JPS62203648A - Electromagnetic coil apparatus for continuous casting mold - Google Patents

Electromagnetic coil apparatus for continuous casting mold

Info

Publication number
JPS62203648A
JPS62203648A JP4495286A JP4495286A JPS62203648A JP S62203648 A JPS62203648 A JP S62203648A JP 4495286 A JP4495286 A JP 4495286A JP 4495286 A JP4495286 A JP 4495286A JP S62203648 A JPS62203648 A JP S62203648A
Authority
JP
Japan
Prior art keywords
electromagnetic
mold
current
continuous casting
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4495286A
Other languages
Japanese (ja)
Other versions
JPH0333055B2 (en
Inventor
Tokiya Shirai
登喜也 白井
Hideyuki Misumi
三隅 秀幸
Akira Hashimoto
明 橋本
Masaki Niioka
新岡 正樹
Fuyusato Kataoka
片岡 冬里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4495286A priority Critical patent/JPS62203648A/en
Publication of JPS62203648A publication Critical patent/JPS62203648A/en
Publication of JPH0333055B2 publication Critical patent/JPH0333055B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Abstract

PURPOSE:To adjust to the demanded steel quality by arranging at least three electromagnetic coils at outer part of a Cu-plate mold for a continuous casting and supplying selectively a polyphase AC current, DC current or superimposed AC to DC current to generate stirring force, controlling force or combination force of the both in the molten steel. CONSTITUTION:The cases 3 storing the electromagnetic coils are arranged at side parts of the long side of the Cu-plate mold for the continuous casting and they having tau1 and tau2 lengths and each three exciting magnetic coils 40a1-40c1, 40a2-40c2, 41a1-41c1, 41a2-41c2, are arranged. Next, star- connection or delta-connection is executed to the power source and the polyphase AC current, DC current or superimposed AC to DC current is selectively supplied, and the electromagnetic stirring force, electromagnetic controlling force or combination force of the both is selectively generated in the molten steel in the mold. Therefore, in accordance with the steel kind to be cast, and the steel quality to be demanded, adjusting in them is executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続鋳造用鋳型内に注入された/8鋼を、そ
の鋳型内で積極的に水平流動させるための電磁攪拌及び
積極的に静止させる電磁制動を各々個別に或いは同時に
行うことができる電磁コイル装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to an electromagnetic stirring system and an active method for actively horizontally flowing /8 steel injected into a continuous casting mold. The present invention relates to an electromagnetic coil device that can individually or simultaneously perform electromagnetic braking to bring the device to a standstill.

〔従来の技術〕[Conventional technology]

脱酸程度の低い溶鋼を連続鋳造用の鋳型に注入すると、
鋳型内でCOガスや少量のH2ガス7N2ガス等が発生
する。これらのガスが溶鋼内に留まったままで凝固が開
始すると、製品にピンポール等の欠陥を発生させる原因
となる。そこで、連続鋳造の分野では、鋳型に注入され
た溶鋼を鋳型内で積極的に水平流動するように電磁攪拌
する方法が古くから採用されている。
When molten steel with a low degree of deoxidation is poured into a mold for continuous casting,
CO gas and a small amount of H2 gas, 7N2 gas, etc. are generated in the mold. If solidification begins while these gases remain in the molten steel, it will cause defects such as pinholes in the product. Therefore, in the field of continuous casting, a method has long been employed in which molten steel poured into a mold is electromagnetically stirred so that it actively flows horizontally within the mold.

従来のi%磁攪拌法は、リニアモータの固定子と同様に
作用する多相インダクタを電磁攪(↑装置として収納し
た鋳型に溶鋼を注入し、前記電信攪拌装置に3相交流又
は2相交流を給電することにより電磁力を)8泪に付与
し、0.1〜1.0m/sec程度の水平流動を発生さ
せるものである(特開昭53−28034号公報、特公
昭58−52456号公報、特公昭58−52457号
公報、特公昭5B−35787号公報、特公昭59−5
057号公報、特公昭59−7536号公報、特公昭5
8−7537号公報、特開昭56−41054号公報、
特開昭60−223649号公報等参照)。
In the conventional i% magnetic stirring method, molten steel is poured into a mold housed as an electromagnetic stirring device (↑ device), and a multiphase inductor that acts similarly to the stator of a linear motor is injected into a mold, and the electric stirrer is heated with three-phase or two-phase alternating current. By supplying electric power, an electromagnetic force is applied to 8 yen to generate a horizontal flow of about 0.1 to 1.0 m/sec (Japanese Patent Laid-Open No. 53-28034, Japanese Patent Publication No. 58-52456). Publication, Japanese Patent Publication No. 58-52457, Japanese Patent Publication No. 5B-35787, Japanese Patent Publication No. 59-5
Publication No. 057, Special Publication No. 59-7536, Special Publication No. 5
No. 8-7537, Japanese Patent Application Laid-open No. 56-41054,
(See Japanese Patent Application Laid-Open No. 60-223649, etc.).

