JP2009054615A - Powder magnetic core, and manufacturing method thereof - Google Patents

Powder magnetic core, and manufacturing method thereof Download PDF

Info

Publication number
JP2009054615A
JP2009054615A JP2007216988A JP2007216988A JP2009054615A JP 2009054615 A JP2009054615 A JP 2009054615A JP 2007216988 A JP2007216988 A JP 2007216988A JP 2007216988 A JP2007216988 A JP 2007216988A JP 2009054615 A JP2009054615 A JP 2009054615A
Authority
JP
Japan
Prior art keywords
powder
atomic
particle size
magnetic alloy
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007216988A
Other languages
Japanese (ja)
Other versions
JP5094276B2 (en
Inventor
Keiko Tsuchiya
景子 土屋
Hisato Koshiba
寿人 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2007216988A priority Critical patent/JP5094276B2/en
Publication of JP2009054615A publication Critical patent/JP2009054615A/en
Application granted granted Critical
Publication of JP5094276B2 publication Critical patent/JP5094276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder magnetic core of which core characteristics are improved, especially by introducing parameters of frequency and cumulation of particle diameters and increasing a filling factor of amorphous soft magnetic alloy powder, and to provide a manufacturing method thereof. <P>SOLUTION: Frequency of the particle diameters in an cumulation range 10-90% is suppressed to be not higher than 8% by mixing 4 μm classified powder 5-50 mass% in reference powder (D50=12.25 μm) of amorphous soft magnetic alloy power, for example, mainly containing Fe and further containing at least two out of P, C, B, Si. As a result, the filling factor of the amorphous soft magnetic alloy powder with respect to the powder magnetic core can be increased as compared with the powder magnetic core containing only the reference powder, core loss can be reduced, and furthermore, magnetic permeability can be increased. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、非晶質軟磁性合金粉末が結着材によって固化成形されてなる圧粉コアに係り、特に、前記非晶質軟磁性合金粉末の充填率を増大させてコア特性を向上させた圧粉コア及びその製造方法に関する。   The present invention relates to a dust core in which an amorphous soft magnetic alloy powder is solidified by a binder, and in particular, the core characteristics are improved by increasing the filling rate of the amorphous soft magnetic alloy powder. The present invention relates to a dust core and a method for producing the same.

下記の特許文献1に示された非晶質軟磁性合金粉末を用いた圧粉コアでは、Fe−Al−Si系合金(センダスト(登録商標))に比べて低温での熱処理で構造緩和によるプレス成形時の歪を開放することが可能なため、粉末の十分な磁気特性の回復と、粉末間の絶縁を維持することにより、コア損失を適切に低減できる。   In the powder core using the amorphous soft magnetic alloy powder shown in Patent Document 1 below, the structure is relaxed by heat treatment at a lower temperature than the Fe-Al-Si alloy (Sendust (registered trademark)). Since distortion during molding can be released, core loss can be appropriately reduced by restoring sufficient magnetic properties of the powder and maintaining insulation between the powders.

圧粉コアでは、コア損失の低減や透磁率の増大を図りコア特性を向上させることが極めて重要である。   In a dust core, it is extremely important to improve core characteristics by reducing core loss and increasing permeability.

前記コア特性の向上を図るには、圧粉コア中に占める前記非晶質軟磁性合金粉末の充填率を向上させることが重要であった。
特開2005−307291号公報 特開2004−349585号公報 特開2000−114022号公報 特開2004−273564号公報 特開平5−299232号公報 特開平4−343207号公報 特開2001−196216号公報
In order to improve the core characteristics, it was important to improve the filling rate of the amorphous soft magnetic alloy powder in the powder core.
JP 2005-307291 A JP 2004-349585 A Japanese Patent Laid-Open No. 2000-114022 JP 2004-273564 A JP-A-5-299232 JP-A-4-343207 JP 2001-196216 A

上記特許文献2〜特許文献7に示すように、平均粒径の異なる磁性粉末どうしを混合することで、大径の磁性粉末間の隙間に小径の磁性粉末を介在させて充填率を向上させるという考えは従来から多々存在する。   As shown in Patent Document 2 to Patent Document 7, by mixing magnetic powders having different average particle diameters, the filling rate is improved by interposing small-diameter magnetic powder in the gap between large-diameter magnetic powders. There are many ideas from the past.

しかしながら、特許文献2〜特許文献7に記載されている従来の充填率を向上させる方法では、粒度分布の頻度及び累積というパラメータを考慮していなかった。   However, in the conventional methods for improving the filling rate described in Patent Documents 2 to 7, the parameters of the frequency distribution and accumulation of the particle size distribution are not considered.

そこで本発明は上記従来の課題を解決するためのものであり、特に、粒度分布の頻度及び累積のパラメータを導入して、非晶質軟磁性合金粉末の充填率を増大させ、コア特性を向上させた圧粉コア及びその製造方法を提供することを目的としている。   Therefore, the present invention is to solve the above-described conventional problems, and in particular, by introducing the frequency distribution and accumulation parameters of the particle size distribution, the filling rate of the amorphous soft magnetic alloy powder is increased, and the core characteristics are improved. An object of the present invention is to provide a pressed powder core and a manufacturing method thereof.

本発明は、非晶質軟磁性合金粉末が結着材によって固化成形されてなる圧粉コアにおいて、
前記非晶質磁性合金粉末は、Feを主成分とし、少なくともP、C、B、Siのうちの2種以上を含み、
前記非晶質磁性合金粉末の粒度分布の頻度が、10%〜90%の累積範囲で、8%以下であることを特徴とするものである。
The present invention provides a powder core in which amorphous soft magnetic alloy powder is solidified and formed by a binder,
The amorphous magnetic alloy powder is mainly composed of Fe, and includes at least two of P, C, B, and Si,
The frequency of the particle size distribution of the amorphous magnetic alloy powder is 8% or less in a cumulative range of 10% to 90%.

これにより効果的に非晶質軟磁性合金粉末の充填率を向上させることができ、コア損失の低減や透磁率の増大を図りコア特性を向上させることができる。   As a result, the filling rate of the amorphous soft magnetic alloy powder can be effectively improved, and the core characteristics can be improved by reducing the core loss and increasing the magnetic permeability.

また本発明では、前記粒度分布の最大頻度と最小頻度との差が、4%以下であることが好ましい。前記粒度分布の最大頻度と最小頻度との差が大きくなると、非晶質軟磁性合金粉末の充填率を十分に向上できないので、前記粒径の最大頻度と最小頻度との差を小さくすることが好適である。   In the present invention, the difference between the maximum frequency and the minimum frequency of the particle size distribution is preferably 4% or less. If the difference between the maximum frequency and the minimum frequency of the particle size distribution becomes large, the filling rate of the amorphous soft magnetic alloy powder cannot be sufficiently improved, so the difference between the maximum frequency and the minimum frequency of the particle size can be reduced. Is preferred.

また本発明では、前記粒度分布の頻度が6%以下であることがより好ましく、前記粒度分布の頻度が、4%以下で、且つ前記粒径の最大頻度と最小頻度の差が2%以下であることがさらに好ましい。これにより、より効果的に非晶質軟磁性合金粉末の充填率を向上させることができ、より適切に、コア損失を低減できるとともに、透磁率を高めることが可能である。   In the present invention, the frequency of the particle size distribution is more preferably 6% or less, the frequency of the particle size distribution is 4% or less, and the difference between the maximum frequency and the minimum frequency of the particle size is 2% or less. More preferably it is. Thereby, the filling rate of the amorphous soft magnetic alloy powder can be improved more effectively, and the core loss can be reduced more appropriately, and the magnetic permeability can be increased.

また本発明では、前記非晶質軟磁性合金粉末は、下記の組成式で表されることが好ましい。   In the present invention, the amorphous soft magnetic alloy powder is preferably represented by the following composition formula.

Fe100−a−b−x−y−z−w−tCoNiSi
ただし、MはCr、Mo、W、V、Nb、Ta、Ti、Zr、Hf、Pt、Pd、Au、Sn、Alより選ばれる1種または2種以上の元素であり、組成比を示すa、b、x、y、z、w、tは、0原子%≦x≦5原子%、0原子%≦y≦15原子%、0原子%<z≦8原子%、1原子%≦w≦15原子%、0原子%≦t≦12原子%、0原子%≦a≦20原子%、0原子%≦b≦5原子%、70原子%≦(100−a−b−x−y−z−w−t)≦83原子%を示す。上記組成において、Pの添加量yは2原子%以上であることがより好ましく、Bの添加量wは12原子%以下であることがより好ましい。また、Siの添加量tは0.5原子%≦t≦8原子%であることがより好ましい。
Fe 100-a-b-x -y-z-w-t Co a Ni b M x P y C z B w Si t
However, M is one or more elements selected from Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Pt, Pd, Au, Sn, and Al, and shows a composition ratio a , B, x, y, z, w, and t are 0 atomic% ≦ x ≦ 5 atomic%, 0 atomic% ≦ y ≦ 15 atomic%, 0 atomic% <z ≦ 8 atomic%, 1 atomic% ≦ w ≦ 15 atomic%, 0 atomic% ≦ t ≦ 12 atomic%, 0 atomic% ≦ a ≦ 20 atomic%, 0 atomic% ≦ b ≦ 5 atomic%, 70 atomic% ≦ (100-ab-xyz) −w−t) ≦ 83 atomic%. In the above composition, the addition amount y of P is more preferably 2 atomic percent or more, and the addition amount w of B is more preferably 12 atomic percent or less. The addition amount t of Si is more preferably 0.5 atomic% ≦ t ≦ 8 atomic%.

また本発明は、非晶質軟磁性合金粉末を結着材によって固化成形してなる圧粉コアの製造方法において、
Feを主成分とし、少なくともP、C、B、Siのうちの2種以上を含む前記非晶質軟磁性合金粉末をアトマイズ法により形成する第1工程、
前記第1工程中、あるいは、前記第1工程の後に、前記非晶質磁性合金粉末の粒度分布の頻度を、10%〜90%の累積範囲で、8%以下に調整する第2工程、
前記非晶質軟磁性合金粉末と、結着材及び潤滑材を含む添加材とを混合、造粒して造粒粉を形成する第3工程、
前記造粒粉末を圧縮成形して所定形状のコア前駆体を形成する第4工程、
前記コア前駆体を熱処理し、圧縮成形により前記非晶質軟磁性合金粉末に生じた歪を除去する第5工程、
を有することを特徴とするものである。
The present invention also relates to a method for producing a dust core obtained by solidifying and molding an amorphous soft magnetic alloy powder with a binder.
A first step of forming the amorphous soft magnetic alloy powder containing Fe as a main component and containing at least two of P, C, B, and Si by an atomizing method;
A second step of adjusting the frequency of the particle size distribution of the amorphous magnetic alloy powder to 8% or less in the cumulative range of 10% to 90% during the first step or after the first step;
A third step in which the amorphous soft magnetic alloy powder and an additive containing a binder and a lubricant are mixed and granulated to form a granulated powder;
A fourth step of compression-molding the granulated powder to form a core precursor of a predetermined shape;
A fifth step of heat-treating the core precursor and removing strain generated in the amorphous soft magnetic alloy powder by compression molding;
It is characterized by having.

これにより非晶質軟磁性合金粉末の充填率が高く、コア特性に優れた圧粉コアを簡単且つ適切に製造できる。   As a result, a compact core having a high filling ratio of the amorphous soft magnetic alloy powder and excellent core characteristics can be easily and appropriately manufactured.

本発明では、前記第1工程で得られた非晶質軟磁性合金粉末を基準粉末としたとき、前記基準粉末の平均粒径(D50)より小さい平均粒径(D50)を有し、Feを主成分とし、少なくともP、C、B、Siのうちの2種以上を含むアトマイズ法により形成された非晶質軟磁性合金粉末(調整粉末)を用意し、
前記第2工程では、前記非晶質磁性合金粉末の粒度分布の頻度が、10%〜90%の累積範囲で、8%以下となるように、前記基準粉末と適量の前記調整粉末とを混合することが好ましい。これにより、前記基準粉末に比べて容易に、非晶質軟磁性合金粉末の充填率を高めることができる。
In the present invention, when the amorphous soft magnetic alloy powder obtained in the first step is used as a reference powder, it has an average particle diameter (D50) smaller than the average particle diameter (D50) of the reference powder, An amorphous soft magnetic alloy powder (adjusted powder) formed by an atomizing method containing at least two of P, C, B, and Si as a main component is prepared.
In the second step, the reference powder and an appropriate amount of the adjusted powder are mixed so that the frequency of the particle size distribution of the amorphous magnetic alloy powder is 8% or less in a cumulative range of 10% to 90%. It is preferable to do. Thereby, the filling rate of the amorphous soft magnetic alloy powder can be easily increased as compared with the reference powder.

また前記調整粉末を5質量%〜50質量%の範囲内で混合することが、非晶質軟磁性合金粉末の充填率を、基準粉末に比べて効果的に高めることができ、好適である。   Further, it is preferable that the adjustment powder is mixed within the range of 5% by mass to 50% by mass because the filling rate of the amorphous soft magnetic alloy powder can be effectively increased as compared with the reference powder.

また、前記調整粉末を10質量%〜20質量%の範囲内で混合することがより好ましい。   Moreover, it is more preferable to mix the said adjustment powder within the range of 10 mass%-20 mass%.

また本発明では、前記第1工程で得られた非晶質軟磁性合金粉末を基準粉末としたとき、前記基準粉末の平均粒径(D50)より大きい平均粒径(D50)を有し、Feを主成分とし、少なくともP、C、B、Siのうちの2種以上を含むアトマイズ法により形成された非晶質軟磁性合金粉末(調整粉末)を用意し、
前記第2工程では、前記非晶質磁性合金粉末の粒度分布の頻度が、10%〜90%の累積範囲で、8%以下となるように、前記基準粉末と適量の前記調整粉末とを混合してもよい。かかる場合、前記調整粉末を5質量%〜20質量%の範囲内で混合することが好ましい。
In the present invention, when the amorphous soft magnetic alloy powder obtained in the first step is used as a reference powder, it has an average particle diameter (D50) larger than the average particle diameter (D50) of the reference powder, and Fe Amorphous soft magnetic alloy powder (adjusted powder) formed by an atomizing method containing at least two of P, C, B, and Si as a main component,
In the second step, the reference powder and an appropriate amount of the adjusted powder are mixed so that the frequency of the particle size distribution of the amorphous magnetic alloy powder is 8% or less in a cumulative range of 10% to 90%. May be. In such a case, it is preferable to mix the adjusted powder within a range of 5% by mass to 20% by mass.

