120 μm, and the volume percentage was 70 vol%. SiO 2 powder was used as the second powder, the average particle diameter D2 was 0.5 μm, and the volume percentage was 5 vol%. The ratio D2 / D1 of the average particle diameter at this time is 1/240. The powder was surface-treated with an appropriate amount of a coupling agent and then mixed with a resin. The resin used was a thermosetting epoxy resin, and the volume percentage was the remainder of the powder and coupling agent.

比較例として、第1の粉末として実施例1と同じFe−6.5Si材のガスアトマイズ粉末を用い、その平均粒径D1は120μm、体積百分率は66vol%の配合とした。上記粉末を適量のカップリング剤で処理をした後、樹脂との混合を行った。樹脂は前記と同じ熱硬化性のエポキシ樹脂を用い、体積百分率は粉末とカップリング剤の残分とした。   As a comparative example, a gas atomized powder of the same Fe-6.5Si material as in Example 1 was used as the first powder, the average particle diameter D1 was 120 μm, and the volume percentage was 66 vol%. The powder was treated with an appropriate amount of a coupling agent, and then mixed with a resin. The resin was the same thermosetting epoxy resin as described above, and the volume percentage was the remainder of the powder and coupling agent.

上記配合比の粉末と樹脂とを混合しスラリーを作製し、外径27mm、内径15mm、高さ12mmの型に注型し真空脱泡を行い、加熱硬化した後、取り出し、トロイダルコアを作製した。前記トロイダルコアの重量と寸法を測定し密度を算出した。さらに前記トロイダルコアにほぼ均等となるようにφ1.5mmの銅線を23ターン巻き、LCRメーターにて比透磁率の測定を行った。   A slurry is prepared by mixing the powder and the resin in the above-mentioned mixing ratio, cast into a mold having an outer diameter of 27 mm, an inner diameter of 15 mm, and a height of 12 mm, vacuum defoamed, heat-cured, and then taken out to produce a toroidal core. . The weight and dimensions of the toroidal core were measured and the density was calculated. Further, a φ1.5 mm copper wire was wound for 23 turns so as to be substantially equal to the toroidal core, and the relative permeability was measured with an LCR meter.

インダクタンスの測定は、直流電流を重畳しない値と、一定の直流磁界をかけたときの値を測定し、前者をL0、後者をL1とし(L0−L1)/L0をインダクタンスの直流電流重畳特性とした。このインダクタンスの直流電流重畳特性は、パワーチョークコイルにおいては、設計許容範囲が数十%でなされる場合が一般的であることから、30%以下が好ましく、さらに20%以下であることが望ましい。また、得られた硬化物の飽和磁束密度は、トロイダルコアから角柱状のサンプルを切り出して、B−Hカーブトレーサで測定した。この際、磁界H=1.6×105A/mの時の磁束密度Bを読み取り飽和磁束密度とした。粉末の粒径は乾式レーザー散乱法により測定し、頻度の累積が50%を示す粒径を平均粒径とした。その結果を表1に示す。 The inductance is measured by measuring a value that does not superimpose a DC current and a value when a constant DC magnetic field is applied. The former is L0 and the latter is L1. did. The direct current superimposition characteristic of the inductance is generally 30% or less and more preferably 20% or less because the design allowable range is generally several tens% in the power choke coil. Moreover, the saturation magnetic flux density of the obtained hardened | cured material cut out the prism-shaped sample from the toroidal core, and measured it with the BH curve tracer. At this time, the magnetic flux density B when the magnetic field H = 1.6 × 10 5 A / m was read and used as the saturation magnetic flux density. The particle diameter of the powder was measured by a dry laser scattering method, and the average particle diameter was defined as the particle diameter showing a cumulative frequency of 50%. The results are shown in Table 1.

