JP2009131856A - Continuous casting method of steel - Google Patents

Continuous casting method of steel Download PDF

Info

Publication number
JP2009131856A
JP2009131856A JP2007307516A JP2007307516A JP2009131856A JP 2009131856 A JP2009131856 A JP 2009131856A JP 2007307516 A JP2007307516 A JP 2007307516A JP 2007307516 A JP2007307516 A JP 2007307516A JP 2009131856 A JP2009131856 A JP 2009131856A
Authority
JP
Japan
Prior art keywords
mold
molten steel
electromagnetic
steel
ton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007307516A
Other languages
Japanese (ja)
Other versions
JP5029324B2 (en
Inventor
Hidenori Kurimoto
英典 栗本
Nobuaki Baba
宣彰 馬場
Nobuhiro Okada
信宏 岡田
Masayuki Kawamoto
正幸 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007307516A priority Critical patent/JP5029324B2/en
Publication of JP2009131856A publication Critical patent/JP2009131856A/en
Application granted granted Critical
Publication of JP5029324B2 publication Critical patent/JP5029324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To apply the optimum electric current corresponding to the variation of steel type or throughput. <P>SOLUTION: Electromagnetic coils, which has two teeth parts 5a, two exciting coils formed by a winding 5b on the outer peripheral parts of these teeth parts 5a and one exciting coil formed by a winding 5c on the whole peripheral part of two teeth parts 5a, are arranged on the outer periphery of each long sides 3b of a mold 3 with the same number and on whole outer periphery of the long side 3b with (2n+2) number (n is a natural number). When electromagnetically stirring a molten steel 2, polyphase alternative electric current is conducted in each exciting coil in all electromagnetic coils. When applying electromagnetic braking on the molten steel 2, direct electric current is conducted in the three exciting coils, and the steel is continuously casted. Depending on the steel composition and the supplying amount of the molten steel 2 poured into the mold 3, electromagnetic stirring caused by a moving magnetic field with the frequency of 1 Hz or more or electromagnetic braking caused by a static magnetic field with the magnetic field strength of 0.1 T or more is switched. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電磁ブレーキと電磁攪拌を兼用可能な電磁コイル装置を用いて、鋳型内溶鋼の流れを制御しつつ鋼を連続鋳造する方法に関するものである。   The present invention relates to a method for continuously casting steel while controlling the flow of molten steel in a mold using an electromagnetic coil device that can be used for both electromagnetic braking and electromagnetic stirring.

一般的な鋼の連続鋳造では、図5に示すように、2つの吐出孔1aを有する浸漬ノズル1を用いて鋳型3内に溶鋼2を給湯する。この連続鋳造では、浸漬ノズル1の吐出口1aから出た溶鋼2は、図5に示すように、鋳型3の短辺3aに衝突した後、上昇流2aと下降流2bに分岐し、上昇流2aは、さらに鋳型内の溶鋼湯面(メニスカス)位置において、浸漬ノズル1へ向かう水平流となる。なお、図5中の4はパウダーを示す。   In general continuous casting of steel, as shown in FIG. 5, molten steel 2 is supplied into a mold 3 using an immersion nozzle 1 having two discharge holes 1a. In this continuous casting, the molten steel 2 exiting from the discharge port 1a of the immersion nozzle 1 collides with the short side 3a of the mold 3 as shown in FIG. 5, and then branches into an upward flow 2a and a downward flow 2b. Further, 2a becomes a horizontal flow toward the immersion nozzle 1 at the position of the molten steel surface (meniscus) in the mold. In addition, 4 in FIG. 5 shows powder.

この鋳型内における溶鋼の流動制御は、操業上ならびに鋳片の品質管理上、極めて重要で、この溶鋼の流動制御を実現する方法として、鋳型内への溶鋼吐出流に制動力を作用させる電磁ブレーキと、電磁力により鋳型内の溶鋼を攪拌する電磁攪拌が知られている。   The flow control of the molten steel in the mold is extremely important in terms of operation and quality control of the slab. As a method for realizing the flow control of the molten steel, an electromagnetic brake that applies a braking force to the molten steel discharge flow into the mold. In addition, electromagnetic stirring is known in which molten steel in a mold is stirred by electromagnetic force.

このうち電磁攪拌は、メニスカス部の溶鋼に旋回力を付与することで、凝固シェルに捕捉された気泡性欠陥や介在物欠陥を洗い流す効果を有している。また電磁ブレーキは、浸漬ノズルからの吐出流に制動力を与えることで、鋳型内凝固シェルの再溶解を抑制する効果を有している。   Among these, electromagnetic stirring has the effect of washing away bubble defects and inclusion defects trapped in the solidified shell by applying a turning force to the molten steel in the meniscus portion. The electromagnetic brake has an effect of suppressing remelting of the solidified shell in the mold by applying a braking force to the discharge flow from the immersion nozzle.

しかしながら、鋳型内鋳片の断面積と鋳造速度で算出される鋳型内溶鋼の供給量(以下、スループットという。)が大きい時に、電磁攪拌を適用した場合は、攪拌力によって浸漬ノズルからの吐出流が加速される領域で凝固シェルの再溶解・破断が発生し、ブレイクアウトに至る可能性が高くなる。この問題を回避するため、従来は鋳造速度を規制する等の対策が採られており、連続鋳造の能率阻害を誘引していた。   However, when the amount of molten steel in the mold calculated by the cross-sectional area of the cast in the mold and the casting speed (hereinafter referred to as throughput) is large, when electromagnetic stirring is applied, the discharge flow from the immersion nozzle is caused by the stirring force. In the region where the accelerating is accelerated, the solidified shell is remelted and broken, and the possibility of breakout increases. In order to avoid this problem, conventionally, measures such as regulation of the casting speed have been taken, which has led to the inhibition of the efficiency of continuous casting.