また本発明では、前記第2工程では、前記粒径の最大頻度と最小頻度との差を、4%以下に調整することが好ましい。   In the present invention, it is preferable that in the second step, the difference between the maximum frequency and the minimum frequency of the particle size is adjusted to 4% or less.

また本発明では、前記第2工程では、前記粒度分布の頻度を6%以下とすることがより好ましく、前記粒度分布の頻度を、4%以下で、且つ前記粒度分布の最大頻度と最小頻度の差を2%以下に調整することがより好ましい。   In the present invention, in the second step, the frequency of the particle size distribution is more preferably 6% or less, the frequency of the particle size distribution is 4% or less, and the maximum frequency and the minimum frequency of the particle size distribution. It is more preferable to adjust the difference to 2% or less.

また本発明では、下記の組成式で表される前記非晶質磁性合金粉末を形成することが好ましい。   In the present invention, it is preferable to form the amorphous magnetic alloy powder represented by the following composition formula.

Fe100−a−b−x−y−z−w−tCoNiSi
ただし、MはCr、Mo、W、V、Nb、Ta、Ti、Zr、Hf、Pt、Pd、Au、Sn、Alより選ばれる1種または2種以上の元素であり、組成比を示すa、b、x、y、z、w、tは、0原子%≦x≦5原子%、0原子%≦y≦15原子%、0原子%<z≦8原子%、1原子%≦w≦15原子%、0原子%≦t≦12原子%、0原子%≦a≦20原子%、0原子%≦b≦5原子%、70原子%≦(100−a−b−x−y−z−w−t)≦83原子%を示す。
Fe 100-a-b-x -y-z-w-t Co a Ni b M x P y C z B w Si t
However, M is one or more elements selected from Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Pt, Pd, Au, Sn, and Al, and shows a composition ratio a , B, x, y, z, w, and t are 0 atomic% ≦ x ≦ 5 atomic%, 0 atomic% ≦ y ≦ 15 atomic%, 0 atomic% <z ≦ 8 atomic%, 1 atomic% ≦ w ≦ 15 atomic%, 0 atomic% ≦ t ≦ 12 atomic%, 0 atomic% ≦ a ≦ 20 atomic%, 0 atomic% ≦ b ≦ 5 atomic%, 70 atomic% ≦ (100-ab-xyz) −w−t) ≦ 83 atomic%.

本発明の圧粉コアによれば、効果的に非晶質軟磁性合金粉末の充填率を向上させることができ、コア損失の低減や透磁率の増大を図りコア特性を向上させることができる。   According to the dust core of the present invention, the filling rate of the amorphous soft magnetic alloy powder can be effectively improved, and the core characteristics can be improved by reducing the core loss and increasing the magnetic permeability.

また本発明の圧粉コアの製造方法によれば、非晶質軟磁性合金粉末の充填率が高く、コア特性に優れた圧粉コアを簡単且つ適切に製造できる。   Further, according to the method for producing a dust core of the present invention, a dust core having a high filling rate of the amorphous soft magnetic alloy powder and excellent core characteristics can be produced easily and appropriately.

(非晶質軟磁性合金粉末及び圧粉コアの形態)
本発明における圧粉コアは、非晶質軟磁性合金粉末が結着材によって固化成形されてなるものである。
(Amorphous soft magnetic alloy powder and compacted core form)
The dust core in the present invention is obtained by solidifying and molding an amorphous soft magnetic alloy powder with a binder.

前記非晶質軟磁性合金粉末は、略球状あるいは楕円体状からなる。前記非晶質軟磁性合金粉末は、組織中に多数個存在し、各非晶質軟磁性合金粉末間が前記結着材にて絶縁された状態となっている。   The amorphous soft magnetic alloy powder has a substantially spherical or ellipsoidal shape. A large number of the amorphous soft magnetic alloy powders exist in the structure, and the amorphous soft magnetic alloy powders are insulated from each other by the binder.

前記非晶質磁性合金粉末は、Feを主成分とし、少なくともP、C、B、Siを含む。前記非晶質軟磁性合金粉末は、下記の組成式で表されることが好適である。   The amorphous magnetic alloy powder contains Fe as a main component and contains at least P, C, B, and Si. The amorphous soft magnetic alloy powder is preferably represented by the following composition formula.

Fe100−a−b−x−y−z−w−tCoNiSi
ただし、MはCr、Mo、W、V、Nb、Ta、Ti、Zr、Hf、Pt、Pd、Au、Sn、Alより選ばれる1種または2種以上の元素であり、組成比を示すa、b、x、y、z、w、tは、0原子%≦x≦5原子%、0原子%≦y≦15原子%、0原子%<z≦8原子%、1原子%≦w≦15原子%、0原子%≦t≦12原子%、0原子%≦a≦20原子%、0原子%≦b≦5原子%、70原子%≦(100−a−b−x−y−z−w−t)≦83原子%を示す。
Fe 100-a-b-x -y-z-w-t Co a Ni b M x P y C z B w Si t
However, M is one or more elements selected from Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Pt, Pd, Au, Sn, and Al, and shows a composition ratio a , B, x, y, z, w, and t are 0 atomic% ≦ x ≦ 5 atomic%, 0 atomic% ≦ y ≦ 15 atomic%, 0 atomic% <z ≦ 8 atomic%, 1 atomic% ≦ w ≦ 15 atomic%, 0 atomic% ≦ t ≦ 12 atomic%, 0 atomic% ≦ a ≦ 20 atomic%, 0 atomic% ≦ b ≦ 5 atomic%, 70 atomic% ≦ (100-ab-xyz) −w−t) ≦ 83 atomic%.

本実施形態の非晶質軟磁性合金粉末は、磁性を示すFeと、非晶質形成能を有するP、C、Bといった半金属元素を具備しているので、非晶質相を主相とするとともに優れた軟磁気特性を示す。   Since the amorphous soft magnetic alloy powder of the present embodiment includes Fe exhibiting magnetism and metalloid elements such as P, C, and B having an amorphous forming ability, the amorphous phase is the main phase. In addition, it exhibits excellent soft magnetic properties.

また、元素M(Cr、Mo、W、V、Nb、Ta、Ti、Zr、Hf、Pt、Pd、Au、Sn、Alのうちの1種又は2種以上の元素素)を添加することで耐食性を向上させることができる。   Further, by adding an element M (one or more element elements of Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Pt, Pd, Au, Sn, and Al). Corrosion resistance can be improved.

更に前記非晶質軟磁性合金粉末は、上記組成において、Pの添加量yは2原子%以上であることがより好ましく、Bの添加量wは12原子%以下であることがより好ましい。また、Siの添加量tは0.5原子%≦t≦8原子%であることがより好ましい。このような組成とすることで、ΔTx=Tx−Tg(ただしTxは結晶化開始温度、Tgはガラス遷移温度を示す。)の式で表される過冷却液体の温度間隔ΔTxが20K以上を示すが、組成によってはΔTxが30K以上、さらには50K以上という顕著な温度間隔を有し、より非晶質化し易くなる。   Furthermore, in the above composition, the amorphous soft magnetic alloy powder has a P addition amount y of more preferably 2 atomic% or more, and a B addition amount w of 12 atomic% or less. The addition amount t of Si is more preferably 0.5 atomic% ≦ t ≦ 8 atomic%. By setting it as such a composition, the temperature interval (DELTA) Tx of the supercooling liquid represented by the type | formula of (DELTA) Tx = Tx-Tg (however, Tx shows crystallization start temperature and Tg shows glass transition temperature) shows 20K or more. However, depending on the composition, ΔTx has a remarkable temperature interval of 30K or more, and further 50K or more, and it becomes easier to become amorphous.

本実施形態の磁性粉末のFe量(100−a−b−x−y−z−w−t)は、70原子%以上83原子%以下であることが好ましく、72原子%以上82原子%以下であることがより好ましく、73原子%以上80原子%以下であることが更に好ましい。このようにFe量が高いことで高い飽和磁化を示す。なおFeの添加量が83原子%を越えると、合金の非晶質形成能の程度を示す換算ガラス化温度(Tg/Tm)が0.50未満になり、非晶質形成能が低下するので好ましくない。なお、上記式においてTmは磁性粉末の融点を示す。   The Fe amount (100-abxxyz-wt) of the magnetic powder of the present embodiment is preferably 70 atom% or more and 83 atom% or less, and 72 atom% or more and 82 atom% or less. It is more preferable that it is 73 atomic% or more and 80 atomic% or less. Thus, high saturation magnetization is shown by the high amount of Fe. If the amount of Fe exceeds 83 atomic%, the converted vitrification temperature (Tg / Tm) indicating the degree of amorphous forming ability of the alloy becomes less than 0.50, and the amorphous forming ability is reduced. It is not preferable. In the above formula, Tm represents the melting point of the magnetic powder.

前記非晶質軟磁性合金粉末のCo量aは0〜20原子%の範囲で可能であり、Ni量bは0〜5原子%の範囲で可能である。Coはキュリー温度Tcを高めるとともに耐食性を高める効果を有する。しかし、20原子%を超えるとその分、Fe量が減り、飽和磁化が180×10−6Wbm/Kg以下になるとともに、TcがTg近傍温度まで上昇し、熱処理し難くなるので望ましくない。Niは耐食性を向上させる(強磁性元素の中で最も耐食性が高い)が、6原子%以上では飽和磁化が低下する傾向となる。 The Co amount a of the amorphous soft magnetic alloy powder can be in the range of 0 to 20 atomic%, and the Ni amount b can be in the range of 0 to 5 atomic%. Co has the effect of increasing the Curie temperature Tc and enhancing the corrosion resistance. However, if it exceeds 20 atomic%, the amount of Fe is reduced correspondingly, the saturation magnetization becomes 180 × 10 −6 Wbm / Kg or less, and Tc rises to a temperature near Tg, which makes it difficult to perform heat treatment. Ni improves corrosion resistance (highest corrosion resistance among ferromagnetic elements), but saturation magnetization tends to decrease at 6 atomic% or more.

C、P、B及びSiは、非晶質形成能を高める元素であり、このうち、少なくとも2種以上を添加すると好ましい。Feと上記元素Mにこれらの元素を添加して多元系とすることにより、Feと上記元素Mのみの2元系の場合よりも安定して非晶質相が形成される。   C, P, B, and Si are elements that increase the ability to form an amorphous material, and it is preferable to add at least two of these elements. By adding these elements to Fe and the element M to form a multi-component system, an amorphous phase is formed more stably than in the case of a binary system including only Fe and the element M.

特にPはFeと低温(約1050℃)で共晶組成を持つため、組織の全体が非晶質を形成しやすくなる。また、PとSiを同時に添加すると、過冷却液体の温度間隔ΔTxを発現し易くなって非晶質形成能が向上し、非晶質単相の組織を得る際の製造条件を比較的簡易な方向に緩和できる。   In particular, since P has a eutectic composition with Fe at a low temperature (about 1050 ° C.), the entire structure tends to form an amorphous state. Further, when P and Si are added simultaneously, the temperature interval ΔTx of the supercooled liquid is easily expressed, the amorphous forming ability is improved, and the production conditions for obtaining an amorphous single phase structure are relatively simple. Can relax in the direction.

Pの組成比yが上記の範囲であれば、過冷却液体の温度間隔ΔTxが発現して合金粉末の非晶質形成能が向上する。   When the composition ratio y of P is in the above range, the temperature interval ΔTx of the supercooled liquid is developed and the amorphous forming ability of the alloy powder is improved.

また、Cr、Mo、W、V、Nb、Ta、Ti、Zr、Hfに代表される元素Mは、合金粉末に不動態化酸化皮膜を形成でき、合金粉末の耐食性を向上できる。これらの元素のうち耐食性の向上に最も効果があるものはCrである。水アトマイズ法において、合金溶湯が直接水に触れたとき、更には合金粉末の乾燥工程において生じる腐食部分の発生を防ぐことができる(目視レベル)。また、これらの元素は単独添加するか、あるいは2種以上の組み合わせで複合添加しても良く、例えば、Mo、VとMo、CrとV、Cr及びCr、Mo、V等の組合せで複合添加しても良い。これらの元素のうち、Mo,Vは耐食性がCrより若干劣るものの非晶質形成能が向上するため、必要に応じてこれらの元素を選択する。また、Cr、Mo、W、V、Nb、Taのうちから選択される元素の添加量が8原子%を超えると、磁気特性(飽和磁化)が低下してしまう。   Further, the element M represented by Cr, Mo, W, V, Nb, Ta, Ti, Zr, and Hf can form a passivated oxide film on the alloy powder, and can improve the corrosion resistance of the alloy powder. Among these elements, Cr is most effective for improving the corrosion resistance. In the water atomization method, when the molten alloy is in direct contact with water, it is possible to prevent the occurrence of a corroded portion that occurs in the drying step of the alloy powder (visual level). These elements may be added alone or in combination of two or more, for example, in combination of Mo, V and Mo, Cr and V, Cr and Cr, Mo, V, etc. You may do it. Among these elements, Mo and V are slightly inferior in corrosion resistance to Cr, but the amorphous forming ability is improved. Therefore, these elements are selected as necessary. On the other hand, when the addition amount of an element selected from Cr, Mo, W, V, Nb, and Ta exceeds 8 atomic%, the magnetic characteristics (saturation magnetization) deteriorate.

上記組成式中の元素Mとして採用される元素のうちガラス形成能はZr、Hfが最も高い。Ti、Zr、Hfは酸化性が強いため、これらの元素が8原子%を超えて添加されていると、大気中で合金粉末原料を溶解すると原料溶解中に溶湯が酸化し、磁気特性(飽和磁化)が低下してしまう。これらの元素も粉末表面の不働態被膜形成に寄与し、耐食性を向上させる。   Of the elements employed as the element M in the composition formula, Zr and Hf have the highest glass-forming ability. Since Ti, Zr, and Hf have strong oxidizing properties, if these elements are added in excess of 8 atomic%, melting the alloy powder raw material in the atmosphere will oxidize the molten metal during melting of the raw material, resulting in magnetic properties (saturation). Magnetization) decreases. These elements also contribute to the formation of a passive film on the powder surface and improve the corrosion resistance.