Figure 2007200962
Figure 2007200962

表1より明らかなように、本発明においては、比較例に対し大幅に粉末の占積率が高いにも関わらず比較例と同等のスラリー粘度を示し、結果として注型を良好に行うことが可能であった。また、樹脂分が少なく非磁性粉末を含みつつも磁性体自体の占積率が高いことにより、硬化物の密度は5.9g/ccと高く、比較例に対しほぼ同等のμでありながら、インダクタンスの直流電流重畳特性が大幅に改善されている。また、磁性体の占積率が高いことにより飽和磁束密度も向上している。   As is apparent from Table 1, in the present invention, although the powder space factor is significantly higher than that of the comparative example, the slurry viscosity is the same as that of the comparative example, and as a result, casting can be performed well. It was possible. In addition, the density of the cured product is as high as 5.9 g / cc due to the high space factor of the magnetic material itself while containing a small amount of resin and non-magnetic powder. The direct current superimposition characteristic of the inductance is greatly improved. In addition, the saturation magnetic flux density is improved due to the high space factor of the magnetic material.

(実施例2)
実施例1と同様に下記の配合比にてトロイダルコアを作製し評価を行った。第1の粉末としてFe−6.5Si材のガスアトマイズ粉末を用い、その平均粒径D1は120μm、体積百分率は68vol%の配合とした。第2の粉末としてSiO2粉末を用い、体積百分率は5vol%とし、その平均粒径D2は表2に示すものを用いた。上記粉末を適量のカップリング剤で表面処理をしたのち樹脂との混合を行った。樹脂は熱硬化性のエポキシ樹脂を用い、体積比は上記第1の粉末と第2の粉末とカップリング剤の残分を初期値とし、これらを混合としたときの粘度を初期の粘度とし、この値が高く流動性が悪いものについては、さらに流動性が得られるまでエポキシ樹脂を追加し加えてスラリーの作製を行った。
(Example 2)
In the same manner as in Example 1, a toroidal core was prepared and evaluated at the following blending ratio. A gas atomized powder of Fe-6.5Si material was used as the first powder, the average particle diameter D1 was 120 μm, and the volume percentage was 68 vol%. The SiO 2 powder was used as the second powder, the volume percentage was 5 vol%, and the average particle diameter D2 shown in Table 2 was used. The powder was surface-treated with an appropriate amount of a coupling agent and then mixed with a resin. The resin is a thermosetting epoxy resin, and the volume ratio is the initial value of the remainder of the first powder, the second powder, and the coupling agent, and the viscosity when these are mixed is the initial viscosity, For those having high values and poor fluidity, an epoxy resin was further added until fluidity was obtained, and a slurry was prepared.

インダクタンスの測定は直流電流を重畳しない値と、一定の直流磁界をかけたときの値を測定し、前者をL0、後者をL1とし(L0−L1)/L0をインダクタンスの直流電流重畳特性とした。このインダクタンスの直流電流重畳特性は、パワーチョークコイルにおいては、設計許容範囲が数十%でなされる場合が一般的であることから、30%以下が好ましく、さらに20%以下であることが望ましい。その結果を表2に示す。   Inductance is measured by measuring a value that does not superimpose a DC current and a value when a constant DC magnetic field is applied. The former is L0, the latter is L1, and (L0-L1) / L0 is the DC current superposition characteristic of the inductance. . The direct current superimposition characteristic of the inductance is generally 30% or less and more preferably 20% or less because the design allowable range is generally several tens of percent in the power choke coil. The results are shown in Table 2.

Figure 2007200962
Figure 2007200962

表2から明らかなように、試料No.b2〜b7の平均粒径比D2/D1が1/400〜1/20の範囲においてスラリーの粘度が十分に低く、硬化物の密度が高く、磁性体の占積率が高いことから飽和磁束密度が高くなり、さらにインダクタンスの直流電流重畳特性の改善がなされている。   As apparent from Table 2, the sample No. When the average particle diameter ratio D2 / D1 of b2 to b7 is in the range of 1/400 to 1/20, the viscosity of the slurry is sufficiently low, the density of the cured product is high, and the saturation magnetic flux density is high because the space factor of the magnetic material is high. In addition, the DC current superposition characteristics of the inductance are improved.