一方、スループットが小さい時に、電磁ブレーキを適用した場合は、浸漬ノズルからの吐出流に制動力を与えすぎてメニスカスへの熱供給が不足し、圧延時に発生する表面疵の原因となる介在物が凝固シェルに捕捉される可能性が高くなる。よって、スループットが小さい場合には、電磁ブレーキを適用しない等の対策が採られていた。しかしながら、スループットが小さい領域の鋳片は、絶対的にメニスカス部への熱供給が不足しているので、品質は低位であり、鋳片の手入れや高級グレードへの適用を規制する等を余儀なくされていた。   On the other hand, when the electromagnetic brake is applied when the throughput is small, there is too much braking force applied to the discharge flow from the immersion nozzle, the heat supply to the meniscus is insufficient, and inclusions that cause surface flaws that occur during rolling are not present. The possibility of being trapped by the solidified shell is increased. Therefore, when the throughput is small, measures such as not applying an electromagnetic brake have been taken. However, slabs with low throughput have absolutely insufficient heat supply to the meniscus, so the quality is low, and slab maintenance and application to high-grade grades are inevitably restricted. It was.

以上の問題を回避するため、一般的にはスループットが大きい高速鋳造時には電磁ブレーキが、また、スループットが小さい低速鋳造時には電磁攪拌が用いられている。これらの電磁ブレーキ装置、電磁攪拌装置は、共に鉄芯に励磁コイルを巻いた電磁コイル装置を鋳型背面に設置することにより実現しているが、通常、電磁ブレーキ又は電磁攪拌のどちらか単独の機能しか有していない。   In order to avoid the above problems, electromagnetic brakes are generally used at high speed casting with a high throughput, and electromagnetic stirring is used at low speed casting with a low throughput. Both of these electromagnetic brake devices and electromagnetic stirrers are realized by installing an electromagnetic coil device with an exciting coil wound around an iron core on the back of the mold. I have only.

そこで、以前から電磁ブレーキと電磁攪拌の両機能の兼用を可能となす電磁コイル装置(以後、兼用コイル装置と言う。)が開発され、出願人も例えば特許文献1、2を提案している。
特開2005−349454号公報 特開2007−007719号公報
In view of this, an electromagnetic coil device (hereinafter referred to as a combined coil device) that can be used for both functions of electromagnetic brake and electromagnetic stirring has been developed, and the applicant has proposed Patent Documents 1 and 2, for example.
JP 2005-349454 A JP 2007-007719 A

この特許文献1、2の兼用コイル装置は、鋳型の外周に配置した電磁コイルに、直流又は交流の電流を供給することで、鋳型内の溶鋼に電磁ブレーキ又は電磁攪拌を選択的に作用させるもので、電磁ブレーキと電磁攪拌の兼用を可能にするものである。   The combined coil device of Patent Documents 1 and 2 selectively applies an electromagnetic brake or electromagnetic stirring to molten steel in a mold by supplying a direct current or an alternating current to an electromagnetic coil disposed on the outer periphery of the mold. Thus, the electromagnetic brake and the electromagnetic stirring can be used together.

このような兼用コイル装置を使用した場合、前記操業・品質上の問題が発生する領域においても鋳型内の溶鋼に流動制御を付与できると考えられるが、連続鋳造時に、鋼種やスループットの変化に対応した最適な電流の印加方法について開示されたものはなかった。   When such a dual-purpose coil device is used, it is thought that flow control can be given to the molten steel in the mold even in the region where the above-mentioned operational and quality problems occur, but it responds to changes in steel type and throughput during continuous casting. None of the disclosed optimal current application methods has been disclosed.

本発明が解決しようとする問題点は、電磁ブレーキと電磁攪拌の両機能の兼用を可能とする兼用コイル装置を用いた連続鋳造において、鋼種やスループットの変化に対応した最適な電流の印加方法が開示されたものはなかったという点である。   The problem to be solved by the present invention is that there is an optimum current application method corresponding to changes in steel type and throughput in continuous casting using a combined coil device that enables both functions of electromagnetic brake and electromagnetic stirring. There was no disclosure.

本発明の鋼の連続鋳造方法は、
兼用コイル装置を用いた連続鋳造において、鋼種やスループットの変化に対応した最適な電流の印加を行うもので、
2個のティース部と、これらティース部のそれぞれの外周部に巻き線を施した2個の励磁コイルと、2個のティース部を合わせた外周部に巻き線を施した1個の励磁コイルを有する電磁コイルを、鋳型長辺の外周に、各長辺で同じ個数で、鋳型長辺の外周合計で(2n+2)個(nは自然数)配置し、
鋳型内溶鋼を電磁攪拌する際には、全ての前記電磁コイルにおける各励磁コイルに多相交流電流を通電し、
鋳型内溶鋼に電磁ブレーキを付与する際には、前記3個の励磁コイルに直流電流を通電して鋼を連続鋳造する方法であって、
鋳型に給湯する溶鋼の成分組成と給湯量によって、周波数が1Hz以上の移動磁場による電磁攪拌、あるいは磁場強度が0.1T以上の静磁場による電磁ブレーキを切り替えることを最も主要な特徴としている。
The steel continuous casting method of the present invention is
In continuous casting using a combined coil device, it applies the optimal current corresponding to changes in steel type and throughput,
Two teeth, two excitation coils with windings around each of the teeth, and one excitation coil with windings around the two teeth An electromagnetic coil having the same number on each long side and (2n + 2) total (n is a natural number) on the outer periphery of the mold long side,
When electromagnetically stirring the molten steel in the mold, a multiphase alternating current is applied to each exciting coil in all the electromagnetic coils,
When applying an electromagnetic brake to molten steel in a mold, a method of continuously casting steel by passing a direct current through the three exciting coils,
The main feature is to switch between electromagnetic stirring by a moving magnetic field with a frequency of 1 Hz or more, or electromagnetic braking by a static magnetic field with a magnetic field strength of 0.1 T or more, depending on the composition of the molten steel to be supplied to the mold and the amount of hot water.