更に、鋳型に注入した溶鋼には微小な介在物が随伴され
ており、また注入時にフラックスが溶鋼に巻き込まれる
。このような介在物やフラックスが溶鋼中に残留し凝固
が開始されると、同様に製品に欠陥を発生させる原因に
なる。そこで、これら介在物やフラックスを鋳型内溶鋼
の上にある吸収フラックスに早急に浮上吸収せしめる手
法として、電磁制動を行うことが古くから採用されてい
た。
Furthermore, the molten steel injected into the mold is accompanied by minute inclusions, and flux is caught in the molten steel during injection. If such inclusions or flux remain in the molten steel and start solidifying, it will similarly cause defects in the product. Therefore, electromagnetic braking has been used for a long time as a method for quickly floating and absorbing these inclusions and flux into the absorption flux above the molten steel in the mold.

このような電磁制動方法としては、鋳型に注入された溶
鋼を挾んだ状態に配置した永久磁石又は:rL(41石
を用いて鋳型に注入されている溶鋼流に静止磁界を作用
させ、注入流速を積極的に減速させることにより、随伴
した微小介在物や巻き込んだフラックス等が?8鋼の深
部に潜入することを防くと共に、それらが浮力によって
浮上することを促進させることが行われている(特開昭
57−17356号公報、特開昭58〜188555号
公報等参照)。
As such an electromagnetic braking method, a static magnetic field is applied to the molten steel flow being injected into the mold using a permanent magnet placed between the molten steel poured into the mold or :rL (41 stones). By actively slowing down the flow velocity, it is possible to prevent accompanying minute inclusions and entangled flux from penetrating deep into the ?8 steel, and to encourage them to surface due to buoyancy. (Refer to JP-A-57-17356, JP-A-58-188555, etc.).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上に掲げた電磁攪拌法及び電磁制動方法は、それぞれ
独立した電磁攪拌装置及び電磁制動装置を用い、相異な
る作用をもって相異なる課題を解決している。
The electromagnetic stirring method and electromagnetic braking method listed above use independent electromagnetic stirring devices and electromagnetic braking devices, respectively, and have different effects to solve different problems.

しかるに、実際の操業では、−殻材を製造する場合、電
磁攪拌方法を適用したい鋼種と電磁制動方法を適用した
い鋼種があり、°これらの鋼種は一致しないのが普通で
ある。また、高級鋼種の製造においては、電磁攪拌及び
電磁制動の両汗を併用することが望まれる場合がある。
However, in actual operations, when manufacturing shell materials, there are steel types to which the electromagnetic stirring method is applied and steel types to which the electromagnetic braking method is applied, and these steel types are usually not the same. Furthermore, in the production of high-grade steel grades, it may be desirable to use both electromagnetic stirring and electromagnetic braking in combination.