(実施例3)
実施例2と同様に、下記の配合比にてトロイダルコアを作製し評価を行った。第1の粉末としてFe−6.5Si材のガスアトマイズ粉末を用い、その平均粒径D1は120μm、体積百分率は68vol%の配合とした。第2の粉末としてSiO2粉末を用い、その平均粒径D2は0.5μmのものを用い、体積百分率は表3に示す配合とした。このとき平均粒径比D2/D1は1/400である。上記粉末を適量のカップリング剤で表面処理をしたのち樹脂との混合を行った。樹脂は熱硬化性のエポキシ樹脂を用い、体積比は上記第1の粉末と第2の粉末と第3の粉末とカップリング剤の残分を初期配合比とし、スラリーとしたときの粘度が高く流動性が悪いものについては、さらに流動性が得られるまでエポキシ樹脂を追加で配合しスラリーの作製を行った。その結果を表3に示す。
(Example 3)
Similar to Example 2, a toroidal core was prepared and evaluated at the following blending ratio. A gas atomized powder of Fe-6.5Si material was used as the first powder, the average particle diameter D1 was 120 μm, and the volume percentage was 68 vol%. SiO 2 powder was used as the second powder, the average particle diameter D2 was 0.5 μm, and the volume percentage was as shown in Table 3. At this time, the average particle diameter ratio D2 / D1 is 1/400. The powder was surface-treated with an appropriate amount of a coupling agent and then mixed with a resin. The resin is a thermosetting epoxy resin, and the volume ratio is the initial blending ratio of the first powder, the second powder, the third powder and the remainder of the coupling agent. For those having poor fluidity, an epoxy resin was additionally added until fluidity was obtained, and a slurry was prepared. The results are shown in Table 3.

Figure 2007200962
Figure 2007200962

表3から明らかなように、試料No.c2〜c5の第2の粉末の添加量が1vol%以上と少量の領域にてもスラリー粘度が低下する効果が確認された。この添加範囲では、第2の粉末を添加して樹脂量が減少しているのにも関わらずスラリー初期粘度が低下し、磁性体の占積率を高めることができるので飽和磁束密度が高くなっている。また、インダクタンスの直流重畳特性が改善されている。   As apparent from Table 3, the sample No. It was confirmed that the slurry viscosity was lowered even when the amount of the second powder of c2 to c5 was 1 vol% or more and a small amount. In this addition range, although the amount of resin is reduced by adding the second powder, the initial viscosity of the slurry is lowered and the space factor of the magnetic material can be increased, so that the saturation magnetic flux density is increased. ing. Moreover, the direct current superimposition characteristic of the inductance is improved.

(実施例4)
実施例1〜3と同様に下記の配合比にてトロイダルコアを作製し評価を行った。第1の粉末としてFe−6.5Si材のガスアトマイズ粉末を用い、その平均粒径D1は120μm、体積百分率は68vol%の配合とした。第2の粉末としてSiO2粉末を用い、体積百分率は5vol%とし、その平均粒径D2は0.5μmのものを用いた。このとき平均粒径比D2/D1は1/240である。第3の粉末としてSiO2粉末を用い、体積百分率は5vol%とし、その平均粒径D3は表3に示すものを用いた。上記粉末を適量のカップリング剤で表面処理をしたのち樹脂との混合を行った。樹脂は熱硬化性のエポキシ樹脂を用い、体積比は上記第1の粉末と第2の粉末と第3の粉末とカップリング剤の残分とした。これらを混合としたときの粘度を初期の粘度とし、この値が高く流動性が悪いものについては、さらに流動性が得られるまでエポキシ樹脂を追加し加えてスラリーの作製を行った。その結果を表4に示す。
Example 4
The toroidal core was produced and evaluated by the following compounding ratio similarly to Examples 1-3. A gas atomized powder of Fe-6.5Si material was used as the first powder, the average particle diameter D1 was 120 μm, and the volume percentage was 68 vol%. SiO 2 powder was used as the second powder, the volume percentage was 5 vol%, and the average particle diameter D2 was 0.5 μm. At this time, the average particle diameter ratio D2 / D1 is 1/240. The SiO 2 powder was used as the third powder, the volume percentage was 5 vol%, and the average particle diameter D3 shown in Table 3 was used. The powder was surface-treated with an appropriate amount of a coupling agent and then mixed with a resin. The resin used was a thermosetting epoxy resin, and the volume ratio was the remainder of the first powder, the second powder, the third powder, and the coupling agent. The viscosity when these were mixed was set as the initial viscosity, and for those having a high value and poor fluidity, an epoxy resin was further added until fluidity was obtained to prepare a slurry. The results are shown in Table 4.