より具体的には、
鋳型に供給する前記溶鋼の成分炭素濃度が、
質量%で、0.005%以下の場合は、
鋳型内への給湯量が5.0ton/min未満の場合は、鋳型内の溶鋼に電磁攪拌を作用させるべく印加し、
鋳型内への給湯量が5.0ton/min以上の場合は、鋳型内の溶鋼に電磁ブレーキを作用させるべく印加する。
More specifically,
The component carbon concentration of the molten steel supplied to the mold is
In the case of 0.005% or less by mass%,
If the amount of hot water supplied to the mold is less than 5.0 ton / min, apply the electromagnetic stirring to the molten steel in the mold,
When the amount of hot water supplied into the mold is 5.0 ton / min or more, the electromagnetic brake is applied to the molten steel in the mold.

また、鋳型に供給する前記溶鋼の成分炭素濃度が、
質量%で、0.005%を超え、0.07%以下の場合は、
鋳型内への給湯量が4.0ton/min未満の場合は、鋳型内の溶鋼に電磁攪拌を作用させるべく印加し、
鋳型内への給湯量が4.0ton/min以上の場合は、鋳型内の溶鋼に電磁ブレーキを作用させるべく印加する。
The component carbon concentration of the molten steel supplied to the mold is
In the case of mass% exceeding 0.005% and 0.07% or less,
When the amount of hot water supplied to the mold is less than 4.0 ton / min, it is applied to cause electromagnetic stirring to the molten steel in the mold,
When the amount of hot water supplied into the mold is 4.0 ton / min or more, the electromagnetic brake is applied to the molten steel in the mold.

さらに、鋳型に供給する前記溶鋼の成分炭素濃度が、
質量%で、0.07%を超え、0.16%以下の場合は、
鋳型内への給湯量が3.0ton/min未満の場合は、鋳型内の溶鋼に電磁攪拌を作用させるべく印加し、
鋳型内への給湯量が3.0ton/min以上の場合は、鋳型内の溶鋼に電磁ブレーキを作用させるべく印加する。
Furthermore, the component carbon concentration of the molten steel supplied to the mold is
In the case of mass% exceeding 0.07% and 0.16% or less,
When the amount of hot water supplied to the mold is less than 3.0 ton / min, it is applied to cause electromagnetic stirring to the molten steel in the mold.
When the amount of hot water supplied into the mold is 3.0 ton / min or more, the electromagnetic brake is applied to the molten steel in the mold.

またさらに、鋳型に供給する前記溶鋼の成分炭素濃度が、
質量%で、0.16%を超え、1.0%以下の場合は、
鋳型内への給湯量が4.0ton/min未満の場合は、鋳型内の溶鋼に電磁攪拌を作用させるべく印加し、
鋳型内への給湯量が4.0ton/min以上の場合は、鋳型内の溶鋼に電磁ブレーキを作用させるべく印加する。
Furthermore, the component carbon concentration of the molten steel supplied to the mold is
In the case of mass% exceeding 0.16% and 1.0% or less,
When the amount of hot water supplied to the mold is less than 4.0 ton / min, it is applied to cause electromagnetic stirring to the molten steel in the mold,
When the amount of hot water supplied into the mold is 4.0 ton / min or more, the electromagnetic brake is applied to the molten steel in the mold.

上記本発明では、鋳型内への溶鋼の給湯量(ton/min)とタンディッシュ内の溶鋼過熱度(℃)の積で示される指標(−)が50を超える場合には、電磁ブレーキを作用させ、指標が50以下の場合には、品質向上、凝固シェルの破断に伴う操業支障の回避の観点からは、電磁ブレーキを作用させないか、電磁攪拌を作用させることが望ましい。   In the present invention, when the index (-) indicated by the product of the amount of molten steel supplied to the mold (ton / min) and the molten steel superheat degree (° C) in the tundish exceeds 50, an electromagnetic brake is applied. When the index is 50 or less, it is desirable not to actuate the electromagnetic brake or to actuate electromagnetic stirring from the viewpoint of improving the quality and avoiding operational troubles associated with the fracture of the solidified shell.

本発明では、鋳造時のスループットの条件に従って、電磁攪拌と電磁ブレーキを任意に切り替え、当該条件に対する最適な溶鋼流動制御を行うので、非定常な条件においても、品質良好な連続鋳造スラブを安定して製造することが可能になる。   In the present invention, electromagnetic stirring and electromagnetic braking are arbitrarily switched according to the throughput conditions during casting, and optimum molten steel flow control is performed for the conditions, so that a continuous cast slab with good quality can be stabilized even under unsteady conditions. Can be manufactured.

以下、本発明の着想から課題解決に至るまでの過程と共に、本発明を実施するための最良の形態について、図1〜図4を用いて説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS. 1 to 4 together with the process from the idea of the present invention to the solution of the problem.

発明者らは、鋼の連続鋳造に際し、特許文献2で提案した兼用コイル装置を使用した場合に、電磁攪拌と電磁ブレーキの切り替えに関する因子について検討した。その結果、鋼質を大きく支配する鋼の基礎成分である炭素濃度と、現在、電磁ブレーキと電磁攪拌を使い分けている鋳造速度の要因の一つであるスループットによって整理が可能であることを見出した。   The inventors examined factors related to switching between electromagnetic stirring and electromagnetic braking when the combined coil device proposed in Patent Document 2 was used in continuous casting of steel. As a result, we found that it is possible to sort by the carbon concentration, which is the basic component of steel, which largely controls the steel quality, and the throughput, which is one of the factors of the casting speed that currently uses electromagnetic brake and electromagnetic stirring. .

以下、発明者らが行った調査結果について説明する。
幅が1625mm、厚さが270mmの鋳片を製造可能な垂直曲げ型連続鋳造機で、炭素濃度が0.002〜0.73質量%の、極低炭素鋼、低炭素鋼、亜包晶鋼、高炭素鋼の溶鋼を、スループットを変化させて鋳造した。
Hereinafter, the results of investigations conducted by the inventors will be described.
An ultra-low carbon steel, low carbon steel, subperitectic steel with a vertical bend type continuous casting machine capable of producing slabs with a width of 1625mm and a thickness of 270mm and a carbon concentration of 0.002 to 0.73% by mass High-carbon steel was cast with varying throughput.

