JPH11156502A - Equipment and method for controlling molten steel flow in mold, in continuous casting - Google Patents

Equipment and method for controlling molten steel flow in mold, in continuous casting

Info

Publication number
JPH11156502A
JPH11156502A JP9330489A JP33048997A JPH11156502A JP H11156502 A JPH11156502 A JP H11156502A JP 9330489 A JP9330489 A JP 9330489A JP 33048997 A JP33048997 A JP 33048997A JP H11156502 A JPH11156502 A JP H11156502A
Authority
JP
Japan
Prior art keywords
mold
molten steel
magnetic poles
magnetic
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9330489A
Other languages
Japanese (ja)
Inventor
Hisakazu Mizota
久和 溝田
Nobumoto Takashiba
信元 高柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9330489A priority Critical patent/JPH11156502A/en
Publication of JPH11156502A publication Critical patent/JPH11156502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the flow control of both a FC system which applies a static magnetic field of direct current between facing mold long sides of an upper surface and a lower surface of the molten steel in the mold so as to control a molten steel stream, and a MEMS system which applies a transfer magnetic field of alternating current while the field is sequentially switched so as to carry out the molten steel agitation in a mold long side direction by one continuous casting facility. SOLUTION: In accordance with the pouring condition, the AC/DC current to be applied to division magnetic poles 3a and the magnetization direction of each magnetic pole of the division magnetic poles 3a are switched by using the plural division magnetic poles 3a; which are facing each other on the back side of a mold long side wall; from which many magnetic poles are parallely protruded at upper and lower positions and arranged like a comb; and which are connected in a U shape with a yoke at the top and bottom of its rear part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モールド内溶鋼流
動制御装置および方法に係り、連続鋳造設備のモールド
内に磁界を発生させて溶鋼の流動を制御する装置および
方法に関する。
The present invention relates to an apparatus and method for controlling molten steel flow in a mold, and more particularly to an apparatus and method for controlling the flow of molten steel by generating a magnetic field in a mold of a continuous casting facility.

【0002】[0002]

【従来の技術】連続鋳造設備においては、浸漬ノズルか
らモールド内に溶鋼を注入して鋳込みを行う。この鋳込
みにおいて、注入される溶鋼中には、通常、非金属介在
物や気泡が存在する。モールド内溶鋼の流動によって、
この非金属介在物や気泡が凝固するシェルに捕獲されて
巻き込まれ、圧延製品の段階で欠陥となる場合がある。
また、前記の溶鋼の流動によって、外気とのシール層の
役割をするパウダ層のパウダが溶鋼中に巻き込まれてし
まい、欠陥の原因となる場合もある。
2. Description of the Related Art In a continuous casting facility, molten steel is injected into a mold from an immersion nozzle to perform casting. In this casting, non-metallic inclusions and air bubbles are usually present in the molten steel to be injected. Due to the flow of molten steel in the mold,
The non-metallic inclusions and bubbles may be trapped and caught in the solidifying shell, causing a defect at the stage of the rolled product.
Further, due to the flow of the molten steel, the powder of the powder layer serving as a seal layer with the outside air may be caught in the molten steel, which may cause a defect.

【0003】このような、モールド内溶鋼の流動に起因
する不具合を回避すべく、モールド内溶鋼の流動制御が
行われる。図2は、従来のモールド内溶鋼流動制御の一
例を示す説明図であり、図2(a)は、モールド内の溶
鋼の流れと磁場を示すモールド長辺方向の断面図であ
る。また、図2(b)は、図2(a)のA−A方向で切
断した断面図である。
In order to avoid such problems caused by the flow of the molten steel in the mold, the flow of the molten steel in the mold is controlled. FIG. 2 is an explanatory view showing an example of a conventional flow control of molten steel in a mold, and FIG. 2A is a cross-sectional view in the direction of a long side of the mold showing a flow of a molten steel in a mold and a magnetic field. FIG. 2B is a cross-sectional view taken along the line AA of FIG. 2A.

【0004】浸漬ノズル6の吐出口6aから噴出した溶鋼
は、モールド内において図示のような溶鋼流12となる。
この溶鋼流の流速は、必然的に高スループット鋳造ほど
速くなる。このことが湯面変動の原因となり、また、パ
ウダ層10からパウダを巻き込む原因ともなり、更に、溶
鋼内の非金属介在物の浮上を阻害する原因となる。これ
を解決するため、図2(b)の断面図に示すようにFC
方式電磁石7で静磁界を発生させ、ローレンツ作用によ
って図2(a)に示すF方向の力を作用させ、溶鋼の流
動を抑制することが行われる。FC方式電磁石7は、図
4に示す構造をしており、直流を印加して、図4の矢印
方向に静磁界を発生させるものである。そして、この静
磁界は図2(b)の断面図に示す矢印方向に対応した静
磁界である。
The molten steel jetted from the discharge port 6a of the immersion nozzle 6 forms a molten steel flow 12 as shown in the figure.
The flow rate of this molten steel flow necessarily increases with higher throughput casting. This causes fluctuations in the molten metal level, causes the powder to be entrained from the powder layer 10, and further hinders the floating of nonmetallic inclusions in the molten steel. To solve this, as shown in the cross-sectional view of FIG.
A static magnetic field is generated by the electromagnet 7, and the force in the direction F shown in FIG. 2A is applied by Lorentz action to suppress the flow of molten steel. The FC electromagnet 7 has the structure shown in FIG. 4 and generates a static magnetic field in the direction of the arrow in FIG. 4 by applying a direct current. This static magnetic field is a static magnetic field corresponding to the direction of the arrow shown in the sectional view of FIG.

