JP7247777B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP7247777B2
JP7247777B2 JP2019113811A JP2019113811A JP7247777B2 JP 7247777 B2 JP7247777 B2 JP 7247777B2 JP 2019113811 A JP2019113811 A JP 2019113811A JP 2019113811 A JP2019113811 A JP 2019113811A JP 7247777 B2 JP7247777 B2 JP 7247777B2
Authority
JP
Japan
Prior art keywords
electromagnetic
molten steel
mold
outer circumference
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019113811A
Other languages
Japanese (ja)
Other versions
JP2020001092A (en
Inventor
翔平 望月
寛幸 七辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2020001092A publication Critical patent/JP2020001092A/en
Application granted granted Critical
Publication of JP7247777B2 publication Critical patent/JP7247777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電磁攪拌と電磁ブレーキを兼用可能な電磁コイル装置を使用して、鋳型内に供給された溶鋼の流動制御を行いつつ鋼を連続鋳造する方法に関するものである。 The present invention relates to a method of continuously casting steel while controlling the flow of molten steel supplied into a mold using an electromagnetic coil device capable of both electromagnetic stirring and electromagnetic braking.

鋼の連続鋳造は、2つの吐出口を有する浸漬ノズルを用いて鋳型内に溶鋼を供給するのが一般的である。この一般的な連続鋳造法における鋳型内溶鋼の流動状態を、図4に模式的に示す。浸漬ノズル1の吐出口1aから鋳型3内に供給された溶鋼2は、図4に示すように、鋳型3の短辺3aに衝突した後、上昇流2aと下降流2bに分岐する。このうち、上昇流2aは、メニスカス位置(鋳型内の溶鋼湯面位置)4において浸漬ノズル1へ向かう水平流となる。なお、図4中の5はパウダー、6は凝固シェルを示す。 Continuous casting of steel generally uses a submerged nozzle with two outlets to feed molten steel into a mold. FIG. 4 schematically shows the flow state of molten steel in the mold in this general continuous casting method. As shown in FIG. 4, the molten steel 2 supplied into the mold 3 from the discharge port 1a of the submerged nozzle 1 collides with the short side 3a of the mold 3 and then branches into an upward flow 2a and a downward flow 2b. Among them, the ascending flow 2a becomes a horizontal flow toward the submerged nozzle 1 at the meniscus position (the molten steel surface position in the mold) 4 . In addition, 5 in FIG. 4 indicates a powder, and 6 indicates a solidified shell.

鋳型内における前記溶鋼流動の制御は、操業上ならびに鋳片の品質管理上、極めて重要であり、前記溶鋼流動の制御方法として、浸漬ノズルの形状を工夫する方法、鋳型内の溶鋼に電磁力を作用させる方法などがある。 The control of the molten steel flow in the mold is extremely important in terms of operation and quality control of the slab. There are ways to make it work.

このうち、溶鋼に電磁力を作用させる方法が広く採用されており、浸漬ノズルから鋳型内に吐出された溶鋼に制動力を作用させる電磁ブレーキと、鋳型内に供給された溶鋼を攪拌する電磁攪拌に大別される。 Among these methods, the method of applying electromagnetic force to the molten steel is widely used. It is divided into

電磁ブレーキは、図5に示したように、鋳型3の長辺3bの外周側に設けた電磁コイル7に直流電流を印加して鋳型3を貫通する静磁場を発生させ、浸漬ノズル1から鋳型3内に吐出された溶鋼2の流動に対して反対向きのローレンツ力Fを働かせる手法である。なお、図5中の矢印は、溶鋼2の流れ方向を示す。 The electromagnetic brake, as shown in FIG. This is a method of applying a Lorentz force F in the opposite direction to the flow of the molten steel 2 discharged into the chamber 3 . In addition, the arrow in FIG. 5 indicates the flow direction of the molten steel 2 .

