JP2001057307A - Composite magnetic material - Google Patents

Composite magnetic material

Info

Publication number
JP2001057307A
JP2001057307A JP11231095A JP23109599A JP2001057307A JP 2001057307 A JP2001057307 A JP 2001057307A JP 11231095 A JP11231095 A JP 11231095A JP 23109599 A JP23109599 A JP 23109599A JP 2001057307 A JP2001057307 A JP 2001057307A
Authority
JP
Japan
Prior art keywords
magnetic material
alloy powder
frequency
soft magnetic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11231095A
Other languages
Japanese (ja)
Inventor
Yuji Mido
勇治 御堂
Hiroshi Fujii
浩 藤井
Shinya Matsutani
伸哉 松谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11231095A priority Critical patent/JP2001057307A/en
Publication of JP2001057307A publication Critical patent/JP2001057307A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make a composite magnetic material have a low loss even in a high frequency, a high magnetic permeability and excellent magnetic characteristics in a high-performance metal dust core, which is used for a choke coil or the like. SOLUTION: A composite magnetic material consists of soft magnetic alloy powder and an insulative binding agent and is subjected to heat treatment. The frequency ratio B/A of the granularity distribution of the soft magnetic alloy powder used for the composite magnetic material is set in the ratio of not less than 0.5 when the grain diameter of the powder is D. The greatest frequency of the grain diameter is A% and the frequency of the grain diameter D/2 is B%. It is preferable that the magnetic material is constituted of the soft magnetic material alloy powder of the mean grain diameter of 1 μm to 50 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、変圧器、電動機、
チョーク、ノイズフィルター等に用いられる高性能な金
属系複合磁性材料に関し、特に磁芯用の軟磁性材料とし
て用いられる複合磁性材料に関するものである。
TECHNICAL FIELD The present invention relates to a transformer, an electric motor,
The present invention relates to a high-performance metal-based composite magnetic material used for a choke, a noise filter, and the like, and particularly to a composite magnetic material used as a soft magnetic material for a magnetic core.

【0002】[0002]

【従来の技術】近年、電気・電子機器の小型化が進み、
小型で高効率の磁性材料が要求されており、高周波で用
いられるチョークコイルとしては、フェライト磁芯や圧
粉磁芯が使用されている。これらのうち、フェライト磁
芯は飽和磁束密度が小さいという欠点を有している。こ
れに対して、金属磁性粉を成形して作製される圧粉磁芯
は、軟磁性フェライトに比べて著しく大きい飽和磁束密
度を有しているため小型化に有利であるが、透磁率およ
び電力損失についてはフェライトより優れているとは言
えず、そのためチョークコイルやインダクターに使用す
るコアでは、コア損失が大きい分コアの温度上昇が大き
くなるため、小型化が図りにくいものであった。
2. Description of the Related Art In recent years, miniaturization of electric and electronic devices has been progressing.
A small and highly efficient magnetic material is required, and a ferrite core or a dust core is used as a choke coil used at a high frequency. Among them, the ferrite core has a disadvantage that the saturation magnetic flux density is small. On the other hand, a dust core manufactured by molding a metal magnetic powder has an extremely large saturation magnetic flux density as compared with soft magnetic ferrite, which is advantageous for miniaturization. It cannot be said that the loss is superior to that of ferrite. Therefore, in the core used for the choke coil and the inductor, the core temperature rise is increased by the large core loss, and it is difficult to reduce the size.

【0003】圧粉磁芯のコア損失は、通常ヒステリシス
損失と渦電流損失よりなるが、渦電流損失は、周波数の
二乗と渦電流が流れるサイズの二乗に比例して増大する
ので、磁性粉末表面を電気絶縁性樹脂等で覆うことによ
り渦電流の発生を抑制するようにしている。一方、ヒス
テリシス損失は、成形時に金属粉体に加わる歪みのため
に透磁率が劣化して、ヒステリシス損失が増大してしま
うものであった。これを回避するために、必要に応じて
歪みを解放するために成形後熱処理を施すことが例えば
特開平6−342714号公報、特開平8−37107
号公報、特開平9−125108号公報に記載されてい
る。
[0003] The core loss of a dust core usually consists of hysteresis loss and eddy current loss. The eddy current loss increases in proportion to the square of the frequency and the square of the size of the eddy current flowing. Is covered with an electrically insulating resin or the like to suppress the generation of eddy current. On the other hand, the hysteresis loss is such that the magnetic permeability deteriorates due to the strain applied to the metal powder during molding, and the hysteresis loss increases. In order to avoid this, it is possible to perform a heat treatment after molding to release the strain as necessary, for example, as disclosed in JP-A-6-342714 and JP-A-8-37107.
And JP-A-9-125108.