【0005】このように、モールド内溶鋼の上側と下側
それぞれの対向するモールド長辺間で、直流の静磁場を
印加して溶鋼流を制動し、上側で溶鋼の湯面変動を抑制
してパウダの巻き込みを防止し、下側で溶鋼の流動を調
整して非金属介在物の浮上を促進させる溶鋼の流動制御
方式をFC方式と呼ぶ。本FC方式については、特開平
4-319052号公報等に開示されている。
As described above, a static magnetic field of DC is applied between the upper and lower sides of the molten steel in the mold to oppose each other, thereby damping the flow of the molten steel, and suppressing the fluctuation of the molten steel surface on the upper side. The flow control method of molten steel that prevents entrainment of powder and adjusts the flow of molten steel on the lower side to promote the floating of nonmetallic inclusions is called FC method. Regarding this FC system,
It is disclosed in Japanese Patent Application Laid-Open No. 4-319052.

【0006】一方、スループットの低い鋳込み時には、
モールド内の溶鋼の流動が小さくなりすぎる問題があ
る。以下、図3に従って、この問題を解決するのに適し
た別のモールド内溶鋼流動制御を説明する。図3(a)
は、モールド内の溶鋼の流れと磁場を示すモールド長辺
方向の断面図である。図3(b)は、その平面図であ
る。図3(c)は、図3(a)のB−B方向で切断した
部分断面図である。
On the other hand, at the time of casting with low throughput,
There is a problem that the flow of molten steel in the mold becomes too small. Hereinafter, another flow control of molten steel in a mold suitable for solving this problem will be described with reference to FIG. FIG. 3 (a)
FIG. 3 is a cross-sectional view of a flow of molten steel in a mold and a magnetic field in a long side direction of the mold. FIG. 3B is a plan view thereof. FIG. 3C is a partial cross-sectional view taken along the line BB of FIG.

【0007】図3(c)に示すように、溶鋼11内の非金
属介在物や気泡がモールド5(モールド長辺5b)内側の
シェル内面に成長したデンドライト樹13の間にトラップ
されてしまうことになる。デンドライト樹13の間のトラ
ップされた非金属介在物や気泡を流し出して浮上させ、
表層下の品質を向上させるために、図3(b)に示すF
方向の力を発生させ、溶鋼を矢印のように平面方向に回
転流動させるのである。
As shown in FIG. 3C, non-metallic inclusions and air bubbles in the molten steel 11 are trapped between the dendrite trees 13 grown on the inner shell surface of the mold 5 (long side 5b of the mold). become. The trapped non-metallic inclusions and air bubbles between the dendrite trees 13 flow out and float,
To improve the quality under the surface layer, the F shown in FIG.
A directional force is generated to cause molten steel to rotate and flow in a plane direction as shown by the arrow.

【0008】この溶鋼を平面上に回転流動させるために
適用するMEMS方式電磁石8の詳細を図5に示す。M
EMS方式電磁石8は、水平方向に上下平行に磁極が多
数突設してくし状に配置され、その後部側の上下が継鉄
でコの字型に結合された多数の分割磁極から構成され
る。そして、各々の分極磁極に巻かれたコイルに交流を
印加することで、隣接する異なった磁極方向が順次切り
替わっていき、矢印に示すように磁界を順次移動させ
る。こうして、溶鋼を回転流動させるのである。
FIG. 5 shows details of the MEMS electromagnet 8 applied for rotating and flowing the molten steel on a plane. M
The EMS type electromagnet 8 is composed of a number of divided magnetic poles in which a number of magnetic poles are vertically projected in the horizontal direction and arranged in a comb shape, and the upper and lower portions on the rear side are joined in a U-shape with a yoke. . Then, by applying an alternating current to the coils wound around the respective polarized magnetic poles, the directions of adjacent different magnetic poles are sequentially switched, and the magnetic field is sequentially moved as shown by arrows. Thus, the molten steel is caused to rotate and flow.

【0009】このように溶鋼を回転流動させ攪拌するこ
とを電磁攪拌と呼び、この方式をMEMS方式と呼ぶの
である。本MEMS方式によって、シェル表層下の品質
を向上させる他に、シェル凝固厚、表面温度を均一化さ
せ、表面品質を向上させることができる。
[0009] The rotation and flow of molten steel and stirring are called electromagnetic stirring, and this method is called a MEMS method. According to the present MEMS system, in addition to improving the quality under the shell surface layer, the shell solidification thickness and the surface temperature can be made uniform, and the surface quality can be improved.