図1に鋳造に使用した兼用コイル装置と、その代表的な寸法を併せて示す。
図1中の5は鋳型3のそれぞれの長辺3b側に連続配置された2つの兼用コイル装置であり、2個のティース部5aそれぞれに巻き線5bを施し、更に2個のティース部5aの外側に巻き線5cを施してひとつにまとめている。なお、5dは上端をメニスカスと同じ高さとされたヨーク部、6は鋳型3の外側に設置したバックアッププレートを示す。
FIG. 1 shows a combined coil device used for casting and typical dimensions thereof.
Reference numeral 5 in FIG. 1 denotes two dual-purpose coil devices continuously arranged on the long side 3b side of the mold 3, and each of the two tooth portions 5a is provided with a winding 5b, and the two tooth portions 5a The winding 5c is given to the outer side, and it unites. In addition, 5d shows the yoke part which made the upper end the same height as the meniscus, and 6 shows the backup plate installed in the outer side of the casting_mold | template 3. FIG.

発明者らの実験によれば、前記図1に示した兼用コイル装置では、電磁攪拌の場合、交流電流として1Hz以上の周波数の移動磁場を与えることで、最低限の攪拌力を得ることができることが判明した。   According to the experiments by the inventors, in the combined coil device shown in FIG. 1, in the case of electromagnetic stirring, a minimum stirring force can be obtained by applying a moving magnetic field having a frequency of 1 Hz or more as an alternating current. There was found.

また電磁ブレーキの場合、直流電流として、鋳型内中心部の最大磁場強度が0.1T(テスラ)以上となるように静磁場を与えることで、浸漬ノズルからの吐出流に対する最低限の制動力を得ることができることが判明した。   In the case of an electromagnetic brake, by applying a static magnetic field so that the maximum magnetic field strength at the center in the mold is 0.1 T (Tesla) or more as a direct current, the minimum braking force against the discharge flow from the immersion nozzle is obtained. It turns out that you can get.

本発明の鋼の連続鋳造方法は以上の知見に基づいてなされたものであり、
2個のティース部と、これらティース部のそれぞれの外周部に巻き線を施した2個の励磁コイルと、2個のティース部を合わせた外周部に巻き線を施した1個の励磁コイルを有する電磁コイルを、鋳型長辺の外周に、各長辺で同じ個数で、鋳型長辺の外周合計で(2n+2)個(nは自然数)配置し、
鋳型内溶鋼を電磁攪拌する際には、全ての前記電磁コイルにおける各励磁コイルに多相交流電流を通電し、
鋳型内溶鋼に電磁ブレーキを付与する際には、前記3個の励磁コイルに直流電流を通電して鋼を連続鋳造する方法であって、
鋳型に給湯する溶鋼の成分組成と給湯量によって、周波数が1Hz以上の移動磁場による電磁攪拌、あるいは磁場強度が0.1T以上の静磁場による電磁ブレーキを切り替えることを主要な特徴とするものである。
The steel continuous casting method of the present invention is based on the above knowledge,
Two teeth, two excitation coils with windings around each of the teeth, and one excitation coil with windings around the two teeth An electromagnetic coil having the same number on each long side and (2n + 2) total (n is a natural number) on the outer periphery of the mold long side,
When electromagnetically stirring the molten steel in the mold, a multiphase alternating current is applied to each exciting coil in all the electromagnetic coils,
When applying an electromagnetic brake to molten steel in a mold, a method of continuously casting steel by passing a direct current through the three exciting coils,
The main feature is to switch between electromagnetic stirring by a moving magnetic field with a frequency of 1 Hz or more, or electromagnetic braking by a static magnetic field with a magnetic field strength of 0.1 T or more, depending on the composition of molten steel and the amount of hot water supplied to the mold. .

発明者らは、以下の仕様の図1に示した兼用コイル装置5を用いて、前記本発明方法におけるさらに具体的な印加態様につき、成分炭素濃度及びスループット量に応じて電磁攪拌、電磁ブレーキの印加を変化させ、ブレイクアウト発生の有無を調査した。その結果を図2に示す。   The inventors have used the combined coil device 5 shown in FIG. 1 with the following specifications, and according to a more specific application mode in the method of the present invention, depending on the component carbon concentration and the throughput amount, The presence or absence of breakout occurrence was investigated by changing the application. The result is shown in FIG.

(兼用コイル装置の仕様)
鋳型中心部の電磁力:3000Gauss
周波数:4.0Hz
コイルへの印加電流:1000Aの90巻き(90000AT)
交流電流の位相:120°位相の3相交流
(Specifications of the combined coil device)
Electromagnetic force at the center of the mold: 3000 Gauss
Frequency: 4.0Hz
Current applied to the coil: 90 turns of 1000A (90000AT)
AC current phase: 120 ° phase 3-phase AC

図2より、前記本発明方法における具体的な条件が判明した。
(鋳型に供給する溶鋼の成分炭素濃度が、0.005質量%以下の場合)
この場合は、溶鋼の凝固温度が高く、凝固時にδ相が発現し、鋳型内における凝固シェル強度が高いので、5.0ton/min未満の高スループットにおいては、電磁攪拌を行っても凝固シェルの破断を伴うことがなく、ブレイクアウトは発生しなかった。
From FIG. 2, the specific conditions in the method of the present invention were found.
(When the component carbon concentration of molten steel supplied to the mold is 0.005 mass% or less)
In this case, the solidification temperature of the molten steel is high, the δ phase appears during solidification, and the strength of the solidified shell in the mold is high. Therefore, at a high throughput of less than 5.0 ton / min, There was no breakage and no breakout occurred.

従って、5.0ton/min未満の高スループット範囲での電磁攪拌の印加が可能であり、鋳型内への給湯量が5.0ton/min未満の場合は、鋳型内の溶鋼に電磁攪拌を作用させるべく印加し、5.0ton/min以上の場合は、鋳型内の溶鋼に電磁ブレーキを作用させるべく印加すればよい。   Therefore, it is possible to apply electromagnetic stirring in a high throughput range of less than 5.0 ton / min. When the amount of hot water supplied into the mold is less than 5.0 ton / min, electromagnetic stirring is applied to the molten steel in the mold. In the case of 5.0 ton / min or more, the electromagnetic brake may be applied to the molten steel in the mold.

