JP4646238B2 - Composite magnetic material and method for producing composite magnetic material - Google Patents

Composite magnetic material and method for producing composite magnetic material Download PDF

Info

Publication number
JP4646238B2
JP4646238B2 JP2006209795A JP2006209795A JP4646238B2 JP 4646238 B2 JP4646238 B2 JP 4646238B2 JP 2006209795 A JP2006209795 A JP 2006209795A JP 2006209795 A JP2006209795 A JP 2006209795A JP 4646238 B2 JP4646238 B2 JP 4646238B2
Authority
JP
Japan
Prior art keywords
magnetic material
powder
vol
composite magnetic
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006209795A
Other languages
Japanese (ja)
Other versions
JP2008041691A (en
Inventor
孝志 山家
一之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006209795A priority Critical patent/JP4646238B2/en
Publication of JP2008041691A publication Critical patent/JP2008041691A/en
Application granted granted Critical
Publication of JP4646238B2 publication Critical patent/JP4646238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、複数種の粉末と樹脂との混合物からなる複合磁性材料、およびその製造方法に関する。   The present invention relates to a composite magnetic material comprising a mixture of a plurality of types of powders and a resin, and a method for producing the same.

磁性体粉末と樹脂とからなる複合磁性材料は、成形により容易に目的とする形状が得られるため、種々の磁芯等に用いられ、種々の取り組みがなされている。   A composite magnetic material composed of a magnetic powder and a resin can be easily formed into a desired shape by molding. Therefore, it is used for various magnetic cores and various efforts have been made.

複合磁性材料を用いた成形方法としては、常圧注型法、加圧注型法や乾式成形法などがある。ここで、常圧注型法は型に硬化前の複合材料を流し込み硬化させるだけで目的とする形状の製品が得られるため、形状、構成の自由度が高く、たとえば巻線と磁性体とを一体で形成することなども容易に実現可能である。例えば、特許文献1には、常圧注型法による磁芯の製造方法が述べられている。   As a molding method using the composite magnetic material, there are an atmospheric pressure casting method, a pressure casting method, a dry molding method, and the like. Here, in the normal pressure casting method, a product having a desired shape can be obtained simply by pouring a composite material before curing into a mold and curing it. Therefore, the degree of freedom in shape and configuration is high. For example, a winding and a magnetic body are integrated. It is also possible to easily form it. For example, Patent Document 1 describes a method of manufacturing a magnetic core by a normal pressure casting method.

これらの成形方法の比較において、磁性材料の観点からの違いは、加圧注型法や乾式成形法は個々の磁性粒子の最終的な配置が加圧、圧縮による外力により決定されるのに対し、常圧注型法では混合による分散以後、重力と樹脂の粘性による粒子の回転、沈降により決定されることである。   In comparison of these molding methods, the difference from the viewpoint of magnetic materials is that the final placement of individual magnetic particles is determined by external force due to pressure and compression in the pressure casting method and dry molding method, In the normal pressure casting method, after dispersion by mixing, it is determined by the rotation and sedimentation of particles due to gravity and resin viscosity.

ここで複数の磁性粒子からなる複合磁性材料は、極端には2ヶの磁性体間に1ヶ所のエアーギャップがある状態であり、多数の粒子からなる実際の複合磁性材料では、この磁性体とエアーギャップを無限小に細分化していく過程に近いものであろうと予想される。従って、複合磁性材料の磁化特性を制御するためには、個々の粒子の径と間隔をいかに制御するかが重要となる。   Here, the composite magnetic material composed of a plurality of magnetic particles is extremely in a state where there is one air gap between two magnetic bodies. In an actual composite magnetic material composed of a large number of particles, It is expected to be close to the process of subdividing the air gap into infinitesimal. Therefore, in order to control the magnetization characteristics of the composite magnetic material, it is important how to control the diameter and interval of individual particles.

加圧注型法、乾式成形法等においては、外力の調整により、粒子の配置を比較的均質にできるので、前述の粒子間の間隔を制御するためには2ヶの磁性体の場合に同じく、所望の厚みのスペーサを粒子間に配置すればよく、例えば、磁性粒子表面に所望とする大きさの粉末、または無機物、有機物層を配置またはコーティングした後、加圧により所望の密度に成形すればよい。   In the pressure casting method, the dry molding method, etc., the arrangement of the particles can be made relatively uniform by adjusting the external force. Therefore, in order to control the interval between the particles, the same applies to the case of two magnetic bodies. What is necessary is just to arrange | position the spacer of desired thickness between particle | grains, for example, after arrange | positioning or coating the powder of a desired magnitude | size, or an inorganic substance, and an organic substance layer on the magnetic particle surface, if it shape | molds to a desired density by pressure Good.

特開2001−68324号公報JP 2001-68324 A

しかるに、常圧注型法においては、上述の沈降が生じ、またこの沈降の程度は場所により異なり、特に深さが深い場合は底部と上部でその差は大きく、粒子の配置が不均質となれば、磁性体としての特性が均一な磁芯が得られなくなる。特許文献1には、常圧注型による磁芯の製造方法が述べられているが、個々の粒子の間隔の制御、および注型時の上部と底部の不均一さに関しては触れられていない。   However, in the atmospheric pressure casting method, the above-described sedimentation occurs, and the degree of sedimentation varies depending on the location. Especially, when the depth is deep, the difference between the bottom and the top is large, and the arrangement of the particles becomes inhomogeneous. As a result, a magnetic core having uniform characteristics as a magnetic material cannot be obtained. Patent Document 1 describes a method of manufacturing a magnetic core by atmospheric pressure casting, but does not mention control of the interval between individual particles and non-uniformity between the top and bottom during casting.