【0010】[0010]

【発明が解決しようとする課題】以上のように、FC方
式とMEMS方式のそれぞれの採用で効果を上げてきて
いる。しかし、一つの連鋳設備で多鋼種、多サイズの連
鋳材を鋳込もうとすると、スループットの幅が非常に大
きくなり、要求される品質も鋼種毎に異なってくる。そ
のために一つの連鋳設備で、ある鋳込み時にはFC方式
の溶鋼流動制御が最適であり、別の鋳込み時にはMEM
S方式の溶鋼流動制御が最適となる場合も発生してくる
こととなる。
As described above, the use of the FC system and the MEMS system has been effective. However, when attempting to cast multiple steel types and multiple sizes of continuous cast material with one continuous casting facility, the range of throughput becomes extremely large, and the required quality differs for each steel type. Therefore, in one continuous casting facility, the flow control of molten steel by FC method is optimal for one casting, and MEM is used for another casting.
In some cases, the flow control of molten steel in the S method is optimal.

【0011】しかし、上記それぞれの電磁石の所要能力
から、そのどちらかを取り付けるだけでモールド側壁面
のスペースはほぼ一杯となり、両方式の電磁石を同時に
取り付けることはできなかった。そのため、設備導入時
に、当該連鋳設備で鋳込まれる多鋼種、多サイズの連鋳
材に要求される品質からFC方式とMEMS方式を比較
検討し、いずれか一方の、よりニーズの高い方式を選択
して設置しているのが現状である。
However, due to the required capacity of each of the above electromagnets, the space on the side wall surface of the mold is almost full just by mounting either of them, and it is not possible to mount both types of electromagnets at the same time. Therefore, when introducing the equipment, the FC method and the MEMS method are compared and examined based on the quality required for the multiple steel types and multiple sizes of the continuous casting material cast in the continuous casting equipment. At present, they are selectively installed.

【0012】そのため、品質上の問題を残したままとな
っていた。本発明は、多鋼種、多サイズの連鋳材を一つ
の連鋳設備で鋳込む場合においても、このような品質上
の問題が発生しないモールド内溶鋼流動制御装置および
方法を提供することを目的とする。
[0012] For this reason, quality problems remain. An object of the present invention is to provide a molten steel flow control apparatus and method in a mold that does not cause such a quality problem even when casting multiple steel types and multiple sizes of continuous cast material in one continuous casting facility. And

【0013】[0013]

【課題を解決するための手段】本発明者らは、MEMS
方式の電磁石の多数突設したそれぞれの磁極の磁化コイ
ルの配線を全て同じ磁化方向となるように変更し、印加
電流を直流とすることで、MEMS方式電磁石をFC方
式電磁石と等価にできることに想到し、交直流電源の切
替と、多数突設したそれぞれの磁極の磁化コイルの配線
を変更することで、MEMS方式とFC方式を任意に切
り替えることができることを見いだしたのである。
Means for Solving the Problems The present inventors have developed MEMS.
By changing the wiring of the magnetized coils of each of the many protruding magnetic poles of the electromagnet of the system to have the same magnetization direction, and applying direct current, the MEMS electromagnet can be made equivalent to the FC electromagnet. However, they have found that the MEMS system and the FC system can be arbitrarily switched by switching the AC / DC power supply and changing the wiring of the magnetized coil of each of a large number of projecting magnetic poles.

【0014】ここで、MEMS方式の電磁石は分割され
ているため、FC方式電磁石に比べてコアの有効面積が
小さくなり、FC方式においては、そのままでは全体の
磁束密度が小さくなり、相対的な性能低下は避けること
ができない。しかし、それぞれの磁極の磁化コイルの巻
き数を増加し、かつ、印加する電流を増大することで、
この問題を容易に解消することができ、問題となること
はないことを確認したのである。
Here, since the MEMS electromagnet is divided, the effective area of the core is smaller than that of the FC electromagnet. In the FC system, the whole magnetic flux density is reduced as it is, and the relative performance is reduced. The decline cannot be avoided. However, by increasing the number of turns of the magnetization coil of each magnetic pole and increasing the applied current,
It has been confirmed that this problem can be easily solved and no problem occurs.

【0015】以上のことから、本発明は、連続鋳造にお
けるモールド内溶鋼流動制御装置を、連続鋳造用モール
ドの長辺側壁それぞれの背面側に対向し、水平方向に上
下平行に磁極が多数突設してくし状に配置され、前記磁
極後部側の上下が継鉄でコの字型に結合された複数の分
割磁極と、該分割磁極それぞれの磁極の磁極方向を自由
に切替可能なように前記分割磁極ごとに設けられた配線
切替器と、該配線切替器の一次側の交流と直流を自由に
切替可能な交直流切替装置とから構成することで、前記
課題を解決したのである。
In view of the above, the present invention provides a flow control device for molten steel in a mold in continuous casting, in which a large number of magnetic poles project vertically and parallel to the back side of each long side wall of the mold for continuous casting. A plurality of split magnetic poles arranged in a comb shape, the upper and lower portions of the rear side of the magnetic poles are connected in a U-shape with a yoke, and the magnetic pole directions of the respective magnetic poles can be freely switched. This problem has been solved by using a wiring switch provided for each divided magnetic pole and an AC / DC switching device capable of freely switching between AC and DC on the primary side of the wiring switch.