(鋳型に供給する溶鋼の成分炭素濃度が、0.005質量%を超え、0.07質量%以下の場合)
この場合は、溶鋼の成分炭素濃度が0.005質量%の鋼と比較して高温強度が低下する。しかしながら、包晶反応による不均一凝固を伴わないので、成分炭素濃度が0.07〜0.20質量%の鋼に比べてより広いスルーピット領域で電磁攪拌が可能になる。
(When the component carbon concentration of the molten steel supplied to the mold exceeds 0.005 mass% and is 0.07 mass% or less)
In this case, the high-temperature strength is reduced as compared with steel having a component carbon concentration of molten steel of 0.005% by mass. However, since non-uniform solidification due to the peritectic reaction is not involved, electromagnetic stirring can be performed in a wider through-pit region as compared with steel having a component carbon concentration of 0.07 to 0.20 mass%.

発明者らの調査によれば、4.0ton/min未満のスループットでは、電磁攪拌を行っても凝固シェルの破断を伴うことがなく、ブレイクアウトは発生しなかった。   According to the investigation by the inventors, at a throughput of less than 4.0 ton / min, breakage of the solidified shell did not occur even when electromagnetic stirring was performed, and no breakout occurred.

従って、鋳型内への給湯量が4.0ton/min未満の場合は、鋳型内の溶鋼に電磁攪拌を作用させるべく印加し、4.0ton/min以上の場合は、鋳型内の溶鋼に電磁ブレーキを作用させるべく印加すればよい。   Therefore, when the amount of hot water supplied to the mold is less than 4.0 ton / min, it is applied to cause electromagnetic stirring to the molten steel in the mold, and when it is 4.0 ton / min or more, the electromagnetic brake is applied to the molten steel in the mold. What is necessary is just to apply in order to act.

(鋳型に供給する溶鋼の成分炭素濃度が、0.07質量%を超え、0.16質量%以下の場合)
この場合は、包晶反応に伴って凝固シェルは不均一に成長するが、これは初期の不均一により鋳型と凝固シェルが離れ、より凝固遅れが進行することに起因するものである。従って、凝固シェル厚の薄い部位が顕著となるため、電磁攪拌を印加可能なスループット範囲が大幅に狭くなり、高スループット領域では電磁ブレーキの印加による吐出流速の抑制が必要になる。
(When the component carbon concentration of the molten steel supplied to the mold is more than 0.07% by mass and 0.16% by mass or less)
In this case, the solidified shell grows non-uniformly with the peritectic reaction, which is caused by the separation of the mold from the solidified shell due to the initial non-uniformity and further progress of the solidification delay. Accordingly, the thinned portion of the solidified shell becomes conspicuous, and the throughput range in which electromagnetic stirring can be applied is significantly narrowed. In a high throughput region, it is necessary to suppress the discharge flow rate by applying an electromagnetic brake.

発明者らの調査によれば、3.0ton/min未満のスループットの場合に、電磁攪拌を行っても凝固シェルの破断を伴うことがなく、ブレイクアウトは発生しなかった。   According to the investigation by the inventors, in the case of a throughput of less than 3.0 ton / min, even if electromagnetic stirring was performed, the solidified shell was not broken and no breakout occurred.

従って、鋳型内への給湯量が3.0ton/min未満の場合は、鋳型内の溶鋼に電磁攪拌を作用させるべく印加し、3.0ton/min以上の場合は、鋳型内の溶鋼に電磁ブレーキを作用させるべく印加すればよい。   Therefore, when the amount of hot water supplied into the mold is less than 3.0 ton / min, it is applied to cause electromagnetic stirring to the molten steel in the mold, and when it is 3.0 ton / min or more, the electromagnetic brake is applied to the molten steel in the mold. What is necessary is just to apply in order to act.

(鋳型に供給する溶鋼の成分炭素濃度が、0.16質量%を超え、1.0質量%以下の場合)
この場合も、溶鋼の成分炭素濃度が、0.005質量%を超え、0.07質量%以下の場合と同様、成分炭素濃度が0.005質量%の鋼と比較して高温強度が低下するが、包晶反応による不均一凝固を伴わないので、成分炭素濃度が0.07〜0.20質量%の鋼に比べてより広いスループット領域で電磁攪拌が可能になる。
(When the component carbon concentration of the molten steel supplied to the mold exceeds 0.16% by mass and is 1.0% by mass or less)
Also in this case, the high-temperature strength is reduced as compared with steel having a component carbon concentration of 0.005% by mass, as in the case where the component carbon concentration of the molten steel exceeds 0.005% by mass and is 0.07% by mass or less. However, since non-uniform solidification due to the peritectic reaction is not involved, electromagnetic stirring can be performed in a wider throughput region than steel having a component carbon concentration of 0.07 to 0.20 mass%.

従って、鋳型内への給湯量が4.0ton/min未満の場合は、鋳型内の溶鋼に電磁攪拌を作用させるべく印加し、4.0ton/min以上の場合は、鋳型内の溶鋼に電磁ブレーキを作用させるべく印加すればよい。   Therefore, when the amount of hot water supplied to the mold is less than 4.0 ton / min, it is applied to cause electromagnetic stirring to the molten steel in the mold, and when it is 4.0 ton / min or more, the electromagnetic brake is applied to the molten steel in the mold. What is necessary is just to apply in order to act.

発明者らは、さらに、タンディッシュ内の溶鋼過熱度との関係に関する因子を検討した。
その結果、高スループットにおいても、タンディッシュ内の溶鋼過熱度が低い場合は、電磁ブレーキを印加することで、例えばコイルなどの製品における表面品質が低下することが分かった。
The inventors further examined factors relating to the relationship with the degree of superheated molten steel in the tundish.
As a result, even at high throughput, it was found that when the molten steel superheat degree in the tundish is low, the surface quality of a product such as a coil is lowered by applying an electromagnetic brake.

