JP2000182845A - Composite core - Google Patents

Composite core

Info

Publication number
JP2000182845A
JP2000182845A JP10362083A JP36208398A JP2000182845A JP 2000182845 A JP2000182845 A JP 2000182845A JP 10362083 A JP10362083 A JP 10362083A JP 36208398 A JP36208398 A JP 36208398A JP 2000182845 A JP2000182845 A JP 2000182845A
Authority
JP
Japan
Prior art keywords
powder
core
magnetic
slurry
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10362083A
Other languages
Japanese (ja)
Inventor
Yasuo Shimoda
康生 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ferrite Electronics Ltd
Original Assignee
Hitachi Ferrite Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ferrite Electronics Ltd filed Critical Hitachi Ferrite Electronics Ltd
Priority to JP10362083A priority Critical patent/JP2000182845A/en
Publication of JP2000182845A publication Critical patent/JP2000182845A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high inductance and a low loss for a bias current by specifying the volume percentage of a powder B to the volume sum of a powder A and the powder B as a compound ratio of the powder A to the powder B, wherein the mode of the grain size distribution of the powder A is a specified multiple of that of the powder B. SOLUTION: A bulk core uses a ferrite material, i.e., Ni-Zn ferrite and has a U-shaped core, heat-resistive tape is wound around the core 1 to form a slurry injection type convenient mold, a coil 3 is adhered and fixed to the center of the core 1, a soft magnetic powder-mixed slurry 2 is injected in the convenient mold made from the heat-resistive tape and hardened, and then the tape of this mold is removed to obtain a composite core 4. Powders A, B of the slurry 2 are compounded so that the volume percentage of the powder B to the volume sum of both powders is 15-60% and the mode of the grain size distribution of the powder A is 5 times or more that of the powder B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子回路に搭載さ
れるチョークコイル、トランス等のインダクタンス素子
に関する。
The present invention relates to an inductance element such as a choke coil and a transformer mounted on an electronic circuit.

【0002】[0002]

【従来の技術】トランス、チョークコイル等のインダク
タンス素子の磁心材料としては、現在、主にフェライト
が使用されている。フェライトは、成形性、加工性が大
変優れ、安価であり、また、磁気特性においても、高周
波まで使用でき、低損失、高透磁率などの特徴を有する
汎用性の高い磁性材料である。
2. Description of the Related Art At present, ferrite is mainly used as a core material of an inductance element such as a transformer or a choke coil. Ferrite is a highly versatile magnetic material that has excellent moldability and workability, is inexpensive, and can be used up to high frequencies in terms of magnetic properties, and has characteristics such as low loss and high magnetic permeability.

【0003】また、他の軟磁性材料として金属系軟磁性
材料粉末を用いた圧粉磁心がある。この圧粉磁心は、前
記フェライトに比べ、高飽和磁束密度、透磁率の温度特
性の安定性等が優れるものの、成形圧が著しく高いとい
う問題があり作製形状が限られていた。
[0003] As another soft magnetic material, there is a dust core using a metal soft magnetic material powder. Although this dust core is superior to the ferrite in terms of high saturation magnetic flux density and stability of the temperature characteristics of magnetic permeability, it has a problem that the molding pressure is remarkably high, and thus the produced shape is limited.

【0004】[0004]

【発明が解決しようとする課題】フェライトを使用した
トランスあるいはチョークコイル等のインダクタンス素
子は、フェライト磁心がインダクタンス素子に巻回する
コイルを流れるバイアス電流により、磁気飽和を起こさ
ないように磁路の一部にギャップを設けているが、該ギ
ャップによりフェライト材料としての特性が損なわれて
いる。特に損失の増大、漏れ磁束が問題となっていた。
An inductance element such as a transformer or a choke coil using a ferrite uses a magnetic path to prevent magnetic saturation due to a bias current flowing through a coil in which a ferrite core is wound around the inductance element. Although a gap is provided in the portion, the characteristics as a ferrite material are impaired by the gap. Particularly, an increase in loss and a leakage magnetic flux have been problems.

