JPH0333055B2 - - Google Patents

Info

Publication number
JPH0333055B2
JPH0333055B2 JP4495286A JP4495286A JPH0333055B2 JP H0333055 B2 JPH0333055 B2 JP H0333055B2 JP 4495286 A JP4495286 A JP 4495286A JP 4495286 A JP4495286 A JP 4495286A JP H0333055 B2 JPH0333055 B2 JP H0333055B2
Authority
JP
Japan
Prior art keywords
electromagnetic
mold
continuous casting
excitation
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4495286A
Other languages
Japanese (ja)
Other versions
JPS62203648A (en
Inventor
Tokya Shirai
Hideyuki Misumi
Akira Hashimoto
Masaki Niioka
Fuyusato Kataoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4495286A priority Critical patent/JPS62203648A/en
Publication of JPS62203648A publication Critical patent/JPS62203648A/en
Publication of JPH0333055B2 publication Critical patent/JPH0333055B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続鋳造用鋳型内に注入された溶鋼
を、その鋳型内で積極的に水平流動させるための
電磁撹拌及び積極的に静止させる電磁制動を各々
個別に或いは同時に行うことができる電磁コイル
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides electromagnetic stirring to actively horizontally flow molten steel injected into a continuous casting mold and to actively make it stand still. The present invention relates to an electromagnetic coil device that can perform electromagnetic braking individually or simultaneously.

〔従来の技術〕[Conventional technology]

脱酸程度の低い溶鋼を連続鋳造用の鋳型に注入
すると、鋳型内でCOガスや少量のH2ガス、N2
ス等が発生する。これらのガスが溶鋼内に留まつ
たままで凝固が開始すると、製品にピンホール等
の欠陥を発生させる原因となる。そこで、連続鋳
造の分野では、鋳型に注入された溶鋼を鋳型内で
積極的に水平流動するように電磁撹拌する方法が
古くから採用されている。
When molten steel with a low degree of deoxidation is poured into a mold for continuous casting, CO gas and small amounts of H 2 gas, N 2 gas, etc. are generated inside the mold. If solidification begins while these gases remain in the molten steel, it will cause defects such as pinholes in the product. Therefore, in the field of continuous casting, a method has long been employed in which molten steel poured into a mold is electromagnetically stirred so that it actively flows horizontally within the mold.

従来の電磁撹拌法は、リニアモータの固定子と
同様に作用する多相インダクタを電磁撹拌装置と
して収納した鋳型に溶鋼を注入し、前記電磁撹拌
装置に3相交流又は2相交流を給電することによ
り電磁力を溶鋼に付与し、0.1〜1.0m/sec程度の
水平流動を発生させるものである(特開昭53−
28034号公報、特公昭58−52456号公報、特公昭58
−52457号公報、特公昭58−35787号公報、特公昭
59−5057号公報、特公昭59−7536号公報、特公昭
58−7537号公報、特開昭56−41054号公報、特開
昭60−223649号公報等参照)。
The conventional electromagnetic stirring method involves injecting molten steel into a mold containing a multiphase inductor as an electromagnetic stirring device that acts in the same way as the stator of a linear motor, and feeding three-phase AC or two-phase AC to the electromagnetic stirring device. This method applies electromagnetic force to molten steel and generates horizontal flow of about 0.1 to 1.0 m/sec (Japanese Patent Laid-Open No. 1983-
Publication No. 28034, Special Publication No. 58-52456, Special Publication No. 58
-52457 Publication, Special Publication No. 58-35787, Special Publication Sho
Publication No. 59-5057, Publication No. 59-7536, Publication No. 59-7536, Publication No. 59-7536, Special Publication Sho
58-7537, JP-A-56-41054, JP-A-60-223649, etc.).

更に、鋳型に注入した溶鋼には微小な介在物が
随伴されており、また注入時にフラツクスが溶鋼
に巻き込まれる。このような介在物やフラツクス
が溶鋼中に残留し凝固が開始されると、同様に製
品に欠陥を発生させる原因になる。そこで、これ
ら介在物やフラツクスを鋳型内溶鋼の上にある吸
収フラツクスに早急に浮上吸収せしめる手法とし
て、電磁制動を行うことが古くから採用されてい
た。
Furthermore, the molten steel injected into the mold is accompanied by minute inclusions, and flux is drawn into the molten steel during injection. If such inclusions or fluxes remain in the molten steel and solidification begins, they will similarly cause defects in the product. Therefore, electromagnetic braking has been used for a long time as a method for quickly floating and absorbing these inclusions and fluxes into the absorption flux above the molten steel in the mold.