【0004】また、直流重畳特性を確保するために従来
のフェライト等の磁芯は、磁路を妨げる垂直方向に数1
00μmのギャップを設けることにより、直流重畳時の
インダクタンスL値の低下を低減している。しかし、こ
のような広いギャップは、うなり音の発生源となる他、
ギャップからの漏洩磁束が特に高周波数で巻線に銅損失
の著しい増加をもたらすものであった。一方、圧粉磁芯
は透磁率が低いためにギャップ無しで使用し、そのため
にうなり音また漏洩磁束による銅損失は小さい。
Further, in order to secure the DC superimposition characteristic, a conventional magnetic core such as ferrite is required to be several tens in a vertical direction which obstructs a magnetic path.
By providing a gap of 00 μm, a decrease in the inductance L value during direct current superposition is reduced. However, such a wide gap is a source of beat noise,
Leakage flux from the gaps caused a significant increase in copper losses in the windings, especially at high frequencies. On the other hand, a dust core is used without a gap because of its low magnetic permeability, so that copper loss due to beat noise and leakage magnetic flux is small.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
軟磁性合金粉末と絶縁性結着剤からなり、熱処理を施し
た複合磁性材料は、通常10ton/cm2以上の高圧
成形でも最終製品での密度が低く、高周波数でのコア損
失、透磁率ともに充分満足する特性を得ることが困難で
あった。
However, a composite magnetic material comprising a conventional soft magnetic alloy powder and an insulating binder and subjected to a heat treatment usually has a density in a final product even at a high pressure of 10 ton / cm 2 or more. Therefore, it was difficult to obtain characteristics that sufficiently satisfied both core loss and magnetic permeability at high frequencies.

【0006】本発明は上記従来の欠点を除去し、高周波
数でも低いコア損失で良好な透磁率を有する複合磁性材
料を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a composite magnetic material which eliminates the above-mentioned conventional disadvantages and has good core permeability with low core loss even at high frequencies.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、軟磁性合金粉末と絶縁性結着剤からなり、
熱処理を施した複合磁性材料において、用いられる軟磁
性合金粉末の粒度分布が粒径Dで最大頻度A%で、粒径
D/2の頻度がB%の時に頻度比B/Aが0.5以上で
あることを特徴とする複合磁性材料である。但し、軟磁
性合金粉末の平均粒径が1μm以上50μm以下で構成
されることが好ましく、酸素含有量が3000ppm以
下の軟磁性合金粉末で構成されることが好ましく、軟磁
性合金粉末のHcが1200A/m以下であることが好
ましく、軟磁性合金粉末が、Fe系、FeSi系、Fe
AlSi系、FeNi系、FeAl系の強磁性体のうち
の少なくとも1種類以上を含んでいることが好ましく、
アトマイズ法により製造された軟磁性合金粉末から構成
されることが好ましい。
Means for Solving the Problems To solve the above problems, the present invention comprises a soft magnetic alloy powder and an insulating binder,
In the heat-treated composite magnetic material, the frequency ratio B / A is 0.5 when the particle size distribution of the soft magnetic alloy powder used is a particle size D and the maximum frequency is A%, and the frequency of the particle size D / 2 is B%. A composite magnetic material characterized by the above. However, it is preferable that the soft magnetic alloy powder has an average particle size of 1 μm or more and 50 μm or less, and it is preferable that the soft magnetic alloy powder is formed of a soft magnetic alloy powder having an oxygen content of 3000 ppm or less. / M or less, and the soft magnetic alloy powder is made of Fe-based, FeSi-based,
It preferably contains at least one or more of AlSi-based, FeNi-based, and FeAl-based ferromagnetic materials,
It is preferable to be composed of a soft magnetic alloy powder produced by an atomizing method.

【0008】本発明により、高周波数でも低いコア損失
で良好な透磁率を有する複合磁性材料を得ることができ
る。
According to the present invention, it is possible to obtain a composite magnetic material having a good core permeability with a low core loss even at a high frequency.

【0009】[0009]