【0005】また、金属系軟磁性材料粉末を用いた圧粉
磁心は、磁路の一部にギャップを設けることなくバイア
ス電流に対して磁気飽和を起こしにくく、漏れ磁束も小
さいものであるが、透磁率が低く、所要のインダクタン
ス値を得るにもコイルの巻回数が多くなる問題点があっ
た。本発明は、上記の問題を解決するインダクタンス素
子用の磁心を提供するものである。
A dust core using a metal-based soft magnetic material powder hardly causes magnetic saturation with respect to a bias current without providing a gap in a part of a magnetic path, and has a small leakage magnetic flux. There is a problem that the number of turns of the coil is increased to obtain a required inductance value due to low magnetic permeability. The present invention provides a magnetic core for an inductance element that solves the above problems.

【0006】[0006]

【課題を解決するための手段】本発明は、複合磁心の磁
路の一部として、固形バルク状の軟磁性材料を用い、残
りの磁路の形成を軟磁性材料の粉末に液状の樹脂結合材
を混合してスラリー状、あるいは、軟磁性材料粉末に樹
脂を混合し加熱していったん液化させた粉末樹脂硬化磁
心によりおこなうものである。この粉末樹脂硬化磁心を
構成する粉末は、軟磁性材料の粉末Aと粉末Bよりな
り、粉末Aの粒度分布の最頻値が粉末Bのそれの5倍以
上であり、かつ、粉末Aと粉末Bの配合比として、粉末
Aと粉末Bの体積の和全体に対する粉末Bの体積百分率
が15%以上60%以下であることを特徴とする。
According to the present invention, a solid bulk soft magnetic material is used as a part of a magnetic path of a composite magnetic core, and the remaining magnetic path is formed by bonding a powder of the soft magnetic material with a liquid resin. This is carried out using a powdered resin hardened magnetic core which is obtained by mixing materials and forming a slurry, or by mixing a resin with a soft magnetic material powder and heating and once liquefied. The powder constituting the powdered resin cured core is composed of powder A and powder B of a soft magnetic material, the mode of the particle size distribution of powder A is at least 5 times that of powder B, and powder A and powder As a compounding ratio of B, the volume percentage of the powder B to the total sum of the volumes of the powder A and the powder B is 15% or more and 60% or less.

【0007】ここで使用する固形バルク状の磁心は、従
来からあるフェライト磁心、あるいはFe−Al−Si
合金等の磁性粉末を加圧成形した圧粉磁心等を用いる。
[0007] The solid bulk core used here is a conventional ferrite core or Fe-Al-Si.
A dust core formed by pressing a magnetic powder such as an alloy is used.

【0008】樹脂を加えていったん液状とする軟磁性材
料粉末A、Bの組成は基本的に制限はなく、例えば、F
e−Al−Si合金、パーマロイ、珪素鉄、純鉄、アモ
ルファス合金、微結晶合金等の金属粉末、またはフェラ
イト等の金属酸化物粉末を使用することができる。
[0008] The composition of the soft magnetic material powders A and B, which become liquid once the resin is added, is basically not limited.
Metal powder such as e-Al-Si alloy, permalloy, silicon iron, pure iron, amorphous alloy, microcrystalline alloy, or metal oxide powder such as ferrite can be used.

【0009】[0009]

【発明の実施の形態】本発明は、トランス、チョークコ
イル等のインダクタンス素子の磁心を、固形バルク状磁
心と粉末樹脂硬化磁心からなる複合磁心を用いることに
より、該複合磁心の磁路に対する前記2つの磁心が占め
る割合により所要の磁気特性を得ることができる。ま
た、バルク状磁心に対して、粉末樹脂硬化磁心は、スラ
リー状でバルク状磁心に対して接触し、前記スラリーの
硬化時には、バルク状磁心に密着固定するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a magnetic core of an inductance element such as a transformer or a choke coil, wherein a composite magnetic core composed of a solid bulk magnetic core and a powdered resin cured magnetic core is used. The required magnetic characteristics can be obtained depending on the ratio occupied by two magnetic cores. The powdered resin cured core is in contact with the bulk core in the form of a slurry with respect to the bulk core, and is tightly fixed to the bulk core when the slurry is cured.