また、磁性粉末としての耐食性向上効果は、Pt、Pd、Auのうちから選択される1種又は2種以上の貴金属元素の添加によっても得られ、これら貴金属元素を粉末表面に分散することにより、耐食性が向上する。また、これらの貴金属元素は単独添加あるいは上記のCr等の耐食性向上効果のある元素との組み合わせて複合添加しても良い。上記の貴金属元素はFeと混じり合わないため、8原子%を超えて添加されているとガラス形成能が低下し、また、磁気特性(飽和磁化)も低下する。   Further, the effect of improving the corrosion resistance as the magnetic powder can be obtained by adding one or more kinds of noble metal elements selected from Pt, Pd and Au, and by dispersing these noble metal elements on the powder surface, Corrosion resistance is improved. These noble metal elements may be added alone or in combination with the above-described elements having an effect of improving corrosion resistance such as Cr. Since the above precious metal element does not mix with Fe, if it is added in excess of 8 atomic%, the glass forming ability is lowered, and the magnetic properties (saturation magnetization) are also lowered.

非晶質軟磁性合金粉末に耐食性を持たせるためには、上記元素Mの添加量は0.5原子%以上とする必要がある。   In order to give the amorphous soft magnetic alloy powder corrosion resistance, the amount of the element M added needs to be 0.5 atomic% or more.

前記組成式中のMのうち、Snは低融点金属であり、Snを添加することで合金を軟化させる効果、アトマイズにて合金粉末を形成する際に球形の形状の粉末を得られ易くする効果があり、このような効果を訴求するために必要に応じて添加すると良い。なお、元素Mには示されていないが、In、Zn、Gaも同様な効果が期待できる。   Of the M in the composition formula, Sn is a low melting point metal, the effect of softening the alloy by adding Sn, the effect of making it easier to obtain a spherical powder when forming the alloy powder by atomization In order to promote such effects, it may be added as necessary. Although not shown for the element M, In, Zn, and Ga can be expected to have the same effect.

次に、Siを添加すると熱的安定性が向上するため、必要に応じて、0.5原子%以上添加してもよい。また、Siの添加量が8原子%を超えると、融点が上昇してしまう。従ってSi量tは、0.5原子%以上8原子%以下であることが必要であり、好ましくは2〜8原子%、より好ましくは3原子%以上7原子%以下の添加量である。   Next, when Si is added, the thermal stability is improved. Therefore, if necessary, 0.5 atomic% or more may be added. On the other hand, if the amount of Si added exceeds 8 atomic%, the melting point increases. Accordingly, the Si amount t needs to be 0.5 atomic% or more and 8 atomic% or less, preferably 2 to 8 atomic%, more preferably 3 atomic% or more and 7 atomic% or less.

このSiは本実施形態の非晶質軟磁性合金粉末において重要な元素であり、合金溶湯が水アトマイズ法により水の存在雰囲気で急冷されて非晶質合金化する過程において、非晶質軟磁性合金粉末が腐食されることを先の耐食性向上効果を奏する元素に加えてSiが防止する。   This Si is an important element in the amorphous soft magnetic alloy powder of the present embodiment, and in the process where the molten alloy is rapidly cooled in the presence of water by the water atomization method to form an amorphous alloy, Si prevents the alloy powder from being corroded in addition to the elements that have the effect of improving the corrosion resistance.

次に、B量wが1原子%未満では磁性粉末が得られ難く、15原子%を超えると融点が上昇してしまう。従って、B量wは、1原子%以上15原子%以下であることが好ましく、2原子%以上10原子%であることが好ましく、4原子%以上9原子%以下であることがさらに好ましい。   Next, when the B amount w is less than 1 atomic%, it is difficult to obtain a magnetic powder, and when it exceeds 15 atomic%, the melting point increases. Therefore, the B amount w is preferably 1 atom% or more and 15 atom% or less, preferably 2 atom% or more and 10 atom%, and more preferably 4 atom% or more and 9 atom% or less.

また、Cを添加すると熱的安定性が向上するためCが添加されていることが好ましい。また、C量zが8原子%を超えると、融点が上昇してしまう。従って、C量zは、8原子%以下であることが好ましく、0原子%を超えて6原子%以下であることがより好ましく、1原子%以上4原子%以下であることがさらに好ましい。   Moreover, since thermal stability improves when C is added, C is preferably added. On the other hand, when the C content z exceeds 8 atomic%, the melting point increases. Accordingly, the C amount z is preferably 8 atomic% or less, more preferably 0 atomic% to 6 atomic% or less, and further preferably 1 atomic% or more and 4 atomic% or less.

これらの半金属元素C、P、B及びSiの合計の組成比(y+z+w+t)は、17原子%以上25原子%以下であることが好ましく、18原子%以上25原子%以下とすることが更に好ましい。   The total composition ratio (y + z + w + t) of these metalloid elements C, P, B and Si is preferably 17 atomic percent or more and 25 atomic percent or less, and more preferably 18 atomic percent or more and 25 atomic percent or less. .

半金属元素の合計の組成比が25原子%を越えると、特にFeの組成比が相対的に低下し、飽和磁化が低下するので好ましくない。半金属元素の合計の組成比が17原子%未満では、非晶質形成能が低下し非晶質相単相組織が得られにくい。   If the total composition ratio of the metalloid elements exceeds 25 atomic%, the composition ratio of Fe is particularly lowered and the saturation magnetization is lowered, which is not preferable. When the total composition ratio of the metalloid elements is less than 17 atomic%, the amorphous forming ability is lowered and it is difficult to obtain an amorphous phase single phase structure.

本実施形態の磁性粉末においては、上記の組成に、Geが4原子%以下含有されていてもよい。   In the magnetic powder of this embodiment, Ge may be contained in the above composition in an amount of 4 atomic% or less.

上記のいずれの場合の組成においても、本実施形態においては、Tx/Tmの値が0.5以上、組成によっては0.55以上が得られる。
また上記の組成で示される元素の他に不可避的不純物が含まれていても良い。
In any of the above compositions, in this embodiment, the value of Tx / Tm is 0.5 or more, and depending on the composition, 0.55 or more is obtained.
Further, inevitable impurities may be included in addition to the elements represented by the above composition.

次に、本実施形態の非晶質軟磁性合金粉末は、アスペクト比の平均が1以上3.5以下であることが好ましく、アスペクト比の平均が1以上3以下であることがより好ましく、1.2以上2.5以下であることがさらに好ましい。アスペクト比の平均が3.5を超えると不定形粉末が多くなり、成形密度が低下する。またコア成形した際に非晶質軟磁性合金粉末間の絶縁が取り難くなる。   Next, the amorphous soft magnetic alloy powder of the present embodiment preferably has an average aspect ratio of 1 or more and 3.5 or less, more preferably 1 or more and 3 or less. More preferably, it is 2 or more and 2.5 or less. If the average aspect ratio exceeds 3.5, the amount of amorphous powder increases and the molding density decreases. Moreover, it becomes difficult to take insulation between the amorphous soft magnetic alloy powders when the core is formed.

前記結着材としては、エポキシ樹脂、シリコーン樹脂、シリコーンゴム、フェノール樹脂、尿素樹脂、メラミン樹脂、PVA(ポリビニルアルコール)等の液状又は粉末状の樹脂あるいはゴムや、水ガラス(NaO-SiO)、酸化物ガラス粉末(NaO-B-SiO、PbO-B-SiO、PbO-BaO-SiO、NaO-B-ZnO、CaO-BaO-SiO、Al-B-SiO、B-SiO)、ゾルゲル法により生成するガラス状物質(SiO、Al、ZrO、TiO等を主成分とするもの)等を挙げることができる。 Examples of the binder include epoxy resin, silicone resin, silicone rubber, phenol resin, urea resin, melamine resin, liquid or powdery resin such as PVA (polyvinyl alcohol) or rubber, water glass (Na 2 O—SiO 2). 2 ), oxide glass powder (Na 2 O—B 2 O 3 —SiO 2 , PbO—B 2 O 3 —SiO 2 , PbO—BaO—SiO 2 , Na 2 O—B 2 O 3 —ZnO, CaO— BaO—SiO 2 , Al 2 O 3 —B 2 O 3 —SiO 2 , B 2 O 3 —SiO 2 ), glassy substances produced by the sol-gel method (SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2, etc.) As a main component).

(粉末の粒度分布の頻度及び累積値について)
本実施形態の圧粉コアの特徴的部分は、前記非晶質軟磁性合金粉末の粒度分布の頻度が、10%〜90%の累積範囲で、8%以下、好ましくは6%以下である点にある。
(About the frequency and cumulative value of the particle size distribution of the powder)
The characteristic part of the dust core of the present embodiment is that the frequency of the particle size distribution of the amorphous soft magnetic alloy powder is 8% or less, preferably 6% or less in a cumulative range of 10% to 90%. It is in.

「粉末の粒度分布」は、粒度分布測定装置にて測定できる。粒度分布は、例えば日機装(株)製のマイクロトラック粒度分布測定装置 MT3300EXを用いて測定することができる。例えば、前記マイクロトラック粒度分布測定装置の条件として、「分布表示」に「体積」を選択し、「粒径区分選択」に「標準」を選択し、「測定上限」に「1408μm」を選択し、測定下限に「0.021μm」を選択し、「チャンネル数」に「128」を選択し、「測定時間」に「30秒」を選択する。この粒度分布測定装置の測定原理は、レーザー回折散乱法(マイクロトラック法)である。   "Powder particle size distribution" can be measured with a particle size distribution measuring device. The particle size distribution can be measured, for example, using a Microtrac particle size distribution measuring device MT3300EX manufactured by Nikkiso Co., Ltd. For example, as a condition of the microtrack particle size distribution measuring device, “volume” is selected for “distribution display”, “standard” is selected for “particle size category selection”, and “1408 μm” is selected for “upper limit of measurement”. “0.021 μm” is selected as the measurement lower limit, “128” is selected as the “number of channels”, and “30 seconds” is selected as the “measurement time”. The measurement principle of this particle size distribution measuring apparatus is a laser diffraction scattering method (microtrack method).

「粉末の粒度分布」は、粒径の異なる多数の非晶質軟磁性合金粉末を、粒径区分ごとに個数割合で表したものである。「粉末の粒度分布」は、粒径区分の小さい側から、「頻度」を累積したものである。「頻度」及び「粉末の粒度分布」は共に%で示される。   “Powder particle size distribution” is a number ratio of a large number of amorphous soft magnetic alloy powders having different particle sizes for each particle size category. “Powder particle size distribution” is obtained by accumulating “frequency” from the smaller particle size classification. “Frequency” and “Powder size distribution” are both expressed in%.

本実施形態の非晶質軟磁性合金粉末の平均粒径(D50)は、4〜55μm、好ましくは4〜35μmの範囲内である。前記平均粒径(D50)は、累積値50%での粒径を指している。   The average particle diameter (D50) of the amorphous soft magnetic alloy powder of this embodiment is in the range of 4 to 55 μm, preferably 4 to 35 μm. The average particle diameter (D50) refers to the particle diameter at a cumulative value of 50%.

通常、平均粒径(D50)付近で「頻度」は非常に大きくなるが、本実施形態では、粒径が広範囲に満遍なく存在するように、前記非晶質軟磁性合金粉末の粒度分布における頻度を、10%〜90%の累積範囲で、8%以下に調整している。これにより、後述する実験結果によれば、非晶質合金粉末の硬度が大きいことにより生じる充填率の低下を粉体の塑性変形を用いずに改善でき、前記非晶質軟磁性合金粉末の充填率を向上させることができ、この結果、粒子間の絶縁を維持しながらコアの高密度化を実現し、コア損失を低減でき、さらには透磁率を上昇させることができコア特性の向上を図ることが可能となる。   Normally, the “frequency” is very large in the vicinity of the average particle diameter (D50), but in this embodiment, the frequency in the particle size distribution of the amorphous soft magnetic alloy powder is set so that the particle diameter exists uniformly over a wide range. The cumulative range of 10% to 90% is adjusted to 8% or less. As a result, according to the experimental results to be described later, it is possible to improve the decrease in filling rate caused by the high hardness of the amorphous alloy powder without using plastic deformation of the powder. As a result, the core density can be increased while maintaining the insulation between the particles, the core loss can be reduced, and the permeability can be increased to improve the core characteristics. It becomes possible.

なお0%〜10%(10%を含まない)、及び90%〜100%(90%を含まない)の累積範囲は外しているが、通常、この範囲での頻度は8%よりも小さく、またこの範囲を入れてしまうと、次に規定する「最大頻度と最小頻度との差」では、最小頻度が0%となり、適切に、「最大頻度と最小頻度との差」を規定できないため、0%〜10%(10%を含まない)、及び90%〜100%(90%を含まない)の累積範囲を外している。   The cumulative range of 0% to 10% (not including 10%) and 90% to 100% (not including 90%) is excluded, but the frequency in this range is usually less than 8%. If this range is included, the “difference between the maximum frequency and the minimum frequency” specified below is 0%, and the “difference between the maximum frequency and the minimum frequency” cannot be properly specified. The cumulative ranges of 0% to 10% (not including 10%) and 90% to 100% (not including 90%) are excluded.

本実施形態では、10%〜90%の累積範囲で、前記最大頻度と最小頻度との差が、6%以下、さらに好ましくは4%以下であることが好ましい。これにより、より効果的に、前記非晶質軟磁性合金粉末の充填率を向上させることができる。   In the present embodiment, it is preferable that the difference between the maximum frequency and the minimum frequency is 6% or less, more preferably 4% or less, in a cumulative range of 10% to 90%. Thereby, the filling rate of the amorphous soft magnetic alloy powder can be improved more effectively.