【0016】また、前記複数の分割磁極の対向する下側
磁極を対向方向に直流磁場を形成する単極とし、前記継
鉄に替えて非磁性材を配置することで、FC方式とME
MS方式を兼ね合わせたモールド内溶鋼流動制御装置と
できることを見いだしたのである。そして、モールド長
辺側壁それぞれの背面側に対向し、水平方向に上下平行
に磁極が多数突設してくし状に配置され、前記磁極後部
側の上下が継鉄でコの字型に結合された複数の分割磁極
を用い、鋳込み条件に応じて、前記分割磁極に印加する
電流の交直流と、前記分割磁極のそれぞれの磁極の磁化
コイルの配線を切り替え、モールド内溶鋼の上側と下側
それぞれの対向するモールド長辺間で直流の静磁場を印
加し溶鋼流を制動するFC方式と、交流の移動磁場をモ
ールド長辺方向に順次切り替えながら印加し溶鋼攪拌を
行うMEMS方式を自在に切り替え可能とした連続鋳造
におけるモールド内溶鋼流動制御方法によって前記課題
を解決したのである。
Further, the lower magnetic pole facing the plurality of divided magnetic poles is a single pole for forming a DC magnetic field in the facing direction, and a non-magnetic material is disposed in place of the yoke, so that the FC system and the ME system can be used.
We have found out that it can be used as a flow control device for molten steel in a mold that combines the MS method. A large number of magnetic poles are arranged in a comb shape so as to protrude vertically in parallel in the horizontal direction and face the rear side of each of the mold long side walls, and the upper and lower sides of the magnetic pole rear side are joined in a U-shape with a yoke. Using a plurality of divided magnetic poles, according to the casting conditions, alternating current and DC applied to the divided magnetic poles, and switching the wiring of the magnetized coil of each magnetic pole of the divided magnetic poles, the upper and lower sides of the molten steel in the mold, respectively Flexible switching between FC method, in which a static DC magnetic field is applied between opposing mold long sides to dampen molten steel flow, and MEMS method, in which an alternating moving magnetic field is applied while sequentially switching in the mold long side direction to stir molten steel, This problem was solved by a method of controlling molten steel flow in a mold in continuous casting.

【0017】また、前記の連続鋳造におけるモールド内
溶鋼流動制御方法において、前記複数の分割磁極の対向
する下側分割磁極に直流の静磁場を印加してFC方式を
適用し、対向する前記下側分割磁極以外の分割磁極に
は、モールド長辺方向に交流の移動磁場を順次切り替え
ながら印加するMEMS方式を適用できることを見いだ
したのである。
Further, in the method for controlling molten steel flow in a mold in the continuous casting, a direct-current static magnetic field is applied to a lower divided magnetic pole facing the plurality of divided magnetic poles to apply the FC method, and the opposed lower magnetic pole is applied. It has been found that a MEMS system in which an alternating moving magnetic field is applied while sequentially switching in the direction of the long side of the mold can be applied to the divided magnetic poles other than the divided magnetic poles.

【0018】[0018]

【発明の実施の形態】本発明のモールド内溶鋼流動制御
装置の構成を図1に示す。モールド5の長辺側に電磁石
3が設置されている。図では、片側のみを図示し、他方
側の記載を省略している。電磁石3は、下側の分割磁極
3aと上側の分割磁極3aとが継鉄3bで接合されコの字型の
電磁石として構成されている。ここでは、上下1対のみ
を図示したが、これに限定されるものではなく、更に多
くの分割磁極を平行に設けるようにしてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the configuration of a molten steel flow control device in a mold according to the present invention. The electromagnet 3 is provided on the long side of the mold 5. In the figure, only one side is shown and the other side is omitted. The electromagnet 3 is a lower split magnetic pole
3a and the upper divided magnetic pole 3a are joined by a yoke 3b to form a U-shaped electromagnet. Here, only the upper and lower pairs are shown, but the present invention is not limited to this, and more divided magnetic poles may be provided in parallel.

【0019】本発明の分割磁極3aは、分割された各々の
突設した磁極毎にコイルが独立して配線されており、そ
れぞれ配線切替器4に配線されている。配線切替器4で
は、各々の突設した磁極毎のコイルの配線を自由に切り
替えることができ、全ての磁極の方向を揃えたり、一つ
置きに反転させたりするなど自由に設定して配線するこ
とができる。
In the divided magnetic pole 3a of the present invention, a coil is independently wired for each of the divided protruding magnetic poles, and is wired to the wiring switch 4 respectively. The wiring switch 4 can freely switch the wiring of the coil for each protruding magnetic pole, and freely set the wiring such as aligning the directions of all the magnetic poles or inverting every other magnetic pole. be able to.