【0010】[0010]

【実施例】本発明に係る第1の実施例を以下に述べる。
この実施例では、バルク状の軟磁性材料としてNi−Z
n系フェライトを使用した。前記フェライトに組み合わ
せる粉末樹脂硬化磁心は、粉末AとしてFe−Al−S
i合金組成の水アトマイズ粗粒粉末を乾式ボールミルで
粉砕した粉末、粉末BとしてFe−Al−Si合金組成
の水アトマイズ微細粉末を用いた。粉末Aは粉砕後水素
中で950℃で焼鈍しており、その粒度分布を図1に示
す。粒度分布はレーザー散乱法により測定した。この粉
末の粒度の最頻値は44〜62μmのランクにあり、こ
の中央値53μmを粉末Aの最頻値とする。(以下、こ
の方法により各粉末の粒度最頻値を算出した)。粉末B
は水アトマイズ後乾燥したものをそのまま用いており、
その粒度分布を図2に示す。最頻値は5.5〜7.8μ
mのランクにあり、中央値6.7μmを粉末Bの最頻値
とする。粉末A、Bの最頻値の比率は7.9である。結
合材としては無溶剤ワニス(スチレン重合不飽和ポリエ
ステル系)を使用した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment according to the present invention will be described below.
In this embodiment, Ni-Z is used as the bulk soft magnetic material.
An n-type ferrite was used. The powdered resin cured core to be combined with the ferrite is Fe-Al-S as powder A.
A water atomized coarse powder having an i-alloy composition was pulverized with a dry ball mill and a water atomized fine powder having an Fe-Al-Si alloy composition was used as powder B. Powder A was annealed at 950 ° C. in hydrogen after grinding, and its particle size distribution is shown in FIG. The particle size distribution was measured by a laser scattering method. The mode of the particle size of this powder is in the rank of 44 to 62 μm, and the median value of 53 μm is the mode of the powder A. (Hereinafter, the mode of particle size of each powder was calculated by this method). Powder B
Is used as it is after water atomization and dried,
FIG. 2 shows the particle size distribution. The mode is 5.5-7.8μ
m, and the median value of 6.7 μm is the mode of powder B. The mode ratio of powders A and B is 7.9. Solvent-free varnish (styrene polymerized unsaturated polyester type) was used as a binder.

【0011】乳鉢中に粉末Aおよび粉末Bを所定量入れ
て攪拌したものに、上記ワニスを少量ずつ添加して攪拌
することを繰返し、混合物がスラリー状となり流動を開
始するまでワニスを添加しその添加重量を記録した。こ
のスラリーを5分間真空脱泡したのち、粉末樹脂硬化磁
心単体での磁気特性を確認するため外径26φmmのト
ロイダル形状のプラスチックケースに注入し120℃、
3時間で加熱硬化させた。前記ケースの内容積寸法は外
径24φ、内径13.5φ、高さ6.6H(mm)であ
る。なお、注入したスラリー重量とケース内容積からス
ラリー密度を計算し、さらに粉末重量と樹脂添加量およ
びFe−Al−Si合金の真密度から磁心の占積率を計
算した。
The above-mentioned varnish is added little by little to a mixture obtained by putting predetermined amounts of powder A and powder B in a mortar and stirring, and the varnish is added until the mixture becomes a slurry and starts to flow. The addition weight was recorded. After vacuum defoaming the slurry for 5 minutes, the slurry was poured into a 26 mm outer diameter toroidal plastic case at 120 ° C.
Heat curing was performed for 3 hours. The inner volume of the case has an outer diameter of 24φ, an inner diameter of 13.5φ, and a height of 6.6H (mm). The slurry density was calculated from the weight of the injected slurry and the volume in the case, and the space factor of the magnetic core was calculated from the powder weight, the added amount of the resin, and the true density of the Fe-Al-Si alloy.

【0012】測定する磁気特性は、前記トロイダル磁心
に巻線を施し、LCRメーターにより100kHzにお
ける透磁率μiを測定した。また、B−Hアナライザー
により100kHz,50mTにおけるコア損失Pcv
を測定した。なお、各磁性材料個別の飽和磁束密度に体
積百分率を掛けた総和を合成飽和磁束密度とし、これに
占積率をかけたものを得られた磁心の合成飽和磁束密度
Bsとみなした。
The magnetic properties to be measured were measured by measuring the magnetic permeability μi at 100 kHz with an LCR meter by winding a wire around the toroidal magnetic core. The core loss Pcv at 100 kHz and 50 mT was measured by a BH analyzer.
Was measured. The sum of the saturation flux densities of the individual magnetic materials multiplied by the volume percentage was defined as the composite saturation magnetic flux density, and the product of the occupation rate and the sum was regarded as the composite saturation magnetic flux density Bs of the obtained magnetic core.