具体的に磁気特性に関して説明すると、例えば1ヶの球状粒子の反磁界係数は1/3であり、磁界中においては反磁界係数に従い磁化が進む。もう一つの粒子が磁界方向に隣接している場合、2ヶの合成の反磁界係数は0と1/3の中間の値をとる。この値は、2ヶの粒子の間隔により変化し、接近すればするほど0に近づき、小さな値となる。つまり、接近した多数の粒子が磁化する場合、その磁化過程は隣接する他の粒子との距離により変化し、より接近している粒子は外部磁界に対し早期に磁化が進み、飽和しやすく、離れている粒子は飽和しにくいことになる。   Specifically, the magnetic characteristics will be described. For example, one spherical particle has a demagnetizing factor of 1/3, and magnetization proceeds in accordance with the demagnetizing factor in a magnetic field. When another particle is adjacent to the magnetic field direction, the demagnetizing coefficient of the two composites takes an intermediate value between 0 and 1/3. This value changes depending on the interval between the two particles, and the closer it is, the closer it is to 0 and the smaller value. In other words, when a large number of approaching particles are magnetized, the magnetization process changes depending on the distance to the other adjacent particles, and the closer particles are magnetized early with respect to the external magnetic field, easily saturated, and separated. The particles are less likely to saturate.

つまり、一つの磁芯の中で、外部磁界に対し飽和しやすい部分とそうでない部分が存在することとなり、結果として磁化を示すBHカーブの立ち上がりの直線的な部分が不明瞭となる。   That is, in one magnetic core, there are a portion that is likely to be saturated with respect to the external magnetic field, and a portion that is not so, and as a result, the linear portion of the rise of the BH curve indicating the magnetization becomes unclear.

これは、直流電流つまりは直流磁界を重畳して使用するパワーチョーク等においてはインダクタンスの直流電流に対する直線性が劣化することになり好ましくない。   This is not preferable because the linearity of the inductance with respect to the DC current deteriorates in a power choke that uses a DC current, that is, a DC magnetic field superimposed.

また、全体的な粒子の沈降による流体としての樹脂との分離だけを軽減するためには、粒子の占積率を上げ、樹脂の占積率を下げることは容易に推察されることであるが、実際にはこれだけで粒子の沈降を防止することは難しく、流体としての樹脂の占積率を下げすぎると注型に必要な流動性を損ない、気泡の残存等による弊害をまねきやすくなる。   Moreover, in order to reduce only the separation from the resin as the fluid due to the overall sedimentation of the particles, it is easily guessed that the particle space factor is increased and the resin space factor is decreased. Actually, it is difficult to prevent sedimentation of particles by itself, and if the space factor of the resin as a fluid is lowered too much, the fluidity necessary for casting is impaired and it is easy to cause adverse effects due to remaining bubbles.

しかも、マクロな挙動としての流動性は低下しても、局視的には粒子間に存在する流体である樹脂自体の粘性に変化はなく、粒度分布、局所的なブリッジ現象等により浮遊状態にある粒子または粒子群は粒子径に応じた沈降速度で、沈降し接近してしまうこととなる。また、粒子の間隔を制御するために適度な大きさの微粒子を流体中に分散させたとしても、浮遊状態にある粒子の沈降による移動が生じると粒子の間隔は均一とはなりにくく、結果として磁化特性のバラツキをまねくこととなってしまう。   Moreover, even if the fluidity as a macro behavior decreases, there is no change in the viscosity of the resin itself, which is a fluid existing between the particles, and it is in a floating state due to particle size distribution, local bridging phenomenon, etc. A certain particle or group of particles settles and approaches at a sedimentation speed corresponding to the particle diameter. Moreover, even if fine particles of an appropriate size are dispersed in the fluid to control the particle interval, the particle interval is less likely to be uniform when movement due to sedimentation of particles in a floating state occurs. This leads to variations in magnetization characteristics.

従って、本発明の目的は、マクロ的には、注型の上部と底部における密度差、つまりは粒子間隔の不均一さを低減し、不均一さの極端な状況である注型上部に生じやすい樹脂だけの分離層の発生を抑制することである。   Therefore, the object of the present invention is macroscopically reduced in density difference between the top and bottom of the casting, that is, nonuniformity of the particle spacing, and is likely to occur in the top of the casting, which is an extreme situation of nonuniformity. It is to suppress the generation of a separation layer of only resin.

さらには、本発明の目的は、局所的にも粒子の沈降による粒子の間隔の不均一さを改善することである。終局的には、これらの改善によって、磁化特性に優れる複合磁性材料および複合磁性材料の製造方法を提供することが本願発明の目的である。   Furthermore, it is an object of the present invention to improve the non-uniformity of particle spacing due to particle settling locally. Ultimately, it is an object of the present invention to provide a composite magnetic material having excellent magnetization characteristics and a method for producing the composite magnetic material by these improvements.

本発明の複合磁性材料は、樹脂と平均粒径が0.1μm以下の粉末との、混合物を磁性粒子間に介在させ、磁性粒子の間隔を制御するとともに、磁芯における分離層を低減するための高い効果を得るものである。   In the composite magnetic material of the present invention, a mixture of a resin and a powder having an average particle size of 0.1 μm or less is interposed between magnetic particles to control the interval between the magnetic particles and reduce the separation layer in the magnetic core. High effect is obtained.

本発明の複合磁性材料での、平均粒径が0.1μm以下の粉末は、他の磁性粒子の周囲を包囲し、磁性粒子の動きを支配する流体自体の粘性、特に、剪断速度の小さい領域で、剪断応力が高く、沈降を抑制する作用を示すチクソ性を向上させることができ、結果として磁芯における分離層を低減する効果が得られるものである。   In the composite magnetic material of the present invention, the powder having an average particle size of 0.1 μm or less surrounds other magnetic particles, and the viscosity of the fluid itself that governs the movement of the magnetic particles, in particular, the region where the shear rate is low. Thus, the thixotropy having a high shear stress and the action of suppressing the sedimentation can be improved, and as a result, the effect of reducing the separation layer in the magnetic core is obtained.