このような電磁制動方法としては、鋳型に注入
された溶鋼を挟んだ状態に配置した永久磁石又は
電磁石を用いて鋳型に注入されている溶鋼流に静
止磁界を作用させ、注入流速を積極的に減速させ
ることにより、随伴した微小介在物や巻き込んだ
フラツクス等が溶鋼の深部に潜入することを防ぐ
と共に、それらが浮力によつて浮上することを促
進させることが行われている(特開昭57−17356
号公報、特開昭58−188555号公報等参照)。
Such an electromagnetic braking method uses permanent magnets or electromagnets placed between the molten steel injected into the mold to apply a static magnetic field to the molten steel flow being injected into the mold, thereby actively controlling the injection flow rate. By slowing down the speed, it is possible to prevent accompanying minute inclusions and entangled flux from penetrating deep into the molten steel, and also to encourage them to rise to the surface due to buoyancy (Japanese Patent Laid-Open No. 1983-1993). −17356
(See Japanese Patent Application Laid-Open No. 188555, etc.).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上に揚げた電磁撹拌法及び電磁制動方法は、
それぞれ独立した電磁撹拌装置及び電磁制動装置
を用い、相異なる作用をもつて相異なる課題を解
決している。
The electromagnetic stirring method and electromagnetic braking method mentioned above are as follows:
Using independent electromagnetic stirring devices and electromagnetic braking devices, they have different effects and solve different problems.

しかるに、実際の操業では、一般材を製造する
場合、電磁撹拌方法を適用したい鋼種と電磁制動
方法を適用したい鋼種があり、これらの鋼種は一
致しないのが普通である。また、高級鋼種の製造
においては、電磁撹拌及び電磁制動の両者を併用
することが望まれる場合がある。
However, in actual operations, when manufacturing general materials, there are steel types to which the electromagnetic stirring method is applied and steel types to which the electromagnetic braking method is applied, and these steel types are usually not the same. Furthermore, in the production of high-grade steel grades, it may be desirable to use both electromagnetic stirring and electromagnetic braking in combination.

ところが、鋼種別に専用連続鋳造機を持つこと
は、多大の設備費を必要とするばかりでなく、そ
の設備の稼働率は必ずしも高く望めない。したが
つて、この鋼種毎の専用連続鋳造機は工業的な解
決策とはいえない。そこで、電磁撹拌用鋳型及び
電磁制動用鋳型をそれぞれの制御装置と共に準備
しておき、鋼種に応じてこれらの電磁撹拌用鋳型
及び電磁制動用鋳型を組み替えて使用することに
なる。しかし、この組替えは、各鋳型の取外し・
取付けに多大の時間と労力を要し、その間の連続
鋳造を休止することを強いられる。その結果、連
続鋳造設備の生産性が低下する。また、この組替
えに対応して減速停止と始動加速の回数が増加す
るので、冷却速度、凝固係数等に変化が生じ、鋳
片の品質にバラツキが生じ、歩留りが低下する等
の問題が生じる。更には、電磁撹拌用鋳型及び電
磁制動用鋳型を同時に使用することができないの
で、高級鋼の製造には不向きであつた。すなわ
ち、電磁撹拌用鋳型及び電磁制動用鋳型を組み替
えて使用することは、鋳片品質を高め、これから
製造される製品の品質歩留を高めようとする場
合、経済上、効果上等に問題を含むものである。
However, having a dedicated continuous casting machine for each type of steel not only requires a large amount of equipment cost, but also does not necessarily allow for a high operating rate of the equipment. Therefore, this dedicated continuous casting machine for each type of steel cannot be called an industrial solution. Therefore, an electromagnetic stirring mold and an electromagnetic braking mold are prepared together with respective control devices, and these electromagnetic stirring mold and electromagnetic braking mold are rearranged and used depending on the steel type. However, this recombination requires the removal and
Installation requires a great deal of time and effort, and continuous casting must be suspended during that time. As a result, the productivity of continuous casting equipment decreases. In addition, the number of deceleration-stops and start-up accelerations increases in response to this rearrangement, which causes changes in the cooling rate, solidification coefficient, etc., resulting in variations in the quality of the slabs and problems such as a decrease in yield. Furthermore, since the electromagnetic stirring mold and the electromagnetic braking mold cannot be used at the same time, it is not suitable for manufacturing high-grade steel. In other words, recombining and using electromagnetic stirring molds and electromagnetic braking molds poses economic and effectiveness problems when trying to improve the quality of slabs and the quality yield of products to be manufactured. It includes.

