JP2003306703A - Fe-Co COMPOSITE SOFT MAGNETIC SINTERED ALLOY WITH HIGH DENSITY AND HIGH MAGNETIC PERMEABILITY, AND ITS MANUFACTURING METHOD - Google Patents

Fe-Co COMPOSITE SOFT MAGNETIC SINTERED ALLOY WITH HIGH DENSITY AND HIGH MAGNETIC PERMEABILITY, AND ITS MANUFACTURING METHOD

Info

Publication number
JP2003306703A
JP2003306703A JP2002114157A JP2002114157A JP2003306703A JP 2003306703 A JP2003306703 A JP 2003306703A JP 2002114157 A JP2002114157 A JP 2002114157A JP 2002114157 A JP2002114157 A JP 2002114157A JP 2003306703 A JP2003306703 A JP 2003306703A
Authority
JP
Japan
Prior art keywords
soft magnetic
peak
powder
composite soft
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002114157A
Other languages
Japanese (ja)
Inventor
Yoshinori Sone
佳紀 曽根
Kazunori Igarashi
和則 五十嵐
Ryoji Nakayama
亮治 中山
Koichiro Morimoto
耕一郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002114157A priority Critical patent/JP2003306703A/en
Publication of JP2003306703A publication Critical patent/JP2003306703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Fe-Co composite soft magnetic sintered alloy having high density, excellent mechanical strength and high relative permeability of high frequency. <P>SOLUTION: The Fe-Co composite soft magnetic sintered alloy has a structure in which Fe-Co soft magnetic alloy particles are dispersed in a state where they are coated with a ferritic grain-boundary phase containing silicon dioxide particles of ≤100 nm average particle size and having spinel structure; the Fe-Co soft magnetic alloy particles have a particle-size distribution having a first peak centering on D1=30 to 200 μm and a second peak centering on D2=(0.05 to 0.5)×D1 μm, and the first peak has particle-size distribution larger than that of the second peak. The surface of Fe-Co soft magnetic alloy powder which has particle-size distribution having the first peak centering on D1=30 to 200 μm and the second peak centering on D2=(0.05 to 0.5)×D1 μm and in which the first peak has particle-size distribution larger than that of the second peak is coated with a ferrite layer having spinel structure to form composite soft magnetic powder, and then 0.05 to 1.0 mass% of silicon dioxide powder of ≤100 nm average particle size is added to the composite soft magnetic powder and these are mixed, and the resultant powder mixture is compacted and sintered to manufacture the Fe-Co composite soft magnetic sintered alloy. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高密度および高透磁
性を有するFe−Co系複合軟磁性焼結合金およびその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-Co based composite soft magnetic sintered alloy having high density and high magnetic permeability and a method for producing the same.

【0002】[0002]

【従来の技術】モータ、アクチュエータなどに用いられ
る低ロスヨーク、トランス、チョークコイルなどの磁心
にはFe−Co系軟磁性焼結材料が用いられることは知
られており、このFe−Co系軟磁性焼結材料は、質量
%でCo:25〜60%を含有し、残部がFeおよび不
可避不純物からなるFe−Co系軟磁性合金粉末、また
はCo:25〜60%、V:0.5〜5%を含有し、残
部がFeおよび不可避不純物からなるFe−Co系軟磁
性合金粉末を焼結して得られることが知られている。さ
らにスピネル構造を有するフェライトなど金属酸化物粉
末を焼結して得られることが知られている。前記スピネ
ル構造を有するフェライトは、一般に(MeFe)34
(但し、MeはMn,Zn,Ni,Mg,Cu,Feも
しくはCoまたはこれらの混合物)で表されることが知
られている。
2. Description of the Related Art It is known that Fe--Co based soft magnetic sintered materials are used for magnetic cores such as low loss yokes, transformers and choke coils used in motors and actuators. The sintering material contains Co: 25 to 60% by mass, and the balance is Fe-Co soft magnetic alloy powder consisting of Fe and unavoidable impurities, or Co: 25 to 60%, V: 0.5 to 5 It is known that it can be obtained by sintering an Fe-Co based soft magnetic alloy powder containing 100% by weight and the balance being Fe and inevitable impurities. Further, it is known to be obtained by sintering a metal oxide powder such as ferrite having a spinel structure. The ferrite having the spinel structure is generally (MeFe) 3 O 4
(However, Me is known to be represented by Mn, Zn, Ni, Mg, Cu, Fe or Co or a mixture thereof).