Figure 2007200962
Figure 2007200962

表4から明らかなように、試料No.d1〜d4は第3の粒子が添加されて樹脂量が減少しているが、スラリー初期粘度が殆んど変わらない。そのため、樹脂の追加を行っていないので、磁性体の占積率が変わらず、飽和磁束密度も殆んど変わっていない。試料No.d1、d2は、平均粒径比D2/D1が1/400〜1/20の粉末を増量したものに相当し、実施例3と同様な結果が得られているが、試料No.d3、d4の平均粒径比D3/D1が1/20〜1/2の範囲の第3の粉末を添加しても第2の粉末が添加されている場合には粉末の占積率を高くすることができることがわかる。また、試料No.d5のように平均粒径比D3/D1が1/2以上の粉末を添加する場合は、粉末の占積率を高める効果が低いことがわかる。またインダクタンスの直流電流重畳特性は改善されている。   As is apparent from Table 4, sample No. In d1 to d4, the third particle is added and the amount of resin is reduced, but the initial slurry viscosity is hardly changed. Therefore, since no resin is added, the space factor of the magnetic material does not change, and the saturation magnetic flux density hardly changes. Sample No. d1 and d2 correspond to those obtained by increasing the powder having an average particle size ratio D2 / D1 of 1/400 to 1/20, and the same results as in Example 3 were obtained. Even when the third powder having the average particle diameter ratio D3 / D1 of d3 and d4 in the range of 1/20 to 1/2 is added, if the second powder is added, the space factor of the powder is increased. You can see that you can. Sample No. It can be seen that when a powder having an average particle size ratio D3 / D1 of 1/2 or more is added as in d5, the effect of increasing the space factor of the powder is low. In addition, the DC current superposition characteristics of the inductance are improved.

(実施例5)
実施例4と同様に下記の配合比にてトロイダルコアを作製し評価を行った。第1の粉末としてFe−6.5Si材のガスアトマイズ粉末を用い、その平均粒径D1は120μm、体積百分率は68vol%の配合とした。第2の粉末としてSiO2粉末を用い、体積百分率は5vol%とし、その平均粒径D2は2.4μmのものを用いた。このとき平均粒径比D2/D1は1/50である。第3の粉末としてSiO2粉末を用い、体積百分率は5vol%とし、その平均粒径D3は表4に示すものを用いた。上記粉末を適量のカップリング剤で表面処理をしたのち樹脂との混合を行った。樹脂は熱硬化性のエポキシ樹脂を用い、体積比は上記第1の粉末と第2の粉末と第3の粉末とカップリング剤の残分とした。その結果を表5に示す。
(Example 5)
In the same manner as in Example 4, a toroidal core was produced and evaluated at the following blending ratio. A gas atomized powder of Fe-6.5Si material was used as the first powder, the average particle diameter D1 was 120 μm, and the volume percentage was 68 vol%. A SiO 2 powder was used as the second powder, the volume percentage was 5 vol%, and the average particle diameter D2 was 2.4 μm. At this time, the average particle size ratio D2 / D1 is 1/50. A SiO 2 powder was used as the third powder, the volume percentage was 5 vol%, and the average particle diameter D3 shown in Table 4 was used. The powder was surface-treated with an appropriate amount of a coupling agent and then mixed with a resin. The resin used was a thermosetting epoxy resin, and the volume ratio was the remainder of the first powder, the second powder, the third powder, and the coupling agent. The results are shown in Table 5.