そして、前記静磁場によって浸漬ノズル1から鋳型3内に吐出された溶鋼2の流動を制動し、凝固シェル6の不均一凝固を抑制すると共に、凝固シェル6の再溶解を防止する。凝固シェルの不均一凝固抑制は、鋳片表面の割れ抑制に効果的であり、凝固シェルの再溶解抑制は、凝固シェルの厚さ不足によるブレークアウト防止に効果的である。なお、ブレークアウトとは、凝固シェルが破断して溶鋼が漏れ出し、連続鋳造の継続が不能となるトラブルをいう。 The static magnetic field brakes the flow of the molten steel 2 discharged from the immersion nozzle 1 into the mold 3, suppresses uneven solidification of the solidified shell 6, and prevents the solidified shell 6 from remelting. Suppression of non-uniform solidification of the solidified shell is effective in suppressing cracks on the slab surface, and suppression of remelting of the solidified shell is effective in preventing breakout due to insufficient thickness of the solidified shell. A breakout is a trouble in which the solidified shell breaks and molten steel leaks out, making it impossible to continue continuous casting.

一方、電磁攪拌は、図6に示したように、電磁コイル7に交流電流を印加して鋳型3の長辺3bに沿って一方向に移動する磁場を発生させ、メニスカス位置4の近傍の溶鋼2に鋳型3の長辺3bに沿って一方向のローレンツ力Fを働かせる手法である。 On the other hand, in the electromagnetic stirring, as shown in FIG. 6, an alternating current is applied to the electromagnetic coil 7 to generate a magnetic field that moves in one direction along the long side 3b of the mold 3, and the molten steel near the meniscus position 4 is stirred. 2, a Lorentz force F in one direction is applied along the long side 3 b of the mold 3 .

このとき、鋳型の固定側と自由側とで、形成させる移動磁場の方向を反対向きとすることで、メニスカス位置近傍の溶鋼に対して、横断面で見た場合に鋳型内を旋回する流れを形成する。ここで、鋳型の固定側とは垂直曲げ型或いは曲げ型の連続鋳造機において円弧の外側を、また、自由側とは円弧の内側を指し、鋳型の厚み方向を特定する。 At this time, the direction of the moving magnetic field formed on the fixed side and the free side of the mold is opposite to each other. Form. Here, the fixed side of the mold refers to the outer side of the circular arc in a vertical bending type or bending type continuous casting machine, and the free side refers to the inner side of the circular arc, specifying the thickness direction of the mold.

鋳型内のメニスカス位置近傍を旋回する溶鋼流れにより、凝固シェル界面に捕捉される気泡やパウダー等の介在物に対してウォッシング効果が働き、気泡や介在物の溶鋼湯面への浮上促進に効果を奏する。なお、ウォッシング効果とは、凝固シェル-溶鋼界面に流動がある場合に気泡や介在物が付着しにくくなる効果をいう。 The molten steel flow swirling near the meniscus position in the mold has a washing effect on inclusions such as air bubbles and powder trapped at the interface of the solidified shell. Play. The washing effect refers to the effect that bubbles and inclusions are less likely to adhere when there is flow at the solidified shell-molten steel interface.

電磁ブレーキと電磁攪拌は、それぞれに長所と短所を有するが、一般的には、単位時間当たりの溶鋼供給量が多い高スループット鋳造(高速鋳造)時は電磁ブレーキが、また、単位時間当たりの溶鋼供給量が少ない低スループット鋳造(低速鋳造)時は電磁攪拌が用いられている。 Electromagnetic brakes and electromagnetic stirring each have their advantages and disadvantages. Electromagnetic stirring is used during low-throughput casting (low-speed casting) where the amount of supply is small.

これらの電磁ブレーキ、電磁攪拌に使用する電磁コイル装置は、通常、何れか一つの機能しか有していない。 These electromagnetic brakes and electromagnetic coil devices used for electromagnetic stirring usually have only one function.

そこで、例えば特許文献1,2に開示された装置に代表されるような、電磁ブレーキと電磁攪拌の両機能を兼用することが可能な電磁コイル装置(以後、兼用コイル装置と言う。)が開発された。 Therefore, an electromagnetic coil device (hereinafter referred to as a dual-purpose coil device) capable of performing both functions of electromagnetic braking and electromagnetic stirring, such as those disclosed in Patent Documents 1 and 2, has been developed. was done.