【0020】それぞれの配線切替器4は、交直流切替装
置2に接続されており、交流と直流の電気が自由に切り
替えて入力できるようになっている。交直流切替装置2
は、交流と直流の2電源を自由に切り替える構成のもの
であってもよいし、交流の商用電源を入力とし、整流し
て直流を作るようにするものでもよい。
Each wiring switch 4 is connected to the AC / DC switching device 2 so that AC and DC electricity can be freely switched and input. AC / DC switching device 2
May be configured to freely switch between two power supplies of AC and DC, or may be configured to input AC commercial power and rectify to generate DC.

【0021】交直流切替装置2は、所要の電源1に接続
されている。このような構成のモールド内溶鋼流動制御
装置を採用することで、FC方式とMEMS方式を自由
に切り替えることができるのである。まず、FC方式と
して用いる場合について、図6に従って説明する。図6
(a)は、電磁石3をFC方式とする場合の各磁極の磁
化方向について説明した図である。上側の分割磁極3aの
磁極列はすべてN極とされ、下側の分割磁極3aの磁極列
はすべてS極とされている。この場合、電源は直流とさ
れ、静磁界Φが形成される。
The AC / DC switching device 2 is connected to a required power supply 1. By adopting the molten steel flow control device in the mold having such a configuration, the FC system and the MEMS system can be freely switched. First, the case of using the FC system will be described with reference to FIG. FIG.
(A) is a diagram illustrating the magnetization direction of each magnetic pole when the electromagnet 3 is of the FC system. The magnetic pole arrays of the upper divided magnetic poles 3a are all N poles, and the magnetic pole arrays of the lower divided magnetic poles 3a are all S poles. In this case, the power supply is DC, and a static magnetic field Φ is formed.

【0022】この電磁石を適用することによって、図6
(b)に示すように、図2で説明したFC方式の溶鋼流
動制御と同一の制御が行われる。次に、MEMS方式と
して用いる場合について、図7に従って説明する。図7
(a)は、電磁石3をMEMS方式とする場合の各磁極
の磁化方向について説明した図である。この各磁極の構
成は、まさしく図5において説明した構成と同一であ
り、ここであらためて説明するまでもない。この場合、
電流は交流とされ、順次磁極を切り替えることで移動磁
場が形成される。
By applying this electromagnet, FIG.
As shown in (b), the same control as the flow control of molten steel of the FC system described in FIG. 2 is performed. Next, a case where the MEMS system is used will be described with reference to FIG. FIG.
(A) is a figure explaining the magnetization direction of each magnetic pole when the electromagnet 3 is a MEMS system. The configuration of each of the magnetic poles is exactly the same as the configuration described in FIG. 5, and need not be described again here. in this case,
The current is alternating current, and a moving magnetic field is formed by sequentially switching the magnetic poles.

【0023】このMEMS方式電磁石を適用することに
よって、図7(b)に示すように、溶鋼の攪拌が行わ
れ、図3で説明したMEMS方式の溶鋼流動制御と同一
の制御が行われるのである。以上で説明したように、本
発明によって、一つのモールド内溶鋼流動制御装置でF
C方式とMEMS方式を自在に切り替えることが可能と
なったのである。
By applying the MEMS electromagnet, the molten steel is stirred as shown in FIG. 7B, and the same control as the flow control of the MEMS molten steel described with reference to FIG. 3 is performed. . As described above, according to the present invention, the flow control apparatus for molten steel in one mold
It became possible to freely switch between the C system and the MEMS system.

【0024】図8は、本発明の別の形態を示した説明図
である。図8(a)は、FC方式とMEMS方式を同時
に適用するFC/MEMS方式電磁石14を示している。
このFC/MEMS方式電磁石14は、上側がMEMS方
式の磁極配置となっている分割磁極3aとされ、下側がF
C方式の単磁極3dとされる。そして、上側磁極には交流
が印加され、下側磁極には直流が印加される。本方式の
場合、上下の磁極間には非磁性材3cが装入され、磁気的
に両者を絶縁して、効率的な磁場形成を行う。
FIG. 8 is an explanatory diagram showing another embodiment of the present invention. FIG. 8A shows an FC / MEMS electromagnet 14 to which the FC system and the MEMS system are applied simultaneously.
In the FC / MEMS electromagnet 14, the upper side is a divided magnetic pole 3a having a MEMS type magnetic pole arrangement, and the lower side is F
It is a C-type single magnetic pole 3d. Then, an alternating current is applied to the upper magnetic pole, and a direct current is applied to the lower magnetic pole. In the case of this method, a non-magnetic material 3c is inserted between the upper and lower magnetic poles, and magnetically insulates them to form an efficient magnetic field.

【0025】このようにすることで、モールド上面側で
溶鋼の水平旋回流を形成し、下面側で浸漬ノズルの吐出
口から吐出される溶鋼流の制動を行うことができ、品質
保証上優れた効果をえることができる。構造的には、逆
に、上側をFC方式として下側をMEMS方式とするこ
ともできるが、品質上の効果の点から、前述の方が優れ
ている。
In this manner, a horizontal swirling flow of the molten steel is formed on the upper surface of the mold, and the flow of the molten steel discharged from the discharge port of the immersion nozzle can be braked on the lower surface, which is excellent in quality assurance. The effect can be obtained. Structurally, on the contrary, the upper side may be the FC system and the lower side may be the MEMS system, but the above is superior from the viewpoint of quality effect.