【発明の実施の形態】本発明の請求項1記載の発明は、
軟磁性合金粉末と絶縁性結着剤からなり、熱処理を施し
た複合磁性材料において、用いられる軟磁性合金粉末の
粒度分布が粒径Dで最大頻度A%で、粒径D/2の頻度
がB%の時に頻度比B/Aが0.5以上であることを特
徴とする複合磁性材料である。圧粉磁芯は、高周波数で
の渦電流損失を低減するために磁性粉末表面を電気絶縁
材料で覆い、金属粉同士の焼結反応が起こらない範囲で
歪みを除去する熱処理を行う。そのため通常のセラミッ
ク材料プロセスと異なり、焼成収縮等による緻密化の過
程が無く、成形体密度(体積密度)がほぼ最終製品の密
度となり、高密度磁性体実現には高成形圧力が必要であ
った。金属粉末は、成形時に塑性変形を起こすために高
圧プレス時の最適金属粉体粒度分布は必ずしも明確では
なく、成形前のタップ密度等の粉体特性との相関を認め
ることができなかった。本発明は、単一なシャープな粒
度分布よりもブロードな粒度分布の時、特に粒径Dで最
大頻度A%で、粒径D/2の頻度がB%の時に頻度比B
/Aが0.5以上である時に高成形体密度を実現するこ
とを見いだした。また、より好ましくは頻度比B/Aが
0.7以上である。
BEST MODE FOR CARRYING OUT THE INVENTION
In a composite magnetic material comprising a soft magnetic alloy powder and an insulating binder and subjected to a heat treatment, the particle size distribution of the soft magnetic alloy powder to be used is a maximum frequency A% at a particle diameter D, and a frequency of a particle diameter D / 2 is A composite magnetic material characterized in that the frequency ratio B / A is 0.5 or more at B%. In order to reduce eddy current loss at high frequencies, the dust core is subjected to a heat treatment for covering the surface of the magnetic powder with an electrically insulating material and removing distortion within a range in which a sintering reaction between the metal powders does not occur. Therefore, unlike the ordinary ceramic material process, there is no process of densification due to firing shrinkage and the like, and the compact density (volume density) becomes almost the density of the final product, and a high compaction pressure is required to realize a high-density magnetic material. . Since the metal powder undergoes plastic deformation during molding, the optimum metal powder particle size distribution during high-pressure pressing is not always clear, and no correlation with powder characteristics such as tap density before molding could be recognized. The present invention relates to a frequency ratio B when the particle size is broader than a single sharp particle size distribution, particularly when the maximum frequency is A% for the particle size D and the frequency of the particle size D / 2 is B%.
It has been found that when / A is 0.5 or more, a high compact density is realized. More preferably, the frequency ratio B / A is 0.7 or more.

【0010】本発明の請求項2記載の発明は、軟磁性合
金粉末の平均粒径が1μm以上50μm以下の請求項1
記載の複合磁性材料である。軟磁性粉末の平均粒径を5
0μm以下にすることにより、渦電流の低減に効果的で
あり、より好ましくは30μm以下である。平均粒径が
1μm未満になると、成形密度が小さくなるため、透磁
率が低下して好ましくない。この軟磁性粉末は、厚みが
5nm以上の酸化膜で皮膜されていることが好ましい。
この皮膜により、絶縁性が向上し渦電流損失が低減され
る。
According to a second aspect of the present invention, the soft magnetic alloy powder has an average particle size of 1 μm or more and 50 μm or less.
It is a composite magnetic material as described in the above. The average particle size of the soft magnetic powder is 5
By setting the thickness to 0 μm or less, it is effective to reduce the eddy current, and more preferably 30 μm or less. If the average particle size is less than 1 μm, the molding density is reduced, and the magnetic permeability is undesirably reduced. This soft magnetic powder is preferably coated with an oxide film having a thickness of 5 nm or more.
This coating improves insulation and reduces eddy current loss.

【0011】本発明の請求項3記載の発明は、酸素含有
量が3000ppm以下の軟磁性合金粉末で構成された
ことを特徴とする複合磁性材料である。酸素量が300
0ppm以上になるとヒステリシス損失が増加するため
に、全体のコア損失が上がってしまう。より好ましく
は、2000ppm以下である。より好ましくは、90
0ppm以下である。
According to a third aspect of the present invention, there is provided a composite magnetic material comprising a soft magnetic alloy powder having an oxygen content of 3000 ppm or less. Oxygen content is 300
If it is 0 ppm or more, the hysteresis loss increases, and the overall core loss increases. More preferably, it is 2000 ppm or less. More preferably, 90
It is 0 ppm or less.

【0012】本発明の請求項4記載の発明は、軟磁性合
金粉末のHcが1200A/m以下である軟磁性合金粉
末を用いることにより、ヒステリシス損失の低減で、さ
らに低コア損失を実現することができるという作用を有
する。
According to a fourth aspect of the present invention, a soft magnetic alloy powder having a Hc of 1200 A / m or less is used to realize a lower hysteresis loss and a lower core loss. It has the effect of being able to.

【0013】本発明の請求項5記載の発明は、軟磁性合
金粉末が、Fe系、FeSi系、FeAlSi系、Fe
Ni系、FeAl系の強磁性体のうちの少なくとも1種
類以上を含んでいることを特徴とする請求項1記載の複
合磁性材料であり、これらの金属磁性体は、飽和磁束密
度、透磁率ともに高く、アトマイズ粉、粉砕粉等で安易
に手に入り高性能な複合磁性材料が得られる。また、そ
れぞれの金属磁性粉の主組成に対して、不純物あるいは
添加剤量が少量であれば同様な効果があることは言うま
でもない。
According to a fifth aspect of the present invention, the soft magnetic alloy powder is made of Fe-based, FeSi-based, FeAlSi-based,
2. The composite magnetic material according to claim 1, wherein the composite magnetic material contains at least one of Ni-based and FeAl-based ferromagnetic materials, and these metal magnetic materials have both a saturated magnetic flux density and a magnetic permeability. A high-performance composite magnetic material can be obtained easily with atomized powder, pulverized powder, or the like. Needless to say, the same effect can be obtained if the amount of impurities or additives is small with respect to the main composition of each metal magnetic powder.