この兼用コイル装置は、電流印加条件を切り替えることにより、同一のコイルを用いて、連続鋳造中、メニスカス位置で電磁攪拌を、また、浸漬ノズルの吐出口部で電磁ブレーキを作用させることが可能である。 By switching the current application conditions, this dual-purpose coil device can apply electromagnetic stirring at the meniscus position and electromagnetic braking at the discharge port of the submerged nozzle during continuous casting using the same coil. be.

この兼用コイル装置により、連続鋳造中の電磁攪拌と電磁ブレーキの切り替えによる品質や操業性の改善、設備のコンパクト化などのメリットを享受できるようになった。 With this dual-purpose coil device, it has become possible to enjoy the benefits of switching between electromagnetic stirring and electromagnetic braking during continuous casting, improving quality and operability, and making equipment more compact.

また、兼用コイル装置を用いた連続鋳造において、電磁ブレーキと電磁攪拌の前記長所や短所を考慮し、特許文献3のように、溶鋼の成分組成と、単位時間当たりの溶鋼供給量によって、電磁攪拌と電磁ブレーキを切り替える手法があるが、この手法で切り替える場合、以下の課題が存在する。 In continuous casting using a dual-purpose coil device, considering the advantages and disadvantages of electromagnetic braking and electromagnetic stirring, as in Patent Document 3, electromagnetic stirring and the electromagnetic brake, but there are the following problems when switching by this method.

電磁攪拌は、浸漬ノズルから吐出された溶鋼の上昇流からの浸漬ノズルへと向かう流れを加速または打ち消して反対向きの流れとすることで、鋳型断面を旋回する流れを形成している。そして、この旋回流によって、メニスカス位置における溶鋼流速を上昇させ、気泡や介在物の凝固シェルへの捕捉を防止するのと共に、溶鋼温度が低い際に生じるメニスカス位置での皮張りを抑制するので、表面疵の防止に効果がある。 Electromagnetic stirring accelerates or cancels the upward flow of molten steel discharged from the submerged nozzle toward the submerged nozzle to create a flow in the opposite direction, thereby forming a swirling flow in the cross section of the mold. This swirling flow increases the molten steel flow velocity at the meniscus position, prevents air bubbles and inclusions from being captured by the solidified shell, and suppresses skinning at the meniscus position that occurs when the molten steel temperature is low. Effective in preventing surface flaws.

しかしながら、鋳型に供給される溶鋼量が多い場合の電磁攪拌適用において、連々鋳直後などの溶鋼温度が高い場合、攪拌流動によって凝固シェルの再溶解が促進される。凝固シェルの再溶解が促進されると、凝固シェルの厚みが不足し、ブレークアウトのリスクが高くなる。なお、連々鋳とは、連続鋳造を中断せず、多数のヒートを連続的に鋳込むことをいい、連々鋳直後は鋳造中の溶鋼温度の低下代を補うために溶鋼温度が高くなっている。 However, in the application of electromagnetic stirring when a large amount of molten steel is supplied to the mold, when the temperature of the molten steel is high, such as immediately after continuous casting, the stirring flow promotes remelting of the solidified shell. If the redissolution of the solidified shell is accelerated, the thickness of the solidified shell becomes insufficient and the risk of breakout increases. Continuous casting refers to continuous casting of multiple heats without interrupting continuous casting. Immediately after continuous casting, the molten steel temperature is high to compensate for the drop in molten steel temperature during casting. .

一方、電磁ブレーキは、浸漬ノズルから吐出される溶鋼の流速を低下させることで、凝固シェルに衝突する溶鋼の流速を低下させ、不均一凝固に起因する割れの緩和や、凝固シェルの再溶解抑制によるブレークアウト防止に効果がある。特に、溶鋼温度が高い場合には、不均一凝固や凝固シェルの再溶解が顕著になるため、電磁ブレーキは更に重要となる。 On the other hand, the electromagnetic brake reduces the flow velocity of the molten steel discharged from the immersion nozzle, thereby reducing the flow velocity of the molten steel colliding with the solidified shell, mitigating cracks caused by uneven solidification, and suppressing the remelting of the solidified shell. It is effective in preventing breakout due to In particular, when the temperature of the molten steel is high, non-uniform solidification and remelting of the solidified shell become significant, so the electromagnetic brake becomes even more important.