【0026】また、図8(a)では、下側の磁極を単磁
極としたが、これは、磁場の効率から、この方が優れて
いるためであり、図6(a)で説明したように分割磁極
を用いてFC方式としてもよいことは説明するまでもな
い。
In FIG. 8A, the lower magnetic pole is a single magnetic pole. This is because the magnetic pole is superior in terms of the efficiency of the magnetic field, and as shown in FIG. It goes without saying that the FC system may be used by using the divided magnetic poles.

【0027】[0027]

【実施例】表1に、従来方式と本発明のそれぞれの場合
の電源容量と磁束密度の比較を示す。ホット材に適用す
るFC方式と、厚板材に適用するMEMS方式のそれぞ
れの場合について比較している。
EXAMPLES Table 1 shows a comparison between the power supply capacity and the magnetic flux density in each of the conventional system and the present invention. A comparison is made between the FC method applied to hot materials and the MEMS method applied to thick plate materials.

【0028】[0028]

【表1】 [Table 1]

【0029】すでに説明したように、MEMS方式の場
合は従来方式と本発明の実質的な差は無いと言える。F
C方式の場合は、本発明において電源容量を大きくして
おくことで、磁束密度を従来方式と同等以上とすること
ができた。次に、従来例と本発明のそれぞれについて、
各種評価指標で比較を行った結果を表2に示す。表2で
は、各指標の従来例での成績を100 として本発明の成績
を示している。
As described above, in the case of the MEMS system, it can be said that there is no substantial difference between the conventional system and the present invention. F
In the case of the C system, the magnetic flux density could be made equal to or higher than that of the conventional system by increasing the power supply capacity in the present invention. Next, for each of the conventional example and the present invention,
Table 2 shows the results of comparison using various evaluation indices. In Table 2, the results of the present invention are shown with the result of each index being 100 in the conventional example.

【0030】[0030]

【表2】 [Table 2]

【0031】各指標において、従来例の成績に比べて本
発明を適用した場合の成績は、それぞれ約1割前後改善
されている。これは、本発明においては、多鋼種、多サ
イズの連鋳材に対して最適の溶鋼流動制御方式を採用す
ることが可能となったためであると考えられる。
In each index, the results when the present invention is applied are improved by about 10% as compared with the results of the conventional example. This is considered to be because in the present invention, it has become possible to employ an optimal molten steel flow control method for a multi-steel type and a multi-size continuous cast material.

【0032】[0032]

【発明の効果】本発明によって、一つの連鋳設備におい
て、多鋼種、多サイズの連鋳材に対してそれぞれ最適の
溶鋼流動制御方式を採用することが可能となり、シェル
表層下の品質を向上させることができた。また、シェル
凝固厚、表面温度を均一化させ、連鋳材の表面品質向上
にも大きく寄与できるようになった。
According to the present invention, it is possible to adopt the optimum molten steel flow control method for multiple steel types and multiple sizes of continuous cast material in one continuous casting facility, thereby improving the quality under the shell surface layer. I was able to. Further, the shell solidification thickness and the surface temperature are made uniform, which can greatly contribute to the improvement of the surface quality of the continuous cast material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のモールド内溶鋼流動制御装置の構成を
示す模式図である。
FIG. 1 is a schematic diagram showing a configuration of a molten steel flow control device in a mold of the present invention.

【図2】従来のFC方式によるモールド内溶鋼流動制御
の説明図であり、(a)は、モールド内の溶鋼の流れと
磁場を示すモールド長辺方向の断面図である。(b)
は、(a)図のA−A方向で切断した断面図である。
FIG. 2 is an explanatory view of flow control of molten steel in a mold by a conventional FC method, and FIG. 2 (a) is a cross-sectional view in the long side direction of the mold showing a flow of a molten steel in a mold and a magnetic field. (B)
FIG. 2A is a cross-sectional view taken along the line AA in FIG.

【図3】従来のMEMS方式によるモールド内溶鋼流動
制御の説明図であり、(a)は、モールド内の溶鋼の流
れと磁場を示すモールド長辺方向の断面図である。
(b)は、平面図である。(c)は、(a)図のB−B
方向で切断した部分断面図である。
FIG. 3 is an explanatory view of the flow control of molten steel in a mold by the conventional MEMS method, and FIG. 3 (a) is a cross-sectional view in the direction of the long side of the mold showing the flow of molten steel in the mold and the magnetic field.
(B) is a plan view. (C) is BB in FIG.
It is the fragmentary sectional view cut in the direction.

【図4】従来のFC方式電磁石の構造を示す斜視図であ
る。
FIG. 4 is a perspective view showing a structure of a conventional FC electromagnet.

【図5】従来のMEMS方式電磁石の構造を示す斜視図
である。
FIG. 5 is a perspective view showing the structure of a conventional MEMS electromagnet.