このことから、発明者らは、製品の表面品質と、電磁流動制御の印加方法の関係を、スループットと溶鋼過熱度の積で示される指標で整理することを見出し、図3及び図4の関係を得た。   From this, the inventors found that the relationship between the surface quality of the product and the application method of electromagnetic flow control is arranged by an index indicated by the product of the throughput and the molten steel superheat degree, and the relationship between FIG. 3 and FIG. Got.

図3は、成分炭素濃度が0.01〜0.10質量%の溶鋼を、1.6m/min以上の鋳込み速度で、電磁ブレーキを作用させながら連続鋳造した場合の結果である。この図3より、前記指標が50以下のときに電磁ブレーキを印加すると、前記指標が50を超えるときに電磁ブレーキを印加する場合と比べ、製品の表面欠陥発生率が悪化することが分かる。   FIG. 3 shows a result of continuous casting of molten steel having a component carbon concentration of 0.01 to 0.10% by mass at a casting speed of 1.6 m / min or more while applying an electromagnetic brake. As can be seen from FIG. 3, when the electromagnetic brake is applied when the index is 50 or less, the surface defect occurrence rate of the product is deteriorated as compared with the case where the electromagnetic brake is applied when the index exceeds 50.

これは、前記指標が50以下のときには、メニスカス位置における溶鋼温度が低下し、介在物の捕捉が進行したことが原因である。従って、前記指標が50以下のときには、溶鋼流によるメニスカスへの熱供給を阻害する電磁ブレーキを印加しないようにして品質の改善を図るようにする。   This is because when the index is 50 or less, the molten steel temperature at the meniscus position is lowered, and the trapping of inclusions has progressed. Therefore, when the index is 50 or less, the quality is improved by not applying an electromagnetic brake that impedes heat supply to the meniscus by the molten steel flow.

一方、図4は、成分炭素濃度が0.01〜0.11質量%の溶鋼を、3.8〜6.1ton/minのスループットで、電磁ブレーキを作用させずに連続鋳造した場合の結果である(鋳込み幅は1140〜1625mm)。   On the other hand, FIG. 4 shows the result of continuous casting of molten steel having a component carbon concentration of 0.01 to 0.11% by mass at a throughput of 3.8 to 6.1 ton / min without applying an electromagnetic brake. Yes (casting width is 1140-1625 mm).

この図4より、前記指標が50を超える領域では、電磁ブレーキを印加しない場合は、前記指標が50以下の領域に比べ、ブレイクアウトの発生指数が大きくなって、ブレイクアウトが発生しやすくなることが分かる。   From FIG. 4, in the region where the index exceeds 50, when the electromagnetic brake is not applied, the breakout occurrence index becomes larger and breakout is likely to occur compared to the region where the index is 50 or less. I understand.

従って、前記指標が50を超える領域では、電磁ブレーキを印加することで、ブレイクアウトに至るような浸漬ノズルからの吐出流による凝固シェルの破断を防止し、凝固シェルの破断に伴う操業指標を回避しつつ、製品の表面品質の改善を図ることが望ましい。   Therefore, in the region where the index exceeds 50, by applying an electromagnetic brake, it is possible to prevent the solidified shell from being broken by the discharge flow from the immersion nozzle that leads to breakout, and to avoid the operation index associated with the fracture of the solidified shell. However, it is desirable to improve the surface quality of the product.

また、前記指標が50以下の領域では、電磁ブレーキを作用させないか、電磁攪拌を作用させることで、製品の表面品質の改善を図ることが望ましい。   In the region where the index is 50 or less, it is desirable to improve the surface quality of the product by not operating the electromagnetic brake or by applying electromagnetic stirring.

以上の図3及び図4の結果より、前記指標が50以下の領域では、電磁ブレーキを作用させないか、または電磁攪拌を作用させ、製品の表面品質の向上を図ること、一方、前記指標が50を超える領域では、電磁ブレーキを印加することで、凝固シェルの破断に伴う操業支障を回避することが望ましいことが判明した。
From the results of FIGS. 3 and 4 above, in the region where the index is 50 or less, the electromagnetic brake is not applied or electromagnetic stirring is applied to improve the surface quality of the product, while the index is 50 It has been found that it is desirable to avoid the operational trouble associated with the fracture of the solidified shell by applying an electromagnetic brake in the region exceeding.

本発明は上記した例に限らないことは勿論であり、各請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   It goes without saying that the present invention is not limited to the above-described examples, and the embodiments may be appropriately changed within the scope of the technical idea described in each claim.

例えば、交流電流は3相でなくても、電流位相差が90度から120度であればそれ以上でも良い。   For example, the AC current may not be three-phase, but may be more as long as the current phase difference is 90 degrees to 120 degrees.

上記の例では、溶鋼の成分炭素濃度が0.73質量%を超える例については調査していないが、成分炭素濃度が0.5質量%を超えると、全ての領域で液相→γ単相の変態となるので、シェルの凝固特性はほぼ同様と推定される。   In the above example, the case where the component carbon concentration of the molten steel exceeds 0.73% by mass is not investigated, but if the component carbon concentration exceeds 0.5% by mass, the liquid phase → γ single phase in all regions Therefore, the solidification characteristics of the shell are estimated to be almost the same.

以上の本発明は、連続鋳造であれば、湾曲型、垂直型など、どのような方式の連続鋳造であっても適用できる。また、スラブの連続鋳造だけでなくブルームの連続鋳造にも適用できる。   The present invention described above can be applied to any type of continuous casting such as a curved type and a vertical type as long as it is continuous casting. Moreover, it can be applied not only to continuous casting of slabs but also to continuous casting of blooms.