本発明は、少なくとも1種は粒子径が10〜1000μmの磁性体である複数種の粉末と樹脂との混合物を常圧注型法により成形して固化させる複合磁性材料において、前記複数種の粉末の中での平均粒径が0.1μm以下の粉末が、前記樹脂と前記平均粒径が0.1μm以下の粉末との合計の体積を100%とした条件にて、1vol%以上から20vol%以下の範囲で含まれている複合磁性材料である。 The present invention relates to a composite magnetic material in which a mixture of a plurality of types of powders and resins, each of which is a magnetic material having a particle size of 10 to 1000 μm, is molded and solidified by a normal pressure casting method. The powder having an average particle diameter of 0.1 μm or less is 1 vol% or more and 20 vol% under the condition that the total volume of the resin and the powder having the average particle diameter of 0.1 μm or less is 100%. It is a composite magnetic material included in the following range.

また、本発明は、前記平均粒径が0.1μm以下の粉末は、SiO2、Al23等の酸化物または有機物である複合磁性材料である。 The present invention is the composite magnetic material, wherein the powder having an average particle size of 0.1 μm or less is an oxide or organic material such as SiO 2 or Al 2 O 3 .

また、本発明は、前記複数種の粉末の中で、磁性体である粉末が、複合磁性体の体積を100vol%として、55vol%以上含まれている複合磁性材料である。   Further, the present invention is a composite magnetic material in which, among the plurality of types of powders, a powder that is a magnetic substance is contained in an amount of 55 vol% or more with the volume of the composite magnetic substance being 100 vol%.

また、本発明は、前記磁性体はFe−Si系合金、Fe−Si−Al系合金、鉄系アモルファス合金、コバルト系アモルファス合金の少なくとも一つである複合磁性材料である。   The present invention is the composite magnetic material, wherein the magnetic body is at least one of an Fe—Si alloy, an Fe—Si—Al alloy, an iron amorphous alloy, and a cobalt amorphous alloy.

また、本発明は、前記のいずれかの複合磁性材料を、常圧により成形して、形成された磁芯である。   The present invention also provides a magnetic core formed by molding any one of the above composite magnetic materials at normal pressure.

また、本発明は、少なくとも1種は粒子径が10〜1000μmの磁性体である複数種の粉末と樹脂との混合物を固化する複合磁性材料の製造方法において、前記複数種の粉末の中での平均粒径が0.1μm以下の粉末がSiO、Al等の酸化物または有機物であり、前記平均粒径の0.1μm以下の粉末を、前記樹脂と前記平均粒径が0.1μm以下の粉末との合計の体積を100vol%とした条件にて、1vol%以上から20vol%以下の範囲含ませ、前記複合磁性材料を常圧により成形して固化させる複合磁性材料の製造方法である。 Further, the present invention provides a method for producing a composite magnetic material in which at least one kind is a magnetic substance having a particle size of 10 to 1000 μm and solidifies a mixture of a plurality of kinds of powders and a resin. The powder having an average particle size of 0.1 μm or less is an oxide or an organic substance such as SiO 2 or Al 2 O 3 , and the powder having an average particle size of 0.1 μm or less is the resin and the average particle size is 0.00. In a method for producing a composite magnetic material, wherein the composite magnetic material is included in a range of 1 vol% or more and 20 vol% or less under the condition that the total volume of the powder with 1 μm or less is 100 vol%, and the composite magnetic material is molded and solidified at normal pressure is there.

また、本発明は、前記複数種の粉末の中で、磁性体である粉末を、複合磁性体の体積を100vol%として、55vol%以上含ませる複合磁性材料の製造方法である。   In addition, the present invention is a method for producing a composite magnetic material, wherein among the plurality of types of powders, a magnetic powder is contained in an amount of 55 vol% or more, with the composite magnetic body having a volume of 100 vol%.

また、本発明は、前記磁性体はFe−Si系合金、Fe−Si−Al系合金、鉄系アモルファス合金、コバルト系アモルファス合金の少なくとも一つである複合磁性材料の製造方法である。   The present invention is also a method for producing a composite magnetic material, wherein the magnetic material is at least one of an Fe—Si alloy, an Fe—Si—Al alloy, an iron amorphous alloy, and a cobalt amorphous alloy.

本発明によれば、マクロ的、局所的な粒子の沈降による粒子の間隔の不均一さが改善され、磁芯用材料等として好適な、磁化特性に優れた複合磁性材料とその複合磁性材料の製造方法を提供することができる。   According to the present invention, nonuniformity of particle spacing due to macroscopic and local particle settling is improved, and a composite magnetic material having excellent magnetization characteristics suitable as a magnetic core material and the like A manufacturing method can be provided.

本発明の複合磁性材料は、少なくとも1種は粒子径が10〜1000μmの磁性体である複数種の粉末と樹脂との混合物を常圧注型法により成形して固化させる複合磁性材料とし、これらの複数種の粉末の内、平均粒径が0.1μm以下の粉末を樹脂の1vol%以上、20vol%以下含まれるようにする。ここで、平均粒径0.1μm以下の粉末の体積分率は、平均粒径0.1μm以下の粉末と樹脂の合計の体積を100vol%とする。また、特に断らない限り、本願中で記載する粉末の粒子径の値は、粒子の電子顕微鏡写真を用いて測定した球相当径である。 The composite magnetic material of the present invention is a composite magnetic material in which a mixture of a plurality of types of powder and resin, each of which is a magnetic substance having a particle size of 10 to 1000 μm, is molded and solidified by a normal pressure casting method. Among these types of powders, a powder having an average particle size of 0.1 μm or less is contained in an amount of 1 vol% or more and 20 vol% or less of the resin. Here, the volume fraction of the powder having an average particle diameter of 0.1 μm or less is defined as 100 vol% of the total volume of the powder having an average particle diameter of 0.1 μm or less and the resin. Further, unless otherwise specified, the particle diameter value of the powder described in the present application is a sphere equivalent diameter measured using an electron micrograph of the particle.

また、平均粒径が0.1μm以下の粉末としては、SiO2、Al23等の酸化物の粉末、もしくはシリコーン樹脂粉末、フッ素樹脂粉末等の有機物の粉末を用いると磁性粒子間のスペーサとして適当である。 As the powder having an average particle size of 0.1 μm or less, an oxide powder such as SiO 2 or Al 2 O 3 , or an organic powder such as a silicone resin powder or a fluororesin powder is used. As appropriate.