【0013】次に実形状における磁気特性を確認するた
め、上記スラリーとフェライト磁心を組み合わせた複合
磁心を下記の要領で作製した。バルク状磁心に使用する
フェライト材料は、Ni−Zn系フェライト(日立金属
(株)製NL30S材)とし、磁心形状は図3に示すU型
磁心1とした。この磁心1の外周に5mm幅の耐熱テー
プを巻き回してスラリー注入の簡易型とした後、1UE
W、0.3φmmの自己融着線を30Ts巻いて作製し
たコイル3を、フェライト磁心1の中央部に接着固定
し、耐熱テープで作られた簡易型内に、上記スラリーを
テープ上端まで注入し、120℃、3時間でスラリー2
を硬化させた。硬化後、簡易型のテープを除去した後に
は、外形寸法が15×8×5(mm)の複合磁心4が得
られる。この複合磁心の断面図は、図4の通りである。
Next, in order to confirm the magnetic characteristics in the actual shape, a composite magnetic core combining the above slurry and a ferrite core was prepared in the following manner. The ferrite material used for the bulk core is Ni-Zn based ferrite (Hitachi Metals)
(NL30S manufactured by KK Corporation), and the magnetic core shape was a U-shaped magnetic core 1 shown in FIG. After winding a heat-resistant tape having a width of 5 mm around the outer periphery of the magnetic core 1 to make a simple type of slurry injection, 1UE
W, a coil 3 formed by winding a self-fusing wire of 0.3 mm in diameter for 30 Ts, is adhered and fixed to the center of the ferrite core 1, and the slurry is poured into a simple mold made of heat-resistant tape up to the upper end of the tape. Slurry 2 at 120 ° C for 3 hours
Was cured. After curing, after removing the simple type tape, a composite magnetic core 4 having an outer dimension of 15 × 8 × 5 (mm) is obtained. FIG. 4 is a sectional view of the composite magnetic core.

【0014】上記、複合磁心4において粉末Aと粉末B
の配合比を変化させたときの磁気特性の比較表を、トロ
イダルコアとした時の磁気特性も併せて表1に示す。ま
た、従来例として、上記フェライトと同材質で外径24
φ、内径13.5φ、高さ6.6H(mm)のトロイダ
ルコアと、外形寸法が本発明例と同一の図5に示すEI
型磁心(楕円形の中脚を有すE型コア5と平板コア6、
中脚に0.45mmのギャップ)と、通常の加圧成形に
より作製したFe−Al−Si圧粉磁心からなる上記の
本発明例と同一形状のトロイダルコアのデータを示す。
In the above-mentioned composite magnetic core 4, powder A and powder B
Table 1 also shows a comparison table of magnetic properties when the compounding ratio of was changed, and also shows a magnetic property when a toroidal core was used. As a conventional example, an outer diameter of 24
φ, inner diameter 13.5φ, height 6.6H (mm), toroidal core, and EI shown in FIG.
Core (E-shaped core 5 and flat plate core 6 having an elliptical middle leg,
The data of a toroidal core having the same shape as the above-described present invention example, which is made of a Fe—Al—Si powder magnetic core manufactured by normal pressure molding, is shown.

【0015】[0015]

【表1】 [Table 1]

【0016】粉末Bの配合比が45vol%のとき、ト
ロイダルコア特性としては占積率とμiが最大となり、
それぞれの粉末A、Bの単一コアの場合に比べ大幅に改
善されている。
When the mixing ratio of the powder B is 45 vol%, the space factor and μi are maximum as toroidal core characteristics,
This is significantly improved as compared with the case of a single core of each of powders A and B.

【0017】また、複合磁心特性についても、粉末Aと
粉末Bの体積の和全体に対する粉末Bの体積百分率が1
5%以上60%以下の領域において、フェライトのみで
磁心を構成した場合に比べ、インダクタンス、コア損失
とも顕著に改善されている。
Also, regarding the composite magnetic core characteristics, the volume percentage of the powder B with respect to the total volume of the powders A and B is 1%.
In the region of 5% or more and 60% or less, both the inductance and the core loss are remarkably improved as compared with the case where the magnetic core is constituted only by ferrite.