ところが、鋼種別に専用連続鋳造機を持つことは、多大
の設備費を必要とするばかりでなく、その設備の稼働率
は必ずしも高く望めない。したがって、この鋼種毎の専
用連続鋳造機は工業的な解決策とはいえない。そこで、
電磁攪拌用鋳型及び電磁制動用鋳型をそれぞれの制御装
置と共に準備しておき、鋼種に応じてこれらの電磁攪拌
用鋳型及び電磁制動用鋳型を組み替えて使用することに
なる。しかし、この組替えは、各鋳型の取外し・取付け
に多大の時間と労力を要し、その間の連続鋳造を休止す
ることを強いられる。その結果、連続鋳造設備の生産性
が低下する。また、この組替えに対応して減速停止と始
動加速の回数が増加するので、冷却速度、凝固係数等に
変化が生じ、鋳片の品質にバラツキが生じ、歩留りが低
下する等の問題が生じる。更には、電磁攪拌用鋳型及び
電磁制動用鋳型を同時に使用することができないので、
高級鋼の製造には不向きであった。すなわち、T;、磁
撹拌用鋳型及び電磁制動用鋳型を組み替えて使用するこ
とは、鋳片品質を高め、これから製造される製品の品質
歩留を高めようとする場合、経済上、効果上等に問題を
含むものである。
However, having a dedicated continuous casting machine for each type of steel not only requires a large amount of equipment cost, but also does not necessarily allow for a high operating rate of the equipment. Therefore, this dedicated continuous casting machine for each type of steel cannot be called an industrial solution. Therefore,
A mold for electromagnetic stirring and a mold for electromagnetic braking are prepared together with respective control devices, and these molds for electromagnetic stirring and mold for electromagnetic braking are rearranged and used depending on the type of steel. However, this rearrangement requires a great deal of time and effort to remove and install each mold, and continuous casting must be suspended during that time. As a result, the productivity of continuous casting equipment decreases. In addition, the number of deceleration-stops and start-up accelerations increases in response to this rearrangement, which causes changes in the cooling rate, solidification coefficient, etc., resulting in variations in the quality of the slabs and problems such as a decrease in yield. Furthermore, since the electromagnetic stirring mold and the electromagnetic braking mold cannot be used at the same time,
It was unsuitable for producing high-grade steel. In other words, recombining and using magnetic stirring molds and electromagnetic braking molds is economical, effective, etc. when trying to improve the quality of slabs and the quality yield of products to be manufactured. This includes problems.

そこで、本発明は、このような問題点を解決して、経済
的に且つ効率よく優れた品質の鋳片を製造することを目
的とする。
Therefore, an object of the present invention is to solve these problems and to economically and efficiently manufacture slabs of excellent quality.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、その目的を達成すべく、連続鋳造用鋳型銅板
の外部に、少なくとも3個の独立した電磁コイルを該鋳
型の幅方向に沿って配設し、前記鋳型内の溶鋼に電磁攪
拌力、電磁制動力又は両者組み合わせた力を選択して作
用させるための多相交流電流、直列電流又は交直重畳′
澄液を選択して供給することができる電源に前記各電磁
コイルを接続したことを手段とする、 前記3個又は3対のTl電磁コイル、電源に対してY結
線又はΔ結線して使用することができる。
In order to achieve the object, the present invention disposes at least three independent electromagnetic coils outside a continuous casting mold copper plate along the width direction of the mold, and applies an electromagnetic stirring force to the molten steel in the mold. , multiphase alternating current, series current, or AC/DC superposition for selectively applying electromagnetic braking force or a combination of both.
Each of the electromagnetic coils is connected to a power source that can selectively supply clear liquid, and the three or three pairs of Tl electromagnetic coils are used in Y-connection or Δ-connection to the power source. be able to.

〔作用〕 本発明者が第1図に示す公知の電磁攪拌装置を用いて行
った実験、検討によると、第3図(atで示したように
各コイルに多相交流を流し、第4図fa+に示すような
磁束分布の磁界を発生させて、鋳型に注入した弱脱酸、
非鎮静溶鋼にi磁攪(′ト的操作を行った。その結果、
従来技術の何れにも劣らぬ気泡発生防止結果が確認でき
た。このような構成のH1装置に、第3図(b)に示す
ように各コイルに直′/A電流を流し、第4図fblに
示すような磁束分布の磁界を発生させ、鋳型に注入した
脱酸、鎮静4洩に電るn制動的操作を行った。その結果
、第5図(8)に示すように、100%/ケ程度の介在
物が1710に減少した。
[Function] According to experiments and studies conducted by the present inventor using the known electromagnetic stirring device shown in FIG. Weak deoxidation injected into the mold by generating a magnetic field with a magnetic flux distribution as shown in fa+,
Magnetic stirring was performed on non-sedated molten steel. As a result,
It was confirmed that the bubble generation prevention results were as good as any of the conventional techniques. In the H1 device with such a configuration, a direct current of /A was applied to each coil as shown in Figure 3 (b), a magnetic field with a magnetic flux distribution as shown in Figure 4 fbl was generated, and the magnetic field was injected into the mold. Deoxidation, sedation, and braking operations were performed. As a result, as shown in FIG. 5(8), the number of inclusions was reduced to 1710 by about 100%.