しかしながら、鋳型に供給される溶鋼量が少ない場合の電磁ブレーキ適用において、溶鋼の温度が低い場合、メニスカス位置における熱流束不足により、メニスカス位置で皮張りが発生し、介在物や気泡性欠陥の増加につながる。 However, when the electromagnetic brake is applied when the amount of molten steel supplied to the mold is small, when the temperature of the molten steel is low, skinning occurs at the meniscus position due to insufficient heat flux at the meniscus position, increasing inclusions and bubble defects. leads to

特許第5023989号公報Japanese Patent No. 5023989 特許第5023990号公報Japanese Patent No. 5023990 特許第4967856号公報Japanese Patent No. 4967856

本発明が解決しようとする課題は、兼用コイル装置を用いて鋼を連続鋳造する際に、供給する溶鋼量だけで電磁攪拌と電磁ブレーキの切り替えを行う場合、操業条件によっては必ずしも十分な効果を得ることができないという点である。 The problem to be solved by the present invention is that, when continuously casting steel using a dual-purpose coil device, if switching between electromagnetic stirring and electromagnetic braking is performed only by the amount of molten steel to be supplied, a sufficient effect may not always be obtained depending on the operating conditions. The point is that it cannot be obtained.

本発明の鋼の連続鋳造方法は、
兼用コイル装置の切り替えを最適に行うことを目的としたもので、
例えば、図1に示すような、
2個の磁極鉄芯8aと、この磁極鉄芯8aのそれぞれの外周部に巻き回した2個のコイル8bと、2個の磁極鉄芯8aを合わせた外周部に巻き回した1個のコイル8cを有する電磁コイルを、鋳型長辺3bの外周に、各長辺3bで同じ個数で、鋳型長辺3bの外周合計で(2n+2)個(nは自然数)配置し、
鋳型内溶鋼2を電磁攪拌する際には、全ての前記電磁コイルにおける各コイル8b,8cに、電流位相差が90度から120度の3相以上の多相交流電流を通電し、
鋳型内溶鋼2に電磁ブレーキを作用させる際には、前記各電磁コイル当たり、前記2個の磁極鉄芯8aを合わせた外周部に巻き回された1個の前記コイル8cに直流電流を通電するか、またはこれら3個のコイル8b,8cに直流電流を通電する、兼用コイル装置8を用いた鋼の連続鋳造方法である。
The steel continuous casting method of the present invention comprises:
The purpose is to optimally switch the dual-purpose coil device.
For example, as shown in FIG.
Two magnetic pole iron cores 8a, two coils 8b wound around the outer circumference of each of the magnetic pole iron cores 8a, and one coil wound around the outer circumference of the combined two magnetic pole iron cores 8a. 8c are arranged on the outer periphery of the long side 3b of the mold in the same number on each long side 3b, and (2n + 2) (n is a natural number) in total on the outer periphery of the long side 3b of the mold,
When the molten steel 2 in the mold is electromagnetically stirred, the coils 8b and 8c of all the electromagnetic coils are energized with a multiphase alternating current of three or more phases with a current phase difference of 90 degrees to 120 degrees,
When the electromagnetic brake is applied to the molten steel 2 in the mold, a DC current is applied to one coil 8c wound around the outer circumference of the two magnetic pole iron cores 8a for each electromagnetic coil. Alternatively, it is a continuous casting method of steel using a dual-purpose coil device 8 in which direct current is applied to these three coils 8b and 8c.

そして、本発明では、
鋳型に供給する溶鋼の成分組成と、タンディッシュ内溶鋼の過熱度ΔT(℃、ΔT≧0)と、鋳造速度Vc(m/min、Vc>0)及び浸漬ノズルの浸漬深さX(mm、X>0)に応じて、電磁攪拌または電磁ブレーキを選択的に切り替えることを最も主要な特徴としている。なお、本発明において、浸漬ノズルの浸漬深さとは、メニスカス位置から浸漬ノズルの吐出口における鋳造方向中心位置までの距離をいう。
And in the present invention,
The chemical composition of the molten steel supplied to the mold, the degree of superheat ΔT (°C, ΔT≧0) of the molten steel in the tundish, the casting speed Vc (m/min, Vc>0), and the immersion depth of the immersion nozzle X (mm, The most important feature is to selectively switch between electromagnetic stirring or electromagnetic braking depending on X>0). In the present invention, the immersion depth of the submerged nozzle refers to the distance from the meniscus position to the center position of the discharge port of the submerged nozzle in the casting direction.