【0003】また、これらFe−Co系軟磁性合金粉末
は、飽和磁束密度が高いが、高周波特性が悪く、一方、スピ
ネル構造を有するフェライトなど金属酸化物粉末を焼結
して得られた酸化物軟磁性焼結材料は、高周波特性に優
れ、初透磁率が比較的高いが、飽和磁束密度が低い欠点が
あり、これらを改善するために、金属軟磁性粉末の表面に
スピネル構造を有するフェライト層を被覆してなる複合
軟磁性粉末を焼結して得られたFe−Co系複合軟磁性
焼結合金が提案されている(特開昭56−38402号
公報参照)。
Further, these Fe--Co type soft magnetic alloy powders have high saturation magnetic flux density but poor high frequency characteristics. On the other hand, oxides obtained by sintering metal oxide powders such as ferrite having a spinel structure. The soft magnetic sintered material has excellent high-frequency characteristics and relatively high initial magnetic permeability, but has a drawback that the saturation magnetic flux density is low. In order to improve these, a ferrite layer having a spinel structure on the surface of the metal soft magnetic powder is used. A Fe-Co-based composite soft magnetic sintered alloy obtained by sintering a composite soft magnetic powder obtained by coating is proposed (see JP-A-56-38402).

【0004】[0004]

【発明が解決しようとする課題】しかし、前記Fe−C
o系軟磁性合金粉末は硬いために通常の成形条件では十
分な密度の成形体を得ることが難しく、さらに前記Fe
−Co系軟磁性合金粉末の表面にスピネル構造を有する
フェライト層を被覆してなる複合軟磁性粉末を焼結して
得られたFe−Co系複合軟磁性焼結合金は、スピネル
構造を有するフェライト層が酸化物であるために焼結性
が悪く、したがって、十分な密度および磁気特性を有す
るFe−Co系複合軟磁性焼結合金が得られない。その
ため、Fe−Co系軟磁性合金粉末の表面にスピネル構
造を有するフェライト層を被覆してなる複合軟磁性粉末
を成形して得られる成形体は十分な密度が得られず、ま
たこの複合軟磁性粉末の成形体を燒結して得られるFe
−Co系複合軟磁性焼結合金は十分な高密度が得られな
いために十分な透磁性が得られない、という課題があっ
た。
However, the above Fe-C is used.
Since the o-type soft magnetic alloy powder is hard, it is difficult to obtain a compact having a sufficient density under ordinary molding conditions.
An Fe—Co based composite soft magnetic sintered alloy obtained by sintering a composite soft magnetic powder obtained by coating a surface of a —Co based soft magnetic alloy powder with a ferrite layer having a spinel structure is a ferrite having a spinel structure. Since the layer is an oxide, the sinterability is poor, and therefore a Fe—Co based composite soft magnetic sintered alloy having sufficient density and magnetic properties cannot be obtained. Therefore, a compact obtained by molding the composite soft magnetic powder obtained by coating the surface of the Fe-Co soft magnetic alloy powder with the ferrite layer having the spinel structure cannot obtain sufficient density, and the composite soft magnetic powder Fe obtained by sintering a powder compact
The -Co-based composite soft magnetic sintered alloy has a problem that sufficient magnetic permeability cannot be obtained because a sufficient high density cannot be obtained.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者らは、
かかる課題を解決すべく研究を行った結果、 (イ)Fe−Co系軟磁性合金粉末の粒度分布がD1=
30〜200μm(一層好ましくは80〜150μm)
を中心とする第1ピークと、D2=0.05〜0.5×
D1μmを中心とする第2ピークを有し、第1ピークは
第2ピークよりも大きな粒度分布を有するFe−Co系
軟磁性合金粉末を使用して圧粉成形すると成形体の密度
が一層向上するところから、この粒度分布を有するFe
−Co系軟磁性合金粉末の表面にスピネル構造を有する
フェライト層が被覆されている複合軟磁性粉末を圧粉成
形して得られる成形体の密度も一層向上する、(ロ)こ
の粒度分布を有するFe−Co系軟磁性合金粉末の表面
にスピネル構造を有するフェライト層が被覆されている
複合軟磁性粉末に、平均粒径:100nm以下の二酸化
ケイ素粉末を0.05〜1.0質量%添加し混合して得
られた混合粉末は燒結性が向上するところから密度が向
上し、したがって機械的強度が向上し、さらに磁気特
性、特に高周波における比透磁率が向上する、(ハ)前
記複合軟磁性粉末に二酸化ケイ素粉末を混合して得られ
た混合粉末を圧粉成形し焼結することにより得られたF
e−Co系複合軟磁性焼結合金は、Fe−Co系軟磁性
合金粒子が平均粒径:100nm以下の二酸化ケイ素粉
末を含むスピネル構造を有するフェライト粒界相により
被覆され隔離されて分散した組織を有する、などの研究
結果が得られたのである。
Therefore, the present inventors have
As a result of research to solve such problems, (a) the particle size distribution of the Fe—Co soft magnetic alloy powder is D1 =
30-200 μm (more preferably 80-150 μm)
The first peak centered at, and D2 = 0.05 to 0.5 ×
When a Fe-Co soft magnetic alloy powder having a second peak centered at D1 [mu] m and the first peak having a larger particle size distribution than the second peak is used for powder compaction, the density of the compact is further improved. Therefore, Fe having this particle size distribution
-The density of the molded body obtained by compacting the composite soft magnetic powder in which the ferrite layer having the spinel structure is coated on the surface of the Co-based soft magnetic alloy powder is further improved, and (b) has this particle size distribution. 0.05 to 1.0 mass% of silicon dioxide powder having an average particle diameter of 100 nm or less is added to the composite soft magnetic powder in which the surface of the Fe-Co soft magnetic alloy powder is coated with the ferrite layer having the spinel structure. The mixed powder obtained by mixing improves the sinterability and thus the density, and thus the mechanical strength, and further improves the magnetic properties, especially the relative permeability at high frequencies. F obtained by compacting and sintering a mixed powder obtained by mixing silicon dioxide powder with the powder
The e-Co-based composite soft magnetic sintered alloy is a structure in which Fe-Co-based soft magnetic alloy particles are covered with a ferrite grain boundary phase having a spinel structure containing silicon dioxide powder having an average particle diameter of 100 nm or less and are isolated and dispersed. The result of the study was obtained.