更に、第3図(C)に示“tような直流バイアスをかけ
た交流電流を流し、第4図tc+に示すような磁束分布
の磁界を発生させて電磁攪拌及び電磁制動を同時に行う
操作を行った場合、第5図fblに示すように、l00
7!II+/ケ程度の介在物が1/100以下に減少し
た。
Furthermore, an operation was performed in which electromagnetic stirring and electromagnetic braking were performed simultaneously by passing an alternating current with a DC bias as shown in Figure 3 (C) and generating a magnetic field with a magnetic flux distribution as shown in Figure 4 tc+. When it is done, l00
7! The number of inclusions on the order of II+/Q was reduced to 1/100 or less.

また、イマージョンノズルの各吐出部に電磁制動力を作
用させ、吐出量すなわち鋳型注入量の制御を行った場合
においては、溶E 10 kg中に100戸/ケ程度及
び40戸7ケ程度の介在物を検出することが実質上皆無
になった。
In addition, when an electromagnetic braking force is applied to each discharge part of the immersion nozzle to control the discharge amount, that is, the amount of injection into the mold, about 100 units per 10 kg of molten E and about 7 units per 40 units are inserted. Detection of objects has become virtually non-existent.

これは、注入流流速の低減効果と、吐出量制御における
溶鋼への外気浸入の完全遮断効果の相乗効果によるもの
と考えられる。
This is considered to be due to the synergistic effect of the effect of reducing the injection flow rate and the effect of completely blocking outside air from entering the molten steel in controlling the discharge amount.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

本実施例において、まず、多相交流、直流及び両者重畳
の電流のそれぞれを供給できる電源装置を準備した。
In this example, first, a power supply device capable of supplying each of multiphase alternating current, direct current, and a superimposed current of both was prepared.

第1図(al及び(blは、この電源装置に接続して作
動される電磁コイルを連続鋳造用tR型内に配置した状
態を示す。
Figure 1 (al and (bl) shows the state in which the electromagnetic coil, which is operated by being connected to this power supply device, is placed in the tR mold for continuous casting.

連続鋳造用鋳型内は、長片銅板l及び短辺銅板2を備え
ている。この長辺銅板1の側部に、電磁コイルを収納す
る霜3が配置されている。そして、電磁コイルは、それ
ぞれ2n個(nはl又は2)に等分割されている。第2
図の例では、n=1の例を示し、長辺方向に沿って距離
rl+τ2に分割されている。この距離τ1とて2は、
同じ長さを存するものとし、約200〜1000mmの
範囲に定める。
The inside of the continuous casting mold is equipped with a long piece copper plate 1 and a short side copper plate 2. A frost 3 for housing an electromagnetic coil is arranged on the side of the long side copper plate 1. Each electromagnetic coil is equally divided into 2n pieces (n is l or 2). Second
The illustrated example shows an example where n=1, and is divided into distances rl+τ2 along the long side direction. This distance τ1 and te2 are
They shall have the same length, and are set in the range of approximately 200 to 1000 mm.

この距^+tr、、τ2の長さ内で、m個(mは3の整
数倍)の独立した励磁コイルの磁路を珪素鋼板のコア5
にて連結する。第1図telは、τ1及びτ2の長さで
各々3個(m=3)の励磁コイル40a+。
Within this distance ^+tr,,τ2, the magnetic paths of m independent excitation coils (m is an integer multiple of 3) are connected to the core 5 of the silicon steel plate.
Connect at. FIG. 1 shows three (m=3) excitation coils 40a+ with lengths τ1 and τ2.

40b+ 、 40c+ 、 40ax、 40bt、
 40cz、 41a + 、 41b+ 、 41c
+ 、 41az。
40b+, 40c+, 40ax, 40bt,
40cz, 41a +, 41b+, 41c
+, 41az.

41bg、 41c4を、長片銅板lに直角な方向に巻
いて配置した例を示す。また第1図fblは励磁コイル
の他の配置例を示すもので、τ、及びτ2の長さで各々
3個(m=”3)の励磁コイル40ao、40bo、4
0c+。
An example is shown in which 41bg and 41c4 are wound and arranged in a direction perpendicular to a long piece of copper plate l. FIG. 1fbl shows another example of the arrangement of excitation coils, in which three (m=3) excitation coils 40ao, 40bo, 4
0c+.

41ao、41bo、41c0を、長片銅板lに平行な
方向に巻いて配置したものである。
41ao, 41bo, and 41c0 are wound and arranged in a direction parallel to the long copper plate l.