また、本発明の複合磁性材料は複数種の粉末の中で磁性体である粉末は、体積分率として、複合磁性体の体積を100vol%としたときに、55vol%以上とすることが好ましい。ここで、磁性体粉末が、55vol%未満であると、複合磁性材料を磁芯として用いる場合には、透磁率が低くなり、実用に適さない。   The composite magnetic material of the present invention is preferably a magnetic substance among a plurality of types of powders, with the volume fraction being 55 vol% or more when the volume of the composite magnetic substance is 100 vol%. Here, when the magnetic substance powder is less than 55 vol%, when the composite magnetic material is used as the magnetic core, the magnetic permeability is low, which is not suitable for practical use.

また、磁芯等に用いる複合磁性材料としては、磁性体は透磁率が高く、飽和磁束密度の大きいFe−Si系合金、Fe−Si−Al系合金、鉄系アモルファス合金、コバルト系アモルファス合金の少なくとも一つを用いるのが好ましい。また、磁性体粉末の粒子径は10〜1000μmのものを使うことができるが、粒子径が大きいと流動性が悪化すると共に過電流損失が増加して、使える周波数帯が狭くなり、粒子径が細かくなると、やはり流動性が悪くなり、透磁率も低下するので、一般的には、数十〜200μmの範囲の粒子径の磁性体粉末を用いることが望ましい。   In addition, as a composite magnetic material used for a magnetic core or the like, the magnetic material has a high magnetic permeability, a high saturation magnetic flux density, a Fe-Si alloy, a Fe-Si-Al alloy, an iron amorphous alloy, a cobalt amorphous alloy, etc. It is preferable to use at least one. In addition, a magnetic powder having a particle size of 10 to 1000 μm can be used. However, if the particle size is large, the fluidity deteriorates and the overcurrent loss increases, so that the usable frequency band is narrowed and the particle size is reduced. If it becomes finer, the fluidity also deteriorates and the magnetic permeability decreases. Generally, it is desirable to use a magnetic powder having a particle diameter in the range of several tens to 200 μm.

ここで、複合磁性材料に用いられる樹脂としては、成形時に流れやすい樹脂であればよく、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂等が使用できる。   Here, the resin used for the composite magnetic material may be a resin that easily flows during molding, and an epoxy resin, a silicone resin, a phenol resin, a urethane resin, or the like can be used.

また、本発明の複合磁性材料は、少なくとも1種は粒子径が10〜1000μmの磁性体である複数種の粉末と樹脂とを混合し、常圧注型法により成形して固化させて製造すればよい。この際に、複数種の粉末の内、平均粒径0.1μm以下の粉末の体積分率が、平均粒径0.1μm以下の粉末と樹脂の合計の体積を100vol%とした時、1vol%以上、20vol%以下含まれるようにして混合するとよい。また、この際に平均粒径が0.1μm以下の粉末としては、SiO、Al等の酸化物の粉末、もしくは有機物の粉末を用いて製造すればよい。 Further, the composite magnetic material of the present invention can be produced by mixing at least one kind of magnetic powder having a particle size of 10 to 1000 μm and a resin, and molding and solidifying by a normal pressure casting method. Good. At this time, the volume fraction of the powder having an average particle size of 0.1 μm or less among the plurality of types of powders is 1 vol% when the total volume of the powder having the average particle size of 0.1 μm or less and the resin is 100 vol%. As mentioned above, it is good to mix so that 20 vol% or less may be contained. At this time, the powder having an average particle size of 0.1 μm or less may be manufactured using an oxide powder such as SiO 2 or Al 2 O 3 or an organic powder.

さらに、複数種の粉末の中で、磁性体である粉末としては、体積分率として、複合磁性体の体積を100vol%としたときに、55vol%以上となるように混合して製造すればよい。   Furthermore, among a plurality of types of powders, a powder that is a magnetic material may be produced by mixing so that the volume fraction is 55 vol% or more when the volume of the composite magnetic material is 100 vol%. .

ここで、本発明の磁芯を成形する場合は、次のようにして行えばよい。即ち、所定の比率の複数種の粉末と、液状の樹脂とをミキサーで混練しスラリーを作製する。樹脂は例えば2液混合タイプの熱硬化型のエポキシ樹脂を用いればよい。作製したスラリーを所定の型に注型(流し込み)し、必要に応じ、振動等の付与により流動性を向上させ、また、減圧による脱泡を行う。その後、例えば150℃×3時間の条件にて、加熱し硬化させたのち型から取り出すことにより複合磁性材料からなる磁芯を得ることができる。   Here, when the magnetic core of the present invention is formed, it may be performed as follows. That is, a plurality of kinds of powders in a predetermined ratio and a liquid resin are kneaded with a mixer to prepare a slurry. As the resin, for example, a two-component mixed thermosetting epoxy resin may be used. The prepared slurry is cast (poured) into a predetermined mold, and if necessary, fluidity is improved by applying vibration or the like, and defoaming is performed by decompression. Then, for example, a magnetic core made of a composite magnetic material can be obtained by heating and curing under conditions of 150 ° C. × 3 hours and then removing from the mold.

(実施例1)
表1に示すような配合で、複合磁性材料を作製して、各種特性の比較を行った。
Example 1
A composite magnetic material was prepared with the formulation shown in Table 1, and various characteristics were compared.

磁性体の粉末として、平均粒径120μmのFe−6.5Si材のガスアトマイズ粉末を用い、樹脂は熱硬化性のエポキシ樹脂を用い、その他の粉末としてはSiO2の粉末を用いた。磁性体の粉末の体積百分率が複合磁性材料を100vol%とした時に65vol%となり、残部が樹脂とその他の粉末となるように配合した。樹脂の体積百分率は約34vol%、SiO2の粉末の体積百分率は約1vol%とした。 A gas atomized powder of Fe-6.5Si material having an average particle size of 120 μm was used as the magnetic powder, a thermosetting epoxy resin was used as the resin, and a SiO 2 powder was used as the other powder. The volume percentage of the magnetic powder was 65 vol% when the composite magnetic material was 100 vol%, and the balance was resin and other powders. The volume percentage of the resin was about 34 vol%, and the volume percentage of the SiO 2 powder was about 1 vol%.