【0018】本発明の第2の実施例として、本発明に係
る複合磁心の全磁路長に対する粉末樹脂硬化磁心の磁路
長の割合による磁気特性を確認した。この実施例で用い
る各磁性材料は、第1の実施例で使用したNi−Zn系
フェライト、粉末Aと粉末Bおよび結合剤を攪拌したス
ラリーを使用した。なお、スラリーは、粉末A:55v
ol%、粉末B:45vol%とした。
As a second embodiment of the present invention, the magnetic characteristics of the composite magnetic core according to the present invention were confirmed by the ratio of the magnetic path length of the cured resin core to the total magnetic path length. As each magnetic material used in this example, the Ni-Zn-based ferrite used in the first example, powder A and powder B, and a slurry obtained by stirring a binder were used. In addition, the slurry was powder A: 55 v
ol%, powder B: 45 vol%.

【0019】また、複合磁心の形状は、図5に示すEI
型コア寸法とし、図6に示す各フェライト磁心に第1の
実施例で使用したコイルを配置して、上記スラリーを注
型、硬化させて、複合磁心を用いたインダクタンス素子
を作製した。図7に各インダクタンス素子の断面図を示
す。(2−a)〜(2−e)は、図6の各フェライト磁
心に対して粉末樹脂硬化磁心を組み合わせたものであ
る。従来例として、(2−f)の粉末樹脂硬化磁心のみ
で磁心を構成、(2−g)のフェライト磁心のみで磁心
を構成したものも測定した。なお、図6及び図7に記載
のE型フェライト磁心7dの中脚には、0.45mmの
ギャップがすべてに施されている。
The shape of the composite magnetic core is EI shown in FIG.
The coils used in the first embodiment were arranged on the respective ferrite cores shown in FIG. 6 with mold core dimensions, and the above-mentioned slurry was cast and cured to produce an inductance element using a composite magnetic core. FIG. 7 shows a sectional view of each inductance element. (2-a) to (2-e) are obtained by combining a powdered resin cured core with each of the ferrite cores in FIG. As a conventional example, a magnetic core was composed only of the powdered resin cured magnetic core of (2-f), and a magnetic core composed of only the ferrite core of (2-g) was also measured. The middle leg of the E-type ferrite core 7d shown in FIGS. 6 and 7 is provided with a gap of 0.45 mm.

【0020】上記実験で得られた特性を表2に示す。
(粉末樹脂硬化磁心磁路長)/(全磁路長)の値が2〜
80%の領域でインダクタンス、鉄損ともフェライト単
独の磁心(2−g)に比べ顕著に改善されている。また
磁路の一部を透磁率の高いフェライトで構成することに
よって、粉末成形磁心単体(2−f)の場合に比べイン
ダクタンスは著しく改善されている。また各試料の直流
重畳特性を図8に示す。試料(2−b)の構成において
バイアス電流を大きくした場合でも高いインダクタンス
を示しており、バランスのよい特性であり電流平滑用チ
ョークコイルとして好適である。
Table 2 shows the characteristics obtained in the above experiment.
The value of (powder resin cured magnetic core magnetic path length) / (total magnetic path length) is 2 to 3.
In the 80% region, both the inductance and the iron loss are remarkably improved as compared with the magnetic core (2-g) of ferrite alone. In addition, since a part of the magnetic path is made of ferrite having high magnetic permeability, the inductance is remarkably improved as compared with the case of the powder molded core alone (2-f). FIG. 8 shows the DC superposition characteristics of each sample. Even when the bias current is increased in the configuration of the sample (2-b), the sample exhibits high inductance, has well-balanced characteristics, and is suitable as a current smoothing choke coil.

【0021】[0021]

【表2】 [Table 2]

【0022】一般にインダクタンス素子の特性はコイル
が囲む部分(上記実施例では中脚部分)の軟磁性材料の
磁気特性によって大きく支配され、特にチョークコイル
のように磁気飽和が問題となる用途においては、磁心の
中脚部分に飽和磁束密度の高い金属系の材料を使用する
ことが望ましい。
In general, the characteristics of the inductance element are largely controlled by the magnetic characteristics of the soft magnetic material in the portion (the middle leg portion in the above embodiment) surrounded by the coil. In particular, in applications where magnetic saturation is a problem such as a choke coil, It is desirable to use a metallic material having a high saturation magnetic flux density for the center leg of the magnetic core.