第2図(al)、 (a2)、 (b)は収納箱3内に
おける前記各コイル40a++40b++40C+、4
0az、 40bz+40Cg+41a+、41bz4
1cz41at、 41bz、41Czの結線図を示す
FIG. 2 (al), (a2), and (b) show each of the coils 40a++40b++40C+, 4 in the storage box 3.
0az, 40bz+40Cg+41a+, 41bz4
The wiring diagram of 1cz41at, 41bz, and 41Cz is shown.

該結線図に於いて、40a1と40az、 40b+と
40b、。
In the wiring diagram, 40a1 and 40az, 40b+ and 40b.

及び40c 、と40c2はそれぞれ直列に結線され、
(al)はさらに0点を中点とした足型結線を行い、(
b)は端子40a、 40b、 40cを0点から切り
Wlt L、それぞれを端子S、I?、Tに結線してΔ
結線を行うことが可能なものとする。ここでコイル40
a1と40atの接続又は巻き方は、jil+ Ki’
i電流の流れが逆方向となるように第2図(al)のよ
うに、コイルを同方向に巻いて接続方向を逆転して行う
か、第2図(a2)のようにコイルを逆方向に巻くもの
とする。40b1と40bt、 40c+と40c2も
同様である。R,S、及びT点は前記0点にて結線した
後のコイル端子を示す。
and 40c, and 40c2 are each connected in series,
(al) further performs a foot-shaped connection with the 0 point as the midpoint, and (
b) Cut terminals 40a, 40b, and 40c from point 0 to Wlt L, and connect terminals S and I? respectively. , connect to T and Δ
It shall be possible to perform wiring. Here coil 40
The connection or winding method of a1 and 40at is jil + Ki'
i Wind the coils in the same direction and reverse the connection direction as shown in Figure 2 (al) so that the current flows in the opposite direction, or wind the coils in the opposite direction as shown in Figure 2 (a2). It shall be wrapped around. The same applies to 40b1 and 40bt, 40c+ and 40c2. Points R, S, and T indicate the coil terminals after connection at the 0 point.

11、+5.ITは各々のコイルを励磁する3相交流の
励磁電流を示す。41a+、41tl+、41C+、4
1az、41bz。
11, +5. IT indicates a three-phase AC excitation current that excites each coil. 41a+, 41tl+, 41C+, 4
1az, 41bz.

41Czについても同様の結線を行う。Similar connections are made for 41Cz.

第3図(alは、該コイルを3相交流励磁した励磁電流
を示す。
FIG. 3 (al indicates the excitation current used to excite the coil with three-phase alternating current).

第2図における端子R,S、Tより、時間的に変化する
3相電流!工、Is、Iyで各コイルを励磁することに
より、鋳型内に磁束密度が時間的に変化する磁界が発生
する。第4図+alはこのときに発生ずる鋳型内の磁界
の長辺方向の磁束密度分布を示す。
Three-phase current that changes over time from terminals R, S, and T in Figure 2! By exciting each coil with Is, Iy, a magnetic field whose magnetic flux density changes over time is generated within the mold. FIG. 4+al shows the magnetic flux density distribution in the long side direction of the magnetic field inside the mold generated at this time.

該磁界の磁束密度分布曲線は時間経過とともに長辺方向
a (或いはaと逆方向)に移動する。該磁束密度分布
の移動により溶鋼内に誘導電流が発生し、この誘′R電
流と該磁界とによって発生する電磁力により、鋳型内の
溶鋼は該磁束密度分布の移動方向と同方向に電6■駆動
力を受け、溶鋼に流動が発生ずる。
The magnetic flux density distribution curve of the magnetic field moves in the long side direction a (or in the opposite direction to a) over time. An induced current is generated in the molten steel due to the movement of the magnetic flux density distribution, and due to the electromagnetic force generated by this induced current and the magnetic field, the molten steel in the mold is energized in the same direction as the movement direction of the magnetic flux density distribution. ■ Flow occurs in the molten steel as a result of the driving force.

而して溶1i1流f)+の発生により、未n+h酸鋼の
鋳造時には凝固過程におけるCO気泡の発生が抑制され
、スラグ表面肌下のピンホール発生が防市される。
The generation of the molten 1i1 flow f)+ suppresses the generation of CO bubbles during the solidification process during casting of non-n+h acid steel, and prevents the generation of pinholes under the surface of the slag.