ここで、樹脂とSiO2の粉末を正確には、SiO2の粉末の体積百分率を、樹脂とSiO2の粉末との合計の体積百分率を100vol%とした時に3vol%となるように配合した。この際、SiO2の粉末を適量のカップリング剤で表面処理をした後、樹脂との混合を行った。 Here, exactly the powder resin and SiO 2, the volume percentage of the SiO 2 powder were blended volume percentage of the total of the resin and the SiO 2 powder so as to be 3 vol% when the 100 vol%. At this time, the SiO 2 powder was surface-treated with an appropriate amount of a coupling agent and then mixed with the resin.

その配合するSiO2粉末としては、平均粒径が各種のものを選択した。ここでは、表1のように、SiO2粉末は平均粒径が10μm、2.4μm、0.5μm、0.3μm、0.1μmの粉末を用いた。 As the SiO 2 powder to be blended, those having various average particle diameters were selected. Here, as shown in Table 1, as the SiO 2 powder, powder having an average particle diameter of 10 μm, 2.4 μm, 0.5 μm, 0.3 μm, and 0.1 μm was used.

表1に示した、上述の配合比で、磁性体粉末とSiO2粉末と樹脂とを混合してスラリーを作製し、注型に流し込んで、真空脱泡を行い、加熱硬化した後、取り出して試料を作製した。ここで、外径27mm、内径15mm、深さ12mmのトロイダルコア用の注型と外径23mm、深さ50mmの円柱形状用の注型とを用意し、2種類の試料を作製した。トロイダルコアを用いて、直流重畳特性の測定を行い、円柱形状の試料で粒子と樹脂の分離を調べた。 In the above-mentioned mixing ratio shown in Table 1, magnetic substance powder, SiO 2 powder and resin are mixed to prepare a slurry, poured into a casting mold, subjected to vacuum defoaming, heat-cured, and then taken out. A sample was prepared. Here, a casting for a toroidal core having an outer diameter of 27 mm, an inner diameter of 15 mm, and a depth of 12 mm and a casting for a cylindrical shape having an outer diameter of 23 mm and a depth of 50 mm were prepared, and two types of samples were prepared. Using a toroidal core, DC superposition characteristics were measured, and separation of particles and resin was examined using a cylindrical sample.

直流重畳特性の測定は外径27mm、内径15mm、高さ12mmのトロイダルコアにほぼ均等となるようにφ1.5mmの銅線を23ターン巻き、LCRメーターにてインダクタンスを測定して求めた。ここで、直流電流を重畳しないときのインダクタンスの値と、一定の直流電流(5A)を重畳させたときのインダクタンスの値を測定し、前者をL0、後者をL1としてΔL/L0=(L0−L1)/L0を複合磁性材料の直流電流重畳特性とした。   The direct current superimposition characteristic was measured by winding a φ1.5 mm copper wire for 23 turns so as to be almost equal to a toroidal core having an outer diameter of 27 mm, an inner diameter of 15 mm, and a height of 12 mm, and measuring the inductance with an LCR meter. Here, the inductance value when the DC current is not superimposed and the inductance value when the constant DC current (5 A) is superimposed are measured, and the former is L0 and the latter is L1, and ΔL / L0 = (L0− L1) / L0 was defined as the DC current superimposition characteristic of the composite magnetic material.

また、50mmの高さの円柱型の試料では、磁芯の上部の粒子と樹脂の分離が進んだ硬化物分離層の厚みを測定し、上部の硬化物分離層を除いた後、上部と底部から高さ8mmの部分で切断して、外径23mm、高さ8mmのサンプルを作製し、上部と底部の2個のサンプルについて、それぞれ密度を測定した。さらに、それぞれのサンプルの中央部に直径9mmの貫通穴をあけてトロイダル型の形状とし、巻線してLCRメーターにより初透磁率を測定した。   In addition, in the case of a columnar sample having a height of 50 mm, after measuring the thickness of the cured product separation layer in which the separation of the particles on the upper part of the magnetic core and the resin has progressed and removing the upper cured product separation layer, the top and bottom portions A sample having an outer diameter of 23 mm and a height of 8 mm was prepared by cutting at a portion having a height of 8 mm, and the density was measured for each of the two samples at the top and bottom. Furthermore, a through-hole having a diameter of 9 mm was formed in the center of each sample to form a toroidal shape, wound, and measured for initial permeability with an LCR meter.

この磁芯の直流電流重畳特性は、パワーチョークコイルにおいては、設計許容範囲が数十%でなされる場合が一般的であることから、30%以下が好ましく、さらに20%以下であることが望ましい。なお、粉末の粒子径は乾式レーザー散乱法により測定し、頻度の累積が50%を示す粒子径を平均粒径とした。その結果を表1に示す。   The DC current superposition characteristics of the magnetic core are generally 30% or less and more preferably 20% or less because the design allowable range is generally several tens of percent in a power choke coil. . In addition, the particle diameter of the powder was measured by a dry laser scattering method, and the average particle diameter was defined as the particle diameter at which the cumulative frequency was 50%. The results are shown in Table 1.

Figure 0004646238
Figure 0004646238

表1より明らかなように、SiO2の粉末にて、平均粒径0.1μmの粉末を添加した場合、分離層の発生はなく、形成された磁芯での上部と、底部の密度差も小さく、また、上部と底部の透磁率の差異も、最小となっている。これによって、磁化特性の直線性を反映する磁気特性である、磁芯の直流電流重畳特性も改善されている。 As is apparent from Table 1, when a powder having an average particle size of 0.1 μm is added as a SiO 2 powder, no separation layer is generated, and the density difference between the top and bottom of the formed magnetic core is also observed. It is small and the difference in permeability between the top and bottom is also minimal. As a result, the direct current superimposition characteristic of the magnetic core, which is a magnetic characteristic reflecting the linearity of the magnetization characteristic, is also improved.