Figure 2007200962
Figure 2007200962

表5から明らかなように、試料No.e1〜e4では第3の粒子が添加されて樹脂量が減少しているがスラリー初期粘度が殆んど変わず、樹脂の追加も行っていないので、磁性体の占積率が変わらず、飽和磁束密度も同じである。試料No.e1、e2は、平均粒径比D2/D1が1/400〜1/20の粉末を増量したものに相当し、実施例3と同様な結果が得られており、試料No.e3、e4の平均粒径比D3/D1が、1/20〜1/2の範囲の第3の粉末を添加した場合も第2の粉末が添加されているので、粉末の占積率を高くすることができることがわかる。実施例5の場合も第2の粉末の平均粒径が異なっても実施例4と同様な結果が得られている。また、インダクタンスの直流電流重畳特性はさらに改善され、望ましい値である20%以下のものが得られている。   As is apparent from Table 5, sample No. In e1 to e4, the amount of resin is reduced by the addition of the third particles, but the initial viscosity of the slurry is hardly changed and the addition of resin is not performed, so the space factor of the magnetic material does not change and is saturated. The magnetic flux density is the same. Sample No. e1 and e2 correspond to those obtained by increasing the amount of powder having an average particle size ratio D2 / D1 of 1/400 to 1/20, and the same results as in Example 3 were obtained. When the third powder having an average particle size ratio D3 / D1 of e3 and e4 in the range of 1/20 to 1/2 is added, the second powder is also added, so the space factor of the powder is increased. You can see that you can. In the case of Example 5, the same result as in Example 4 was obtained even if the average particle size of the second powder was different. Further, the direct current superimposition characteristic of the inductance is further improved, and a desirable value of 20% or less is obtained.

(実施例6)
実施例1と同様に下記の配合比にてトロイダルコアを作製し評価を行った。
(Example 6)
In the same manner as in Example 1, a toroidal core was prepared and evaluated at the following blending ratio.

f1:第1の粉末としてFe−6.5Si材のガスアトマイズ粉末を用い、その平均粒径D1は120μm、体積百分率は68vol%の配合とした。第2の粉末として球状鉄粉を用い、その平均粒径D2は4μm、体積百分率は 10vol%の配合とした。このときの平均粒径の比率D2/D1は1/30である。第3の粉末としてFe−Cr―Si材のアトマイズ粉末を用い、体積百分率は5vol%とし、その平均粒径D3は10μmのものを用いた。このとき平均粒径比D3/D1は1/12である。上記粉末を適量のカップリング剤で表面処理をしたのち樹脂との混合を行った。樹脂は熱硬化性のエポキシ樹脂を用い、体積比は粉末とカップリング剤の残分とした。   f1: A gas atomized powder of Fe-6.5Si material was used as the first powder, the average particle diameter D1 was 120 μm, and the volume percentage was 68 vol%. Spherical iron powder was used as the second powder, the average particle diameter D2 was 4 μm, and the volume percentage was 10 vol%. At this time, the ratio D2 / D1 of the average particle diameter is 1/30. An atomized powder of Fe—Cr—Si material was used as the third powder, the volume percentage was 5 vol%, and the average particle diameter D3 was 10 μm. At this time, the average particle diameter ratio D3 / D1 is 1/12. The powder was surface-treated with an appropriate amount of a coupling agent and then mixed with a resin. The resin used was a thermosetting epoxy resin, and the volume ratio was the remainder of the powder and coupling agent.

f2:第1の粉末としてFe−6.5Si材のガスアトマイズ粉末を用い、その平均粒径D1は120μm、体積百分率は68vol%の配合とした。第2の粉末としてFe−Cr―Si材のアトマイズ粉末を分級することにより得られた微粉末を用い、その平均粒径D2は4μm、体積百分率は 10vol%の配合とした。このときの平均粒径の比率D2/D1は1/30である。第3の粉末としてFe−Cr―Si材のアトマイズ粉末を用い、体積百分率は5vol%とし、その平均粒径D3は10μmのものを用いた。このとき平均粒径比D3/D1は1/12である。上記粉末を適量のカップリング剤で表面処理をしたのち樹脂との混合を行った。樹脂は熱硬化性のエポキシ樹脂を用い、体積比は粉末とカップリング剤の残分とした。   f2: A gas atomized powder of Fe-6.5Si material was used as the first powder, the average particle diameter D1 was 120 μm, and the volume percentage was 68 vol%. The fine powder obtained by classifying the atomized powder of Fe—Cr—Si material was used as the second powder, and the average particle diameter D2 was 4 μm and the volume percentage was 10 vol%. At this time, the ratio D2 / D1 of the average particle diameter is 1/30. An atomized powder of Fe—Cr—Si material was used as the third powder, the volume percentage was 5 vol%, and the average particle diameter D3 was 10 μm. At this time, the average particle diameter ratio D3 / D1 is 1/12. The powder was surface-treated with an appropriate amount of a coupling agent and then mixed with a resin. The resin used was a thermosetting epoxy resin, and the volume ratio was the remainder of the powder and coupling agent.