また本実施形態では、10%〜90%の累積範囲で、前記頻度が、4%以下で、且つ前記最大頻度と最小頻度の差が2%以下であることがより好ましい。   In the present embodiment, it is more preferable that the frequency is 4% or less and the difference between the maximum frequency and the minimum frequency is 2% or less in a cumulative range of 10% to 90%.

(本実施形態の圧粉コアの製造方法)
まず、上記した組成を備える非晶質軟磁性合金粉末をアトマイズ法により形成する(第1工程)。アトマイズ法には水アトマイズ法あるいはガスアトマイズ法を使用することが好適である。ここで、例えば、水アトマイズ法にて前記非晶質軟磁性合金粉末を製造する際、水の噴射圧力、噴射流量、合金溶湯流量等をコントロールすることにより、目的とする非晶質軟磁性合金粉末のアスペクト比や平均粒径(D50)を得ることができる。
(Manufacturing method of the powder core of this embodiment)
First, an amorphous soft magnetic alloy powder having the above composition is formed by an atomizing method (first step). As the atomization method, it is preferable to use a water atomization method or a gas atomization method. Here, for example, when producing the amorphous soft magnetic alloy powder by the water atomization method, the target amorphous soft magnetic alloy is controlled by controlling the water injection pressure, the injection flow rate, the molten alloy flow rate, etc. The aspect ratio and average particle size (D50) of the powder can be obtained.

この第1工程で得られた非晶質軟磁性合金粉末を「基準粉末」とする。この基準粉末の粒度分布における頻度が、10%〜90%の累積範囲で、8%以下となっていれば次の第2工程を行うことは必要ないが、そうでない場合、次の第2工程を行う。   The amorphous soft magnetic alloy powder obtained in the first step is referred to as “reference powder”. If the frequency in the particle size distribution of the reference powder is 8% or less in the cumulative range of 10% to 90%, it is not necessary to perform the next second step. I do.

すなわち前記基準粉末の平均粒径(D50)より小さい平均粒径(D50)を有し、且つ上記した組成を備える非晶質軟磁性合金粉末(調整粉末)を用意し、非晶質軟磁性合金粉末の粒度分布における頻度が、10%〜90%の累積範囲で、8%以下となるように、前記基準粉末と適量の前記調整粉末とを混合する(第2工程)。   That is, an amorphous soft magnetic alloy powder (conditioning powder) having an average particle size (D50) smaller than the average particle size (D50) of the reference powder and having the above-described composition is prepared. The reference powder and an appropriate amount of the adjusted powder are mixed so that the frequency in the particle size distribution of the powder is 8% or less in a cumulative range of 10% to 90% (second step).

このとき、前記調整粉末を、前記基準粉末と調整粉末との混合粉の全質量中、5質量%〜50質量%の範囲内で混合することが好ましい。また前記調整粉末を10質量%〜20質量%の範囲内で混合することがより好ましい。   At this time, it is preferable to mix the said adjustment powder within the range of 5 mass%-50 mass% in the total mass of the mixed powder of the said reference | standard powder and adjustment powder. Moreover, it is more preferable to mix the said adjustment powder within the range of 10 mass%-20 mass%.

ここで前記基準粉末の平均粒径(D50)は4〜55μm、特に水アトマイズ法を用いる場合は4〜35μmの範囲内であり、前記基準粉末よりも小さい調整粉末の平均粒径(D50)は、4〜50μm、特に水アトマイズ法を用いる場合は4〜30μmの範囲内であることが好ましい。   Here, the average particle diameter (D50) of the reference powder is 4 to 55 μm, particularly in the range of 4 to 35 μm when the water atomization method is used, and the average particle diameter (D50) of the adjusted powder smaller than the reference powder is When using the water atomization method, it is preferable to be in the range of 4 to 30 μm.

前記調整粉末の平均粒径(D50)は、基準粉末の平均粒径(D50)より大きくても、非晶質軟磁性合金粉末(基準粉末と調整粉末との混合粉)の充填率を前記基準粉末の充填率より上げることができるが、非晶質軟磁性合金粉末として基準粉末のみを使用した圧粉コアに比べて、コア損失の低減効果を得にくいことが後述する実験によりわかった。したがって、基準粉末に比べてコア損失を低減し、さらに基準粉末に比べて透磁率を上昇させるには、前記調整粉末の平均粒径(D50)を、前記基準粉末の平均粒径(D50)より小さくすることが好ましい。   Even if the average particle diameter (D50) of the adjustment powder is larger than the average particle diameter (D50) of the reference powder, the filling rate of the amorphous soft magnetic alloy powder (mixed powder of the reference powder and the adjustment powder) is the reference Although it can be increased from the filling rate of the powder, it has been found by experiments to be described later that it is difficult to obtain the effect of reducing the core loss as compared with the dust core using only the reference powder as the amorphous soft magnetic alloy powder. Therefore, in order to reduce the core loss as compared with the reference powder and further increase the magnetic permeability as compared with the reference powder, the average particle diameter (D50) of the adjusted powder is set higher than the average particle diameter (D50) of the reference powder. It is preferable to make it small.

なお、前記調整粉末の平均粒径(D50)を、基準粉末の平均粒径(D50)より大きくしたとき、前記調整粉末を、前記基準粉末と調整粉末との混合粉の全質量中、5質量%〜20質量%の範囲内で混合することが好ましい。   When the average particle diameter (D50) of the adjusted powder is larger than the average particle diameter (D50) of the reference powder, the adjusted powder is 5 mass in the total mass of the mixed powder of the reference powder and the adjusted powder. It is preferable to mix within the range of% -20 mass%.

ここで前記基準粉末の平均粒径(D50)は4〜55μm、特に水アトマイズ法を用いる場合は4〜35μmの範囲内であり、前記基準粉末よりも大きい調整粉末の平均粒径(D50)は、6〜100μm、特に水アトマイズ法を用いる場合は6〜50μmの範囲内であることが好ましい。   Here, the average particle diameter (D50) of the reference powder is 4 to 55 μm, particularly in the range of 4 to 35 μm when the water atomization method is used, and the average particle diameter (D50) of the adjusted powder larger than the reference powder is In the case of using a water atomizing method, it is preferably in the range of 6 to 50 μm.

前記調整粉末の平均粒径(D50)が上記範囲内に収まるように、前記調整粉末は、分級機により分級されていることが好ましい。例えば、日清エンジニアリング(株)の商品名:ターボクラシファイアTC40の精密空気分級機を用いて分級する。   The adjusted powder is preferably classified by a classifier so that the average particle diameter (D50) of the adjusted powder falls within the above range. For example, classification is carried out using a precision air classifier of Nissin Engineering Co., Ltd. trade name: Turbo Classifier TC40.

また、第2工程では、10%〜90%の累積範囲で、非晶質軟磁性合金粉末(基準粉末と調整粉末との混合粉)の粒度分布の最大頻度と最小頻度との差を、6%以下、より好ましくは4%以下に調整することが好ましい。   In the second step, the difference between the maximum frequency and the minimum frequency of the particle size distribution of the amorphous soft magnetic alloy powder (mixed powder of the reference powder and the adjustment powder) is 10% to 90% in the cumulative range. % Or less, more preferably 4% or less.

さらに、第2工程では、10%〜90%の累積範囲で、前記非晶質軟磁性合金粉末(基準粉末と調整粉末とを混合したもの)の粒度分布頻度を、4%以下で、且つ前記最大頻度と最小頻度の差を2%以下に調整することがより好ましい。   Further, in the second step, the amorphous soft magnetic alloy powder (a mixture of the reference powder and the adjustment powder) has a particle size distribution frequency of 4% or less in a cumulative range of 10% to 90%, and More preferably, the difference between the maximum frequency and the minimum frequency is adjusted to 2% or less.

続いて、前記非晶質軟磁性合金と、結着材及び潤滑材を有してなる添加材とを混合する。混合物中の前記絶縁材の混合率は、0.3質量%〜5質量%の範囲内であることが好適である。また混合物中の潤滑材の混合率は、0.1質量%〜2質量%の範囲内であることが好適である。前記潤滑材には例えばステアリン酸亜鉛を使用できる。   Subsequently, the amorphous soft magnetic alloy is mixed with an additive having a binder and a lubricant. The mixing ratio of the insulating material in the mixture is preferably in the range of 0.3% by mass to 5% by mass. The mixing ratio of the lubricant in the mixture is preferably in the range of 0.1% by mass to 2% by mass. For example, zinc stearate can be used as the lubricant.

前記非晶質軟磁性合金と添加材とを混合した後、乾燥・粉砕して造粒粉を得る(第3工程)。   The amorphous soft magnetic alloy and the additive are mixed and then dried and pulverized to obtain a granulated powder (third step).

前記造粒粉を、プレス成型の金型に充填しやすいように分級する。例えば目開き300μm以上850μm以下のふるいを用い分給して得られる300〜850μmの造粒粉を使用する。   The granulated powder is classified so as to be easily filled in a press mold. For example, a 300 to 850 μm granulated powder obtained by dispensing using a sieve having an opening of 300 μm or more and 850 μm or less is used.

続いて、前記造粒粉を金型に充填し、圧力を印加しつつ、室温又は所定の温度まで加熱して圧縮成形して所定形状のコア前駆体を得る(第4工程)。例えばプレス圧は20t/cmである。またコア前駆体は例えば略リング形状であり、一例を示すと、外径:20mm、内径:12mm、高さ:6.8mmである。 Subsequently, the granulated powder is filled into a mold, heated to room temperature or a predetermined temperature while applying pressure, and compression molded to obtain a core precursor having a predetermined shape (fourth step). For example, the press pressure is 20 t / cm 2 . The core precursor has, for example, a substantially ring shape. For example, the core precursor has an outer diameter of 20 mm, an inner diameter of 12 mm, and a height of 6.8 mm.

続いて前記コア前駆体を熱処理する(第5工程)。熱処理条件の一例を示すと、Nガス雰囲気下で、昇温速度を40℃/minとし510℃で1時間加熱する。これにより、圧縮成形により前記非晶質軟磁性合金粉末に生じた歪を除去することができる。 Subsequently, the core precursor is heat-treated (fifth step). As an example of the heat treatment conditions, heating is performed at 510 ° C. for 1 hour under a N 2 gas atmosphere with a temperature increase rate of 40 ° C./min. Thereby, the distortion produced in the amorphous soft magnetic alloy powder by compression molding can be removed.

[粒度分布の測定]
実験では、水アトマイズ法によりFe74.43at%Cr1.96at%9.04at%2.16at%7.54at%Si4.87at%の略球状の非晶質磁性粉末(基準粉末)を形成した。
[Measurement of particle size distribution]
In the experiment, Fe 74.43 at% Cr 1.96 at% P 9.04 at% C 2.16 at% B 7.54 at% Si 4.87 at% Si 4.87 at% by a water atomization method (reference powder) Formed.

前記基準粉末を得る際の溶湯温度(溶解された合金の温度)1550℃、水の噴出圧は68.6MPaであった。   The molten metal temperature (temperature of the melted alloy) at the time of obtaining the reference powder was 1550 ° C., and the water ejection pressure was 68.6 MPa.

なお前記基準粉末は、粗大粉末の除去を目的に目開き180μmのふるいで分級した後、異形状粉末の除去を目的に目開き32μmのふるいで分級した粉末を用いた。   The reference powder used was a powder classified with a sieve having an opening of 180 μm for the purpose of removing the coarse powder and then classified with a sieve having an opening of 32 μm for the purpose of removing the irregularly shaped powder.

続いて、上記基準粉末とは別に、水アトマイズ法によりFe74.43at%Cr1.96at%9.04at%2.16at%7.54at%Si4.87at%の略球状の非晶質磁性粉末を形成し、日清エンジニアリング(株)の商品名:ターボクラシファイアTC40の精密空気分級機を用いて、4μm分級粉、6μm分級粉、8μm分級粉、及び、8μm分級残粉を得た。 Subsequently, apart from the above reference powder, a substantially spherical amorphous material of Fe 74.43 at% Cr 1.96 at% P 9.04 at% C 2.16 at% B 7.54 at% Si 4.87 at% was obtained by the water atomization method. Using a precision air classifier of Nissin Engineering Co., Ltd. product name: Turbo Classifier TC40, 4 μm classified powder, 6 μm classified powder, 8 μm classified powder, and 8 μm classified residual powder were obtained. .

ここで4μm分級粉とは、平均粒径(D50)が約4μmとなるように分級された粉末を示し、6μm分級粉、8μm分級粉も夫々、約6μm、約8μmとなるように分級された粉末を示す。また、8μm分級残粉とは、生成された非晶質磁性粉末から8μm分級粉として分級された非晶質軟磁性合金粉末を除いた残粉を意味する。   Here, the 4 μm classified powder means powder classified so that the average particle diameter (D50) is about 4 μm, and the 6 μm classified powder and the 8 μm classified powder are classified so as to be about 6 μm and about 8 μm, respectively. Powder. The 8 μm classified residual powder means a residual powder obtained by removing the amorphous soft magnetic alloy powder classified as an 8 μm classified powder from the produced amorphous magnetic powder.

そして、基準粉末、4μm分級粉、6μm分級粉、8μm分級粉、及び、8μm分級残粉の粒度分布を夫々、日機装(株)製のマイクロトラック粒度分布測定装置 MT3300EXを用いて測定した。
その実験結果が、以下の表1、表2に示されている。
The particle size distributions of the reference powder, 4 μm classified powder, 6 μm classified powder, 8 μm classified powder, and 8 μm classified residual powder were measured using a Microtrac particle size distribution measuring device MT3300EX manufactured by Nikkiso Co., Ltd.
The experimental results are shown in Tables 1 and 2 below.

Figure 2009054615
Figure 2009054615

Figure 2009054615
Figure 2009054615

表1には、基準粉末、4μm分級粉の粒径、頻度、累積が示されている。表1に示す「4μm分級粉20%混合」は次の実験の結果であるので、後述する。   Table 1 shows the particle diameter, frequency, and accumulation of the reference powder and 4 μm classified powder. Since “4 μm classified powder 20% mixed” shown in Table 1 is the result of the next experiment, it will be described later.

図1は、表1に示す基準粉末の粒度分布の頻度及び累積との関係を示すグラフ(粒度分布図)である。   FIG. 1 is a graph (particle size distribution diagram) showing the relationship between the frequency and accumulation of the particle size distribution of the reference powder shown in Table 1.