【0006】この発明は、かかる研究結果に基づいてな
されたものであって、(1)Fe−Co系軟磁性合金粒
子が平均粒径:100nm以下の二酸化ケイ素粒子を含
むスピネル構造を有するフェライト粒界相により被覆さ
れて分散しており、前記Fe−Co系軟磁性合金粒子は
粒度分布がD1=30〜200μmを中心とする第1ピ
ークと、D2=0.05〜0.5×D1μmを中心とす
る第2ピークを有し、第1ピークは第2ピークよりも大
きな粒度分布を有する組織を有する高密度および高透磁
性を有するFe−Co系複合軟磁性焼結合金、(2)粒
度分布がD1=30〜200μmを中心とする第1ピー
クと、D2=0.05〜0.5×D1μmを中心とする
第2ピークを有し、第1ピークは第2ピークよりも大き
な粒度分布を有するFe−Co系軟磁性合金粉末の表面
にスピネル構造を有するフェライト層が被覆されている
複合軟磁性粉末に、平均粒径:100nm以下の二酸化
ケイ素粉末を0.05〜1.0質量%添加して混合し、
得られた混合粉末を圧粉成形し焼結する高密度および高
透磁性を有するFe−Co系複合軟磁性焼結合金の製造
方法、に特徴を有するものである。
The present invention has been made on the basis of the above research results, and (1) ferrite particles having a spinel structure, in which Fe-Co soft magnetic alloy particles include silicon dioxide particles having an average particle size of 100 nm or less. The Fe-Co based soft magnetic alloy particles are dispersed by being covered with a boundary phase, and the particle size distribution has a first peak centered at D1 = 30 to 200 μm and D2 = 0.05 to 0.5 × D1 μm. Fe-Co based composite soft magnetic sintered alloy having a high density and high magnetic permeability, having a central second peak, the first peak having a grain size distribution larger than the second peak, (2) grain size The distribution has a first peak centered at D1 = 30 to 200 μm and a second peak centered at D2 = 0.05 to 0.5 × D1 μm, the first peak having a larger particle size distribution than the second peak. With F By adding 0.05 to 1.0 mass% of silicon dioxide powder having an average particle diameter of 100 nm or less to the composite soft magnetic powder in which the ferrite layer having the spinel structure is coated on the surface of the Co based soft magnetic alloy powder. Mix and
The present invention is characterized by a method for producing a Fe-Co based composite soft magnetic sintered alloy having high density and high magnetic permeability, which is obtained by compacting and sintering the obtained mixed powder.