【0014】本発明の請求項6記載の発明は、複合磁性
材料を構成する軟磁性合金粉末がアトマイズ法により製
造されたものであるため、粉砕粉等で製造された粉末と
比較して粉末に加わる歪み量が小さく、保磁力も小さく
なるためコア損失も小さくなるという作用を有する。
According to the invention of claim 6 of the present invention, since the soft magnetic alloy powder constituting the composite magnetic material is produced by the atomizing method, the powder is compared with powder produced by pulverized powder or the like. The effect is that the amount of strain applied is small and the coercive force is also small, so that the core loss is also small.

【0015】また粉末形状は、球状、偏平状、多角形状
のいずれであっても良い。また、結着剤としてはエポキ
シ樹脂、フェノール樹脂、ブチラール樹脂、有機シリコ
ーン樹脂のうち少なくとも1つであることが好ましい。
また熱処理後に絶縁性含浸剤で含浸することは、強度の
向上、金属磁性体の防錆、表面高抵抗化などに有効であ
る。
The shape of the powder may be spherical, flat, or polygonal. Further, the binder is preferably at least one of an epoxy resin, a phenol resin, a butyral resin, and an organic silicone resin.
Impregnation with an insulating impregnating agent after the heat treatment is effective for improving the strength, preventing rust of the metal magnetic material, and increasing the surface resistance.

【0016】以下、本発明の実施の形態について説明す
る。
Hereinafter, embodiments of the present invention will be described.

【0017】(実施の形態1)軟磁性合金粉末としてF
eNi(Ni 79wt%、Mo 4wt%、残部F
e)系合金をガスアトマイズ法で作製し、分級により平
均粒度の異なる粉体を用意した。それらを混合して粒度
分布を調整し、粒度分布計で最終粒度分布を確認した。
また、すべての粉体の保磁力900A/m以下で、酸素
濃度1000ppm以下であった。これらの粉末100
重量部に対し、シリコーン樹脂3重量部を配合し、混合
攪拌機にて混合した。
(Embodiment 1) As a soft magnetic alloy powder, F
eNi (Ni 79 wt%, Mo 4 wt%, balance F
e) A system alloy was prepared by a gas atomizing method, and powders having different average particle sizes were prepared by classification. They were mixed to adjust the particle size distribution, and the final particle size distribution was confirmed with a particle size distribution meter.
Further, the coercive force of all powders was 900 A / m or less, and the oxygen concentration was 1000 ppm or less. These powders 100
3 parts by weight of the silicone resin was blended with respect to parts by weight, and mixed with a mixing stirrer.

【0018】この粉体を一軸プレスにて、8t/cm2
の加圧力で3秒間加圧成型し、外径25mm、内径15
mm、厚み約10mmのトロイダル形状の成形体を得
た。その後、窒素雰囲気中で700℃の熱処理を施し、
試料を得た。
The powder was subjected to 8 t / cm 2 by a uniaxial press.
Press molding for 3 seconds at a pressing force of 25 mm in outer diameter and 15 mm in inner diameter.
to obtain a molded product having a thickness of about 10 mm and a thickness of about 10 mm. Thereafter, a heat treatment at 700 ° C. is performed in a nitrogen atmosphere,
A sample was obtained.

【0019】得られたサンプルについてコア損失、初透
磁率を測定した。初透磁率は、LCRメーターで周波数
10kHzを測定し、コア損失は交流B−Hカーブ測定
機を用いて測定周波数100kHz、測定磁束密度0.
1Tで測定を行った。粉体粒度分布はレーザ回折散乱法
(MICROTRAC)を用い、サンプリング粒径巾を
Logプロットでほぼ均等になるように分割した。
The core loss and initial magnetic permeability of the obtained sample were measured. The initial magnetic permeability was measured at a frequency of 10 kHz with an LCR meter, and the core loss was measured at a frequency of 100 kHz with a measured magnetic flux density of 0.
The measurement was performed at 1T. The particle size distribution of the powder was divided by using a laser diffraction scattering method (MICROTRAC) so that the sampling particle size width became almost uniform in a Log plot.

【0020】また用途によって若干異なるがチョークコ
イルでは、測定周波数100kHz、測定磁束密度0.
1Tでコア損失1500kW/m3以下、初透磁率は8
0以上必要とされるが、より好ましくはコア損失100
0kW/m3以下、透磁率は100以上である。
The choke coil has a measurement frequency of 100 kHz and a measured magnetic flux density of 0.
Core loss at 1T is 1500 kW / m 3 or less, and initial permeability is 8
0 or more, but more preferably a core loss of 100
0 kW / m 3 or less, and magnetic permeability is 100 or more.

【0021】評価結果を(表1)に示す。The evaluation results are shown in (Table 1).

【0022】[0022]

【表1】 [Table 1]

【0023】(表1)の結果より明らかなように、粉末
の粒度分布B/Aが0.5以上、さらに好ましくは0.
7以上であれば成形密度も高く、また平均粒径1μm以
上50μm以下であれば、低損失な特性を有するコアが
実現できることがわかる。
As is evident from the results shown in Table 1, the particle size distribution B / A of the powder is 0.5 or more, and more preferably 0.5 or more.
It is understood that when the average particle diameter is 7 or more, the molding density is high, and when the average particle diameter is 1 μm or more and 50 μm or less, a core having low loss characteristics can be realized.