(実施例2)
表2に示すような配合で、複合磁性材料を作製して、各種特性の比較を行った。
(Example 2)
A composite magnetic material was prepared with the formulation shown in Table 2 and various characteristics were compared.

磁性体の粉末として、平均粒径120μmのFe−6.5Si材のガスアトマイズ粉末を用い、樹脂は熱硬化性のエポキシ樹脂を用い、その他の粉末としてはSiO2の粉末を用いた。磁性体の粉末の体積百分率が複合磁性材料を100vol%とした時に65vol%となり、残部が樹脂とその他の粉末となるように配合した。 A gas atomized powder of Fe-6.5Si material having an average particle size of 120 μm was used as the magnetic powder, a thermosetting epoxy resin was used as the resin, and a SiO 2 powder was used as the other powder. The volume percentage of the magnetic powder was 65 vol% when the composite magnetic material was 100 vol%, and the balance was resin and other powders.

配合するSiO2粉末としては、平均粒径が0.1μmと同種の粉末を用い、樹脂とSiO2粉末の配合割合を変えて試料を作製した。樹脂とSiO2の粉末の配合割合は、SiO2の粉末の体積百分率が、樹脂とSiO2の粉末との合計の体積百分率を100vol%とした時になし、1vol%、3vol%、5vol%、20vol%、25vol%となるように配合した。この際、SiO2の粉末を適量のカップリング剤で表面処理をした後、樹脂との混合を行った。 As the SiO 2 powder to be blended, the same kind of powder having an average particle diameter of 0.1 μm was used, and samples were prepared by changing the blending ratio of the resin and the SiO 2 powder. The mixing ratio of the resin and the SiO 2 powder, the volume percentage of SiO 2 powder, without the volume percentage of the total of the resin and the SiO 2 powder when the 100vol%, 1vol%, 3vol% , 5vol%, 20vol % And 25 vol%. At this time, the SiO 2 powder was surface-treated with an appropriate amount of a coupling agent and then mixed with the resin.

表2に示した、配合比の粉末と樹脂とを混合し、スラリーを作製し、実施例1と同様に注型に流し込んで、真空脱泡を行い、加熱硬化した後、取り出して試料を作製した。ここで、外径27mm、内径15mm、深さ12mmのトロイダルコア用の注型と外径23mm、深さ50mmの円柱形状用の注型とを用意し、2種類の試料を作製した。トロイダルコアを用いて、直流重畳特性の測定を行い、円柱形状の試料で粒子と樹脂の分離を調べた。   The powder and resin in the mixing ratio shown in Table 2 are mixed to prepare a slurry, poured into a casting mold as in Example 1, vacuum defoamed, heat-cured, and then taken out to prepare a sample. did. Here, a casting for a toroidal core having an outer diameter of 27 mm, an inner diameter of 15 mm, and a depth of 12 mm and a casting for a cylindrical shape having an outer diameter of 23 mm and a depth of 50 mm were prepared, and two types of samples were prepared. Using a toroidal core, DC superposition characteristics were measured, and separation of particles and resin was examined using a cylindrical sample.

直流重畳特性の測定は外径27mm、内径15mm、高さ12mmのトロイダルコアにほぼ均等となるようにφ1.5mmの銅線を23ターン巻き、LCRメーターにてインダクタンスを測定して求めた。ここで、直流電流を重畳しないときのインダクタンスの値と、一定の直流電流(5A)を重畳させたときのインダクタンスの値を測定し、前者をL0、後者をL1としてΔL/L0=(L0−L1)/L0を複合磁性材料の直流電流重畳特性とした。   The direct current superimposition characteristic was measured by winding a φ1.5 mm copper wire for 23 turns so as to be almost equal to a toroidal core having an outer diameter of 27 mm, an inner diameter of 15 mm, and a height of 12 mm, and measuring the inductance with an LCR meter. Here, the inductance value when the DC current is not superimposed and the inductance value when the constant DC current (5 A) is superimposed are measured, and the former is L0 and the latter is L1, and ΔL / L0 = (L0− L1) / L0 was defined as the DC current superimposition characteristic of the composite magnetic material.

この磁芯の直流電流重畳特性は、パワーチョークコイルに於いては、設計許容範囲が数十%でなされる場合が一般的であることから、30%以下が好ましく、さらに20%以下であることが望ましい。   The DC current superimposition characteristics of the magnetic core is generally 30% or less, more preferably 20% or less, because the design allowable range is generally several tens of percent for power choke coils. Is desirable.

また、50mmの高さの円柱型の試料では、磁芯の上部の粒子と樹脂の分離が進んだ硬化物分離層の厚みを測定し、上部の硬化物分離層を除いた後、上部と底部から高さ8mmの部分で切断して、外径23mm、高さ8mmのサンプルを作製し、上部と底部の2個のサンプルについて、それぞれ密度を測定した。さらに、それぞれのサンプルの中央部に直径9mmの貫通穴をあけてトロイダル型の形状とし、巻線してLCRメーターにより初透磁率を測定した。測定結果を表2に示す。   In addition, in the case of a columnar sample having a height of 50 mm, after measuring the thickness of the cured product separation layer in which the separation of the particles on the upper part of the magnetic core and the resin has progressed and removing the upper cured product separation layer, the top and bottom portions A sample having an outer diameter of 23 mm and a height of 8 mm was prepared by cutting at a portion having a height of 8 mm, and the density was measured for each of the two samples at the top and bottom. Furthermore, a through-hole having a diameter of 9 mm was formed in the center of each sample to form a toroidal shape, wound, and measured for initial permeability with an LCR meter. The measurement results are shown in Table 2.