【0007】この発明の高密度および高透磁性を有する
Fe−Co系複合軟磁性焼結合金の素地に分散するFe
−Co系軟磁性合金粒子は、質量%でCo:25〜60
%を含有し、残部がFeおよび不可避不純物からなるF
e−Co系軟磁性合金粒子、またはCo:25〜60
%、V:0.5〜5%を含有し、残部がFeおよび不可
避不純物からなるFe−Co系軟磁性合金粒子であるこ
とが好ましいが、この組成に限定されるものではなく、
軟磁性を示すFe−Co系合金粒子であればいかなる成
分組成のFe−Co系軟磁性合金粒子であっても良い。
また、Fe−Co系軟磁性合金粒子を被覆し隔離する平
均粒径:100nm以下の二酸化ケイ素粒子を含むスピ
ネル構造を有するフェライト粒界相は、一般式(MeF
e)34(但し、MeはMn,Zn,Ni,Mg,C
u,Feまたはこれらの混合物)で表されるフェライト
粒界相である。したがって、この発明の高密度および高
透磁性を有するFe−Co系複合軟磁性焼結合金を製造
するために使用する複合軟磁性粉末は、質量%でCo:
25〜60%を含有し、残部がFeおよび不可避不純物
からなるFe−Co系軟磁性合金粉末、またはCo:2
5〜60%、V:0.5〜5%を含有し、残部がFeお
よび不可避不純物からなるFe−Co系軟磁性合金粉末
の表面にフェライト層を被覆した粉末であることが好ま
しいが、前記Fe−Co系軟磁性合金粉末は前記成分組
成に特に限定されるものではなく、軟磁性を示すFe−
Co系合金粉末であればいかなる成分組成のFe−Co
系軟磁性合金粉末であっても良い。
Fe dispersed in the base material of the Fe-Co type composite soft magnetic sintered alloy having high density and high magnetic permeability of the present invention.
-Co-based soft magnetic alloy particles have a mass% of Co: 25 to 60
%, With the balance being Fe and inevitable impurities
e-Co soft magnetic alloy particles, or Co: 25-60
%, V: 0.5 to 5%, and the balance is preferably Fe-Co based soft magnetic alloy particles containing Fe and unavoidable impurities, but is not limited to this composition.
Fe—Co based soft magnetic alloy particles having any composition may be used as long as they are soft magnetic Fe—Co based alloy particles.
Further, the ferrite grain boundary phase having a spinel structure containing silicon dioxide particles having an average particle diameter of 100 nm or less for covering and isolating Fe—Co based soft magnetic alloy particles has a general formula (MeF).
e) 3 O 4 (however, Me is Mn, Zn, Ni, Mg, C
It is a ferrite grain boundary phase represented by u, Fe or a mixture thereof. Therefore, the composite soft magnetic powder used for producing the Fe-Co based composite soft magnetic sintered alloy having high density and high magnetic permeability of the present invention is Co:
Fe-Co soft magnetic alloy powder containing 25 to 60% and the balance Fe and unavoidable impurities, or Co: 2
5 to 60%, V: 0.5 to 5%, the balance is preferably Fe-Co based soft magnetic alloy powder consisting of Fe and unavoidable impurities, the surface of which is coated with a ferrite layer. The Fe-Co based soft magnetic alloy powder is not particularly limited to the above component composition, and Fe- which exhibits soft magnetism
Fe-Co having any composition as long as it is a Co alloy powder
The soft magnetic alloy powder may be used.

【0008】この発明の高密度および高透磁性を有する
Fe−Co系複合軟磁性焼結合金に含まれる二酸化ケイ
素粉末の平均粒径を100nm以下に限定した理由は、
二酸化ケイ素粉末の平均粒径が100nmを越えると焼
結性向上効果が低下すると共に比透磁率が低下するから
である。この二酸化ケイ素粉末の平均粒径の下限は製造
コストの面から1nm以上であることが一層好ましい。
また、平均粒径:100nm以下の二酸化ケイ素粉末の
添加量を0.05質量%以上にした理由は、平均粒径:
100nm以下の二酸化ケイ素が0.05質量%未満含
まれていても焼結性に大きく影響を及ぼすことはなくま
た比透磁率が低下するからであり、一方、1.0質量%
を越えて含有すると非磁性相の割合が多くなり、比透磁
率の低下をもたらすので好ましくないことによるもので
ある。二酸化ケイ素粉末の添加量の一層好ましい範囲は
0.1〜0.5質量%である。
The reason why the average particle size of the silicon dioxide powder contained in the Fe--Co type composite soft magnetic sintered alloy having high density and high magnetic permeability of the present invention is limited to 100 nm or less is as follows.
This is because if the average particle diameter of the silicon dioxide powder exceeds 100 nm, the effect of improving sinterability is reduced and the relative permeability is reduced. The lower limit of the average particle size of the silicon dioxide powder is more preferably 1 nm or more from the viewpoint of manufacturing cost.
Further, the reason why the addition amount of the silicon dioxide powder having an average particle diameter of 100 nm or less is 0.05% by mass or more is that the average particle diameter:
This is because if the content of silicon dioxide of 100 nm or less is less than 0.05% by mass, the sinterability is not significantly affected and the relative magnetic permeability is decreased, while 1.0% by mass is used.
This is because if the content exceeds the above range, the proportion of the non-magnetic phase increases and the relative magnetic permeability decreases, which is not preferable. A more preferable range of the amount of silicon dioxide powder added is 0.1 to 0.5% by mass.