次に第3図(blは該コイルを直流でl1iJl 供し
たときの励磁電流を示す。すなわら、I++++  I
ts、  IITを11g” Its+It↑−0とす
る時間的に変化しない直流の励磁電流により励磁するこ
とにより、υ1型内に時間的にLit束密度が変化しな
い直流磁界が発生する。第4図fblは、このとき鋳型
内に発生する磁界の、長辺方向の磁束密度分布を示す。
Next, FIG. 3 (bl shows the excitation current when the coil is supplied with direct current. In other words, I + + + + I
By exciting with a DC excitation current that does not change over time, which sets IIT to 11g'' Its+It↑-0, a DC magnetic field whose Lit flux density does not change over time is generated within the υ1 type. Fig. 4 fbl represents the magnetic flux density distribution in the long side direction of the magnetic field generated within the mold at this time.

このような磁束密度分布を有するGfi界の発生により
、イマージョンノズルより鋳型内に注入する注入流に対
し、電磁制動力を与えることが可能となる。しかも、1
111. 11!、  IITの値をI +++ +I
+i←11ア=0としつつ、任意にその割合を変えた直
流電流とすることにより、鋳型内に発生する61界の磁
束密度分布のピーク値し、の大きさと位置を(T:意に
調整制御し、これによりイマージョンノズルよりの注入
流分布及び制動希望位置に応じて該制動力を最も効果が
上がるように作用せしめることができる。
By generating a Gfi field having such a magnetic flux density distribution, it becomes possible to apply an electromagnetic braking force to the injection flow injected into the mold from the immersion nozzle. Moreover, 1
111. 11! , the value of IIT is I +++ +I
+i←11a=0, and by arbitrarily changing the ratio of DC current, the peak value of the magnetic flux density distribution of the 61 field generated in the mold, and the magnitude and position of (T: arbitrarily adjusted). This allows the braking force to be applied most effectively in accordance with the injection flow distribution from the immersion nozzle and the desired braking position.

更に、第3図ta+及び第3図tblに示した3相交流
電流と直流電流を重畳した励磁電流を該コイルに通電す
ることにより、上記電tn駆動力を′TL[i制動力と
同時に発生せしめ、必要な制動力を作用させながら、1
所望の撹拌を行うことも可能である。
Furthermore, by applying an excitation current that is a superimposition of three-phase alternating current and direct current shown in Fig. 3 ta+ and Fig. 3 tbl to the coil, the above electric tn driving force is generated simultaneously with 'TL 1 while applying the necessary braking force.
It is also possible to carry out the desired stirring.

第3図(C1はこのときの励磁電流の例を示す。第4図
(C1はこのときの鋳型内の磁界の長辺方向の磁束密度
分布を示し、時間的に移動しないで制動力の基本となる
磁束密度分布Bocと時間的に長辺方向aに移動して撹
拌力の基本となる磁束密度分布BACとが重畳された、
制動、攪拌用磁束密度分布ByoiAL力く得られる。
Figure 3 (C1 shows an example of the excitation current at this time. Figure 4 (C1 shows the magnetic flux density distribution in the long side direction of the magnetic field in the mold at this time, and shows the basics of the braking force without moving in time. The magnetic flux density distribution Boc, which becomes
A strong magnetic flux density distribution for braking and stirring can be obtained.

上記のような3種類の励磁電流を発生させるため、本発
明においては多相交流、直流及び両者の重畳電流の各々
を供給できる、それ自体は公知の電源装置を準備する。
In order to generate the three types of excitation currents as described above, the present invention prepares a power supply device that is known per se and is capable of supplying each of multiphase alternating current, direct current, and a superimposed current of both.