【0024】(実施の形態2)軟磁性合金粉末としてF
eAlSi(Al 5.4wt%、Si 9.6wt
%、残部Fe)系合金で、粒径Dで最大頻度A%で、粒
径D/2の頻度がB%の時に頻度比B/Aが0.65〜
0.85であり平均粒径13〜18の磁性粉体になるよ
うに水アトマイズ法で作製した粉体を、分級・混合して
粒度調整を行った。また水アトマイズ条件を変えること
により、(表2)に示す保磁力および酸素濃度の磁性粉
を用意した。これらのFeAlSi粉末100重量部に
対し、ブチラール樹脂2重量部を配合し、混合攪拌機に
て混合した。
(Embodiment 2) As a soft magnetic alloy powder, F
eAlSi (Al 5.4 wt%, Si 9.6 wt%
%, The balance being Fe) -based alloy, the maximum frequency A% at the particle size D, and the frequency ratio B / A is 0.65 to 0.65% when the frequency of the particle size D / 2 is B%.
A powder produced by a water atomizing method so as to be 0.85 and a magnetic powder having an average particle diameter of 13 to 18 was classified and mixed to adjust the particle size. Magnetic powders having the coercive force and oxygen concentration shown in Table 2 were prepared by changing the water atomizing conditions. 2 parts by weight of butyral resin was blended with 100 parts by weight of these FeAlSi powders and mixed with a mixing stirrer.

【0025】この粉体を一軸プレスにて、10t/cm
2の加圧力で3秒間加圧成型し、外径25mm、内径1
5mm、厚み約10mmのトロイダル形状の成形体を得
た。その後、窒素雰囲気中で750℃の熱処理を施し、
試料を得た。
This powder was subjected to a uniaxial press at 10 t / cm
Press molding with pressure of 2 for 3 seconds, outer diameter 25mm, inner diameter 1
A toroidal shaped body having a thickness of 5 mm and a thickness of about 10 mm was obtained. Thereafter, a heat treatment at 750 ° C. is performed in a nitrogen atmosphere,
A sample was obtained.

【0026】得られたサンプルについてコア損失、初透
磁率を測定した。初透磁率は、LCRメーターで周波数
10kHzを測定し、コア損失は交流B−Hカーブ測定
機を用いて測定周波数100kHz、測定磁束密度0.
1Tで測定を行った。粉体粒度分布はレーザ回折散乱法
(MICROTRAC)を用い、サンプリング粒径巾を
Logプロットでほぼ均等になるように分割した。
The core loss and initial magnetic permeability of the obtained sample were measured. The initial magnetic permeability was measured at a frequency of 10 kHz with an LCR meter, and the core loss was measured at a frequency of 100 kHz with a measured magnetic flux density of 0.
The measurement was performed at 1T. The particle size distribution of the powder was divided by using a laser diffraction scattering method (MICROTRAC) so that the sampling particle size width became almost uniform in a Log plot.

【0027】また用途によって若干異なるがチョークコ
イルでは、測定周波数100kHz、測定磁束密度0.
1Tでコア損失1500kW/m3以下、初透磁率は8
0以上必要とされるが、より好ましくはコア損失100
0kW/m3以下、透磁率は100以上である。
The choke coil has a measuring frequency of 100 kHz and a measured magnetic flux density of 0.
Core loss at 1T is 1500 kW / m 3 or less, and initial permeability is 8
0 or more, but more preferably a core loss of 100
0 kW / m 3 or less, and magnetic permeability is 100 or more.

【0028】[0028]

【表2】 [Table 2]

【0029】(表2)の結果より明らかなように、軟磁
性合金粉末の酸素含有量が3000ppm以下のとき低
損失な複合磁性材料が実現できるが、酸素含有量が20
00ppm以下だとより好ましいことがわかる。また、
保磁力Hcが1200A/m以下のとき低損失な複合磁
性材料が実現できるが、保磁力Hcが900A/m以下
だとより好ましいことがわかる。これは、他の磁性粉に
対しても同様であることは言うまでもない。
As is clear from the results in Table 2, when the oxygen content of the soft magnetic alloy powder is 3000 ppm or less, a low-loss composite magnetic material can be realized.
It can be seen that the content is more preferably at most 00 ppm. Also,
It can be seen that a low-loss composite magnetic material can be realized when the coercive force Hc is 1200 A / m or less, but it is more preferable that the coercive force Hc is 900 A / m or less. It goes without saying that the same applies to other magnetic powders.