【0023】図9は、本発明の複合磁心に用いるバルク
状磁心の形状例を示したものである。実施例では、EI
型のフェライトコアを使用したが、図9の示す箱型コア
8を用いることにより、スラリーを保持するためのテー
プを不要とすることができ、空心コイル9を箱型コア8
内に固定し、スラリーを注入、硬化させることによりチ
ョークコイルを形成できる。
FIG. 9 shows an example of the shape of a bulk magnetic core used in the composite magnetic core of the present invention. In the embodiment, the EI
Although the ferrite core of the mold is used, the tape for holding the slurry can be made unnecessary by using the box-shaped core 8 shown in FIG.
The choke coil can be formed by fixing it inside, injecting and curing the slurry.

【0024】[0024]

【発明の効果】本発明の複合磁心は、磁路の一部を軟磁
性粉末A、Bを混合してなるスラリーが硬化して成形す
る粉末樹脂硬化磁心で構成したことにより、バイアス電
流に対して高インダクタンス、低損失を可能とし、更に
成形性、加工性の良いフェライトコアに対して前記軟磁
性粉末A、Bを混合してなるスラリーを用いることは、
多種多様な形状を作製可能とする。
According to the composite magnetic core of the present invention, since a part of the magnetic path is constituted by a powdered resin hardened core formed by hardening and molding a slurry obtained by mixing soft magnetic powders A and B, a bias current can be reduced. It is possible to use a slurry obtained by mixing the soft magnetic powders A and B with a ferrite core that enables high inductance and low loss, and further has good moldability and workability.
Various shapes can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合磁心の実施例に用いた軟磁性粉末
Aの粒径分布図
FIG. 1 is a particle size distribution diagram of a soft magnetic powder A used in an example of a composite magnetic core of the present invention.

【図2】本発明の複合磁心の実施例に用いた軟磁性粉末
Bの粒径分布図
FIG. 2 is a particle size distribution diagram of a soft magnetic powder B used in an example of the composite magnetic core of the present invention.

【図3】本発明の複合磁心の第1の実施例に用いたフェ
ライト磁心の外観図
FIG. 3 is an external view of a ferrite core used in the first embodiment of the composite core of the present invention.

【図4】本発明の複合磁心の第1の実施例のインダクタ
ンス素子の断面図
FIG. 4 is a sectional view of an inductance element according to a first embodiment of the composite magnetic core of the present invention.

【図5】従来の磁心の外観図FIG. 5 is an external view of a conventional magnetic core.

【図6】本発明の複合磁心の第2の実施例に用いたフェ
ライト磁心の形状外観図
FIG. 6 is an external view of the shape of a ferrite core used in a second embodiment of the composite core of the present invention.

【図7】本発明の複合磁心の第2の実施例のインダクタ
ンス素子の断面図
FIG. 7 is a sectional view of an inductance element according to a second embodiment of the composite magnetic core of the present invention.

【図8】本発明の複合磁心の第2の実施例のインダクタ
ンス素子の直流重畳特性図
FIG. 8 is a diagram showing a DC superposition characteristic of an inductance element according to a second embodiment of the composite magnetic core of the present invention.

【図9】本発明の複合磁心に用いるバルク状磁心の形状
例斜視図
FIG. 9 is a perspective view showing an example of the shape of a bulk magnetic core used in the composite magnetic core of the present invention.

【符号の説明】[Explanation of symbols]

1 バルク状磁心 2 粉末樹脂硬化磁心 3 コイル 4 複合磁心 REFERENCE SIGNS LIST 1 bulk core 2 powder resin cured core 3 coil 4 composite core