Figure 0004646238
Figure 0004646238

表2の結果より、SiO2の粉末の配合割合が1vol%以上で作製された磁芯では、分離層の発生はなく、上部と、底部の密度差も小さく、また、上部と底部の初透磁率の差異も小さくなっている。これによって、磁化特性の直線性を反映する磁気特性である、磁芯の直流電流重畳特性も改善されている。 From the results shown in Table 2, in the magnetic core produced with the SiO 2 powder blending ratio of 1 vol% or more, there is no separation layer, the difference in density between the top and bottom is small, and the initial permeability between the top and bottom is small. The difference in magnetic susceptibility is also small. As a result, the direct current superimposition characteristic of the magnetic core, which is a magnetic characteristic reflecting the linearity of the magnetization characteristic, is also improved.

ここで、SiO2の粉末の添加がない場合は、硬化物分離層が発生しているが、SiO2の粉末の添加量を増やすほど硬化物分離層の発生が少なくなるので、硬化物分離層の面からは添加量が多いほど良いと考えられるが、1vol%の添加でも充分な効果が認められる。また、SiO2の粉末の添加が20vol%を超えると流動性が低下し、25vol%では磁芯の密度の低下が生じ、透磁率も低下するので、SiO2の粉末の添加は20vol%以下とするのが望ましい。 Here, when there is no addition of the SiO 2 powder, a cured product separation layer is generated, but as the addition amount of the SiO 2 powder is increased, the generation of the cured product separation layer is reduced. From this aspect, it is considered that the larger the addition amount, the better. However, even if 1 vol% is added, a sufficient effect is recognized. Further, when the addition of SiO 2 powder exceeds 20 vol%, the fluidity is lowered, and at 25 vol%, the density of the magnetic core is lowered and the magnetic permeability is also lowered. Therefore, the addition of the SiO 2 powder is 20 vol% or less. It is desirable to do.

Claims (8)

少なくとも1種は粒子径が10〜1000μmの磁性体である複数種の粉末と樹脂との混合物を常圧注型法により成形して固化させる複合磁性材料において、前記複数種の粉末の中での平均粒径が0.1μm以下の粉末が、前記樹脂と前記平均粒径が0.1μm以下の粉末との合計の体積を100%とした条件にて、1vol%以上から20vol%以下の範囲で含まれていることを特徴とする複合磁性材料。 In a composite magnetic material in which a mixture of a plurality of types of powders and resins, each of which is a magnetic substance having a particle size of 10 to 1000 μm, is molded and solidified by a normal pressure casting method , The powder having an average particle diameter of 0.1 μm or less is in the range of 1 vol% or more and 20 vol% or less under the condition that the total volume of the resin and the powder having the average particle diameter of 0.1 μm or less is 100%. A composite magnetic material characterized by being contained. 前記平均粒径が0.1μm以下の粉末は、酸化物または有機物であることを特徴とする請求項1に記載の複合磁性材料。   The composite magnetic material according to claim 1, wherein the powder having an average particle size of 0.1 μm or less is an oxide or an organic substance. 前記複数種の粉末の中で、磁性体である粉末が、複合磁性体の体積を100vol%として、55vol%以上含まれていることを特徴とする請求項1または2のいずれかに記載の複合磁性材料。   3. The composite according to claim 1, wherein among the plurality of types of powders, the magnetic powder is contained in an amount of 55 vol% or more when the volume of the composite magnetic body is 100 vol%. Magnetic material. 前記磁性体はFe−Si系合金、Fe−Si−Al系合金、鉄系アモルファス合金、コバルト系アモルファス合金の少なくとも一つであることを特徴とする請求項1ないし3のいずれか1項に記載の複合磁性材料。   4. The magnetic material according to claim 1, wherein the magnetic material is at least one of an Fe—Si based alloy, an Fe—Si—Al based alloy, an iron based amorphous alloy, and a cobalt based amorphous alloy. 5. Composite magnetic material. 請求項1ないし4のいずれか1項に記載の複合磁性材料を常圧により成形して、形成されたことを特徴とする磁芯。   5. A magnetic core formed by molding the composite magnetic material according to claim 1 at normal pressure. 少なくとも1種は粒子径が10〜1000μmの磁性体である複数種の粉末と樹脂との混合物を固化する複合磁性材料の製造方法において、前記複数種の粉末の中での平均粒径が0.1μm以下の粉末が酸化物または有機物であり、前記平均粒径の0.1μm以下の粉末を、前記樹脂と前記平均粒径が0.1μm以下の粉末との合計の体積を100vol%とした条件にて、1vol%以上から20vol%以下の範囲含ませ、前記複合磁性材料を常圧により成形して固化させることを特徴とする複合磁性材料の製造方法。 In the method for producing a composite magnetic material in which at least one kind is a magnetic substance having a particle size of 10 to 1000 μm and a mixture of a plurality of kinds of powders and a resin is solidified, the average particle size of the plurality of kinds of powders is 0.00. The condition that the powder of 1 μm or less is an oxide or an organic substance, the powder having an average particle size of 0.1 μm or less, and the total volume of the resin and the powder having an average particle size of 0.1 μm or less is 100 vol% In the method of manufacturing a composite magnetic material, the composite magnetic material is included in a range of 1 vol% or more and 20 vol% or less, and the composite magnetic material is molded and solidified under normal pressure. 前記複数種の粉末の中で、磁性体である粉末を、複合磁性体の体積を100vol%として、55vol%以上含ませることを特徴とする請求項6に記載の複合磁性材料の製造方法。   7. The method of producing a composite magnetic material according to claim 6, wherein among the plurality of types of powders, the magnetic powder is contained in an amount of 55 vol% or more with the volume of the composite magnetic body being 100 vol%. 前記磁性体はFe−Si系合金、Fe−Si−Al系合金、鉄系アモルファス合金、コバルト系アモルファス合金の少なくとも一つであることを特徴とする請求項6または7のいずれかに記載の複合磁性材料の製造方法。   8. The composite according to claim 6, wherein the magnetic body is at least one of an Fe—Si based alloy, an Fe—Si—Al based alloy, an iron based amorphous alloy, and a cobalt based amorphous alloy. Manufacturing method of magnetic material.
JP2006209795A 2006-08-01 2006-08-01 Composite magnetic material and method for producing composite magnetic material Active JP4646238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006209795A JP4646238B2 (en) 2006-08-01 2006-08-01 Composite magnetic material and method for producing composite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006209795A JP4646238B2 (en) 2006-08-01 2006-08-01 Composite magnetic material and method for producing composite magnetic material