本発明方法に使用する兼用コイルの形状を説明する図で、(a)は水平断面図、(b)は垂直断面図である。It is a figure explaining the shape of the combined coil used for this invention method, (a) is a horizontal sectional view, (b) is a vertical sectional view. (a)(b)は兼用コイル装置を用いて、炭素濃度及びスループットと、電磁攪拌、電磁ブレーキの印加を変化させて、ブレイクアウト発生の有無を調査した結果を示した図である。(A) (b) is the figure which showed the result of having investigated the presence or absence of breakout generation | occurrence | production, changing a carbon concentration and a throughput, electromagnetic stirring, and the application of an electromagnetic brake using a combined coil apparatus. スループット×溶鋼過熱度で示す指標と製品の表面欠陥発生指数との関係を示した図である。It is the figure which showed the relationship between the parameter | index shown by a throughput x molten steel superheat degree, and the surface defect occurrence index of a product. スループット×溶鋼過熱度で示す指標とブレイクアウト発生指数との関係を示した図である。It is the figure which showed the relationship between the parameter | index shown by a throughput x molten steel superheat degree, and a breakout generation | occurrence | production index. 一般的な連続鋳造法における鋳型内溶鋼の流動状態を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the flow state of the molten steel in a mold in a general continuous casting method.

符号の説明Explanation of symbols

1 浸漬ノズル
2 溶鋼
3 鋳型
3a 短辺
3b 長辺
5 兼用コイル装置
5a ティース部
5b 内側巻き線
5c 外側巻き線
5d ヨーク部
DESCRIPTION OF SYMBOLS 1 Immersion nozzle 2 Molten steel 3 Mold 3a Short side 3b Long side 5 Combined coil apparatus 5a Teeth part 5b Inner winding 5c Outer winding 5d Yoke part

Claims (6)

2個のティース部と、これらティース部のそれぞれの外周部に巻き線を施した2個の励磁コイルと、2個のティース部を合わせた外周部に巻き線を施した1個の励磁コイルを有する電磁コイルを、鋳型長辺の外周に、各長辺で同じ個数で、鋳型長辺の外周合計で(2n+2)個(nは自然数)配置し、
鋳型内溶鋼を電磁攪拌する際には、全ての前記電磁コイルにおける各励磁コイルに多相交流電流を通電し、
鋳型内溶鋼に電磁ブレーキを付与する際には、前記3個の励磁コイルに直流電流を通電して鋼を連続鋳造する方法であって、
鋳型に給湯する溶鋼の成分組成と給湯量によって、周波数が1Hz以上の移動磁場による電磁攪拌、あるいは磁場強度が0.1T以上の静磁場による電磁ブレーキを切り替えることを特徴とする鋼の連続鋳造方法。
Two teeth, two excitation coils with windings around each of the teeth, and one excitation coil with windings around the two teeth An electromagnetic coil having the same number on each long side and (2n + 2) total (n is a natural number) on the outer periphery of the mold long side,
When electromagnetically stirring the molten steel in the mold, a multiphase alternating current is applied to each exciting coil in all the electromagnetic coils,
When applying an electromagnetic brake to molten steel in a mold, a method of continuously casting steel by passing a direct current through the three exciting coils,
A method for continuous casting of steel characterized by switching electromagnetic stirring by a moving magnetic field having a frequency of 1 Hz or more, or electromagnetic braking by a static magnetic field having a magnetic field strength of 0.1 T or more, depending on the composition of the molten steel to be supplied to the mold and the amount of hot water to be supplied. .
鋳型に供給する前記溶鋼の成分炭素濃度が、
質量%で、0.005%以下の場合は、
鋳型内への給湯量が5.0ton/min未満の場合は、鋳型内の溶鋼に電磁攪拌を作用させるべく印加し、
鋳型内への給湯量が5.0ton/min以上の場合は、鋳型内の溶鋼に電磁ブレーキを作用させるべく印加することを特徴とする請求項1に記載の鋼の連続鋳造方法。
The component carbon concentration of the molten steel supplied to the mold is
In the case of 0.005% or less by mass%,
If the amount of hot water supplied to the mold is less than 5.0 ton / min, apply the electromagnetic stirring to the molten steel in the mold,
2. The steel continuous casting method according to claim 1, wherein when the amount of hot water supplied into the mold is 5.0 ton / min or more, an electromagnetic brake is applied to the molten steel in the mold.
鋳型に供給する前記溶鋼の成分炭素濃度が、
質量%で、0.005%を超え、0.07%以下の場合は、
鋳型内への給湯量が4.0ton/min未満の場合は、鋳型内の溶鋼に電磁攪拌を作用させるべく印加し、
鋳型内への給湯量が4.0ton/min以上の場合は、鋳型内の溶鋼に電磁ブレーキを作用させるべく印加することを特徴とする請求項1に記載の鋼の連続鋳造方法。
The component carbon concentration of the molten steel supplied to the mold is
In the case of mass% exceeding 0.005% and 0.07% or less,
When the amount of hot water supplied to the mold is less than 4.0 ton / min, it is applied to cause electromagnetic stirring to the molten steel in the mold,
2. The steel continuous casting method according to claim 1, wherein when the amount of hot water supplied into the mold is 4.0 ton / min or more, an electromagnetic brake is applied to the molten steel in the mold.
鋳型に供給する前記溶鋼の成分炭素濃度が、
質量%で、0.07%を超え、0.16%以下の場合は、
鋳型内への給湯量が3.0ton/min未満の場合は、鋳型内の溶鋼に電磁攪拌を作用させるべく印加し、
鋳型内への給湯量が3.0ton/min以上の場合は、鋳型内の溶鋼に電磁ブレーキを作用させるべく印加することを特徴とする請求項1に記載の鋼の連続鋳造方法。
The component carbon concentration of the molten steel supplied to the mold is
In the case of mass% exceeding 0.07% and 0.16% or less,
When the amount of hot water supplied to the mold is less than 3.0 ton / min, it is applied to cause electromagnetic stirring to the molten steel in the mold.
2. The steel continuous casting method according to claim 1, wherein when the amount of hot water supplied into the mold is 3.0 ton / min or more, an electromagnetic brake is applied to the molten steel in the mold.
鋳型に供給する前記溶鋼の成分炭素濃度が、
質量%で、0.16%を超え、1.0%以下の場合は、
鋳型内への給湯量が4.0ton/min未満の場合は、鋳型内の溶鋼に電磁攪拌を作用させるべく印加し、
鋳型内への給湯量が4.0ton/min以上の場合は、鋳型内の溶鋼に電磁ブレーキを作用させるべく印加することを特徴とする請求項1に記載の鋼の連続鋳造方法。
The component carbon concentration of the molten steel supplied to the mold is
In the case of mass% exceeding 0.16% and 1.0% or less,
When the amount of hot water supplied to the mold is less than 4.0 ton / min, it is applied to cause electromagnetic stirring to the molten steel in the mold,
2. The steel continuous casting method according to claim 1, wherein when the amount of hot water supplied into the mold is 4.0 ton / min or more, an electromagnetic brake is applied to the molten steel in the mold.
鋳型内への溶鋼の給湯量(ton/min)とタンディッシュ内の溶鋼過熱度(℃)の積で示される指標(−)が50を超える場合には、電磁ブレーキを作用させ、指標が50以下の場合には、電磁ブレーキを作用させないか、電磁攪拌を作用させることを特徴とする請求項1〜5の何れかに記載の連続鋳造方法。   When the index (−) indicated by the product of the amount of hot water supplied into the mold (ton / min) and the molten steel superheat degree (° C.) in the tundish exceeds 50, an electromagnetic brake is applied and the index is 50 6. The continuous casting method according to claim 1, wherein an electromagnetic brake is not applied or electromagnetic stirring is applied in the following cases.
JP2007307516A 2007-11-28 2007-11-28 Steel continuous casting method Active JP5029324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007307516A JP5029324B2 (en) 2007-11-28 2007-11-28 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307516A JP5029324B2 (en) 2007-11-28 2007-11-28 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2009131856A true JP2009131856A (en) 2009-06-18
JP5029324B2 JP5029324B2 (en) 2012-09-19