【0030】(実施の形態3)(表3)に示す軟磁性合
金粉末を、粒径Dで最大頻度A%で、粒径D/2の頻度
がB%の時に頻度比B/Aが0.72〜0.80であり
平均粒径13〜18の磁性粉体になるようにガスアトマ
イズ法により粉体を作製し、分級・混合して粒度調整を
行った。またその時の保磁力900A/m以下、酸素濃
度は1000ppmの磁性粉を用意した。それぞれFe
系は99%純鉄、FeSi系合金はSi3.0wt%、
残部Fe、FeAl系合金はAl 5.0wt%、残部
Feを用いた。これらの粉末100重量部に対し、シリ
コーン樹脂3重量部を配合し、混合攪拌機にて混合し
た。
(Embodiment 3) When the soft magnetic alloy powder shown in Table 3 has a maximum frequency of A% with a particle diameter D and a frequency of B / 2 with a particle diameter D / 2, the frequency ratio B / A is 0. A powder was prepared by a gas atomization method so as to be a magnetic powder having a diameter of 0.72 to 0.80 and an average particle diameter of 13 to 18, and the particle size was adjusted by classification and mixing. Magnetic powder having a coercive force of 900 A / m or less and an oxygen concentration of 1000 ppm was prepared. Fe
The system is 99% pure iron, the FeSi alloy is 3.0 wt% Si,
As for the remaining Fe and the FeAl-based alloy, 5.0 wt% of Al and the remaining Fe were used. To 100 parts by weight of these powders, 3 parts by weight of a silicone resin were blended and mixed with a mixing stirrer.

【0031】この粉体を一軸プレスにて、12t/cm
2の加圧力で3秒間加圧成型し、外径25mm、内径1
5mm、厚み約10mmのトロイダル形状の成形体を得
た。その後、窒素雰囲気中で600〜800℃の熱処理
を施し試料を得た。
This powder was subjected to 12 t / cm by a uniaxial press.
Press molding with pressure of 2 for 3 seconds, outer diameter 25mm, inner diameter 1
A toroidal shaped body having a thickness of 5 mm and a thickness of about 10 mm was obtained. Thereafter, a heat treatment at 600 to 800 ° C. was performed in a nitrogen atmosphere to obtain a sample.

【0032】得られたサンプルについてコア損失、初透
磁率を測定した。初透磁率は、LCRメーターで周波数
10kHzを測定し、コア損失は交流B−Hカーブ測定
機を用いて測定周波数100kHz、測定磁束密度0.
1Tで測定を行った。粉体粒度分布はレーザ回折散乱法
(MICROTRAC)を用い、サンプリング粒径巾を
Logプロットでほぼ均等になるように分割した。
The core loss and initial magnetic permeability of the obtained sample were measured. The initial magnetic permeability was measured at a frequency of 10 kHz with an LCR meter, and the core loss was measured at a frequency of 100 kHz with a measured magnetic flux density of 0.
The measurement was performed at 1T. The particle size distribution of the powder was divided by using a laser diffraction scattering method (MICROTRAC) so that the sampling particle size width became almost uniform in a Log plot.

【0033】また用途によって若干異なるがチョークコ
イルでは、測定周波数100kHz、測定磁束密度0.
1Tでコア損失1500kW/m3以下、初透磁率は8
0以上必要とされるが、より好ましくはコア損失100
0kW/m3以下、透磁率は100以上である。
The choke coil has a measuring frequency of 100 kHz and a measured magnetic flux density of 0.
Core loss at 1T is 1500 kW / m 3 or less, and initial permeability is 8
0 or more, but more preferably a core loss of 100
0 kW / m 3 or less, and magnetic permeability is 100 or more.

【0034】[0034]

【表3】 [Table 3]

【0035】(表3)の結果より、FeNi系、FeA
lSi系以外にもFe系、FeSi系、FeAl系の強
磁性体を用いることで1500kW/m3以下、透磁率
は80以上であることがわかる。また、それらを組み合
わせても同様な効果があることは、言うまでもない。
From the results in Table 3, it can be seen that FeNi-based, FeA
It can be seen that the use of a ferromagnetic material of the Fe, FeSi, or FeAl type other than the lSi type results in 1500 kW / m 3 or less and magnetic permeability of 80 or more. Needless to say, the same effect can be obtained by combining them.

【0036】(実施の形態4)(表4)に示すように軟
磁性合金粉末としてFeNi(Ni 49wt%、Si
2wt%、残部Fe)系合金で、粒度分布が図1,2
で示される粒度分布の粉体を水アトマイズ製造条件を変
えることで用意した。それぞれどれも酸素濃度2000
ppm以下、保磁力800A/m以下であった。これら
の粉末100重量部に対し、シリコーン樹脂1.5重量
部を配合し、混合攪拌機にて混合した。
(Embodiment 4) As shown in Table 4, as a soft magnetic alloy powder, FeNi (Ni 49 wt%, Si
2% by weight, balance Fe) -based alloy, the particle size distribution of which is shown in FIGS.
A powder having a particle size distribution represented by is prepared by changing water atomizing production conditions. Each oxygen concentration is 2000
ppm or less and the coercive force was 800 A / m or less. 1.5 parts by weight of a silicone resin was blended with 100 parts by weight of these powders and mixed with a mixing stirrer.