ここで、タンディッシュ内溶鋼の過熱度とは、タンディッシュ内の溶鋼温度から液相線温度を引いた差であり、溶鋼の過熱度は、溶鋼の流動性、鋳片の健全性に大きな影響を及ぼす重要な制御因子である。 Here, the degree of superheat of the molten steel in the tundish is the difference obtained by subtracting the liquidus temperature from the temperature of the molten steel in the tundish. is an important control factor that affects

より具体的には、鋳型に供給する溶鋼の成分組成、タンディッシュ内溶鋼の過熱度ΔT(℃)、鋳造速度Vc(m/min)及び浸漬ノズルの浸漬深さX(mm)に応じて、以下のように決定する。 More specifically, according to the chemical composition of the molten steel supplied to the mold, the degree of superheat ΔT (°C) of the molten steel in the tundish, the casting speed Vc (m/min) and the immersion depth X (mm) of the immersion nozzle, Determine as follows.

(鋳型に供給する溶鋼の成分炭素濃度が、0.07質量%以上、0.18質量%以下の場合)
浸漬ノズルの浸漬深さXが230mm未満の場合は、下記(1)式が成立する領域には電磁攪拌を適用し、下記(1)式が成立しない領域には電磁ブレーキを適用する(図2(a)参照)。
「ΔT-8≦-1.14Vc」∩「Vc≦1.74」…(1)
(When the component carbon concentration of the molten steel supplied to the mold is 0.07% by mass or more and 0.18% by mass or less)
When the immersion depth X of the immersion nozzle is less than 230 mm, electromagnetic stirring is applied to the area where the following formula (1) holds, and electromagnetic braking is applied to the area where the following formula (1) does not hold (Fig. 2 (a)).
“ΔT−8≦−1.14Vc” ∩ “Vc≦1.74” (1)

また、浸漬ノズルの浸漬深さXが230mm以上の場合は、下記(2)式が成立する領域には電磁攪拌を適用し、下記(2)式が成立しない領域には電磁ブレーキを適用する(図3(a)参照)。
「ΔT-8≦-1.14Vc」∩「Vc≦1.74」もしくは「ΔT≦40」∩「Vc≦1.14」もしくは「ΔT≦33」∩「Vc≦1.24」…(2)
In addition, when the immersion depth X of the immersion nozzle is 230 mm or more, electromagnetic stirring is applied to the area where the following formula (2) holds, and electromagnetic braking is applied to the area where the following formula (2) does not hold ( See FIG. 3(a)).
"ΔT-8≦-1.14Vc" ∩ "Vc≦1.74" or "ΔT≦40" ∩ "Vc≦1.14" or "ΔT≦33" ∩ "Vc≦1.24" (2)

(鋳型に供給する溶鋼の成分炭素濃度が、0.0050質量%を超え、0.07質量%未満の場合)
浸漬ノズルの浸漬深さXが230mm未満の場合は、下記(3)式が成立する領域には電磁攪拌を適用し、下記(3)式が成立しない領域には電磁ブレーキを適用する(図2(b)参照)。
「ΔT-12≦-1.46Vc」∩「Vc≦2.04」…(3)
(When the component carbon concentration of the molten steel supplied to the mold exceeds 0.0050% by mass and is less than 0.07% by mass)
When the immersion depth X of the immersion nozzle is less than 230 mm, electromagnetic stirring is applied to the area where the following formula (3) holds, and electromagnetic braking is applied to the area where the following formula (3) does not hold (Fig. 2 (b)).
“ΔT−12≦−1.46Vc” ∩ “Vc≦2.04” (3)