そこで、本発明は、このような問題点を解決し
て、経済的に且つ効率よく優れた品質の鋳片を製
造することを目的とする。
Therefore, an object of the present invention is to solve these problems and to economically and efficiently manufacture slabs of excellent quality.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、その目的を達成すべく、連続鋳造用
周型銅板の外部に、少なくとも3個の独立した電
磁コイルを該鋳型の幅方向に沿つて配設し、 前記鋳型内の溶鋼に電磁撹拌力、電磁制動力又
は両者組み合わせた力を選択して作用させるため
の多相交流電流、直列電流又は交直重畳電流を選
択して供給することができる電源に前記各電磁コ
イルを接続したことを手段とする。
In order to achieve the object, the present invention disposes at least three independent electromagnetic coils outside a circumferential copper plate for continuous casting along the width direction of the mold, and electromagnetically stirs the molten steel in the mold. Each of the electromagnetic coils is connected to a power source that can selectively supply a multiphase alternating current, a series current, or an AC/DC superimposed current for selectively applying force, electromagnetic braking force, or a combination of both. shall be.

前記3個又は3対の電磁コイルは、電源に対し
てY結線又はΔ結線して使用することができる。
The three or three pairs of electromagnetic coils can be used in Y-connection or Δ-connection with respect to the power source.

〔作用〕[Effect]

本発明者が第1図に示す公知の電磁撹拌装置を
用いて行つた実験、検討によると、第3図aで示
したように各コイルに多相交流を流し、第4図a
に示すような磁束分布の磁界を発生させて、鋳型
に注入した弱脱酸、非鎮静溶鋼に電磁撹拌的操作
を行つた。その結果、従来技術の何れにも劣らぬ
気泡発生防止結果が確認できた。このような構成
の電磁装置に、第3図bに示すように各コイルに
直流電流を流し、第4図bに示すような磁束分布
の磁界を発生させ、鋳型に注入した脱酸、鎮静溶
鋼に電磁制動的操作を行つた。その結果、第5図
aに示すように、100μm/ケ程度の介在物が1/1
0に減少した。
According to experiments and studies conducted by the present inventor using a known electromagnetic stirring device shown in FIG. 1, multiphase alternating current is passed through each coil as shown in FIG.
A magnetic field with a magnetic flux distribution as shown in the figure was generated to perform an electromagnetic stirring operation on weakly deoxidized, non-sedated molten steel poured into a mold. As a result, it was confirmed that the bubble generation prevention results were comparable to those of the prior art. In the electromagnetic device having such a configuration, a direct current is passed through each coil as shown in Fig. 3b, and a magnetic field with a magnetic flux distribution as shown in Fig. 4b is generated. An electromagnetic braking operation was performed. As a result, as shown in Figure 5a, inclusions of about 100 μm/piece were reduced to 1/1
decreased to 0.

更に、第3図cに示すような直流バイアスをか
けた交流電流を流し、第4図cに示すような磁束
分布の磁界を発生させて電磁撹拌及び電磁制動を
同時に行う操作を行つた場合、第5図bに示すよ
うに、100μm/ケ程度の介在物が1/100以下に減
少した。
Furthermore, when an alternating current with a DC bias as shown in Fig. 3c is applied to generate a magnetic field with a magnetic flux distribution as shown in Fig. 4c, electromagnetic stirring and electromagnetic braking are performed simultaneously. As shown in FIG. 5b, the inclusions of about 100 μm/piece were reduced to less than 1/100.