【0037】この粉体を一軸プレスにて、8t/cm2
の加圧力で3秒間加圧成型し、外径25mm、内径15
mm、厚み約10mmのトロイダル形状の成形体を得
た。その後、窒素雰囲気中で750℃の熱処理を施した
後、エポキシ樹脂で含浸して試料を得た。
This powder was pressed by a uniaxial press to 8 t / cm 2
Press molding for 3 seconds at a pressing force of 25 mm in outer diameter and 15 mm in inner diameter.
to obtain a molded product having a thickness of about 10 mm and a thickness of about 10 mm. After that, a heat treatment at 750 ° C. was performed in a nitrogen atmosphere, and the sample was impregnated with an epoxy resin to obtain a sample.

【0038】得られたサンプルについてコア損失、初透
磁率を測定した。初透磁率は、LCRメーターで周波数
10kHzを測定し、コア損失は交流B−Hカーブ測定
機を用いて測定周波数100kHz、測定磁束密度0.
1Tで測定を行った。粉体粒度分布はレーザ回折散乱法
(MICROTRAC)を用い、サンプリング粒径巾を
Logプロットでほぼ均等になるように分割した。
The core loss and initial magnetic permeability of the obtained sample were measured. The initial magnetic permeability was measured at a frequency of 10 kHz with an LCR meter, and the core loss was measured at a frequency of 100 kHz with a measured magnetic flux density of 0.
The measurement was performed at 1T. The particle size distribution of the powder was divided by using a laser diffraction scattering method (MICROTRAC) so that the sampling particle size width became almost uniform in a Log plot.

【0039】また用途によって若干異なるがチョークコ
イルでは、測定周波数100kHz、測定磁束密度0.
1Tでコア損失1500kW/m3以下、初透磁率は8
0以上必要とされるが、より好ましくはコア損失100
0kW/m3以下、透磁率は100以上である。
The choke coil has a measurement frequency of 100 kHz and a measured magnetic flux density of 0.
Core loss at 1T is 1500 kW / m 3 or less, and initial permeability is 8
0 or more, but more preferably a core loss of 100
0 kW / m 3 or less, and magnetic permeability is 100 or more.

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【発明の効果】以上説明したように本発明によれば、低
損失でかつ透磁率が高い優れた磁気特性を有する複合磁
性材料を提供することができる。この複合磁性材料は、
トランスやチョークコイル等の小型化あるいは高周波領
域での使用に十分適応できる。
As described above, according to the present invention, it is possible to provide a composite magnetic material having low loss, high magnetic permeability, and excellent magnetic properties. This composite magnetic material,
Applicable to miniaturization of transformers and choke coils or use in high frequency range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態4における軟磁性合金粉末
の粒度分布を示す図
FIG. 1 is a diagram showing a particle size distribution of a soft magnetic alloy powder according to a fourth embodiment of the present invention.

【図2】同実施の形態の比較例における軟磁性合金粉末
の粒度分布を示す図
FIG. 2 is a diagram showing a particle size distribution of a soft magnetic alloy powder in a comparative example of the embodiment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松谷 伸哉 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4K017 AA06 BA03 BA06 BB01 BB06 BB16 CA07 DA02 EB01 4K018 AA08 AA25 AA26 BB04 BC13 BD01 CA11 DA21 DA33 KA44 5E041 AA02 AA03 AA04 AA07 AA11 AA19 AC05 BB03 CA02 CA04 HB11 NN06 NN12  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Shinya Matsuya 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. 4K017 AA06 BA03 BA06 BB01 BB06 BB16 CA07 DA02 EB01 4K018 AA08 AA25 AA26 BB04 BC13 BD01 CA11 DA21 DA33 KA44 5E041 AA02 AA03 AA04 AA07 AA11 AA19 AC05 BB03 CA02 CA04 HB11 NN06 NN12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 軟磁性合金粉末と絶縁性結着剤からな
り、熱処理を施した複合磁性材料において、用いられる
軟磁性合金粉末の粒度分布が粒径Dで最大頻度A%で、
粒径D/2の頻度がB%の時に頻度比B/Aが0.5以
上であることを特徴とする複合磁性材料。
In a composite magnetic material comprising a soft magnetic alloy powder and an insulating binder, which has been subjected to a heat treatment, the particle size distribution of the soft magnetic alloy powder used has a particle diameter D and a maximum frequency of A%,
A composite magnetic material, wherein the frequency ratio B / A is 0.5 or more when the frequency of the particle diameter D / 2 is B%.
【請求項2】 軟磁性合金粉末の平均粒径が1μm以上
50μm以下で構成されていることを特徴とする請求項
1記載の複合磁性材料。
2. The composite magnetic material according to claim 1, wherein the soft magnetic alloy powder has an average particle size of 1 μm or more and 50 μm or less.
【請求項3】 酸素含有量が3000ppm以下の軟磁
性合金粉末で構成されたことを特徴とする請求項1記載
の複合磁性材料。
3. The composite magnetic material according to claim 1, wherein the composite magnetic material is composed of a soft magnetic alloy powder having an oxygen content of 3000 ppm or less.
【請求項4】 軟磁性合金粉末のHcが1200A/m
以下であることを特徴とする請求項1記載の複合磁性材
料。
4. Hc of the soft magnetic alloy powder is 1200 A / m.
The composite magnetic material according to claim 1, wherein:
【請求項5】 軟磁性合金粉末が、Fe系、FeSi
系、FeAlSi系、FeNi系、FeAl系の強磁性
体のうちの少なくとも1種類以上を含んでいることを特
徴とする請求項1記載の複合磁性材料。
5. The soft magnetic alloy powder is made of an Fe-based, FeSi
2. The composite magnetic material according to claim 1, wherein the composite magnetic material contains at least one of ferromagnetic materials based on Fe, Al, Si, FeNi, and FeAl.
【請求項6】 アトマイズ法により製造された軟磁性合
金粉末から構成されたことを特徴とする請求項1記載の
複合磁性材料。
6. The composite magnetic material according to claim 1, comprising a soft magnetic alloy powder produced by an atomizing method.
JP11231095A 1999-08-18 1999-08-18 Composite magnetic material Pending JP2001057307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11231095A JP2001057307A (en) 1999-08-18 1999-08-18 Composite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11231095A JP2001057307A (en) 1999-08-18 1999-08-18 Composite magnetic material