Family

ID=40864307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307516A Active JP5029324B2 (en) 2007-11-28 2007-11-28 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP5029324B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024072A (en) * 2012-07-24 2014-02-06 Nippon Steel & Sumitomo Metal Continuous casting method of steel
JP2014140858A (en) * 2013-01-23 2014-08-07 Nisshin Steel Co Ltd Continuous casting method
JP2020001092A (en) * 2018-06-22 2020-01-09 日本製鉄株式会社 Continuous casting method for steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188461A (en) * 1987-01-30 1988-08-04 Nippon Steel Corp Electromagnetic coil apparatus for continuous casting mold
JPH09164458A (en) * 1995-11-13 1997-06-24 Sms Schloeman Siemag Ag Electromagnetic stirring apparatus for mold for continuous casting of slab
JP2004322179A (en) * 2003-04-25 2004-11-18 Sumitomo Metal Ind Ltd Electromagnetic force control device in mold and continuous casting method
JP2007007719A (en) * 2005-07-04 2007-01-18 Sumitomo Metal Ind Ltd Method for continuously casting steel
JP2009006370A (en) * 2007-06-28 2009-01-15 Sumitomo Metal Ind Ltd Continuous casting method for steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188461A (en) * 1987-01-30 1988-08-04 Nippon Steel Corp Electromagnetic coil apparatus for continuous casting mold
JPH09164458A (en) * 1995-11-13 1997-06-24 Sms Schloeman Siemag Ag Electromagnetic stirring apparatus for mold for continuous casting of slab
JP2004322179A (en) * 2003-04-25 2004-11-18 Sumitomo Metal Ind Ltd Electromagnetic force control device in mold and continuous casting method
JP2007007719A (en) * 2005-07-04 2007-01-18 Sumitomo Metal Ind Ltd Method for continuously casting steel
JP2009006370A (en) * 2007-06-28 2009-01-15 Sumitomo Metal Ind Ltd Continuous casting method for steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024072A (en) * 2012-07-24 2014-02-06 Nippon Steel & Sumitomo Metal Continuous casting method of steel
JP2014140858A (en) * 2013-01-23 2014-08-07 Nisshin Steel Co Ltd Continuous casting method
JP2020001092A (en) * 2018-06-22 2020-01-09 日本製鉄株式会社 Continuous casting method for steel
JP7247777B2 (en) 2018-06-22 2023-03-29 日本製鉄株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP5029324B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP4967856B2 (en) Steel continuous casting method
US7305271B2 (en) Device and a method for continuous casting
EP2974810B1 (en) Casting equipment and casting method using same
JP5029324B2 (en) Steel continuous casting method
JP4968020B2 (en) Operating method at the beginning of casting during continuous casting of steel
KR101207679B1 (en) Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
Kunstreich Electromagnetic stirring for continuous casting-Part 2
JP2004314096A (en) Continuous casting method for steel
JP2009119486A (en) Method for producing continuously cast slab
JP2010089153A (en) Tundish for continuous casting and method for continuous casting
JPH07214262A (en) Method for preventing center segregation of continuous casting slab
JP5825215B2 (en) Steel continuous casting method
JP4848656B2 (en) Method and apparatus for continuous casting of steel
JP7247777B2 (en) Steel continuous casting method
JP2003164948A (en) Method and equipment for continuous casting of steel
KR101957594B1 (en) Continuous casting method using electromagnetic stirring
JP4872723B2 (en) Steel continuous casting method
JP4807115B2 (en) Steel continuous casting method
JPH0515949A (en) Apparatus and method for continuously casting metal
RU2464123C1 (en) Method of adjusting conditions of electromagnetic mixing of ingot liquid phase in slab continuous casting machine and device to this end
JP4910997B2 (en) Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP5359653B2 (en) Steel continuous casting method
JPH01162548A (en) Method for electromagnetic-stirring molten metal in continuous casting
JP2010075970A (en) Continuous casting method for steel
JPH10193056A (en) Method for removing inclusion in continuous casting tundish

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

R150 Certificate of patent or registration of utility model

Ref document number: 5029324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350