f3:比較例として第1の粉末としてFe−6.5Si材のガスアトマイズ粉末を用い、その平均粒径D1は120μm、体積百分率は68vol%の配合とした。上記粉末を適量のカップリング剤で表面処理をしたのち樹脂との混合を行った。樹脂は熱硬化性のエポキシ樹脂を用い、体積比は粉末とカップリング剤の残分とした。   f3: As a comparative example, a gas atomized powder of Fe-6.5Si material was used as the first powder, the average particle diameter D1 was 120 μm, and the volume percentage was 68 vol%. The powder was surface-treated with an appropriate amount of a coupling agent and then mixed with a resin. The resin used was a thermosetting epoxy resin, and the volume ratio was the remainder of the powder and coupling agent.

これらを混合としたときの粘度を初期の粘度とし、さらに注型を良好に行うことが可能な流動性が得られるまでエポキシ樹脂を追加し加えてスラリーの作製を行い、各々トロイダルコアを作製した。その結果を表6に示す。   The viscosity when mixing these was the initial viscosity, and the slurry was prepared by adding epoxy resin until fluidity was obtained that could be cast well, and each toroidal core was prepared. . The results are shown in Table 6.

Figure 2007200962
Figure 2007200962

表6より明らかなように、本実施例において粉末の占積率を高くすることができ、複合材料中の磁性体も占積率が高いため、飽和磁束密度を大きくすることが可能となった。試料No.f1、f2に示すように、第2の粉末として球形粒子を使用するほうが粉末の占積率を高める効果が大きく、飽和磁束密度を高くすることができることがわかる。さらに、インダクタンスの直流電流重畳特性は例えば8×103A/mにて20%程度と十分に小さく、比透磁率は45と比較例に対し、2倍以上、高い値が得られている。 As can be seen from Table 6, in this example, the space factor of the powder can be increased, and the magnetic material in the composite material also has a high space factor, so that the saturation magnetic flux density can be increased. . Sample No. As shown by f1 and f2, it can be seen that the use of spherical particles as the second powder has a larger effect of increasing the space factor of the powder, and the saturation magnetic flux density can be increased. Furthermore, the direct current superimposition characteristic of the inductance is sufficiently small, for example, about 20% at 8 × 10 3 A / m, and the relative magnetic permeability is 45, which is twice as high as that of the comparative example.

Claims (7)

複数種の粉末と樹脂との混合物が固化された複合材料であり、前記複数種の粉末の体積百分率が前記複合材料の全体積に対して60〜90vol%である複合材料において、前記複数種の粉末の大部分を占める第1の粉末の平均粒径D1に対する第2の粉末の平均粒径D2の比率D2/D1が1/400〜1/20の範囲となるような前記第2の粉末が前記複合材料の全体積に対して1.0vol%以上含まれていることを特徴とする複合材料。   In a composite material in which a mixture of a plurality of types of powders and a resin is solidified, and the volume percentage of the plurality of types of powders is 60 to 90 vol% with respect to the total volume of the composite material, The second powder such that the ratio D2 / D1 of the average particle diameter D2 of the second powder to the average particle diameter D1 of the first powder occupying most of the powder is in the range of 1/400 to 1/20. 1.0% by volume or more with respect to the total volume of the composite material. 前記第1の粉末の平均粒径D1に対する第3の粉末の平均粒径D3の比率D3/D1が1/20〜1/2の範囲となるような前記第3の粉末が前記複合材料の全体積に対して1.0vol%以上含まれていることを特徴とする請求項1に記載の複合材料。   The third powder is such that the ratio D3 / D1 of the average particle diameter D3 of the third powder to the average particle diameter D1 of the first powder is in the range of 1/20 to 1/2. The composite material according to claim 1, which is contained in an amount of 1.0 vol% or more based on the product. 前記第2の粉末が球状であることを特徴とする請求項1または2に記載の複合材料。   The composite material according to claim 1, wherein the second powder is spherical. 前記第1の粉末の材質が、Fe−Si系合金、Fi−Si−Al系合金、鉄系アモルファス合金、コバルト系アモルファス合金の少なくとも一つであることを特徴とする請求項1ないし3のいずれか1項に記載の複合材料。   The material of the first powder is at least one of a Fe-Si alloy, a Fi-Si-Al alloy, an iron amorphous alloy, and a cobalt amorphous alloy. The composite material according to claim 1. 請求項1ないし4のいずれか1項に記載の複合材料で形成されたことを特徴とする磁心。   A magnetic core formed of the composite material according to any one of claims 1 to 4. 請求項5記載の磁心と巻線とで構成されたことを特徴とする線輪部品。   A wire ring component comprising the magnetic core according to claim 5 and a winding. 請求項1ないし4のいずれか1項に記載の複合材料を、前記複数種の粉末と樹脂との混合物を常圧注型、加圧注型、加圧(圧縮)成形のいずれかにより成形して固化させることを特徴とする複合材料の製造方法。   The composite material according to any one of claims 1 to 4, wherein the mixture of the plurality of types of powder and resin is molded by any one of normal pressure casting, pressure casting, and pressure (compression) molding, and solidified. A method for producing a composite material, characterized by comprising:
JP2006014699A 2006-01-24 2006-01-24 Composite material, method for manufacturing the same, magnetic core, and coil component Pending JP2007200962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014699A JP2007200962A (en) 2006-01-24 2006-01-24 Composite material, method for manufacturing the same, magnetic core, and coil component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014699A JP2007200962A (en) 2006-01-24 2006-01-24 Composite material, method for manufacturing the same, magnetic core, and coil component