また、イマージヨンノズルの各吐出部に電磁制
動力を作用させ、吐出量すなわち鋳型注入量の制
御を行つた場合においては、溶鋼10Kg中に100μ
m/ケ程度及び40μm/ケ程度の介在物を検出す
ることが実質上皆無になつた。
In addition, when an electromagnetic braking force is applied to each discharge part of the immersion nozzle to control the discharge amount, that is, the amount of injection into the mold, it is possible to
It became virtually impossible to detect inclusions of the order of m/m and 40 μm/m.

これは、注入流流速の低減効果と、吐出量制御
における溶鋼への外気浸入の完全遮断効果の相乗
効果によるものと考えられる。
This is considered to be due to the synergistic effect of the effect of reducing the injection flow rate and the effect of completely blocking outside air from entering the molten steel in controlling the discharge amount.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明す
る。
Hereinafter, the present invention will be specifically explained with reference to Examples.

本実施例において、まず、多相交流、直流及び
両者重畳の電流のそれぞれを供給できる電源装置
を準備した。
In this example, first, a power supply device capable of supplying each of multiphase alternating current, direct current, and a superimposed current of both was prepared.

第1図a及びbは、この電源装置に接続して作
動される電磁コイルを連続鋳造用鋳型内に配置し
た状態を示す。
FIGS. 1a and 1b show a state in which an electromagnetic coil, which is operated by being connected to this power supply device, is placed in a continuous casting mold.

連続鋳造用鋳型内は、長片銅板1及び短辺銅板
2を備えている。この長辺銅板1の側部に、電磁
コイルを収納する箱3が配置されている。そし
て、電磁コイルは、それぞれ2n個(nは1又は
2)に等分割されている。第2図の例では、n=
1の例を示し、長辺方向に沿つて距離τ1,τ2に分
割されている。この距離τ1とτ2は、同じ長さを有
するものとし、約200〜1000mmの範囲に定める。
この距離τ1,τ2の長さ内で、m個(mは3の整数
倍)の独立した励磁コイルの磁路を珪素鋼板のコ
ア5にて連結する。第1図aは、τ1及びτ2の長さ
で各々3個(m=3)の励磁コイル40a1,40
b1,40c1,40a2,40b2,40c2,41a1
41b1,41c1,41a2,41b2,41c2を、長
片銅板1に直角な方向に巻いて配置した例を示
す。また第1図bは励磁コイルの他の配置例を示
すもので、τ1及びτ2の長さで各々3個(m=3)
の励磁コイル40a0,40b0,40c0,41a0
41b0,41c0を、長片銅板1に平行な方向に巻
いて配置したものである。
The inside of the continuous casting mold is provided with a long piece copper plate 1 and a short side copper plate 2. A box 3 for storing an electromagnetic coil is arranged on the side of the long side copper plate 1. Each electromagnetic coil is equally divided into 2n pieces (n is 1 or 2). In the example in Figure 2, n=
1, which is divided into distances τ 1 and τ 2 along the long side direction. The distances τ 1 and τ 2 are assumed to have the same length and are set in a range of approximately 200 to 1000 mm.
Within these distances τ 1 and τ 2 , the magnetic paths of m (m is an integral multiple of 3) independent excitation coils are connected by a core 5 made of a silicon steel plate. FIG. 1a shows three (m=3) excitation coils 40a 1 and 40 with lengths τ 1 and τ 2 , respectively.
b 1 , 40c 1 , 40a 2 , 40b 2 , 40c 2 , 41a 1 ,
An example is shown in which 41b 1 , 41c 1 , 41a 2 , 41b 2 , 41c 2 are wound and arranged in a direction perpendicular to the long copper plate 1. Fig. 1b shows another example of the arrangement of excitation coils, with lengths of τ 1 and τ 2 each having three pieces (m=3).
excitation coils 40a 0 , 40b 0 , 40c 0 , 41a 0 ,
41b 0 and 41c 0 are wound and arranged in a direction parallel to the long copper plate 1.