【0009】[0009]

【発明の実施の形態】表1に示される成分組成を有する
Fe−Co系軟磁性合金原料を高周波溶解して溶湯を作
製し、これら溶湯を水アトマイズしてFe−Co系軟磁
性合金アトマイズ粉末を作製し、そのアトマイズ粉末を
分級処理してFe−Co系軟磁性合金アトマイズ原料粉
末を作製した。このアトマイズ原料粉末をさらに風力分
級機により分級し、表1に示されるD1=30〜200
μmを中心とする第1ピークと、D2=0.05〜0.
5×D1μmを中心とする第2ピークを有するFe−C
o系軟磁性合金粉末を作製した。このFe−Co系軟磁
性合金粉末の粒度分布はマイクロトラック装置により測
定した。
BEST MODE FOR CARRYING OUT THE INVENTION Fe-Co based soft magnetic alloy raw materials having the composition shown in Table 1 are melted by high frequency to prepare molten metal, and these molten metal are atomized with water to form Fe-Co based soft magnetic alloy atomized powder. Was prepared, and the atomized powder was classified to prepare Fe—Co based soft magnetic alloy atomized raw material powder. This atomized raw material powder was further classified by an air classifier, and D1 = 30 to 200 shown in Table 1
the first peak centered at .mu.m and D2 = 0.05-0.
Fe-C having a second peak centered at 5 × D1 μm
An o-based soft magnetic alloy powder was produced. The particle size distribution of this Fe-Co based soft magnetic alloy powder was measured by a Microtrack device.

【0010】このようにして得られたFe−Co系軟磁
性合金粉末をイオン交換水に浸漬してよく撹拌したの
ち、窒素により十分に脱酸素を行なった。この窒素によ
り十分に脱酸素を行なったイオン交換水に、金属塩化物
(MCl2,ただしM=Fe、Zn、Mn)を溶かし、酸化
物膜組成が得られるよう調製された金属塩化物水溶液を
静かに注ぎ、その後NaOH水溶液によりpHを7.0に
調整した。この混合液を70℃一定に保ち、0.5〜3
時間に渡り空気を吹き込みながら緩やかに撹拌し、Fe
−Co系軟磁性合金粉末の表面に表1に示される厚さの
(Mn17Zn16Fe6734フェライト膜を成膜した。
その後、このフェライト膜を成膜したFe−Co系軟磁
性合金粉末を濾過、水洗、乾燥することにより表1に示
される複合軟磁性粉末A〜dを得た。
The Fe--Co type soft magnetic alloy powder thus obtained was immersed in ion-exchanged water, stirred well, and then sufficiently deoxidized with nitrogen. A metal chloride aqueous solution prepared by dissolving a metal chloride (MCl 2 , where M = Fe, Zn, Mn) in ion-exchanged water that has been sufficiently deoxygenated with nitrogen to obtain an oxide film composition is prepared. Pour gently and then adjust pH to 7.0 with aqueous NaOH solution. Keep this mixture at 70 ℃ constant, 0.5-3
Stir gently while blowing air over time
-Co-based thickness shown in the surface of the soft magnetic alloy powder in Table 1 (Mn 17 Zn 16 Fe 67) 3 O 4 ferrite film was formed.
Thereafter, the Fe-Co based soft magnetic alloy powder on which this ferrite film was formed was filtered, washed with water, and dried to obtain composite soft magnetic powders A to d shown in Table 1.