また、浸漬ノズルの浸漬深さXが230mm以上の場合は、下記(4)式が成立する領域には電磁攪拌を適用し、下記(4)式が成立しない領域には電磁ブレーキを適用する(図3(b)参照)。
「ΔT-12≦-1.46Vc」∩「Vc≦2.04」もしくは「ΔT≦40」∩「Vc≦1.24」もしくは「ΔT≦35」∩「Vc≦1.44」…(4)
In addition, when the immersion depth X of the immersion nozzle is 230 mm or more, electromagnetic stirring is applied to the area where the following formula (4) holds, and electromagnetic braking is applied to the area where the following formula (4) does not hold ( See FIG. 3(b)).
"ΔT-12≦-1.46Vc" ∩ "Vc≦2.04" or "ΔT≦40" ∩ "Vc≦1.24" or "ΔT≦35" ∩ "Vc≦1.44" (4)

(鋳型に供給する溶鋼の成分炭素濃度が、0.0050質量%以下の場合)
浸漬ノズルの浸漬深さXが230mm未満の場合は、下記(5)式が成立する領域には電磁攪拌を適用し、下記(5)式が成立しない領域には電磁ブレーキを適用する(図2(c)参照)。
「ΔT-40≦-3.42Vc」∩「Vc≦1.74」…(5)
(When the component carbon concentration of the molten steel supplied to the mold is 0.0050% by mass or less)
When the immersion depth X of the immersion nozzle is less than 230 mm, electromagnetic stirring is applied to the area where the following formula (5) holds, and electromagnetic braking is applied to the area where the following formula (5) does not hold (Fig. 2 (c)).
“ΔT−40≦−3.42Vc” ∩ “Vc≦1.74” (5)

また、浸漬ノズルの浸漬深さXが230mm以上の場合は、下記(6)式が成立する領域には電磁攪拌を適用し、下記(6)式が成立しない領域には電磁ブレーキを適用する(図3(c)参照)。
「ΔT-40≦-3.42Vc」∩「Vc≦1.74」もしくは「ΔT≦40」∩「Vc≦1.34」…(6)
In addition, when the immersion depth X of the immersion nozzle is 230 mm or more, electromagnetic stirring is applied to the area where the following formula (6) holds, and electromagnetic braking is applied to the area where the following formula (6) does not hold ( See FIG. 3(c)).
"ΔT-40≦-3.42Vc" ∩ "Vc≦1.74" or "ΔT≦40" ∩ "Vc≦1.34" (6)

本発明の鋼の連続鋳造方法によれば、連続鋳造における操業が安定するのと共に、品質の良好な鋳片を安定的に得ることができるようになる。 According to the continuous casting method for steel of the present invention, it is possible to stably obtain slabs of good quality while stabilizing the continuous casting operation.

本発明の鋼の連続鋳造方法に使用する兼用コイル装置の一例を説明する図で、(a)は水平断面図、(b)は垂直断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining an example of the combined coil apparatus used for the continuous casting method of the steel of this invention, (a) is a horizontal sectional view, (b) is a vertical sectional view. 浸漬ノズルの浸漬深さが230mm未満の場合における本発明による電磁攪拌と電磁ブレーキの適用領域を示した図で、鋳型に供給する溶鋼の成分炭素濃度が、(a)は0.07質量%以上、0.18質量%以下の場合、(b)は0.0050質量%を超え、0.07質量%未満の場合、(c)は0.0050質量%以下の場合である。FIG. 10 is a diagram showing the application area of electromagnetic stirring and electromagnetic braking according to the present invention when the immersion depth of the immersion nozzle is less than 230 mm, wherein the component carbon concentration of the molten steel supplied to the mold is 0.07% by mass or more in (a). , 0.18% by mass or less, (b) is more than 0.0050% by mass and less than 0.07% by mass, and (c) is 0.0050% by mass or less. 浸漬ノズルの浸漬深さが230mm以上の場合における本発明による電磁攪拌と電磁ブレーキの適用領域を示した図2と同様の図である。FIG. 3 is a view similar to FIG. 2 showing the application area of electromagnetic stirring and electromagnetic braking according to the present invention when the immersion depth of the immersion nozzle is 230 mm or more; 連続鋳造法における鋳型内溶鋼の一般的な流動状態を模式的に示す縦断面図である。1 is a longitudinal sectional view schematically showing a general flow state of molten steel in a mold in continuous casting. FIG. 浸漬ノズルから鋳型内に吐出された溶鋼に制動力を作用させる電磁ブレーキを適用した場合の鋳型内溶鋼の流動状態を模式的に示した図で、(a)は平面図、(b)は縦断面図である。Fig. 2 is a diagram schematically showing the flow state of molten steel in a mold when an electromagnetic brake is applied to apply a braking force to the molten steel discharged into the mold from an immersion nozzle; (a) is a plan view and (b) is a longitudinal section. It is a plan view. 浸漬ノズルから鋳型内に吐出された溶鋼を攪拌する電磁攪拌を適用した場合の鋳型内溶鋼の流動状態を模式的に示した図で、(a)は平面図、(b)は縦断面図である。FIG. 2 is a diagram schematically showing the flow state of molten steel in a mold when electromagnetic stirring is applied to stir the molten steel discharged into the mold from an immersion nozzle, (a) is a plan view, and (b) is a vertical cross-sectional view. be.