第2図a1,a2,bは収納箱3内における前
記各コイル40a1,40b1,40c1,40a2,4
0b2,40c2,41a1,41b1,41c1,41
a2,41b2,41c2の結線図を示す。
FIG. 2 a1, a2, b shows each of the coils 40a 1 , 40b 1 , 40c 1 , 40a 2 , 4 in the storage box 3.
0b 2 , 40c 2 , 41a 1 , 41b 1 , 41c 1 , 41
A wiring diagram of a 2 , 41b 2 , and 41c 2 is shown.

該結線図に於いて、40a1と40a2、40b1
40b2、及び40c1と40c2はそれぞれ直列に結
線され、a1はさらにO点を中点とした星型結線
を行い、bは端子40a,40b,40cをO点
から切り離し、それぞれを端子S,R,Tに結線
してΔ結線を行うことが可能なものとする。ここ
でコイル40a1と40a2の接続又は巻き方は、励
磁電流の流れが逆方向となるように第2図a1の
ように、コイルを同方向に巻いて接続方向を逆転
して行うか、第2図a2のようにコイルを逆方向
に巻くものとする。40b1と40b2、40c1と4
0c2も同様である。R,S、及びT点は前記O点
にて結線した後のコイル端子を示す。IR,IS,IT
は各々のコイルを励磁する3相交流の励磁電流を
示す。41a1,41b1,41c1,41a2,41
b2,41c2についても同様の結線を行う。
In the connection diagram, 40a 1 and 40a 2 , 40b 1 and 40b 2 , and 40c 1 and 40c 2 are connected in series, a1 is further connected in a star shape with the center point O, and b is connected in series. It is assumed that the terminals 40a, 40b, and 40c can be separated from the point O and connected to the terminals S, R, and T to perform a Δ connection. Here, the method of connecting or winding the coils 40a 1 and 40a 2 can be done by winding the coils in the same direction and reversing the connection direction, as shown in FIG. 2 a1, so that the excitation current flows in opposite directions, or Assume that the coil is wound in the opposite direction as shown in Figure 2 a2. 40b 1 and 40b 2 , 40c 1 and 4
The same goes for 0c2 . Points R, S, and T indicate the coil terminals after connection at the point O. I R , I S , I T
represents the three-phase AC excitation current that excites each coil. 41a 1 , 41b 1 , 41c 1 , 41a 2 , 41
Similar connections are made for b 2 and 41c 2 .

第3図aは、該コイルを3相交流励磁した励磁
電流を示す。
FIG. 3a shows the excitation current that excited the coil with three-phase alternating current.

第2図における端子R,S,Tにより、時間的
に変化する3相電流IR,IS,ITで各コイルを励磁
することにより、鋳型内に磁束密度が時間的に変
化する磁界が発生する。第4図aはこのときに発
生する鋳型内の磁界の長辺方向の磁束密度分布を
示す。該磁界の磁束密度分布曲線は時間経過とと
もに長辺方向a(或いはaと逆方向)に移動する。
該磁束密度分布の移動により溶鋼内に誘導電流が
発生し、この誘導電流と該磁界とによつて発生す
る電磁力により、鋳型内の溶鋼は該磁束密度分布
の移動方向と同方向に電磁駆動力を受け、溶鋼に
流動が発生する。
By exciting each coil with time-varying three-phase currents I R , IS , and I T using terminals R, S, and T in Figure 2, a magnetic field whose magnetic flux density changes over time is created in the mold. Occur. FIG. 4a shows the magnetic flux density distribution in the long side direction of the magnetic field within the mold generated at this time. The magnetic flux density distribution curve of the magnetic field moves in the long side direction a (or in the opposite direction to a) over time.
An induced current is generated in the molten steel due to the movement of the magnetic flux density distribution, and the electromagnetic force generated by this induced current and the magnetic field causes the molten steel in the mold to be electromagnetically driven in the same direction as the movement direction of the magnetic flux density distribution. The force causes the molten steel to flow.

而して溶鋼流動の発生により、未脱酸鋼の鋳造
時には凝固過程におけるCO気泡の発生が抑制さ
れ、スラグ表面肌下のピンホール発生が防止され
る。
The generation of molten steel flow suppresses the generation of CO bubbles during the solidification process during casting of unoxidized steel, and prevents the generation of pinholes beneath the slag surface.