また図4は、表2に示す基準粉末の粒度分布累積と頻度との関係をグラフ化したものである。   FIG. 4 is a graph showing the relationship between the cumulative particle size distribution of the reference powder shown in Table 2 and the frequency.

図2は、表1に示す4μm分級粉の粒径と粒度分布の頻度及び累積との関係を示すグラフ(粒度分布図)である。   FIG. 2 is a graph (particle size distribution diagram) showing the relationship between the particle size of 4 μm classified powder shown in Table 1, the frequency of particle size distribution, and the accumulation.

また表2には、粉末粒度分布欄に「累積 vs 頻度(%)」及び「累積 vs 粒径(μm)」が示されている。4μm分級粉、6μm分級粉、8μm分級粉、及び、8μm分級残粉の各データは、混合量100質量%の欄に示されている。なお、基準粉末及び混合量100質量%の欄を除くその他のデータ欄は、いずれも基準粉末と調整粉末(分級粉)とを混合した混合粉でのデータである。   In Table 2, “cumulative vs frequency (%)” and “cumulative vs particle size (μm)” are shown in the powder particle size distribution column. Each data of the 4 μm classified powder, 6 μm classified powder, 8 μm classified powder, and 8 μm classified residual powder is shown in the column of the mixing amount of 100 mass%. In addition, all the other data columns except the column of the reference | standard powder and the amount of mixing of 100 mass% are the data in the mixed powder which mixed the reference | standard powder and adjustment powder (classified powder).

図1、図4、表1及び表2に示すように、基準粉末の粒度分布は、累積値が10%〜90%の範囲で、粒径の頻度が6%以下であることがわかった。   As shown in FIGS. 1, 4, 1, and 2, the particle size distribution of the reference powder was found to have a cumulative value in the range of 10% to 90% and a particle size frequency of 6% or less.

一方、図2、表1及び表2(100質量%混合欄)に示すように、4μm分級粉の粒度分布は、累積値が40%付近〜60%付近の範囲で、頻度が8%を超え、40%付近〜80付近の範囲で頻度が6%を超えることがわかった。   On the other hand, as shown in FIG. 2, Table 1 and Table 2 (100% by mass mixing column), the particle size distribution of the 4 μm classified powder has a cumulative value in the range of about 40% to about 60%, and the frequency exceeds 8%. It was found that the frequency exceeded 6% in the range from about 40% to about 80%.

6μm分級粉、及び、8μm分級残粉の粒度分布データは、いずれも表2(100質量%混合欄)に示されている。6μm分級粉、及び、8μm分級残粉でも、累積値が40%付近〜60%付近の範囲で、粒径の頻度が8%を超え、40%付近〜80%付近の範囲で頻度が6%を超えることがわかった。   The particle size distribution data of 6 μm classified powder and 8 μm classified residual powder are all shown in Table 2 (100% by mass mixing column). Even with 6 μm classified powder and 8 μm classified residual powder, the cumulative value ranges from about 40% to about 60%, the frequency of particle size exceeds 8%, and the frequency ranges from about 40% to about 80% with a frequency of 6%. It was found that

また、8μm分級粉においては、粒度分布の頻度が8%を超えることは無いが、40%付近〜80%付近の範囲で頻度が6%を超えていることがわかった。   Further, in the 8 μm classified powder, the frequency of the particle size distribution does not exceed 8%, but it was found that the frequency exceeded 6% in the range of about 40% to about 80%.

なお平均粒径(D50)は、表2に示す「粉末粒度分布」の「累積 vs 粒径(μm)」の50%欄に示されている。すなわち基準粉末の平均粒径(D50)は12.25μm、4μm分級粉の平均粒径(D50)は、4.11μm、6μm分級粉の平均粒径(D50)は、5.83μm、8μm分級粉の平均粒径(D50)は、8.45μm、8μm分級残粉の平均粒径(D50)は、19.59μmであった。   The average particle size (D50) is shown in the 50% column of “cumulative vs particle size (μm)” of “powder particle size distribution” shown in Table 2. That is, the average particle diameter (D50) of the reference powder is 12.25 μm, the average particle diameter (D50) of the 4 μm classified powder is 4.11 μm, and the average particle diameter (D50) of the 6 μm classified powder is 5.83 μm, 8 μm classified powder. The average particle size (D50) was 8.45 μm, and the average particle size (D50) of the 8 μm classified residual powder was 19.59 μm.

[基準粉末と調整粉末との混合結果]
続いて、上記した4μm分級粉、6μm分級粉、8μm分級粉、及び、8μm分級残粉をいずれも調整粉末として、前記基準粉末と混合した。前記調整粉末を、前記基準粉末と調整粉末との混合粉の全質量中、5質量%、10質量%、20質量%又は50質量%にて混合した。その混合粉の粒度分布データは上記した表2の「粉末粒度分布」欄に記載されている。
[Results of mixing reference powder and adjustment powder]
Subsequently, the above-mentioned 4 μm classified powder, 6 μm classified powder, 8 μm classified powder, and 8 μm classified residual powder were mixed with the reference powder as adjusted powders. The said adjustment powder was mixed in 5 mass%, 10 mass%, 20 mass%, or 50 mass% in the total mass of the mixed powder of the said reference | standard powder and adjustment powder. The particle size distribution data of the mixed powder is described in the “powder particle size distribution” column of Table 2 described above.

なお、最もコア特性を改善できた4μm分級粉を20質量%混合した結果については、表1、図3にも粒径と頻度及び累積との関係を示した。   In addition, about the result of having mixed 20 mass% of 4 micrometer classification powder which could improve the core characteristic most, Table 1 and FIG. 3 also showed the relationship between a particle size, frequency, and accumulation.

まず基準粉末に対して、4μm分級粉を5質量%〜50質量%混合した混合粉の実験結果について考察する。   First, the experimental results of the mixed powder obtained by mixing 5% by mass to 50% by mass of 4 μm classified powder with respect to the reference powder will be considered.

図5は、表2に示す「4μm分級粉」の「粉末粒度分布」の「累積 vs 頻度(%)」欄をグラフ化したものである。図5には、4μm分級粉のみ(混合量100質量%)のデータも示されているが、図5、表2に示すように、基準粉末に4μm分級粉を5質量%〜50質量%混合することで、粒度分布の累積値が10%〜90%の範囲で、粒径の頻度を8%以下に抑えることが可能であることがわかり、特に4μm分級粉を10質量%〜50重量%混合したものは、粒度分布の累積値が6%以下に抑えることが可能であることがわかった。   FIG. 5 is a graph of the “cumulative vs frequency (%)” column of “powder particle size distribution” of “4 μm classified powder” shown in Table 2. FIG. 5 also shows data of only 4 μm classified powder (mixing amount 100% by mass), but as shown in FIG. 5 and Table 2, 4 μm classified powder is mixed with 5 to 50% by mass of 4 μm classified powder. As a result, it can be seen that the cumulative value of the particle size distribution is in the range of 10% to 90%, and the frequency of the particle size can be suppressed to 8% or less. In particular, the 4 μm classified powder is 10% to 50% by weight. It has been found that the mixed product can suppress the cumulative value of the particle size distribution to 6% or less.

表2に示すように基準粉末でも非晶質軟磁性合金粉末の充填率は80%を超えているが、5質量%〜50質量%の4μm分級粉を混合した混合粉とすることで、前記非晶質軟磁性合金粉末の充填率は基準粉末より高くなることがわかった。表2に示すコア特性欄には、コア損失W、透磁率μ´直流重畳特性μ´(5500A/m)が記載されている。 As shown in Table 2, the filling rate of the amorphous soft magnetic alloy powder is more than 80% even in the reference powder, but by making a mixed powder in which 5 μm to 50% by weight of 4 μm classified powder is mixed, It was found that the filling rate of the amorphous soft magnetic alloy powder was higher than that of the reference powder. In the core characteristic column shown in Table 2, the core loss W and the magnetic permeability μ ′ DC superposition characteristic μ ′ (5500 A / m) are described.

コア特性は、上記した基準粉末、あるいは混合粉を備えた圧粉コアにて測定した。前記圧粉コアは、上記した基準粉末、あるいは混合粉と、シリコーン樹脂(1.4質量%)、ステアリン酸亜鉛(0.3質量%)を混合・乾燥・粉砕し、目開き300μm及び目開き850μmのふるいを用いて300〜850μmに分級して造粒粉を形成し、さらに、プレス圧20t/cmにて、外径が20mm、内径が12mm、高さが6.8mmのリング状のコア前駆体を形成し、Nガス雰囲気下で、昇温速度を40℃/minmとし510℃で1時間加熱して得た。 The core characteristics were measured with the above-described reference powder or a powder core provided with a mixed powder. The powder core is prepared by mixing, drying and pulverizing the above-mentioned reference powder or mixed powder, silicone resin (1.4% by mass) and zinc stearate (0.3% by mass), with an opening of 300 μm and an opening of 300 μm. A granulated powder is formed by classification to 300 to 850 μm using a 850 μm sieve, and at a press pressure of 20 t / cm 2 , the outer diameter is 20 mm, the inner diameter is 12 mm, and the height is 6.8 mm. The core precursor was formed and obtained by heating at 510 ° C. for 1 hour under a N 2 gas atmosphere at a rate of temperature increase of 40 ° C./minm.

表2に示すように、コア損失は、いずれも、5質量%〜50質量%の4μm分級粉を混合した混合粉を備えた圧粉コアのほうが、基準粉末のみを備えた圧粉コアに比べて小さくなった。   As shown in Table 2, the core loss is higher in the dust core provided with the mixed powder in which 5 to 50% by mass of 4 μm classified powder is mixed as compared with the dust core provided with only the reference powder. Became smaller.

透磁率μ´については、5質量%の4μm分級粉を混合した混合粉、及び50質量%の4μm分級粉を混合した混合粉を備えた圧粉コアのほうが、基準粉末よりも小さくなった。   Regarding the magnetic permeability μ ′, the mixed powder obtained by mixing 5% by mass of 4 μm classified powder and the dust core provided with the mixed powder obtained by mixing 50% by mass of 4 μm classified powder were smaller than the reference powder.

したがって、基準粉末に対してコア損失の低減効果とともに高透磁率μ´を得るには、10質量%〜20質量%の4μm分級粉を混合した混合粉を備えた圧粉コアとすることがより好ましいことがわかった。また表2に示すように、コア特性の結果から、20質量%の4μm分級粉を混合した混合粉を備えた圧粉コアとすることが最も好ましいことがわかった。   Therefore, in order to obtain a high magnetic permeability μ ′ as well as an effect of reducing the core loss with respect to the reference powder, it is more preferable to use a dust core including a mixed powder obtained by mixing 10% by mass to 20% by mass of 4 μm classified powder. It turned out to be preferable. Moreover, as shown in Table 2, it turned out that it is most preferable to set it as the compacting core provided with the mixed powder which mixed 20 mass% 4 micrometers classification powder from the result of the core characteristic.

図6は、表2に示す「6μm分級粉」の「粉末粒度分布」の「累積 vs 頻度(%)」欄をグラフ化したものである。図7は、表2に示す「8μm分級粉」の「粉末粒度分布」の「累積 vs 頻度(%)」欄をグラフ化したものである。図6、図7には、6μm分級粉のみ(混合量100質量%)、あるいは8μm分級粉のみ(混合量100質量%)のデータも示されている。図6、図7、表2に示すように、基準粉末に6μm分級粉、あるいは8μm分級粉を5質量%〜50質量%混合することで、累積値が10%〜90%の範囲で、粒度分布の頻度を8%以下に抑えることが可能であり、6μm分級粉の場合は、5質量%〜50質量%混合することで、累積値が10%〜90%の範囲で、粒度分布の頻度を6%以下に抑えることが可能となり、8μm分級粉の場合、10質量%混合する場合を除いて、粒度分布の頻度を6%以下に抑えることが可能であることがわかった。   FIG. 6 is a graph of the “cumulative vs frequency (%)” column of “powder particle size distribution” of “6 μm classified powder” shown in Table 2. FIG. 7 is a graph of the “cumulative vs frequency (%)” column of “powder particle size distribution” of “8 μm classified powder” shown in Table 2. 6 and 7 also show data of 6 μm classified powder only (mixing amount 100% by mass) or 8 μm classified powder only (mixing amount 100% by mass). As shown in FIGS. 6, 7, and 2, the particle size is within a range of 10% to 90% by mixing 5 μm to 50% by weight of 6 μm classified powder or 8 μm classified powder with the reference powder. The frequency of distribution can be suppressed to 8% or less. In the case of 6 μm classified powder, by mixing 5% by mass to 50% by mass, the cumulative value ranges from 10% to 90%, and the frequency of particle size distribution It was found that the frequency of the particle size distribution can be suppressed to 6% or less except in the case of mixing 8% by mass in the case of 8 μm classified powder.

そして表2に示すように、6μm分級粉、あるいは8μm分級粉を5質量%〜50質量%混合した混合粉を備える圧粉コアの充填率、及びコア特性については、4μm分級粉の混合粉を備える圧粉コアと同様の結果が得られた。   And as shown in Table 2, about the filling rate of the powder core provided with the mixed powder obtained by mixing 5 to 50% by mass of 6 μm classified powder or 8 μm classified powder, and the core characteristics, the mixed powder of 4 μm classified powder is used. The same result as that of the compacted core provided was obtained.

4μm分級粉、6μm分級粉、及び8μm分級粉の各平均粒径(D50)は、いずれも、基準粉末の平均粒径(D50)よりも小さい。   Each of the average particle diameter (D50) of the 4 μm classified powder, 6 μm classified powder, and 8 μm classified powder is smaller than the average particle diameter (D50) of the reference powder.

一方、8μm分級残粉の平均粒径(D50)は、基準粉末の平均粒径(D50)よりも大きくなっている。   On the other hand, the average particle size (D50) of the 8 μm classified residual powder is larger than the average particle size (D50) of the reference powder.