【0011】得られた複合軟磁性粉末A〜dに、表2に
示す平均粒径のSiO2粉末を表2に示す割合となるよ
うに混ぜ、6ton/cm2の成形圧をかけることによ
り外径:35mm、内径:25mm、高さ:5mmのリ
ング状圧粉体を成形し、得られたリング状圧粉体を不活
性ガス雰囲気中、1000℃の温度で焼結することによ
りリング状焼結体からなる本発明Fe−Co系複合軟磁
性焼結合金1〜12、比較Fe−Co系複合軟磁性焼結
合金1〜7および従来Fe−Co系複合軟磁性焼結合金
を作製した。このようにして得られたリング状焼結体の
組織をSEMで観察した結果、本発明Fe−Co系複合
軟磁性焼結合金1〜12および比較Fe−Co系複合軟
磁性焼結合金1〜7にはいずれもSiO2粉末がフェラ
イト粒界相中に分散している組織を有していた。さらに
これら本発明Fe−Co系複合軟磁性焼結合金1〜1
2、比較Fe−Co系複合軟磁性焼結合金1〜7および
従来Fe−Co系複合軟磁性焼結合金についてSEMで
被測定粒子群の濃淡画像を入力し、それに粒子分離画像
処理を施し、この画像よりFe−Co系軟磁性合金粒子
の円相当径法にて求めた面積を基に各粒子の直径を求
め、求めた直径を集計することにより粒度分布を求めた
ところ、本発明Fe−Co系複合軟磁性焼結合金1〜1
2、比較Fe−Co系複合軟磁性焼結合金1〜7および
従来Fe−Co系複合軟磁性焼結合金の各組織における
Fe−Co系軟磁性合金粒子は前記アトマイズ粉末の粒
度分布とほぼ同じ粒度分布を示していた。その後、さら
にFe−Co系複合軟磁性焼結合金1〜12、比較Fe
−Co系複合軟磁性焼結合金1〜7および従来Fe−C
o系複合軟磁性焼結合金の相対密度を測定し、その結果
を表3〜4に示した。さらに、本発明Fe−Co系複合
軟磁性焼結合金1〜12、比較Fe−Co系複合軟磁性
焼結合金1〜7および従来Fe−Co系複合軟磁性焼結
合金について表3〜4に示される周波数の高周波におけ
る比透磁率をインピーダンスアナライザで測定し、その
結果を表3〜4に示した。
The obtained composite soft magnetic powders A to d were mixed with SiO 2 powder having an average particle size shown in Table 2 at a ratio shown in Table 2, and a molding pressure of 6 ton / cm 2 was applied to remove them. A ring-shaped green compact having a diameter of 35 mm, an inner diameter of 25 mm, and a height of 5 mm is molded, and the obtained ring-shaped green compact is sintered at a temperature of 1000 ° C. in an inert gas atmosphere to form a ring-shaped powder. Fe-Co based composite soft magnetic sintered alloys 1 to 12 of the present invention, comparative Fe-Co based composite soft magnetic sintered alloys 1 to 7 and conventional Fe-Co based composite soft magnetic sintered alloys were prepared. As a result of observing the structure of the ring-shaped sintered body thus obtained by SEM, the present invention Fe-Co-based composite soft magnetic sintered alloys 1 to 12 and comparative Fe-Co-based composite soft magnetic sintered alloys 1 to 1 All of the samples 7 had a structure in which SiO 2 powder was dispersed in the ferrite grain boundary phase. Further, these Fe—Co based composite soft magnetic sintered alloys 1 to 1 of the present invention
2, the comparative Fe-Co composite soft magnetic sintered alloys 1 to 7 and the conventional Fe-Co composite soft magnetic sintered alloys are input with the SEM a grayscale image of the particle group to be measured and subjected to particle separation image processing, From this image, the diameter of each particle was calculated based on the area of the Fe-Co soft magnetic alloy particles calculated by the circle equivalent diameter method, and the particle diameter distribution was calculated by aggregating the calculated diameters. Co-based composite soft magnetic sintered alloy 1-1
2. Comparative Fe—Co based composite soft magnetic sintered alloys 1 to 7 and Fe—Co based soft magnetic alloy particles in each structure of conventional Fe—Co based composite soft magnetic sintered alloys have almost the same particle size distribution as the atomized powder. It showed a particle size distribution. After that, Fe-Co composite soft magnetic sintered alloys 1 to 12 and comparative Fe were further added.
-Co-based composite soft magnetic sintered alloys 1 to 7 and conventional Fe-C
The relative density of the o-based composite soft magnetic sintered alloy was measured, and the results are shown in Tables 3 and 4. Further, Tables 3 and 4 show the Fe—Co based composite soft magnetic sintered alloys 1 to 12 of the present invention, the comparative Fe—Co based composite soft magnetic sintered alloys 1 to 7 and the conventional Fe—Co based composite soft magnetic sintered alloys. The relative magnetic permeability at a high frequency of the indicated frequency was measured with an impedance analyzer, and the results are shown in Tables 3-4.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】[0015]

【表4】 [Table 4]

【0016】表1〜4に示される結果から、Fe−Co
系複合軟磁性合金粉末の表面にスピネル構造を有するフ
ェライト層が被覆されている複合軟磁性粉末にSiO2
粉末を0.05〜1.0質量%添加し混合し圧粉成形し
焼結して得られた本発明Fe−Co系複合軟磁性焼結合
金1〜12は、従来Fe−Co系複合軟磁性焼結合金に
比べて高密度を有すると共に高周波における比透磁率が
優れていることが分かる。しかし、この発明の範囲から
外れた条件で作製した比較Fe−Co系複合軟磁性焼結
合金1〜7は密度または比透磁率の内の少なくともいず
れかが劣るので好ましくないことが分かる。
From the results shown in Tables 1 to 4, Fe--Co
SiO 2 in the composite soft magnetic powder ferrite layer is coated with a spinel structure in the surface of the system complex soft magnetic alloy powder
Fe-Co-based composite soft magnetic sintered alloys 1 to 12 of the present invention obtained by adding and mixing powder in an amount of 0.05 to 1.0% by mass, compacting and compacting the powder are conventional Fe-Co-based composite soft alloys. It can be seen that the magnetic sintered alloy has high density and high relative permeability at high frequencies as compared with the magnetic sintered alloy. However, it is understood that the comparative Fe—Co based composite soft magnetic sintered alloys 1 to 7 produced under the conditions outside the scope of the present invention are inferior in at least one of the density and the relative magnetic permeability, which is not preferable.