なお、上記実施例においては、3相交流電流を3個の励
磁コイルにJテえる例を示しているが、励磁コイルを3
以上のn個とし、これらにn相の多相交流電流を流すこ
とができることは勿論である。
In addition, in the above embodiment, an example is shown in which the three-phase alternating current is applied to three excitation coils, but the excitation coils are
Needless to say, it is possible to use the above n number of elements and to flow an n-phase polyphase alternating current through them.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明は鋳型内に配置した励磁コイルに対
し、多相交流励磁又は直流励磁、又は多相交流と直流を
重畳したDJ磁をi!沢的に行うことができるので、一
つの電磁力発生装:ろiにより連続鋳造操業を中断する
ことなく鋳型内の溶鋼に?ii E(f5■動力又は電
(l制動力或いはその組合わせ力を任なに作用さ一1!
:、’tR造する鋼種と要望品質に応じて、その内質の
調整を経済的に行うことができる。その結果、要望され
る材質を満たす鋼材を低コストで提(1(することが可
能となる等、多大の効果をもたらすものである。
As described above, the present invention provides multiphase AC excitation or DC excitation, or DJ magnetism in which multiphase AC and DC are superimposed, to the excitation coil placed in the mold. Since it can be carried out in a large amount, one electromagnetic force generating device can be applied to the molten steel in the mold without interrupting the continuous casting operation. ii.
: The internal quality can be adjusted economically depending on the type of steel to be manufactured and the desired quality. As a result, it has become possible to provide steel materials that meet the desired material quality at low cost, which brings about great effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図tコl)、 tb)は鋳型内に配置された電磁コ
イルを示し、 +81は1ノi型銅板と直角な方向にコ
イルを巻き、jhlはSki型銅板と平行な方向にコ・
イルを巻いた例を示す。また第2図(al) 、 (a
2) 、 (b)はそれぞれ第1図のコイルの結線図を
示す。第3図(a+は多相交流励磁時のコイル励磁電流
を示し、第3図(blは直流励磁時のコイル励磁を示す
。第3図telは多相交流と直流を重畳した時のコイル
励磁電流を示す。 第4図(alは多相交流励磁時の鋳型内磁励密度分布を
示し、第4図(b)は直流励(鼓時のSli型内仔り励
密度分布を示す。第4図(clは多相交流と直流を重畳
した励磁を行った際の鋳型的磁束密度分布を示す。 第5図は本発明装置の実験例における操作方法と溶鋼中
介在物量の関係を示す。
Figure 1 t(l), tb) shows the electromagnetic coil placed in the mold, +81 is the coil wound in the direction perpendicular to the 1-no.
An example of winding the file is shown below. Also, Figure 2 (al), (a
2) and (b) respectively show the wiring diagrams of the coils in Fig. 1. Figure 3 (a+ indicates coil excitation current during multi-phase AC excitation, Figure 3 (bl indicates coil excitation during DC excitation), and tel indicates coil excitation when multi-phase AC and DC are superimposed. Figure 4 (al shows the magnetic excitation density distribution in the mold during multiphase AC excitation, and Figure 4 (b) shows the excitation density distribution in the Sli mold during DC excitation. Figure 4 (cl shows the mold-like magnetic flux density distribution when excitation is performed with multiphase alternating current and direct current superimposed. Figure 5 shows the relationship between the operating method and the amount of inclusions in molten steel in an experimental example of the device of the present invention.

Claims (1)

【特許請求の範囲】 1、連続鋳造用鋳型銅板の外部に、少なくともm個(m
は3の整数倍)の電磁コイルを該鋳型の幅方向に沿って
2n個(nは1又は2)配設し、 前記鋳型内の溶鋼に電磁攪拌力、電磁制動力又は両者組
み合わせた力を選択して作用させるための多相交流電流
、直列電流又は交直重畳電流を選択して供給することが
できる電源に前記各電磁コイルを接続したことを特徴と
する連続鋳造鋳型用電磁コイル装置。 2、m個の電磁コイルを電源端子に対してY結線して励
磁する構成としたことを特徴とする特許請求の範囲第1
項記載の連続鋳造鋳型用電磁コイル装置。 3、m個の電磁コイルを電源端子に対してΔ結線して励
磁する構成としたことを特徴とする特許請求の範囲第1
項記載の連続鋳造鋳型用電磁コイル装置。
[Claims] 1. At least m pieces (m
2n electromagnetic coils (where n is an integer multiple of 3) are arranged along the width direction of the mold, and apply electromagnetic stirring force, electromagnetic braking force, or a combination of both to the molten steel in the mold. An electromagnetic coil device for a continuous casting mold, characterized in that each of the electromagnetic coils is connected to a power source that can selectively supply a multiphase alternating current, a series current, or an AC/DC superimposed current for selective operation. 2. Claim 1 characterized in that m electromagnetic coils are configured to be excited by Y-connecting them to a power supply terminal.
An electromagnetic coil device for continuous casting molds as described in 2. 3. Claim 1 characterized in that m electromagnetic coils are configured to be energized by being Δ-connected to a power supply terminal.
An electromagnetic coil device for continuous casting molds as described in 2.
JP4495286A 1986-02-28 1986-02-28 Electromagnetic coil apparatus for continuous casting mold Granted JPS62203648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4495286A JPS62203648A (en) 1986-02-28 1986-02-28 Electromagnetic coil apparatus for continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4495286A JPS62203648A (en) 1986-02-28 1986-02-28 Electromagnetic coil apparatus for continuous casting mold