図8は、表2に示す「8μm分級残粉」の「粉末粒度分布」の「累積 vs 頻度(%)」欄をグラフ化したものである。図8には、8μm分級残粉のみ(混合量100質量%)のデータも示されている。図8、表2に示すように、基準粉末に8μm分級残粉を5質量%〜50質量%混合することで、累積値が10%〜90%の範囲で、粒度分布の頻度を8%以下に抑えることが可能であり、5質量%〜20質量%混合することで、累積値が10%〜90%の範囲で粒度分布の頻度を6%以下に抑えことが可能であることがわかった。   FIG. 8 is a graph of the “cumulative vs frequency (%)” column of “powder particle size distribution” of “8 μm classified residual powder” shown in Table 2. FIG. 8 also shows data of only 8 μm classification residual powder (mixing amount: 100 mass%). As shown in FIG. 8 and Table 2, by mixing 5 to 50% by weight of 8 μm classified residual powder with the reference powder, the cumulative value ranges from 10% to 90%, and the frequency of particle size distribution is 8% or less. It was found that by mixing 5% by mass to 20% by mass, the frequency of the particle size distribution can be suppressed to 6% or less when the cumulative value is in the range of 10% to 90%. .

そして表2に示すように、基準粉末より大きい平均粒径(D50)を有する調整粉末を混合しても、非晶質軟磁性合金粉末の充填率を基準粉末より大きくできることがわかった。   As shown in Table 2, it was found that the filling rate of the amorphous soft magnetic alloy powder can be made larger than that of the reference powder even when the adjustment powder having an average particle size (D50) larger than that of the reference powder is mixed.

表2に示すように、50質量%の8μm分級残粉を混合した混合粉を備える圧粉コアでは、累積値が50%付近で粒度分布の頻度が8%以下であるが、6%を超えてしまい、また非晶質軟磁性合金粉末として基準粉末のみを備える圧粉コアとほとんど同じ充填率となった。一方、5〜20質量%の8μm分級残粉を混合した混合粉を備える圧粉コアでは、累積値が10%〜90%の範囲で6%以下となっており、非晶質軟磁性合金粉末として基準粉末のみを備える圧粉コアに比べて充填率を高くできることがわかった。ただしコア特性について考察すると、5〜50質量%の8μm分級残粉を混合した混合粉を備える圧粉コアでは、非晶質軟磁性合金粉末として基準粉末のみを備える圧粉コアに比べて透磁率μ´がいずれも大きくなるものの、コア損失は大きくなっていることがわかる。   As shown in Table 2, in the powder core provided with the mixed powder in which 50% by mass of 8 μm classified residual powder is mixed, the cumulative value is around 50% and the frequency of particle size distribution is 8% or less, but it exceeds 6%. In addition, the packing ratio was almost the same as that of the powder core having only the reference powder as the amorphous soft magnetic alloy powder. On the other hand, in the powder core provided with the mixed powder in which 5 to 20% by mass of 8 μm classification residual powder is mixed, the cumulative value is 6% or less in the range of 10% to 90%, and the amorphous soft magnetic alloy powder As a result, it was found that the filling rate can be increased as compared with the powder core provided with only the reference powder. However, considering the core characteristics, in the dust core provided with the mixed powder in which 5 to 50% by mass of 8 μm classified residual powder is mixed, the magnetic permeability is higher than that of the dust core having only the reference powder as the amorphous soft magnetic alloy powder. It can be seen that the core loss increases although μ ′ increases.

よって、基準粉末と混合する調整粉末は、基準粉末よりも小さい平均粒径(D50)であり、混合比を5質量%〜50質量%、好ましくは10質量%〜20質量%として圧粉コアを形成することが非晶質軟磁性合金粉末として基準粉末のみを備える圧粉コアよりも充填率を向上でき、非晶質軟磁性合金粉末として基準粉末のみを備える圧粉コアに比べてコア損失Wを改善できることがわかった。   Therefore, the adjustment powder to be mixed with the reference powder has an average particle size (D50) smaller than that of the reference powder, and the mixing ratio is 5% by mass to 50% by mass, preferably 10% by mass to 20% by mass. Forming can improve the filling rate as compared with the dust core having only the reference powder as the amorphous soft magnetic alloy powder, and the core loss W compared to the dust core having only the reference powder as the amorphous soft magnetic alloy powder. It was found that can be improved.

また表2に示すように、粒径の最大頻度と最小頻度との差は、4%以下であることが好ましいとわかった。   Further, as shown in Table 2, it was found that the difference between the maximum frequency and the minimum frequency of the particle size is preferably 4% or less.

また、20質量%の4μm分級粉を混合した混合粉を備える圧粉コアでは、基準粉末に対するコア損失の低減効果と透磁率の増大効果とが他の試料に比べてより効果的に大きくなるので、累積値が10%〜90%の範囲で、前記粒度分布の頻度は、4%以下で、且つ前記粒度分布の最大頻度と最小頻度の差は2%以下であることがより好ましいと規定した。   Moreover, in the powder core provided with the mixed powder in which 20% by mass of 4 μm classified powder is mixed, the core loss reduction effect and the permeability increase effect with respect to the reference powder are more effectively increased than those of other samples. In the range of 10% to 90% of the cumulative value, the frequency of the particle size distribution is 4% or less, and the difference between the maximum frequency and the minimum frequency of the particle size distribution is more preferably 2% or less. .

[Fe−Al−Si系合金を備える圧粉コア(比較例)の実験]
実験では、水アトマイズ法によりFe−Al−Si系合金の略球状の結晶質磁性粉末(基準粉末)を形成した。
[Experiment of Compact Core (Comparative Example) with Fe-Al-Si Alloy]
In the experiment, a substantially spherical crystalline magnetic powder (reference powder) of an Fe—Al—Si based alloy was formed by a water atomization method.

また、上記基準粉末とは別に、水アトマイズ法によりFe−Al−Si系合金の略球状の結晶質磁性粉末を形成し、日清エンジニアリング(株)の商品名:ターボクラシファイアTC40の精密空気分級機を用いて、4μm分級粉を得た。   In addition to the above-mentioned standard powder, a substantially spherical crystalline magnetic powder of Fe-Al-Si alloy is formed by water atomization method, and Nisshin Engineering Co., Ltd. trade name: Turbo Classifier TC40 precision air classifier Was used to obtain 4 μm classified powder.

そして、基準粉末、及び、4μm分級粉の粒度分布を夫々、日機装(株)製のマイクロトラック粒度分布測定装置 MT3300EXを用いて測定した。
その実験結果が、以下の表3に示されている。
The particle size distributions of the reference powder and the 4 μm classified powder were measured using a Microtrac particle size distribution measuring device MT3300EX manufactured by Nikkiso Co., Ltd., respectively.
The experimental results are shown in Table 3 below.

Figure 2009054615
Figure 2009054615

表3には、「粉末粒度分布 vs 粒径(μm)」の実験結果が示されている。基準粉末の平均粒径(D50)は11.65μmであった。また4μm分級粉(表3の4μm分級粉の100質量%混合量)の平均粒径(D50)は4.75μmであった。   Table 3 shows experimental results of “powder particle size distribution vs. particle size (μm)”. The average particle diameter (D50) of the reference powder was 11.65 μm. Moreover, the average particle diameter (D50) of 4 micrometers classification powder (100 mass% mixing amount of 4 micrometers classification powder of Table 3) was 4.75 micrometers.

そして基準粉末と4μm分級粉とを混合した。4μm混合粉は、基準粉末と4μm分級粉との全質量中、10質量%〜50質量%の範囲で混合した。そして、基準粉末、及び4μm分級粉を10質量%〜50質量%の範囲で混合した混合粉を備える圧粉コアを形成した。圧粉コアの製造条件は、表2に示す圧粉コアの製造条件とコア前駆体に対する加熱温度を除いて同じとした。Fe−Al−Si系合金を備えるコア前駆体に対する加熱温度を600℃で1時間に規定した。   Then, the reference powder and 4 μm classified powder were mixed. The 4 μm mixed powder was mixed in the range of 10% by mass to 50% by mass in the total mass of the reference powder and the 4 μm classified powder. And the dust core provided with the mixed powder which mixed the reference | standard powder and 4 micrometer classification powder in the range of 10 mass%-50 mass% was formed. The production conditions of the dust core were the same except for the production conditions of the dust core shown in Table 2 and the heating temperature for the core precursor. The heating temperature for the core precursor including the Fe—Al—Si based alloy was specified at 600 ° C. for 1 hour.

表3に示すように、Fe−Al−Si系合金を備える圧粉コアのコア損失は、表2に示す本実施例の圧粉コアに比べて非常に高くなり、コア特性が本実施例に比べて極めて悪いことがわかった。また、混合粉の方がコア損失は若干改善されているが、本実施例の圧粉コアほどの改善効果は認められないことがわかった。   As shown in Table 3, the core loss of the dust core comprising the Fe—Al—Si alloy is much higher than that of the dust core of this example shown in Table 2, and the core characteristics are the same as in this example. It turned out to be extremely bad. Moreover, although the core loss of the mixed powder was slightly improved, it was found that the improvement effect was not as good as that of the powder core of this example.

[圧粉コア断面のSEM写真]
図9(a)は、表3に示す磁性粉末として基準粉末のみのFe−Al−Si系合金を備える圧粉コア断面のSEM写真、図9(b)は、表3に示す4μm分級粉を10質量%混合したFe−Al−Si系合金を備える圧粉コア断面のSEM写真、図9(c)は、表3に示す4μm分級粉を20%混合したFe−Al−Si系合金を備える圧粉コア断面のSEM写真、図9(d)は、表3に示す4μm分級粉を50質量%混合したFe−Al−Si系合金を備える圧粉コア断面のSEM写真、である。
[SEM photograph of powder core cross section]
FIG. 9A is an SEM photograph of a cross-section of a dust core provided with an Fe—Al—Si alloy containing only a reference powder as the magnetic powder shown in Table 3, and FIG. 9B is a 4 μm classified powder shown in Table 3. The SEM photograph of the cross section of the dust core provided with the Fe-Al-Si alloy mixed with 10% by mass, FIG. 9C, includes the Fe-Al-Si alloy mixed with 20% of the 4 μm classified powder shown in Table 3. FIG. 9D is a SEM photograph of a powder core cross section provided with an Fe—Al—Si alloy in which 50% by mass of the 4 μm classified powder shown in Table 3 is mixed.

また図9(e)は、表2に示す非晶質軟磁性合金粉末として基準粉末のみを備える実施例の圧粉コア断面のSEM写真、図9(f)は、表2に示す4μm分級粉を10質量%混合した混合粉を備える実施例の圧粉コア断面のSEM写真、図9(g)は、表2に示す4μm分級粉を20質量%混合した混合粉を備える実施例の圧粉コア断面のSEM写真、図9(h)は、表2に示す4μm分級粉を50質量%混合した混合粉を備える実施例の圧粉コア断面のSEM写真、である。   FIG. 9 (e) is an SEM photograph of a cross-section of the dust core of the example having only the reference powder as the amorphous soft magnetic alloy powder shown in Table 2, and FIG. 9 (f) is a 4 μm classified powder shown in Table 2. SEM photograph of the cross-section of the powder core of the example provided with 10% by mass of the mixed powder, FIG. 9 (g) shows the powder of the example provided with the mixed powder of 20% by mass of the 4 μm classified powder shown in Table 2. The SEM photograph of the core cross section, FIG. 9 (h) is a SEM photograph of the powder core cross section of the example including the mixed powder obtained by mixing 50% by mass of the 4 μm classified powder shown in Table 2.

図9(a)〜(d)に示すように、Fe−Al−Si系合金を備える比較例の圧粉コアでは、各磁性粉末が変形しており、磁性粉末どうしが接触した箇所が多々存在することがわかった。これにより、比較例では充填率を上げることができてもコア損失を上記実施例ほど低減できないものと推測される。   As shown in FIGS. 9A to 9D, in the dust core of the comparative example including the Fe—Al—Si alloy, each magnetic powder is deformed, and there are many places where the magnetic powders are in contact with each other. I found out that Thereby, even if a filling rate can be raised in a comparative example, it is estimated that a core loss cannot be reduced as much as the said Example.

一方、図9(e)〜(h)に示すように本実施例の圧粉コアでは、非晶質軟磁性合金粉末の変形が見られなかった。また、基準粉末に対して4μm分級粉を混合することで、非晶質軟磁性合金粉末間の隙間が小さくなることがわかった。よって充填率が上昇し、しかも非晶質軟磁性合金粉末は変形せず各粉末間の絶縁性が適切に保たれているのでコア損失を適切に低減できるものと推測される。   On the other hand, as shown in FIGS. 9E to 9H, no deformation of the amorphous soft magnetic alloy powder was observed in the dust core of this example. It was also found that the gap between the amorphous soft magnetic alloy powders was reduced by mixing 4 μm classified powder with the reference powder. Therefore, it is presumed that the filling rate is increased and the amorphous soft magnetic alloy powder is not deformed and the insulation between the respective powders is appropriately maintained, so that the core loss can be appropriately reduced.

[本実施例の非晶質軟磁性合金粉末の製造]
以下の表4に示すように、ガスアトマイズ法、水アトマイズ法にかかわらず、また組成にかかわらず、平均粒径(D50)が4〜55μmとなる非晶質軟磁性合金を製造できることがわかった。表4に示す分級は、日清エンジニアリング(株)の商品名:ターボクラシファイアTC40の精密空気分級機を用いて行った。
[Production of amorphous soft magnetic alloy powder of this example]
As shown in Table 4 below, it was found that an amorphous soft magnetic alloy having an average particle size (D50) of 4 to 55 μm can be produced regardless of the gas atomization method and the water atomization method and regardless of the composition. The classification shown in Table 4 was performed using a precision air classifier of Nissin Engineering Co., Ltd. trade name: Turbo Classifier TC40.

Figure 2009054615
Figure 2009054615

表4に示すように、本実施例では、様々な平均粒径(D50)を備える非晶質軟磁性合金粉末を製造でき、したがって、これら平均粒径(D50)が異なる非晶質軟磁性合金粉末を混合して、前記非晶質磁性合金粉末の粒度分布の頻度を、10%〜90%の累積範囲で、8%以下、好ましくは6%以下となるように調整することが容易にできることがわかった。   As shown in Table 4, in this example, amorphous soft magnetic alloy powders having various average particle diameters (D50) can be produced. Therefore, amorphous soft magnetic alloys having different average particle diameters (D50). It is possible to easily adjust the particle size distribution frequency of the amorphous magnetic alloy powder to 8% or less, preferably 6% or less in the cumulative range of 10% to 90% by mixing the powder. I understood.