Publications (2)

Publication Number Publication Date
JP2008041691A JP2008041691A (en) 2008-02-21
JP4646238B2 true JP4646238B2 (en) 2011-03-09

Family

ID=39176423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209795A Active JP4646238B2 (en) 2006-08-01 2006-08-01 Composite magnetic material and method for producing composite magnetic material

Country Status (1)

Country Link
JP (1) JP4646238B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110627B2 (en) * 2007-01-31 2012-12-26 Necトーキン株式会社 Wire ring parts
JP5110624B2 (en) * 2007-01-31 2012-12-26 Necトーキン株式会社 Wire ring parts
JP5110626B2 (en) * 2007-02-06 2012-12-26 Necトーキン株式会社 Wire ring parts
JP5110628B2 (en) * 2007-03-05 2012-12-26 Necトーキン株式会社 Wire ring parts
JP2012195393A (en) * 2011-03-16 2012-10-11 Nec Tokin Corp Coil component
JP6226047B2 (en) * 2011-03-24 2017-11-08 住友電気工業株式会社 Composite material, reactor core, and reactor
JP5995181B2 (en) 2011-03-24 2016-09-21 住友電気工業株式会社 Composite material, reactor core, and reactor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110754A (en) * 1983-11-21 1985-06-17 Matsushita Electric Works Ltd Resin composition for casting
JPS63260005A (en) * 1987-04-16 1988-10-27 Nippon Ferrite Ltd Dust core
JPH04338613A (en) * 1991-05-15 1992-11-25 Murata Mfg Co Ltd Magnetic shielding resin
JPH04343207A (en) * 1991-05-20 1992-11-30 Kenichi Arai Manufacture of magnetic material and induction electromagnetic apparatus
JPH07138023A (en) * 1993-09-21 1995-05-30 Kawasaki Steel Corp Magnetite particle and its production
JPH09102409A (en) * 1995-10-02 1997-04-15 Hitachi Ltd Resin composition for dust core, dust core, reactor, and electric device
JPH1167522A (en) * 1997-08-19 1999-03-09 Taiyo Yuden Co Ltd Wire wound electronic component
JP2000049008A (en) * 1998-07-29 2000-02-18 Tdk Corp Ferromagnetic powder for dust core dust core, and its manufacture
JP2001068324A (en) * 1999-08-30 2001-03-16 Hitachi Ferrite Electronics Ltd Powder molding core
JP2003282317A (en) * 2002-03-25 2003-10-03 Nec Tokin Corp Alloy powder surface treatment method and dust core
JP2005109181A (en) * 2003-09-30 2005-04-21 Tdk Corp Coil-type electronic component

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110754A (en) * 1983-11-21 1985-06-17 Matsushita Electric Works Ltd Resin composition for casting
JPS63260005A (en) * 1987-04-16 1988-10-27 Nippon Ferrite Ltd Dust core
JPH04338613A (en) * 1991-05-15 1992-11-25 Murata Mfg Co Ltd Magnetic shielding resin
JPH04343207A (en) * 1991-05-20 1992-11-30 Kenichi Arai Manufacture of magnetic material and induction electromagnetic apparatus
JPH07138023A (en) * 1993-09-21 1995-05-30 Kawasaki Steel Corp Magnetite particle and its production
JPH09102409A (en) * 1995-10-02 1997-04-15 Hitachi Ltd Resin composition for dust core, dust core, reactor, and electric device
JPH1167522A (en) * 1997-08-19 1999-03-09 Taiyo Yuden Co Ltd Wire wound electronic component
JP2000049008A (en) * 1998-07-29 2000-02-18 Tdk Corp Ferromagnetic powder for dust core dust core, and its manufacture
JP2001068324A (en) * 1999-08-30 2001-03-16 Hitachi Ferrite Electronics Ltd Powder molding core
JP2003282317A (en) * 2002-03-25 2003-10-03 Nec Tokin Corp Alloy powder surface treatment method and dust core
JP2005109181A (en) * 2003-09-30 2005-04-21 Tdk Corp Coil-type electronic component

Also Published As

Publication number Publication date
JP2008041691A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP4646238B2 (en) Composite magnetic material and method for producing composite magnetic material
JP5110627B2 (en) Wire ring parts
JP5110626B2 (en) Wire ring parts
JP4630251B2 (en) Powder cores and iron-based powders for dust cores
KR102088534B1 (en) Soft magnetic powder, dust core, and magnetic device
JP5110628B2 (en) Wire ring parts
JP4883706B2 (en) Wire ring parts
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
JP4924811B2 (en) Method for producing soft magnetic composite material
JP6088284B2 (en) Soft magnetic mixed powder
JP6730785B2 (en) Metal composite core manufacturing method and reactor manufacturing method
JP6403093B2 (en) COMPOSITE MATERIAL, MAGNETIC CORE FOR MAGNETIC COMPONENT, REACTOR, CONVERTER, AND POWER CONVERTER
WO2016152364A1 (en) Magnetic core powder, dust core, and method for producing magnetic core powder
JP2008063650A (en) Dust core, and iron based powder for dust core
JPWO2009128425A1 (en) Composite magnetic material and method for producing the same
JP6448799B2 (en) Soft magnetic powder
JP5110624B2 (en) Wire ring parts
JP2007200962A (en) Composite material, method for manufacturing the same, magnetic core, and coil component
JP7128439B2 (en) Dust core and inductor element
JP2006032907A (en) High-frequency core and inductance component using the same
JP2018190820A (en) Inductor element
JP4803094B2 (en) Powder magnetic core and magnetic element
JP6314020B2 (en) Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof
JP2005187918A (en) Insulating coated iron powder for powder compact magnetic core
JP2009094428A (en) High permeability magnetic body molding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4646238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250