【図6】本発明のモールド内溶鋼流動制御装置でFC方
式のモールド内溶鋼流動制御を行う場合の説明図であ
り、(a)は、電磁石の磁極の様子を示す説明図であ
る。(b)は、モールド内の溶鋼の流れと磁場を模式的
に示す説明図である。
6A and 6B are explanatory diagrams in a case where the molten steel flow control in the mold of the FC system is performed by the molten steel flow control device in the mold of the present invention, and FIG. 6A is an explanatory diagram illustrating a state of magnetic poles of an electromagnet. (B) is explanatory drawing which shows typically the flow of the molten steel in a mold, and a magnetic field.

【図7】本発明のモールド内溶鋼流動制御装置でMEM
S方式のモールド内溶鋼流動制御を行う場合の説明図で
あり、(a)は、電磁石の磁極の様子を示す説明図であ
る。(b)は、モールド内の溶鋼の流れと磁場を模式的
に示す説明図である。
FIG. 7 is a MEM with the molten steel flow control device in the mold of the present invention.
It is explanatory drawing at the time of performing molten steel flow control in a mold of S system, (a) is explanatory drawing which shows the mode of the magnetic pole of an electromagnet. (B) is explanatory drawing which shows typically the flow of the molten steel in a mold, and a magnetic field.

【図8】本発明の別の形態として、FC方式とMEMS
方式を同時に行うモールド内溶鋼流動制御の説明図であ
り、(a)は、電磁石の磁極の様子を示す説明図であ
る。(b)は、モールド内の溶鋼の流れと磁場を模式的
に示す説明図である。
FIG. 8 shows another embodiment of the present invention, FC system and MEMS.
It is explanatory drawing of the molten steel flow control in a mold which performs a method simultaneously, (a) is explanatory drawing which shows the mode of the magnetic pole of an electromagnet. (B) is explanatory drawing which shows typically the flow of the molten steel in a mold, and a magnetic field.

【符号の説明】[Explanation of symbols]

1 電源 2 交直流切替装置 3 電磁石 3a 分割磁極 3b 継鉄 3c 非磁性材 3d 単磁極 4 配線切替器 5 モールド 5a モールド短辺 5b モールド長辺 6 浸漬ノズル 6a 吐出口 7 FC方式電磁石 8 MEMS方式電磁石 10 パウダ層 11 溶鋼 12 溶鋼流 13 デンドライト樹 14 FC/MEMS方式電磁石 DESCRIPTION OF SYMBOLS 1 Power supply 2 AC / DC switching device 3 Electromagnet 3a Split magnetic pole 3b Yoke 3c Non-magnetic material 3d Single magnetic pole 4 Wiring switch 5 Mold 5a Mold short side 5b Mold long side 6 Immersion nozzle 6a Discharge port 7 FC electromagnet 8 MEMS electromagnet 10 Powder layer 11 Molten steel 12 Molten steel flow 13 Dendrite tree 14 FC / MEMS electromagnet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造用モールドの長辺側壁それぞれ
の背面側に対向し、水平方向に上下平行に磁極が多数突
設してくし状に配置され、前記磁極後部側の上下が継鉄
でコの字型に結合された複数の分割磁極と、該分割磁極
それぞれの磁極の磁極方向を自由に切替可能なように前
記分割磁極ごとに設けられた配線切替器と、該配線切替
器の一次側の交流と直流を自由に切替可能な交直流切替
装置とから構成される連続鋳造におけるモールド内溶鋼
流動制御装置。
1. A plurality of magnetic poles are arranged in a comb shape so as to protrude horizontally and vertically in parallel with each other on a long side wall of a long side wall of a mold for continuous casting. A plurality of divided magnetic poles coupled in a U-shape, a wiring switch provided for each of the divided magnetic poles so that the magnetic pole direction of each of the divided magnetic poles can be freely switched, and a primary switch of the wiring switch. A flow control device for molten steel in a mold in continuous casting, comprising an AC / DC switching device capable of freely switching between AC and DC on the side.
【請求項2】 前記複数の分割磁極の対向する下側磁極
を対向方向に直流磁場を形成する単極とし、前記継鉄に
替えて非磁性材を配置したことを特徴とする請求項1記
載の連続鋳造におけるモールド内溶鋼流動制御装置。
2. The magnetic head according to claim 1, wherein the lower magnetic pole facing the plurality of divided magnetic poles is a single pole for forming a DC magnetic field in the facing direction, and a nonmagnetic material is arranged in place of the yoke. Of molten steel flow in mold in continuous casting of steel.
【請求項3】 モールド長辺側壁それぞれの背面側に対
向し、水平方向に上下平行に磁極が多数突設してくし状
に配置され、前記磁極後部側の上下が継鉄でコの字型に
結合された複数の分割磁極を用い、鋳込み条件に応じ
て、前記分割磁極に印加する電流の交直流と、前記分割
磁極のそれぞれの磁極の磁化コイルの配線を切り替え、
モールド内溶鋼の上側と下側それぞれの対向するモール
ド長辺間で直流の静磁場を印加し溶鋼流を制動するFC
方式と、交流の移動磁場をモールド長辺方向に順次切り
替えながら印加し溶鋼攪拌を行うMEMS方式を自在に
切り替え可能としたことを特徴とする連続鋳造における
モールド内溶鋼流動制御方法。
3. A plurality of magnetic poles are arranged in a comb shape so as to protrude vertically in parallel in a horizontal direction and face the back side of each of the long side walls of the mold. Using a plurality of split magnetic poles coupled to, according to the casting conditions, alternating current and DC applied to the split magnetic pole, switching the wiring of the magnetized coil of each magnetic pole of the split magnetic pole,
FC that applies a static DC magnetic field between the opposing long sides of the molten steel in the mold and damps the flow of molten steel
A method for controlling the flow of molten steel in a mold in continuous casting, wherein the method can be freely switched between a method and a MEMS method in which an alternating moving magnetic field is applied while sequentially switching in the direction of the long side of the mold to stir molten steel.
【請求項4】 前記複数の分割磁極の対向する下側分割
磁極に直流の静磁場を印加してFC方式を適用し、対向
する前記下側分割磁極以外の分割磁極には、モールド長
辺方向に交流の移動磁場を順次切り替えながら印加する
MEMS方式を適用したことを特徴とする請求項3記載
の連続鋳造におけるモールド内溶鋼流動制御方法。
4. An FC method is applied by applying a DC static magnetic field to a lower divided magnetic pole opposed to the plurality of divided magnetic poles, and the divided magnetic poles other than the opposed lower divided magnetic pole are applied to a mold long side direction. 4. The flow control method of molten steel in a mold in continuous casting according to claim 3, wherein a MEMS method of applying an alternating moving magnetic field while sequentially switching the applied moving magnetic field is applied.
JP9330489A 1997-12-01 1997-12-01 Equipment and method for controlling molten steel flow in mold, in continuous casting Pending JPH11156502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9330489A JPH11156502A (en) 1997-12-01 1997-12-01 Equipment and method for controlling molten steel flow in mold, in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9330489A JPH11156502A (en) 1997-12-01 1997-12-01 Equipment and method for controlling molten steel flow in mold, in continuous casting