Publications (1)

Publication Number Publication Date
JP2007200962A true JP2007200962A (en) 2007-08-09

Family

ID=38455283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014699A Pending JP2007200962A (en) 2006-01-24 2006-01-24 Composite material, method for manufacturing the same, magnetic core, and coil component

Country Status (1)

Country Link
JP (1) JP2007200962A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044068A (en) * 2007-08-10 2009-02-26 Nec Tokin Corp Coil component
JP2009054615A (en) * 2007-08-23 2009-03-12 Alps Electric Co Ltd Powder magnetic core, and manufacturing method thereof
JP2014060284A (en) * 2012-09-18 2014-04-03 Tdk Corp Coil component and metal magnetic powder-containing resin for use therein
JP2014229731A (en) * 2013-05-22 2014-12-08 Necトーキン株式会社 Reactor
JP2016103598A (en) * 2014-11-28 2016-06-02 Tdk株式会社 Coil component
CN106067368A (en) * 2015-04-24 2016-11-02 三星电机株式会社 Coil block and manufacture method thereof
JP2018133434A (en) * 2017-02-15 2018-08-23 スミダコーポレーション株式会社 Method and device for manufacturing coil component
US10910141B2 (en) 2017-08-09 2021-02-02 Taiyo Yuden Co., Ltd. Coil component
TWI725207B (en) * 2016-07-19 2021-04-21 南韓商摩達伊諾琴股份有限公司 Power inductor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260005A (en) * 1987-04-16 1988-10-27 Nippon Ferrite Ltd Dust core
JPH09102409A (en) * 1995-10-02 1997-04-15 Hitachi Ltd Resin composition for dust core, dust core, reactor, and electric device
JP2000182845A (en) * 1998-12-21 2000-06-30 Hitachi Ferrite Electronics Ltd Composite core
JP2000294418A (en) * 1999-04-09 2000-10-20 Hitachi Ferrite Electronics Ltd Powder molded magnetic core
JP2001250709A (en) * 2000-03-03 2001-09-14 Daido Steel Co Ltd Magnetic powder for dust core
JP2002057039A (en) * 2000-08-11 2002-02-22 Hitachi Ferrite Electronics Ltd Composite magnetic core
JP2004273564A (en) * 2003-03-05 2004-09-30 Daido Steel Co Ltd Dust core