【0017】[0017]

【発明の効果】この発明は、高密度で機械的強度が優
れ、さらに高周波の比透磁率の高いFe−Co系複合軟
磁性焼結合金を提供することができ、電気および電子産
業において優れた効果をもたらすものである。
INDUSTRIAL APPLICABILITY The present invention can provide a Fe-Co based composite soft magnetic sintered alloy having a high density, excellent mechanical strength, and high relative permeability at high frequencies, and is excellent in the electrical and electronic industries. It has an effect.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/00 304 C22C 38/00 304 38/10 38/10 H01F 1/22 H01F 1/22 (72)発明者 中山 亮治 埼玉県さいたま市北袋町1−297 三菱マ テリアル株式会社総合研究所内 (72)発明者 森本 耕一郎 新潟県新潟市小金町3−1 三菱マテリア ル株式会社新潟製作所内 Fターム(参考) 4K018 AA25 AB01 AC01 BA16 BC12 BC33 CA00 DA00 5E041 AA05 AA19 BC01 BC08 BD01 CA02 HB03 HB05 HB17 NN05 NN06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 38/00 304 C22C 38/00 304 38/10 38/10 H01F 1/22 H01F 1/22 (72) Inventor Ryoji Nakayama 1-297 Kitabukuro-cho, Saitama City, Saitama Prefecture Mitsubishi Materials Corp. Research Laboratory (72) Inventor Koichiro Morimoto 3-1 Koganecho, Niigata City, Niigata Prefecture Mitsubishi Material Co., Ltd. F-term in Niigata Plant (reference) 4K018 AA25 AB01 AC01 BA16 BC12 BC33 CA00 DA00 5E041 AA05 AA19 BC01 BC08 BD01 CA02 HB03 HB05 HB17 NN05 NN06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Fe−Co系軟磁性合金粒子が平均粒径:
100nm以下の二酸化ケイ素粒子を含むスピネル構造
を有するフェライト粒界相により被覆されて分散してお
り、前記Fe−Co系軟磁性合金粒子は粒度分布がD1
=30〜200μmを中心とする第1ピークと、D2=
0.05〜0.5×D1μmを中心とする第2ピークを
有し、第1ピークは第2ピークよりも大きな粒度分布を
有する組織を有することを特徴とする高密度および高透
磁性を有するFe−Co系複合軟磁性焼結合金。
1. Fe-Co soft magnetic alloy particles have an average particle diameter:
The Fe-Co based soft magnetic alloy particles are coated with and dispersed by a ferrite grain boundary phase having a spinel structure containing silicon dioxide particles of 100 nm or less, and the particle size distribution is D1.
= The first peak centered at 30 to 200 μm, and D2 =
High density and high magnetic permeability characterized by having a second peak centered at 0.05 to 0.5 × D1 μm, the first peak having a structure with a larger particle size distribution than the second peak. Fe-Co based composite soft magnetic sintered alloy.
【請求項2】粒度分布がD1=30〜200μmを中心
とする第1ピークと、D2=0.05〜0.5×D1μ
mを中心とする第2ピークを有し、第1ピークは第2ピ
ークよりも大きな粒度分布を有するFe−Co系軟磁性
合金粉末の表面にスピネル構造を有するフェライト層が
被覆されている複合軟磁性粉末に、平均粒径:100n
m以下の二酸化ケイ素粉末を0.05〜1.0質量%添
加して混合し、得られた混合粉末を圧粉成形し焼結する
ことを特徴とする高密度および高透磁性を有するFe−
Co系複合軟磁性焼結合金の製造方法。
2. A first peak having a particle size distribution centered at D1 = 30 to 200 μm and D2 = 0.05 to 0.5 × D1 μ.
The composite soft magnetic powder has a second peak centered at m, and the first peak has a particle size distribution larger than that of the second peak, and the ferrite layer having a spinel structure is coated on the surface of the Fe-Co soft magnetic alloy powder. Magnetic powder, average particle size: 100n
Fe- having high density and high magnetic permeability, characterized in that 0.05 to 1.0% by mass of silicon dioxide powder of m or less is added and mixed, and the obtained mixed powder is compacted and sintered.
A method for producing a Co-based composite soft magnetic sintered alloy.
JP2002114157A 2002-04-17 2002-04-17 Fe-Co COMPOSITE SOFT MAGNETIC SINTERED ALLOY WITH HIGH DENSITY AND HIGH MAGNETIC PERMEABILITY, AND ITS MANUFACTURING METHOD Pending JP2003306703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002114157A JP2003306703A (en) 2002-04-17 2002-04-17 Fe-Co COMPOSITE SOFT MAGNETIC SINTERED ALLOY WITH HIGH DENSITY AND HIGH MAGNETIC PERMEABILITY, AND ITS MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002114157A JP2003306703A (en) 2002-04-17 2002-04-17 Fe-Co COMPOSITE SOFT MAGNETIC SINTERED ALLOY WITH HIGH DENSITY AND HIGH MAGNETIC PERMEABILITY, AND ITS MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
JP2003306703A true JP2003306703A (en) 2003-10-31