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数の軟磁性材料を組み合わせて構成され
る複合磁心において、その磁路の一部分を構成する磁性
材料としてはバルク状の軟磁性材料を用い、磁路の残り
の部分を構成する軟磁性材料としては、二種類の粒径の
異なる軟磁性材料粉末A、Bと液状の結合材を混合して
スラリー状としたのち、結合材を硬化させることにより
成形される粉末樹脂硬化磁心を用い、粉末Aの粒度分布
の最頻値が粉末Bのそれの5倍以上であり、かつ、粉末
Aと粉末Bの配合比として、粉末Aと粉末Bの体積の和
全体に対する粉末Bの体積百分率が15%以上60%以
下であることを特徴とする複合磁心。
In a composite magnetic core formed by combining a plurality of soft magnetic materials, a bulk soft magnetic material is used as a magnetic material forming a part of the magnetic path, and the remaining part of the magnetic path is formed. As the soft magnetic material, a powder resin cured core formed by mixing two kinds of soft magnetic material powders A and B having different particle diameters and a liquid binder to form a slurry, and then curing the binder is used. The mode of the particle size distribution of the powder A is at least 5 times that of the powder B, and the mixing ratio of the powder A and the powder B is the volume of the powder B with respect to the sum of the volumes of the powder A and the powder B. A composite magnetic core having a percentage of 15% or more and 60% or less.
【請求項2】粉末樹脂硬化磁心の磁路長が複合磁心全体
の磁路長の2%以上80%以下であることを特徴とする
請求項1記載の複合磁心。
2. The composite magnetic core according to claim 1, wherein the magnetic path length of the cured resin core is 2% to 80% of the magnetic path length of the entire composite magnetic core.
【請求項3】粉末樹脂硬化磁心と組み合わせるバルク状
軟磁性材料からなる磁心形状は、中空の箱型であって、
あらかじめ空心コイルを前記箱内に収納したのち、粉末
A、Bを混合した樹脂スラリーを前記箱内に注型し硬化
させることを特徴とする請求項1及び2記載の複合磁
心。
3. A magnetic core made of a bulk soft magnetic material combined with a powdered resin cured magnetic core has a hollow box shape,
3. The composite magnetic core according to claim 1, wherein after the air-core coil is stored in the box in advance, a resin slurry in which powders A and B are mixed is poured into the box and hardened.
JP10362083A 1998-12-21 1998-12-21 Composite core Pending JP2000182845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10362083A JP2000182845A (en) 1998-12-21 1998-12-21 Composite core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10362083A JP2000182845A (en) 1998-12-21 1998-12-21 Composite core

Publications (1)

Publication Number Publication Date
JP2000182845A true JP2000182845A (en) 2000-06-30

Family

ID=18475853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10362083A Pending JP2000182845A (en) 1998-12-21 1998-12-21 Composite core

Country Status (1)