表1に示す本実施例の基準粉末の粒径と頻度及び累積との関係を示すグラフ(粒度分布図)、A graph (particle size distribution diagram) showing the relationship between the particle size, frequency and accumulation of the reference powder of this example shown in Table 1, 表1に示す4μm分級粉の粒径と頻度及び累積との関係を示すグラフ(粒度分布図)、A graph (particle size distribution diagram) showing the relationship between the particle size, frequency and accumulation of the 4 μm classified powder shown in Table 1, 4μm分級粉を20質量%混合した本実施例の粒径と頻度及び累積との関係を示すグラフ(粒度分布図)、A graph (particle size distribution diagram) showing the relationship between the particle size, frequency and accumulation of this example in which 20% by mass of 4 μm classified powder was mixed, 表2に示す基準粉末の粒径の累積と頻度との関係を示すグラフ、A graph showing the relationship between the cumulative particle size and frequency of the reference powder shown in Table 2, 表2に示す「4μm分級粉」の「粉末粒度分布」の「累積 vs 頻度(%)」欄のグラフ、Graph of “cumulative vs frequency (%)” column of “powder particle size distribution” of “4 μm classified powder” shown in Table 2, 表2に示す「6μm分級粉」の「粉末粒度分布」の「累積 vs 頻度(%)」欄のグラフ、Graph of “cumulative vs frequency (%)” column of “powder particle size distribution” of “6 μm classified powder” shown in Table 2, 表2に示す「8μm分級粉」の「粉末粒度分布」の「累積 vs 頻度(%)」欄のグラフ、Graph of “cumulative vs frequency (%)” column of “powder particle size distribution” of “8 μm classified powder” shown in Table 2, 表2に示す「8μm分級残粉」の「粉末粒度分布」の「累積 vs 頻度(%)」欄のグラフ、Graph of “cumulative vs frequency (%)” column of “powder particle size distribution” of “8 μm classification residual powder” shown in Table 2, (a)は、表3に示す磁性粉末として基準粉末のみのFe−Al−Si系合金を備える圧粉コア断面のSEM写真、(b)は、表3に示す4μm分級粉を10%混合したFe−Al−Si系合金を備える圧粉コア断面のSEM写真、(c)は、表3に示す4μm分級粉を20%混合したFe−Al−Si系合金を備える圧粉コア断面のSEM写真、(d)は、表3に示す4μm分級粉を50%混合したFe−Al−Si系合金を備える圧粉コア断面のSEM写真、(e)は、表2に示す非晶質軟磁性合金粉末として基準粉末のみを備える実施例の圧粉コア断面のSEM写真、(f)は、表2に示す4μm分級粉を10%混合した混合粉を備える実施例の圧粉コア断面のSEM写真、(g)は、表2に示す4μm分級粉を20%混合した混合粉を備える実施例の圧粉コア断面のSEM写真、(h)は、表2に示す4μm分級粉を50%混合した混合粉を備える実施例の圧粉コア断面のSEM写真、(A) is an SEM photograph of a cross-section of a dust core provided with an Fe—Al—Si alloy containing only a reference powder as the magnetic powder shown in Table 3, and (b) is a mixture of 10% of 4 μm classified powder shown in Table 3. An SEM photograph of a cross section of a dust core provided with an Fe-Al-Si alloy, (c) is an SEM photograph of a cross section of a powder core provided with an Fe-Al-Si alloy mixed with 20% of 4 μm classified powder shown in Table 3. , (D) is a SEM photograph of a cross-section of a dust core comprising a Fe-Al-Si alloy mixed with 50% of 4 μm classified powder shown in Table 3, and (e) is an amorphous soft magnetic alloy shown in Table 2. SEM photograph of the cross-section of the dust core of the example having only the reference powder as a powder, (f) is an SEM photograph of the cross-section of the dust core of the example having a mixed powder in which 10% of the 4 μm classified powder shown in Table 2 is mixed, (G) is a mixed powder prepared by mixing 20% of the 4 μm classified powder shown in Table 2. The SEM photograph of the cross-section of the dust core of the embodiment, (h) is the SEM photograph of the cross-section of the dust core of the embodiment comprising a mixed powder obtained by mixing 50% of the 4 μm classified powder shown in Table 2.

Claims (15)

非晶質軟磁性合金粉末が結着材によって固化成形されてなる圧粉コアにおいて、
前記非晶質磁性合金粉末は、Feを主成分とし、少なくともP、C、B、Siのうち2種以上を含み、
前記非晶質磁性合金粉末の粒度分布の頻度が、10%〜90%の累積範囲で、8%以下であることを特徴とする圧粉コア。
In a powder core in which amorphous soft magnetic alloy powder is solidified and formed by a binder,
The amorphous magnetic alloy powder is mainly composed of Fe, and includes at least two of P, C, B, and Si,
The powder core according to claim 1, wherein a frequency of a particle size distribution of the amorphous magnetic alloy powder is 8% or less in a cumulative range of 10% to 90%.
前記粒度分布における頻度が6%以下である請求項1に記載の圧粉コア。   The powder core according to claim 1, wherein the frequency in the particle size distribution is 6% or less. 前記粒度分布の最大頻度と最小頻度との差が、4%以下である請求項1または2記載の圧粉コア。   The powder core according to claim 1 or 2, wherein a difference between the maximum frequency and the minimum frequency of the particle size distribution is 4% or less. 前記粒度分布の頻度が、4%以下で、且つ前記粒度分布の最大頻度と最小頻度の差が2%以下である請求項1記載の圧粉コア。   The dust core according to claim 1, wherein the frequency of the particle size distribution is 4% or less, and the difference between the maximum frequency and the minimum frequency of the particle size distribution is 2% or less. 前記非晶質軟磁性合金粉末は、下記の組成式で表される請求項1ないし4のいずれかに記載の圧粉コア。
Fe100−a−b−x−y−z−w−tCoNiSi
ただし、MはCr、Mo、W、V、Nb、Ta、Ti、Zr、Hf、Pt、Pd、Au、Sn、Alより選ばれる1種または2種以上の元素であり、組成比を示すa、b、x、y、z、w、tは、0原子%≦x≦5原子%、0原子%≦y≦15原子%、0原子%<z≦8原子%、1原子%≦w≦15原子%、0原子%≦t≦12原子%、0原子%≦a≦20原子%、0原子%≦b≦5原子%、70原子%≦(100−a−b−x−y−z−w−t)≦83原子%を示す。
The powdered core according to any one of claims 1 to 4, wherein the amorphous soft magnetic alloy powder is represented by the following composition formula.
Fe 100-a-b-x -y-z-w-t Co a Ni b M x P y C z B w Si t
However, M is one or more elements selected from Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Pt, Pd, Au, Sn, and Al, and shows a composition ratio a , B, x, y, z, w, and t are 0 atomic% ≦ x ≦ 5 atomic%, 0 atomic% ≦ y ≦ 15 atomic%, 0 atomic% <z ≦ 8 atomic%, 1 atomic% ≦ w ≦ 15 atomic%, 0 atomic% ≦ t ≦ 12 atomic%, 0 atomic% ≦ a ≦ 20 atomic%, 0 atomic% ≦ b ≦ 5 atomic%, 70 atomic% ≦ (100-ab-xyz) −w−t) ≦ 83 atomic%.
非晶質軟磁性合金粉末を結着材によって固化成形してなる圧粉コアの製造方法において、
Feを主成分とし、少なくともP、C、B、Siのうちの2種以上を含む前記非晶質軟磁性合金粉末をアトマイズ法により形成する第1工程、
前記第1工程中、あるいは、前記第1工程の後に、前記非晶質磁性合金粉末の粒度分布の頻度を、10%〜90%の累積範囲で、8%以下に調整する第2工程、
前記非晶質軟磁性合金粉末と、結着材及び潤滑材を含む添加材とを混合、造粒して造粒粉を形成する第3工程、
前記造粒粉末を圧縮成形して所定形状のコア前駆体を形成する第4工程、
前記コア前駆体を熱処理し、圧縮成形により前記非晶質軟磁性合金粉末に生じた歪を除去する第5工程、
を有することを特徴とする圧粉コアの製造方法。
In the method for producing a powder core obtained by solidifying and molding an amorphous soft magnetic alloy powder with a binder,
A first step of forming the amorphous soft magnetic alloy powder containing Fe as a main component and containing at least two of P, C, B, and Si by an atomizing method;
A second step of adjusting the frequency of the particle size distribution of the amorphous magnetic alloy powder to 8% or less in the cumulative range of 10% to 90% during the first step or after the first step;
A third step in which the amorphous soft magnetic alloy powder and an additive containing a binder and a lubricant are mixed and granulated to form a granulated powder;
A fourth step of compression-molding the granulated powder to form a core precursor of a predetermined shape;
A fifth step of heat-treating the core precursor and removing strain generated in the amorphous soft magnetic alloy powder by compression molding;
A method for producing a dust core, comprising:
前記第1工程で得られた非晶質軟磁性合金粉末を基準粉末としたとき、前記基準粉末の平均粒径(D50)より小さい平均粒径(D50)を有し、Feを主成分とし、少なくともP、C、B、Siのうちの2種以上を含むアトマイズ法により形成された非晶質軟磁性合金粉末(調整粉末)を用意し、
前記第2工程では、前記非晶質磁性合金粉末の粒度分布の頻度が、10%〜90%の累積範囲で、8%以下となるように、前記基準粉末と適量の前記調整粉末とを混合する請求項6記載の圧粉コアの製造方法。
When the amorphous soft magnetic alloy powder obtained in the first step is used as a reference powder, it has an average particle size (D50) smaller than the average particle size (D50) of the reference powder, Fe is the main component, Prepare an amorphous soft magnetic alloy powder (adjusted powder) formed by an atomizing method containing at least two of P, C, B, and Si,
In the second step, the reference powder and an appropriate amount of the adjusted powder are mixed so that the frequency of the particle size distribution of the amorphous magnetic alloy powder is 8% or less in a cumulative range of 10% to 90%. The manufacturing method of the powder core of Claim 6.
前記調整粉末を5質量%〜50質量%の範囲内で混合する請求項7記載の圧粉コアの製造方法。   The manufacturing method of the powder core of Claim 7 which mixes the said adjustment powder within the range of 5 mass%-50 mass%. 前記調整粉末を10質量%〜20質量%の範囲内で混合する請求項8記載の圧粉コアの製造方法。   The manufacturing method of the powder core of Claim 8 which mixes the said adjustment powder within the range of 10 mass%-20 mass%. 前記第1工程で得られた非晶質軟磁性合金粉末を基準粉末としたとき、前記基準粉末の平均粒径(D50)より大きい平均粒径(D50)を有し、Feを主成分とし、少なくともP、C、B、Siのうちの2種以上を含むアトマイズ法により形成された非晶質軟磁性合金粉末(調整粉末)を用意し、
前記第2工程では、前記非晶質磁性合金粉末の粒度分布の頻度が、10%〜90%の累積範囲で、8%以下となるように、前記基準粉末と適量の前記調整粉末とを混合する請求項6記載の圧粉コアの製造方法。
When the amorphous soft magnetic alloy powder obtained in the first step is used as a reference powder, it has an average particle size (D50) larger than the average particle size (D50) of the reference powder, Fe is the main component, Prepare an amorphous soft magnetic alloy powder (adjusted powder) formed by an atomizing method containing at least two of P, C, B, and Si,
In the second step, the reference powder and an appropriate amount of the adjusted powder are mixed so that the frequency of the particle size distribution of the amorphous magnetic alloy powder is 8% or less in a cumulative range of 10% to 90%. The manufacturing method of the powder core of Claim 6.
前記調整粉末を5質量%〜20質量%の範囲内で混合する請求項10記載の圧粉コアの製造方法。   The manufacturing method of the powder core of Claim 10 which mixes the said adjustment powder within the range of 5 mass%-20 mass%. 前記第2工程で粒度分布の頻度を、10%〜90%の累積範囲で、6%以下に調整する請求項6ないし11のいずれかに記載の圧粉コアの製造方法。   The method for producing a dust core according to any one of claims 6 to 11, wherein the frequency of the particle size distribution is adjusted to 6% or less in the cumulative range of 10% to 90% in the second step. 前記第2工程では、前記粒度分布の最大頻度と最小頻度との差を、4%以下に調整する請求項6ないし12のいずれかに記載の圧粉コアの製造方法。   The method for producing a dust core according to any one of claims 6 to 12, wherein in the second step, a difference between the maximum frequency and the minimum frequency of the particle size distribution is adjusted to 4% or less. 前記第2工程では、前記粒度分布の頻度を、4%以下で、且つ前記粒径の最大頻度と最小頻度の差を2%以下に調整する請求項6ないし11のいずれかに記載の圧粉コアの製造方法。   The powder compact according to any one of claims 6 to 11, wherein in the second step, the frequency of the particle size distribution is adjusted to 4% or less, and the difference between the maximum frequency and the minimum frequency of the particle size is adjusted to 2% or less. Core manufacturing method. 下記の組成式で表される前記非晶質磁性合金粉末を形成する請求項6ないし14のいずれかに記載の圧粉コアの製造方法。
Fe100−a−b−x−y−z−w−tCoNiSi
ただし、MはCr、Mo、W、V、Nb、Ta、Ti、Zr、Hf、Pt、Pd、Au、Sn、Alより選ばれる1種または2種以上の元素であり、組成比を示すa、b、x、y、z、w、tは、0原子%≦x≦5原子%、0原子%≦y≦15原子%、0原子%<z≦8原子%、1原子%≦w≦15原子%、0原子%≦t≦12原子%、0原子%≦a≦20原子%、0原子%≦b≦5原子%、70原子%≦(100−a−b−x−y−z−w−t)≦83原子%を示す。
The method for producing a dust core according to any one of claims 6 to 14, wherein the amorphous magnetic alloy powder represented by the following composition formula is formed.
Fe 100-a-b-x -y-z-w-t Co a Ni b M x P y C z B w Si t
However, M is one or more elements selected from Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Pt, Pd, Au, Sn, and Al, and shows a composition ratio a , B, x, y, z, w, and t are 0 atomic% ≦ x ≦ 5 atomic%, 0 atomic% ≦ y ≦ 15 atomic%, 0 atomic% <z ≦ 8 atomic%, 1 atomic% ≦ w ≦ 15 atomic%, 0 atomic% ≦ t ≦ 12 atomic%, 0 atomic% ≦ a ≦ 20 atomic%, 0 atomic% ≦ b ≦ 5 atomic%, 70 atomic% ≦ (100-ab-xyz) −w−t) ≦ 83 atomic%.
JP2007216988A 2007-08-23 2007-08-23 Powder core and method for producing the same Active JP5094276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007216988A JP5094276B2 (en) 2007-08-23 2007-08-23 Powder core and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007216988A JP5094276B2 (en) 2007-08-23 2007-08-23 Powder core and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009054615A true JP2009054615A (en) 2009-03-12
JP5094276B2 JP5094276B2 (en) 2012-12-12