次に第3図bは該コイルを直流で励磁したとき
の励磁電流を示す。すなわち、I1R,I1S,I1TをI1R
+I1S+I1T=0とする時間的に変化しない直流の
励磁電流により励磁することにより、鋳型内に時
間的に磁束密度が変化しない直流磁界が発生す
る。第4図bは、このとき鋳型内に発生する磁界
の、長辺方向の磁束密度分布を示す。
Next, FIG. 3b shows the exciting current when the coil is excited with direct current. That is, I 1R , I 1S , I 1T are I 1R
By exciting with a DC excitation current that does not change over time, +I 1S +I 1T = 0, a DC magnetic field whose magnetic flux density does not change over time is generated in the mold. FIG. 4b shows the magnetic flux density distribution in the long side direction of the magnetic field generated within the mold at this time.

このような磁束密度分布を有する磁界の発生に
より、イマージヨンノズルより鋳型内に注入する
注入流に対し、電磁制動力を与えることが可能と
なる。しかも、I1R,I1S,I1Tの値をI1R+I1S+I1T
0としつつ、任意にその割合を変えた直流電流と
することにより、鋳型内に発生する磁界の磁束密
度分布のピーク値Laの大きさと位置を任意に調
整制御し、これによりイマージヨンノズルよりの
注入流分布及び制動希望位置に応じて該制動力を
最も効果が上がるように作用せしめることができ
る。
By generating a magnetic field having such a magnetic flux density distribution, it becomes possible to apply an electromagnetic braking force to the injection flow injected into the mold from the immersion nozzle. Moreover, the values of I 1R , I 1S , and I 1T are I 1R + I 1S + I 1T =
By using a direct current with a DC current of 0 and changing its ratio arbitrarily, the magnitude and position of the peak value L a of the magnetic flux density distribution of the magnetic field generated in the mold can be arbitrarily adjusted and controlled. The braking force can be applied to be most effective depending on the injection flow distribution and the desired braking position.

更に、第3図a及び第3図bに示した3相交流
電流と直流電流を重畳した励磁電流を該コイルに
通電することにより、上記電磁駆動力を電磁制動
力と同時に発生せしめ、必要な制動力を作用させ
ながら、所望の撹拌を行うことも可能である。
Furthermore, by passing through the coil an excitation current that is a superimposition of three-phase alternating current and direct current shown in FIGS. 3a and 3b, the electromagnetic driving force is generated simultaneously with the electromagnetic braking force, and the necessary It is also possible to perform desired stirring while applying a braking force.

第3図cはこのときの励磁電流の例を示す。第
4図cはこのときの鋳型内の磁界の長辺方向の磁
束密度分布を示し、時間的に移動しないで制動力
の基本となる磁束密度分布BDCと時間的に長辺方
向aに移動して撹拌力の基本となる磁束密度分布
BACとが重畳された、制動、撹拌用磁束密度分布
BTOTALが得られる。
FIG. 3c shows an example of the excitation current at this time. Figure 4c shows the magnetic flux density distribution in the long side direction of the magnetic field inside the mold at this time, and the magnetic flux density distribution B DC , which is the basis of the braking force, does not move in time but moves in the long side direction a in time. magnetic flux density distribution, which is the basis of stirring force.
B Magnetic flux density distribution for braking and stirring superimposed with AC
B TOTAL is obtained.

上記のような3種類の励磁電流を発生させるた
め、本発明においては多相交流、直流及び両者の
重畳電流の各々を供給できる、それ自体は公知の
電源装置を準備する。
In order to generate the three types of excitation currents as described above, the present invention prepares a power supply device that is known per se and is capable of supplying each of multiphase alternating current, direct current, and a superimposed current of both.