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260005A (en) * 1987-04-16 1988-10-27 Nippon Ferrite Ltd Dust core
JPH09102409A (en) * 1995-10-02 1997-04-15 Hitachi Ltd Resin composition for dust core, dust core, reactor, and electric device
JP2000182845A (en) * 1998-12-21 2000-06-30 Hitachi Ferrite Electronics Ltd Composite core
JP2000294418A (en) * 1999-04-09 2000-10-20 Hitachi Ferrite Electronics Ltd Powder molded magnetic core
JP2001250709A (en) * 2000-03-03 2001-09-14 Daido Steel Co Ltd Magnetic powder for dust core
JP2002057039A (en) * 2000-08-11 2002-02-22 Hitachi Ferrite Electronics Ltd Composite magnetic core
JP2004273564A (en) * 2003-03-05 2004-09-30 Daido Steel Co Ltd Dust core

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044068A (en) * 2007-08-10 2009-02-26 Nec Tokin Corp Coil component
JP2009054615A (en) * 2007-08-23 2009-03-12 Alps Electric Co Ltd Powder magnetic core, and manufacturing method thereof
JP2014060284A (en) * 2012-09-18 2014-04-03 Tdk Corp Coil component and metal magnetic powder-containing resin for use therein
US9406420B2 (en) 2012-09-18 2016-08-02 Tdk Corporation Coil component and magnetic metal powder containing resin used therefor
JP2014229731A (en) * 2013-05-22 2014-12-08 Necトーキン株式会社 Reactor
JP2016103598A (en) * 2014-11-28 2016-06-02 Tdk株式会社 Coil component
CN106067368A (en) * 2015-04-24 2016-11-02 三星电机株式会社 Coil block and manufacture method thereof
JP2016208002A (en) * 2015-04-24 2016-12-08 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil electronic component and method of manufacturing the same
CN106067368B (en) * 2015-04-24 2018-07-27 三星电机株式会社 Coil block and its manufacturing method
US10734152B2 (en) 2015-04-24 2020-08-04 Samsung Electro-Mechanics Co., Ltd. Coil component and method of manufacturing the same
TWI725207B (en) * 2016-07-19 2021-04-21 南韓商摩達伊諾琴股份有限公司 Power inductor
US11424057B2 (en) 2016-07-19 2022-08-23 Moda-Innochips Co., Ltd. Power inductor
JP2018133434A (en) * 2017-02-15 2018-08-23 スミダコーポレーション株式会社 Method and device for manufacturing coil component
US10910141B2 (en) 2017-08-09 2021-02-02 Taiyo Yuden Co., Ltd. Coil component
US11600425B2 (en) 2017-08-09 2023-03-07 Taiyo Yuden Co., Ltd. Coil component

Similar Documents

Publication Publication Date Title
JP2007200962A (en) Composite material, method for manufacturing the same, magnetic core, and coil component
JP4630251B2 (en) Powder cores and iron-based powders for dust cores
JP4924811B2 (en) Method for producing soft magnetic composite material
US9245676B2 (en) Soft magnetic alloy powder, compact, powder magnetic core, and magnetic element
JP6403093B2 (en) COMPOSITE MATERIAL, MAGNETIC CORE FOR MAGNETIC COMPONENT, REACTOR, CONVERTER, AND POWER CONVERTER
JP2002057039A (en) Composite magnetic core
JP7246456B2 (en) Alloy powder composition, compact, method for producing same, and inductor
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP5110624B2 (en) Wire ring parts
JP2017107935A (en) Dust core and magnetic element
JP4692859B2 (en) Reactor
JP4646238B2 (en) Composite magnetic material and method for producing composite magnetic material
JP5660164B2 (en) Method for producing soft magnetic composite material
JP6314020B2 (en) Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof
JP6474051B2 (en) Composite material molded body, reactor, and method for producing composite material molded body
JP2009094428A (en) High permeability magnetic body molding material
JP2011049586A (en) Reactor
JP5700298B2 (en) Reactor, soft magnetic composite material, and booster circuit
JP5945994B2 (en) Soft magnetic composite material and reactor
JP2012199580A (en) Method of manufacturing soft magnetic composite material
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
JP2020053439A (en) Composite magnetic material, metal composite core, reactor, and method of manufacturing metal composite core
JP2015062245A (en) Soft magnetic composite material
JP6817802B2 (en) Reactor manufacturing method
JP2018098259A (en) Method for manufacturing reactor and method for manufacturing core, and core and reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110517

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120726