Family

ID=40505477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216988A Active JP5094276B2 (en) 2007-08-23 2007-08-23 Powder core and method for producing the same

Country Status (1)

Country Link
JP (1) JP5094276B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016275A1 (en) * 2009-08-07 2011-02-10 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy, dust core formed using the fe-based amorphous alloy, and dust core with embedded coil
WO2012098817A1 (en) 2011-01-17 2012-07-26 アルプス・グリーンデバイス株式会社 Fe-BASED AMORPHOUS ALLOY POWDER, DUST CORE USING THE Fe-BASED AMORPHOUS ALLOY POWDER, AND COIL-EMBEDDED DUST CORE
US8282745B2 (en) 2009-01-23 2012-10-09 Alps Green Devices Co., Ltd. Fe-based soft magnetic alloy and dust core using fe-based soft magnetic alloy
JP2014013803A (en) * 2012-07-04 2014-01-23 Taiyo Yuden Co Ltd Inductor
JP2014033001A (en) * 2012-08-01 2014-02-20 Alps Green Devices Co Ltd Compound magnetic powder and powder magnetic core using the same
JP2014067991A (en) * 2012-09-06 2014-04-17 Toko Inc Surface-mounted inductor
JP2014170877A (en) * 2013-03-05 2014-09-18 Daido Steel Co Ltd Soft magnetic metal powder, and powder-compact magnetic core
KR20150038299A (en) * 2012-08-31 2015-04-08 가부시키가이샤 고베 세이코쇼 Iron powder for powder magnetic core and process for producing powder magnetic core
CN104810125A (en) * 2014-01-29 2015-07-29 阿尔卑斯绿色器件株式会社 Electronic component and electronic apparatus
JP2016180154A (en) * 2015-03-24 2016-10-13 Ntn株式会社 Powder for magnetic core, dust core, and method for producing powder for magnetic core
JP2018037562A (en) * 2016-09-01 2018-03-08 国立大学法人信州大学 Magnetic core material and manufacturing method thereof
CN109342309A (en) * 2018-11-26 2019-02-15 辽宁科技大学 A kind of experimental rig and test method of simulated marine corrosion environment
CN111834075A (en) * 2019-04-23 2020-10-27 奇力新电子股份有限公司 Alloy powder composition, molded body, method for producing same, and inductor
CN114147218A (en) * 2020-11-30 2022-03-08 佛山市中研非晶科技股份有限公司 Gap-filled amorphous nanocrystalline insulating finished product powder and preparation method thereof
CN116130237A (en) * 2022-12-12 2023-05-16 北京七星飞行电子有限公司 Preparation method of carbonyl iron powder magnetic core with 35 magnetic permeability and high Q value

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057307A (en) * 1999-08-18 2001-02-27 Matsushita Electric Ind Co Ltd Composite magnetic material
JP2002060914A (en) * 2000-08-18 2002-02-28 Kubota Corp Soft magnetic alloy powder
JP2003193174A (en) * 2001-12-27 2003-07-09 Mitsubishi Materials Corp METHOD FOR MANUFACTURING Fe-Si SOFT MAGNETIC SINTERED MATERIAL WITH HIGH DENSITY AND EXCELLENT MAGNETIC PERMEABILITY
JP2003306703A (en) * 2002-04-17 2003-10-31 Mitsubishi Materials Corp Fe-Co COMPOSITE SOFT MAGNETIC SINTERED ALLOY WITH HIGH DENSITY AND HIGH MAGNETIC PERMEABILITY, AND ITS MANUFACTURING METHOD
JP2005307291A (en) * 2004-04-22 2005-11-04 Alps Electric Co Ltd Amorphous soft-magnetic alloy powder, and powder magnetic core and electromagnetic wave absorber using it
JP2006283166A (en) * 2005-04-04 2006-10-19 Jfe Steel Kk Coated iron based powder for powder magnetic core, and powder magnetic core
JP2007200962A (en) * 2006-01-24 2007-08-09 Nec Tokin Corp Composite material, method for manufacturing the same, magnetic core, and coil component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057307A (en) * 1999-08-18 2001-02-27 Matsushita Electric Ind Co Ltd Composite magnetic material
JP2002060914A (en) * 2000-08-18 2002-02-28 Kubota Corp Soft magnetic alloy powder
JP2003193174A (en) * 2001-12-27 2003-07-09 Mitsubishi Materials Corp METHOD FOR MANUFACTURING Fe-Si SOFT MAGNETIC SINTERED MATERIAL WITH HIGH DENSITY AND EXCELLENT MAGNETIC PERMEABILITY
JP2003306703A (en) * 2002-04-17 2003-10-31 Mitsubishi Materials Corp Fe-Co COMPOSITE SOFT MAGNETIC SINTERED ALLOY WITH HIGH DENSITY AND HIGH MAGNETIC PERMEABILITY, AND ITS MANUFACTURING METHOD
JP2005307291A (en) * 2004-04-22 2005-11-04 Alps Electric Co Ltd Amorphous soft-magnetic alloy powder, and powder magnetic core and electromagnetic wave absorber using it
JP2006283166A (en) * 2005-04-04 2006-10-19 Jfe Steel Kk Coated iron based powder for powder magnetic core, and powder magnetic core
JP2007200962A (en) * 2006-01-24 2007-08-09 Nec Tokin Corp Composite material, method for manufacturing the same, magnetic core, and coil component

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8282745B2 (en) 2009-01-23 2012-10-09 Alps Green Devices Co., Ltd. Fe-based soft magnetic alloy and dust core using fe-based soft magnetic alloy
US8685179B2 (en) 2009-08-07 2014-04-01 Alps Green Devices Co., Ltd. Fe-based amorphous alloy, powder core using the same, and coil encapsulated powder core
EP2463396A4 (en) * 2009-08-07 2017-06-28 Alps Electric Co., Ltd. Fe-based amorphous alloy, dust core formed using the fe-based amorphous alloy, and dust core with embedded coil
JPWO2011016275A1 (en) * 2009-08-07 2013-01-10 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy, dust core using the Fe-based amorphous alloy, and coil-filled dust core
US9422614B2 (en) 2009-08-07 2016-08-23 Alps Green Devices Co., Ltd. Fe-based amorphous alloy, powder core using the same, and coil encapsulated powder core
TWI424071B (en) * 2009-08-07 2014-01-21 Alps Green Devices Co Ltd Fe-based amorphous alloy and a powder core using the Fe-based amorphous alloy and a powder core for sealing the coil
WO2011016275A1 (en) * 2009-08-07 2011-02-10 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy, dust core formed using the fe-based amorphous alloy, and dust core with embedded coil
JP5419302B2 (en) * 2009-08-07 2014-02-19 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy, dust core using the Fe-based amorphous alloy, and coil-filled dust core
JP5458452B2 (en) * 2011-01-17 2014-04-02 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy powder, powder core using the Fe-based amorphous alloy powder, and coil-enclosed powder core
EP2666881A4 (en) * 2011-01-17 2016-10-26 Alps Green Devices Co Ltd Fe-BASED AMORPHOUS ALLOY POWDER, DUST CORE USING THE Fe-BASED AMORPHOUS ALLOY POWDER, AND COIL-EMBEDDED DUST CORE
JPWO2012098817A1 (en) * 2011-01-17 2014-06-09 アルプス・グリーンデバイス株式会社 Fe-based amorphous alloy powder, powder core using the Fe-based amorphous alloy powder, and coil-enclosed powder core
US8854173B2 (en) 2011-01-17 2014-10-07 Alps Green Devices Co., Ltd. Fe-based amorphous alloy powder, dust core using the same, and coil-embedded dust core
CN103298966A (en) * 2011-01-17 2013-09-11 阿尔卑斯绿色器件株式会社 Fe-based amorphous alloy powder, dust core using the Fe-based amorphous alloy powder, and coil-embedded dust core
WO2012098817A1 (en) 2011-01-17 2012-07-26 アルプス・グリーンデバイス株式会社 Fe-BASED AMORPHOUS ALLOY POWDER, DUST CORE USING THE Fe-BASED AMORPHOUS ALLOY POWDER, AND COIL-EMBEDDED DUST CORE
JP2014013803A (en) * 2012-07-04 2014-01-23 Taiyo Yuden Co Ltd Inductor
JP2014033001A (en) * 2012-08-01 2014-02-20 Alps Green Devices Co Ltd Compound magnetic powder and powder magnetic core using the same
KR20150038299A (en) * 2012-08-31 2015-04-08 가부시키가이샤 고베 세이코쇼 Iron powder for powder magnetic core and process for producing powder magnetic core
KR101639960B1 (en) 2012-08-31 2016-07-14 가부시키가이샤 고베 세이코쇼 Iron powder for powder magnetic core and process for producing powder magnetic core
JP2014067991A (en) * 2012-09-06 2014-04-17 Toko Inc Surface-mounted inductor
JP2014170877A (en) * 2013-03-05 2014-09-18 Daido Steel Co Ltd Soft magnetic metal powder, and powder-compact magnetic core
CN104810125A (en) * 2014-01-29 2015-07-29 阿尔卑斯绿色器件株式会社 Electronic component and electronic apparatus
CN104810125B (en) * 2014-01-29 2017-07-07 阿尔卑斯电气株式会社 Electronic unit and electronic equipment
JP2016180154A (en) * 2015-03-24 2016-10-13 Ntn株式会社 Powder for magnetic core, dust core, and method for producing powder for magnetic core
JP2018037562A (en) * 2016-09-01 2018-03-08 国立大学法人信州大学 Magnetic core material and manufacturing method thereof
CN109342309A (en) * 2018-11-26 2019-02-15 辽宁科技大学 A kind of experimental rig and test method of simulated marine corrosion environment
CN109342309B (en) * 2018-11-26 2024-02-27 辽宁科技大学 Test device and test method for simulating marine corrosion environment
CN111834075A (en) * 2019-04-23 2020-10-27 奇力新电子股份有限公司 Alloy powder composition, molded body, method for producing same, and inductor
JP2022028777A (en) * 2019-04-23 2022-02-16 奇力新電子股▲ふん▼有限公司 Alloy powder composition, molded body and its manufacturing method, as well as inductor
JP7246456B2 (en) 2019-04-23 2023-03-27 奇力新電子股▲ふん▼有限公司 Alloy powder composition, compact, method for producing same, and inductor
CN111834075B (en) * 2019-04-23 2023-03-28 奇力新电子股份有限公司 Alloy powder composition, molded body, method for producing same, and inductor
CN114147218A (en) * 2020-11-30 2022-03-08 佛山市中研非晶科技股份有限公司 Gap-filled amorphous nanocrystalline insulating finished product powder and preparation method thereof
CN116130237A (en) * 2022-12-12 2023-05-16 北京七星飞行电子有限公司 Preparation method of carbonyl iron powder magnetic core with 35 magnetic permeability and high Q value
CN116130237B (en) * 2022-12-12 2023-10-13 北京七星飞行电子有限公司 Preparation method of carbonyl iron powder magnetic core with 35 magnetic permeability and high Q value

Also Published As

Publication number Publication date
JP5094276B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5094276B2 (en) Powder core and method for producing the same
CN110246652B (en) Soft magnetic alloy powder, dust core, and magnetic component
KR102165130B1 (en) Soft magnetic alloy powder, dust core, and magnetic component
JP4562022B2 (en) Amorphous soft magnetic alloy powder and powder core and electromagnetic wave absorber using the same
JP5537534B2 (en) Fe-based nanocrystalline alloy powder and manufacturing method thereof, and dust core and manufacturing method thereof
WO2018150952A1 (en) Soft magnetic powder, dust magnetic core, magnetic part, and method for producing dust magnetic core
JP5458452B2 (en) Fe-based amorphous alloy powder, powder core using the Fe-based amorphous alloy powder, and coil-enclosed powder core
JP5966236B2 (en) Powder magnetic core and manufacturing method thereof
JP4591633B2 (en) Nanocomposite bulk magnet and method for producing the same
JP5327765B2 (en) Powder core
JP6530164B2 (en) Nanocrystalline soft magnetic alloy powder and dust core using the same
JP6448799B2 (en) Soft magnetic powder
JP2014169482A (en) Iron-based metallic glass alloy powder
CN111093860B (en) Fe-based nanocrystalline alloy powder, method for producing same, Fe-based amorphous alloy powder, and magnetic core
JP2014138134A (en) Powder magnetic core and method for manufacturing the same
JP6648856B2 (en) Fe-based alloy, crystalline Fe-based alloy atomized powder, and magnetic core
WO2013015361A1 (en) Fe-BASED AMORPHOUS ALLOY, AND DUST CORE OBTAINED USING Fe-BASED AMORPHOUS ALLOY POWDER
JP2006339525A (en) Coil inclusion dust core
US20190013129A1 (en) Dust core
JP6314020B2 (en) Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
JP2009147252A (en) Compound magnetic material and method of manufacturing thereof
JP2017034069A (en) Powder magnetic core
JP6403940B2 (en) Powder magnetic core and manufacturing method thereof
JP2012151179A (en) Dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350