Publications (1)

Publication Number Publication Date
JP2001057307A true JP2001057307A (en) 2001-02-27

Family

ID=16918226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11231095A Pending JP2001057307A (en) 1999-08-18 1999-08-18 Composite magnetic material

Country Status (1)

Country Link
JP (1) JP2001057307A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257722A (en) * 2002-03-06 2003-09-12 Daido Steel Co Ltd Soft magnetic powder and dust core using it
JP2009054615A (en) * 2007-08-23 2009-03-12 Alps Electric Co Ltd Powder magnetic core, and manufacturing method thereof
EP2157586A1 (en) * 2007-05-21 2010-02-24 Mitsubishi Steel MFG. CO., LTD. Sintered soft magnetic powder molded body
JP2016139748A (en) * 2015-01-29 2016-08-04 Tdk株式会社 Soft magnetic metal dust core

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257722A (en) * 2002-03-06 2003-09-12 Daido Steel Co Ltd Soft magnetic powder and dust core using it
EP2157586A1 (en) * 2007-05-21 2010-02-24 Mitsubishi Steel MFG. CO., LTD. Sintered soft magnetic powder molded body
EP2157586A4 (en) * 2007-05-21 2013-07-24 Mitsubishi Steel Mfg Sintered soft magnetic powder molded body
EP2863400A3 (en) * 2007-05-21 2015-06-03 Mitsubishi Steel MFG. CO., LTD. Sintered soft magnetic powder molded body
JP2009054615A (en) * 2007-08-23 2009-03-12 Alps Electric Co Ltd Powder magnetic core, and manufacturing method thereof
JP2016139748A (en) * 2015-01-29 2016-08-04 Tdk株式会社 Soft magnetic metal dust core
CN105845385A (en) * 2015-01-29 2016-08-10 Tdk株式会社 Soft magnetic metal powder-compact magnetic core

Similar Documents

Publication Publication Date Title
TW492020B (en) Composite magnetic body, and magnetic element and method of manufacturing the same
JP5058031B2 (en) Core-shell magnetic particles, high-frequency magnetic material, and magnetic sheet
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
JP6365670B2 (en) Magnetic core, magnetic core manufacturing method, and coil component
JP2001011563A (en) Manufacture of composite magnetic material
JP3580253B2 (en) Composite magnetic material
JP5063861B2 (en) Composite dust core and manufacturing method thereof
JP2006287004A (en) Magnetic core for high frequency and inductance component using it
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
WO2010038441A1 (en) Composite magnetic material and process for producing the composite magnetic material
EP2830070B1 (en) Composite magnetic material and method for manufacturing same
JP4166460B2 (en) Composite magnetic material, magnetic element using the same, and method of manufacturing the same
JPH11260618A (en) Composite magnetic material, its manufacture, and fe-al-si soft magnetic alloy powder used therefor
JP2000232014A (en) Manufacture of composite magnetic material
JP2012222062A (en) Composite magnetic material
JP5472694B2 (en) Composite sintered body of aluminum oxide and iron, and method for producing the same
JP4701531B2 (en) Dust core
JP2001057307A (en) Composite magnetic material
JP2654944B2 (en) Composite dust core material and manufacturing method thereof
JP2011211026A (en) Composite magnetic material
JP4568691B2 (en) Magnetite-iron-cobalt composite powder for dust core, method for producing the same, and dust core using the same
JP2001023811A (en) Pressed powder magnetic core
JP2003347113A (en) Composite magnetic material and its manufacturing method
JP2001023809A (en) Magnetically soft alloy powder
JP2002033211A (en) Dust core and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040715

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041117