Country Link
JP (1) JP2000182845A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006041173A (en) * 2003-12-10 2006-02-09 Sumida Corporation Magnetic element
JP2007200962A (en) * 2006-01-24 2007-08-09 Nec Tokin Corp Composite material, method for manufacturing the same, magnetic core, and coil component
JP2008034617A (en) * 2006-07-28 2008-02-14 Nec Tokin Corp Closed-magnetic-circuit coil, and manufacturing method thereof
JP2008270438A (en) * 2007-04-18 2008-11-06 Sagami Ereku Kk Inductor, and manufacturing method thereof
US7532099B2 (en) 2001-06-08 2009-05-12 Vacuumschmelze Gmbh & Co. Kg Inductive component and method for producing the same
JP2009194364A (en) * 2008-01-18 2009-08-27 Toko Inc Molded body
US7909945B2 (en) 2006-10-30 2011-03-22 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and method for its production
US7964043B2 (en) 2001-07-13 2011-06-21 Vacuumschmelze Gmbh & Co. Kg Method for producing nanocrystalline magnet cores, and device for carrying out said method
US8012270B2 (en) 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
JP2012059942A (en) * 2010-09-09 2012-03-22 Toyota Industries Corp Magnetic core and induction apparatus
US8287664B2 (en) 2006-07-12 2012-10-16 Vacuumschmelze Gmbh & Co. Kg Method for the production of magnet cores, magnet core and inductive component with a magnet core
US8327524B2 (en) 2000-05-19 2012-12-11 Vacuumscmelze Gmbh & Co. Kg Inductive component and method for the production thereof
US8372218B2 (en) 2006-06-19 2013-02-12 Vacuumschmelze Gmbh & Co. Kg Magnet core and method for its production
US8723629B1 (en) 2013-01-10 2014-05-13 Cyntec Co., Ltd. Magnetic device with high saturation current and low core loss
US8887376B2 (en) 2005-07-20 2014-11-18 Vacuumschmelze Gmbh & Co. Kg Method for production of a soft-magnetic core having CoFe or CoFeV laminations and generator or motor comprising such a core
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
CN105788823A (en) * 2014-12-24 2016-07-20 丹东大东电子有限公司 Power inductor core with closed magnetic circuit structure
WO2022044712A1 (en) * 2020-08-24 2022-03-03 株式会社オートネットワーク技術研究所 Reactor, converter, and power conversion device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8327524B2 (en) 2000-05-19 2012-12-11 Vacuumscmelze Gmbh & Co. Kg Inductive component and method for the production thereof
US7532099B2 (en) 2001-06-08 2009-05-12 Vacuumschmelze Gmbh & Co. Kg Inductive component and method for producing the same
US7964043B2 (en) 2001-07-13 2011-06-21 Vacuumschmelze Gmbh & Co. Kg Method for producing nanocrystalline magnet cores, and device for carrying out said method
US7523542B2 (en) 2003-12-10 2009-04-28 Sumida Corporation Method of manufacturing a magnetic element
JP2006041173A (en) * 2003-12-10 2006-02-09 Sumida Corporation Magnetic element
US7449984B2 (en) 2003-12-10 2008-11-11 Sumida Corporation Magnetic element and method of manufacturing magnetic element
US7786835B2 (en) 2003-12-10 2010-08-31 Simida Corp. Magnetic element and method of manufacturing magnetic element
JP4566649B2 (en) * 2003-12-10 2010-10-20 スミダコーポレーション株式会社 Magnetic element
US8887376B2 (en) 2005-07-20 2014-11-18 Vacuumschmelze Gmbh & Co. Kg Method for production of a soft-magnetic core having CoFe or CoFeV laminations and generator or motor comprising such a core
JP2007200962A (en) * 2006-01-24 2007-08-09 Nec Tokin Corp Composite material, method for manufacturing the same, magnetic core, and coil component
US8372218B2 (en) 2006-06-19 2013-02-12 Vacuumschmelze Gmbh & Co. Kg Magnet core and method for its production
US8287664B2 (en) 2006-07-12 2012-10-16 Vacuumschmelze Gmbh & Co. Kg Method for the production of magnet cores, magnet core and inductive component with a magnet core
JP2008034617A (en) * 2006-07-28 2008-02-14 Nec Tokin Corp Closed-magnetic-circuit coil, and manufacturing method thereof
US7909945B2 (en) 2006-10-30 2011-03-22 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and method for its production
JP2008270438A (en) * 2007-04-18 2008-11-06 Sagami Ereku Kk Inductor, and manufacturing method thereof
US8012270B2 (en) 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
JP2009194364A (en) * 2008-01-18 2009-08-27 Toko Inc Molded body
JP2012059942A (en) * 2010-09-09 2012-03-22 Toyota Industries Corp Magnetic core and induction apparatus
US8723629B1 (en) 2013-01-10 2014-05-13 Cyntec Co., Ltd. Magnetic device with high saturation current and low core loss
US9230728B2 (en) 2013-01-10 2016-01-05 Cyntec Co., Ltd. Magnetic device with high saturation current and low core loss
CN105788823A (en) * 2014-12-24 2016-07-20 丹东大东电子有限公司 Power inductor core with closed magnetic circuit structure
WO2022044712A1 (en) * 2020-08-24 2022-03-03 株式会社オートネットワーク技術研究所 Reactor, converter, and power conversion device

Similar Documents

Publication Publication Date Title
JP2000182845A (en) Composite core
TW492020B (en) Composite magnetic body, and magnetic element and method of manufacturing the same
JP2002057039A (en) Composite magnetic core
JP5288405B2 (en) Inductor and method of manufacturing inductor
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
JP2008109080A (en) Dust core and manufacturing method thereof
JP5966236B2 (en) Powder magnetic core and manufacturing method thereof
WO2018179812A1 (en) Dust core
WO2015147064A1 (en) Magnetic core component, magnetic element, and production method for magnetic core component
JP6256635B1 (en) Inductor element and method of manufacturing inductor element
JP7128439B2 (en) Dust core and inductor element
JP7021459B2 (en) Inductor element
JP2000294418A (en) Powder molded magnetic core
JP2001196216A (en) Dust core
JP2010272604A (en) Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same
JP2007013069A (en) METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP2007214425A (en) Powder magnetic core and inductor using it
JP6597923B1 (en) Magnetic core and coil parts
JP2000294429A (en) Compound magnetic core
EP1091367A2 (en) Magnetic mixture
JP2002313632A (en) Magnetic element and its manufacturing method
JP2000114022A (en) Powder-molded magnetic core
JP2020174127A (en) Inductor element
JP2015185776A (en) Magnetic core component, magnetic element, and manufacturing method of magnetic core component
JP4487025B2 (en) Dust core