Family

ID=29396077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002114157A Pending JP2003306703A (en) 2002-04-17 2002-04-17 Fe-Co COMPOSITE SOFT MAGNETIC SINTERED ALLOY WITH HIGH DENSITY AND HIGH MAGNETIC PERMEABILITY, AND ITS MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP2003306703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054615A (en) * 2007-08-23 2009-03-12 Alps Electric Co Ltd Powder magnetic core, and manufacturing method thereof
JP2015190017A (en) * 2014-03-28 2015-11-02 三菱マテリアル株式会社 Softly magnetic thin film forming sputtering target
US20230130266A1 (en) * 2021-10-21 2023-04-27 Tdk Corporation Soft magnetic alloy powder, dust core, and magnetic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054615A (en) * 2007-08-23 2009-03-12 Alps Electric Co Ltd Powder magnetic core, and manufacturing method thereof
JP2015190017A (en) * 2014-03-28 2015-11-02 三菱マテリアル株式会社 Softly magnetic thin film forming sputtering target
US20230130266A1 (en) * 2021-10-21 2023-04-27 Tdk Corporation Soft magnetic alloy powder, dust core, and magnetic device
US12062474B2 (en) * 2021-10-21 2024-08-13 Tdk Corporation Soft magnetic alloy powder comprising Fe, Co and Si, dust core, and magnetic device

Similar Documents

Publication Publication Date Title
JP5099480B2 (en) Soft magnetic metal powder, green compact, and method for producing soft magnetic metal powder
WO2010073590A1 (en) Composite soft magnetic material and method for producing same
US7371271B2 (en) Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
WO2010082486A1 (en) Process for producing composite magnetic material, dust core formed from same, and process for producing dust core
JP2001011563A (en) Manufacture of composite magnetic material
CN107004481B (en) Flat soft magnetic powder and method for producing same
JP5439888B2 (en) Composite magnetic material and method for producing the same
JP2010236020A (en) Soft magnetic composite material, method for producing the same, and electromagnetic circuit component
JP6471881B2 (en) Magnetic core and coil parts
JP2003306704A (en) Fe-Si COMPOSITE SOFT MAGNETIC SINTERED ALLOY WITH HIGH DENSITY AND HIGH MAGNETIC PERMEABILITY, AND ITS MANUFACTURING METHOD
JP6582745B2 (en) Composite soft magnetic material and manufacturing method thereof
JP4601907B2 (en) High frequency magnetic material powder, high frequency magnetic component using the same, and manufacturing method
JP2003160847A (en) Composite magnetic material, magnetic element using the same, and manufacture method therefor
JP5472694B2 (en) Composite sintered body of aluminum oxide and iron, and method for producing the same
JP2003306703A (en) Fe-Co COMPOSITE SOFT MAGNETIC SINTERED ALLOY WITH HIGH DENSITY AND HIGH MAGNETIC PERMEABILITY, AND ITS MANUFACTURING METHOD
JP2009206337A (en) Fe-BASED SOFT MAGNETIC POWDER, AND MANUFACTURING METHOD THEREOF, AND DUST CORE
JP4613586B2 (en) Method for producing composite sintered magnetic material
JP3946073B2 (en) Composite soft magnetic sintered material having high density and high magnetic permeability and method for producing the same
JP2009272615A (en) Dust core, and manufacturing method thereof
JP2010185126A (en) Composite soft magnetic material and method for producing the same
JP2004014613A (en) PROCESS FOR PRODUCING Fe-Co BASED COMPOSITE SOFT MAGNETIC SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
JP2003243216A (en) METHOD FOR MANUFACTURING Fe-Co BASED COMPOSITE SOFT MAGNETIC SINTERED MATERIAL WITH HIGH DENSITY AND PERMEABILITY
JPH06236808A (en) Composite magnetic material and its manufacture
JPS5854185B2 (en) Powder for high permeability sintered iron-nickel alloys
JP2004014614A (en) METHOD FOR PRODUCING Fe-Si BASED SOFT MAGNETISM SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080528