なお、上記実施例においては、3相交流電流を
3個の励磁コイルに与える例を示しているが、励
磁コイルを3以上のn個とし、これらにn相の多
相交流電流を流すことができることは勿論であ
る。
Although the above embodiment shows an example in which three-phase alternating current is applied to three excitation coils, it is also possible to have n excitation coils of three or more and to flow n-phase polyphase alternating current through them. Of course it can be done.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明は鋳型内に設置した励磁コ
イルに対し、多相交流励磁又は直流励磁、又は多
相交流と直流を重畳した励磁を選択的に行うこと
ができるので、一つの電磁力発生装置により連続
鋳造操業を中断することなく鋳型内の溶鋼に電磁
駆動力又は電磁制動力或いはその組合わせ力を任
意に作用させ、鋳造する鋼種と要望品質に応じ
て、その内質の調整を経済的に行うことができ
る。その結果、要望される材質を満たす鋼材を低
コストで提供することが可能となる等、多大の効
果をもたらすものである。
As described above, the present invention can selectively perform multiphase alternating current excitation, direct current excitation, or superimposed multiphase alternating current and direct current excitation on the excitation coil installed in the mold, so that one electromagnetic force can be generated. By applying electromagnetic driving force, electromagnetic braking force, or a combination thereof to the molten steel in the mold without interrupting the continuous casting operation, the internal quality can be adjusted economically according to the type of steel to be cast and the desired quality. It can be done in a specific manner. As a result, it is possible to provide a steel material that meets the desired material quality at a low cost, which brings about many effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは鋳型内に配置された電磁コイル
を示し、aは鋳型銅板と直角な方向にコイルを巻
き、bは鋳型銅板と平行な方向にコイルを巻いた
例を示す。また第2図a1,a2,bはそれぞれ
第1図のコイルの結線図を示す。第3図aは多相
交流励磁時のコイル励磁電流を示し、第3図bは
直流励磁時のコイル励磁を示す。第3図cは多相
交流と直流を重畳した時のコイル励磁電流を示
す。第4図aは多相交流励磁時の鋳型内磁励密度
分布を示し、第4図bは直流励磁時の鋳型内磁励
密度分布を示す。第4図cは多相交流と直流を重
畳した励磁を行つた際の鋳型内磁束密度分布を示
す。第5図は本発明装置の実験例における操作方
法と溶鋼中介在物量の関係を示す。
Figures 1a and 1b show electromagnetic coils placed in the mold, where a shows an example in which the coil is wound in a direction perpendicular to the copper mold plate, and Fig. 1 b shows an example in which the coil is wound in a direction parallel to the copper mold plate. Further, FIGS. 2a1, a2, and b each show a wiring diagram of the coil shown in FIG. 1. FIG. 3a shows the coil excitation current during multiphase AC excitation, and FIG. 3B shows the coil excitation during DC excitation. FIG. 3c shows the coil excitation current when multiphase alternating current and direct current are superimposed. FIG. 4a shows the magnetic excitation density distribution within the mold during multiphase AC excitation, and FIG. 4b shows the magnetic excitation density distribution within the mold during DC excitation. FIG. 4c shows the magnetic flux density distribution within the mold when excitation is performed by superimposing multiphase alternating current and direct current. FIG. 5 shows the relationship between the operating method and the amount of inclusions in molten steel in an experimental example of the apparatus of the present invention.

Claims (1)

【特許請求の範囲】 1 連続鋳造用鋳型銅板の外部に、少なくともm
個(mは3の整数倍)の電磁コイルを該鋳型の幅
方向に沿つて2n個(nは1又は2)配設し、 前記鋳型内の溶鋼に電磁撹拌力、電磁制動力又
は両者組み合わせた力を選択して作用させるため
の多相交流電流、直列電流又は交直重畳電流を選
択して供給することができる電源に前記各電磁コ
イルを接続したことを特徴とする連続鋳造鋳型用
電磁コイル装置。 2 m個の電磁コイルを電源端子に対してY結線
して励磁する構成としたことを特徴とする特許請
求の範囲第1項記載の連続鋳造鋳型用電磁コイル
装置。 3 m個の電磁コイルを電源端子に対してΔ結線
して励磁する構成としたことを特徴とする特許請
求の範囲第1項記載の連続鋳造鋳型用電磁コイル
装置。
[Claims] 1. At least m.
2n pieces (n is 1 or 2) of electromagnetic coils (m is an integral multiple of 3) are arranged along the width direction of the mold, and electromagnetic stirring force, electromagnetic braking force, or a combination of both are applied to the molten steel in the mold. An electromagnetic coil for a continuous casting mold, characterized in that each of the electromagnetic coils is connected to a power source capable of selectively supplying a multiphase alternating current, a series current, or an AC/DC superimposed current for selectively applying force. Device. 2. The electromagnetic coil device for continuous casting molds according to claim 1, characterized in that 2m electromagnetic coils are Y-connected to a power supply terminal and excited. 3. The electromagnetic coil device for a continuous casting mold according to claim 1, characterized in that the electromagnetic coil device for continuous casting molds is configured to excite the 3 m electromagnetic coils by connecting them in a delta to a power supply terminal.
JP4495286A 1986-02-28 1986-02-28 Electromagnetic coil apparatus for continuous casting mold Granted JPS62203648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4495286A JPS62203648A (en) 1986-02-28 1986-02-28 Electromagnetic coil apparatus for continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4495286A JPS62203648A (en) 1986-02-28 1986-02-28 Electromagnetic coil apparatus for continuous casting mold