Publications (1)

Publication Number Publication Date
JPH11156502A true JPH11156502A (en) 1999-06-15

Family

ID=18233205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9330489A Pending JPH11156502A (en) 1997-12-01 1997-12-01 Equipment and method for controlling molten steel flow in mold, in continuous casting

Country Status (1)

Country Link
JP (1) JPH11156502A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010141183A (en) * 2008-12-12 2010-06-24 Tamura Seisakusho Co Ltd Dust core and method of producing the same
JP4831917B2 (en) * 2000-06-27 2011-12-07 エービービー エービー Method and apparatus for continuous casting of metal using mold
CN106475537A (en) * 2015-08-25 2017-03-08 宝山钢铁股份有限公司 The adjustable electromagnetic mixing apparatus of stirring region and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831917B2 (en) * 2000-06-27 2011-12-07 エービービー エービー Method and apparatus for continuous casting of metal using mold
JP2010141183A (en) * 2008-12-12 2010-06-24 Tamura Seisakusho Co Ltd Dust core and method of producing the same
CN106475537A (en) * 2015-08-25 2017-03-08 宝山钢铁股份有限公司 The adjustable electromagnetic mixing apparatus of stirring region and method

Similar Documents

Publication Publication Date Title
JP4438705B2 (en) Steel continuous casting method
JP4794858B2 (en) Method and apparatus for controlling flow in ingot molds for continuous slab casting.
EP2216111B1 (en) Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
JP5023989B2 (en) Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JPH11156502A (en) Equipment and method for controlling molten steel flow in mold, in continuous casting
JPS59150649A (en) Electromagnetically stirred casting mold for continuous casting of bloom
JPS63188461A (en) Electromagnetic coil apparatus for continuous casting mold
JP4356531B2 (en) Steel continuous casting method and electromagnetic force control device for molten steel in mold
JP2004322120A (en) Continuous casting method of steel
JPH0333055B2 (en)
JP2005238276A (en) Electromagnetic-stirring casting apparatus
JP7180383B2 (en) continuous casting machine
KR20010006502A (en) Device for continuous casting of two strands in parallel
JP3896659B2 (en) Method and apparatus for continuously casting molten metal
JP3102967B2 (en) Method of braking molten metal in continuous casting mold and electromagnetic stirring device combined with brake
US6341642B1 (en) Controllable variable magnetic field apparatus for flow control of molten steel in a casting mold
JP2004322179A (en) Electromagnetic force control device in mold and continuous casting method
JP7119684B2 (en) continuous casting machine
JP4192651B2 (en) Mold for continuous casting
JP3700356B2 (en) Method and apparatus for continuously casting molten metal
JPH0471759A (en) Method for controlling fluidity of molten metal
CA2320561C (en) Controllable variable magnetic field apparatus for flow control of molten steel in a casting mold
JP2023026043A (en) electromagnetic stirrer
JPH04100665A (en) Method for electromagnetic-stirring in mold in continuous casting for slab
JP2002239694A (en) Control unit for fluidity of molten steel

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20080816

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20090816