Publications (2)

Publication Number Publication Date
JPS62203648A true JPS62203648A (en) 1987-09-08
JPH0333055B2 JPH0333055B2 (en) 1991-05-15

Family

ID=12705822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4495286A Granted JPS62203648A (en) 1986-02-28 1986-02-28 Electromagnetic coil apparatus for continuous casting mold

Country Status (1)

Country Link
JP (1) JPS62203648A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0401504A2 (en) * 1989-04-27 1990-12-12 Kawasaki Steel Corporation Apparatus and method for continuous casting
JPH05237621A (en) * 1992-02-28 1993-09-17 Sumitomo Metal Ind Ltd Continuous casting method
EP0774313A1 (en) * 1995-11-13 1997-05-21 Sms Schloemann-Siemag Aktiengesellschaft Electromagnetic stirring device for a slab caster mould
JP2005508755A (en) * 2001-09-27 2005-04-07 エービービー エービー Apparatus and method for continuous casting
KR100695902B1 (en) 2004-07-01 2007-03-20 최경태 Melt electromagnetic stirrer
CN108430668A (en) * 2015-12-30 2018-08-21 麦角灵实验室公司 The production equipment of metallic rod, casting machine, molten metal electromagnetic mixing apparatus casting technique and control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9506647A (en) * 1994-03-07 1997-09-02 Nippon Steel Corp Continuous casting process to cast a metal plate and continuous casting machine to continuously cast a metal plate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0401504A2 (en) * 1989-04-27 1990-12-12 Kawasaki Steel Corporation Apparatus and method for continuous casting
JPH05237621A (en) * 1992-02-28 1993-09-17 Sumitomo Metal Ind Ltd Continuous casting method
EP0774313A1 (en) * 1995-11-13 1997-05-21 Sms Schloemann-Siemag Aktiengesellschaft Electromagnetic stirring device for a slab caster mould
JP2005508755A (en) * 2001-09-27 2005-04-07 エービービー エービー Apparatus and method for continuous casting
KR100695902B1 (en) 2004-07-01 2007-03-20 최경태 Melt electromagnetic stirrer
CN108430668A (en) * 2015-12-30 2018-08-21 麦角灵实验室公司 The production equipment of metallic rod, casting machine, molten metal electromagnetic mixing apparatus casting technique and control method
CN108430668B (en) * 2015-12-30 2021-03-16 麦角灵实验室公司 Metal rod production facility, casting machine, casting process of electromagnetic stirring device for molten metal, and control method

Also Published As

Publication number Publication date
JPH0333055B2 (en) 1991-05-15

Similar Documents

Publication Publication Date Title
CN101868312B (en) Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
JP2009542442A (en) Method and apparatus for controlling the flow of molten steel in a mold
JP3725028B2 (en) Electromagnetic braking device for molten metal in continuous casting molds.
JP4438705B2 (en) Steel continuous casting method
TWI406720B (en) Method and device for the continuous casting of preliminary steel sections, in particular preliminary i-sections
JPS62203648A (en) Electromagnetic coil apparatus for continuous casting mold
JPS63188461A (en) Electromagnetic coil apparatus for continuous casting mold
JP2006289448A (en) Linear-moving magnetic field type electromagnetic-stirring apparatus
KR101207679B1 (en) Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
JP3570601B2 (en) Electromagnetic stirrer
JPH0131979B2 (en)
JPS6355389B2 (en)
JP4539024B2 (en) Steel continuous casting method
JPH09262650A (en) Method for controlling fluidity in mold in continuous casting and device therefor
JP3102967B2 (en) Method of braking molten metal in continuous casting mold and electromagnetic stirring device combined with brake
JP2009131856A (en) Continuous casting method of steel
JP2005238276A (en) Electromagnetic-stirring casting apparatus
JP2961447B2 (en) Electromagnetic stirring method for continuous casting equipment with multiple strands
JPS62279060A (en) Electromagnetic stirring apparatus
JP2004042065A (en) Electromagnetic stirring device
JPH04200849A (en) Electromagnetic stirring method for continuous casting
JPS63119962A (en) Rolling device for electromagnetic agitation
SU1470435A1 (en) Apparatus for electromagnetic agitating of liquid phase of continuously cast billets
JP2003103348A (en) Continuous casting method and facility for steel
JP2003275849A (en) Method for producing continuously cast slab