Publications (2)

Publication Number Publication Date
JPS62203648A JPS62203648A (en) 1987-09-08
JPH0333055B2 true JPH0333055B2 (en) 1991-05-15

Family

ID=12705822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4495286A Granted JPS62203648A (en) 1986-02-28 1986-02-28 Electromagnetic coil apparatus for continuous casting mold

Country Status (1)

Country Link
JP (1) JPS62203648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024285A1 (en) * 1994-03-07 1995-09-14 Nippon Steel Corporation Continuous casting method and apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930002836B1 (en) * 1989-04-27 1993-04-10 가와사끼 세이데쓰 가부시까가이샤 Method and apparatus for continuous casting
JP3237177B2 (en) * 1992-02-28 2001-12-10 住友金属工業株式会社 Continuous casting method
DE19542211B4 (en) * 1995-11-13 2005-09-01 Sms Demag Ag Electromagnetic stirring device for a slab casting mold
SE523881C2 (en) * 2001-09-27 2004-05-25 Abb Ab Device and method of continuous casting
KR100695902B1 (en) 2004-07-01 2007-03-20 최경태 Melt electromagnetic stirrer
ITUB20159776A1 (en) * 2015-12-30 2017-06-30 Ergolines Lab S R L PLANT FOR THE PRODUCTION OF METAL BARS, CASTING MACHINE, CASTING PROCESS AND METHOD OF CONTROL OF ELECTROMAGNETIC DEVICES FOR MIXED METAL AGITATION

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024285A1 (en) * 1994-03-07 1995-09-14 Nippon Steel Corporation Continuous casting method and apparatus

Also Published As

Publication number Publication date
JPS62203648A (en) 1987-09-08

Similar Documents

Publication Publication Date Title
EP1448329B1 (en) A device and a method for continuous casting
JP3725028B2 (en) Electromagnetic braking device for molten metal in continuous casting molds.
EP2216111B1 (en) Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
JP2009542442A (en) Method and apparatus for controlling the flow of molten steel in a mold
JPH0333055B2 (en)
JPS63188461A (en) Electromagnetic coil apparatus for continuous casting mold
JPH10305353A (en) Continuous molding of steel
US5137077A (en) Method of controlling flow of molten steel in mold
JP4539024B2 (en) Steel continuous casting method
KR100751021B1 (en) Equipment for supplying molten metal to a continuous casting ingot mould and Method for using same
JP4669367B2 (en) Molten steel flow control device
JP3102967B2 (en) Method of braking molten metal in continuous casting mold and electromagnetic stirring device combined with brake
JP4591456B2 (en) Steel continuous casting method
JP2005238276A (en) Electromagnetic-stirring casting apparatus
JPS63119962A (en) Rolling device for electromagnetic agitation
JPH11123511A (en) Electromagnetic stirring method and electromagnetic strring device
JP3937961B2 (en) Continuous casting method of steel
JP2003164948A (en) Method and equipment for continuous casting of steel
JP2961447B2 (en) Electromagnetic stirring method for continuous casting equipment with multiple strands
JPS62279060A (en) Electromagnetic stirring apparatus
JPH04200849A (en) Electromagnetic stirring method for continuous casting
SU1470435A1 (en) Apparatus for electromagnetic agitating of liquid phase of continuously cast billets
JP2004042065A (en) Electromagnetic stirring device
JPS63252651A (en) Electromagnetic stirring apparatus
WO1993004801A1 (en) Method and apparatus for the electromagnetic stirring of molten metals in a wheel caster