以下、本発明の課題を解決するために発明者らが行った試験の結果について説明し、併せて本発明を実施した場合の効果について説明する。 The results of tests conducted by the inventors in order to solve the problems of the present invention will be described below, and the effects of implementing the present invention will also be described.

(炭素濃度が0.09質量%の中炭素鋼の連続鋳造)
A.浸漬ノズルの浸漬深さが220mmの場合
鋳造速度Vcが0.80m/min、タンディッシュ内溶鋼の過熱度ΔTが15℃の条件で電磁攪拌を適用した場合、凝固シェル短辺のホワイトライン観察により、凝固不均一度の悪化を確認した。なお、ホワイトラインとは、鋳型内の溶鋼流動により、凝固シェル前面のデンドライト樹枝間における偏析成分の濃化溶鋼が洗い流されて負偏析を形成することにより観察される偏析線であり、鋳型内での凝固シェルの厚みを推測する指標となる。
(Continuous casting of medium carbon steel with a carbon concentration of 0.09% by mass)
A. When the immersion depth of the immersion nozzle is 220 mm When electromagnetic stirring is applied under the conditions of a casting speed Vc of 0.80 m/min and a degree of superheat ΔT of the molten steel in the tundish of 15°C, a white line on the short side of the solidified shell is observed. , confirmed the deterioration of coagulation heterogeneity. The white line is a segregation line observed when the molten steel with concentrated segregation components between dendrite branches in front of the solidified shell is washed away by the molten steel flow in the mold, forming negative segregation. It is an index for estimating the thickness of the solidified shell of

また、鋳造速度Vcが1.17m/min、タンディッシュ内溶鋼の過熱度ΔTが5℃の条件で電磁ブレーキを適用した場合、鋳片表層の高周波超音波探傷(超音波を用いて試験片中の気泡や介在物の分布や径を三次元的にマッピングする手法)により、パウダー等の介在物増加を確認した。 In addition, when an electromagnetic brake is applied under the conditions that the casting speed Vc is 1.17 m/min and the degree of superheat ΔT of the molten steel in the tundish is 5°C, high-frequency ultrasonic flaw detection of the cast slab surface layer The increase in inclusions such as powder was confirmed by three-dimensional mapping of the distribution and diameter of bubbles and inclusions).

B.浸漬ノズルの浸漬深さが230mmの場合
鋳造速度Vcが1.23m/min、タンディッシュ内溶鋼の過熱度ΔTが33℃の条件で電磁攪拌を適用した場合、鋳片表層に異常が発生しないことを確認した。
B. When the immersion depth of the immersion nozzle is 230 mm When electromagnetic stirring is applied under the conditions of a casting speed Vc of 1.23 m/min and a degree of superheat ΔT of the molten steel in the tundish of 33°C, no abnormalities occur on the slab surface layer. It was confirmed.

タンディッシュ内溶鋼の過熱度ΔTが33℃で、鋳造速度Vcを1.23m/minとした場合において、電磁攪拌を適用したスラブは、電磁ブレーキを適用したスラブより、表面の介在物個数が大幅に低減することが確認された。 When the degree of superheat ΔT of the molten steel in the tundish is 33° C. and the casting speed Vc is 1.23 m/min, the number of inclusions on the surface of the slab to which electromagnetic stirring is applied is significantly higher than that of the slab to which electromagnetic brake is applied. was confirmed to be reduced to

(炭素濃度が0.04質量%の低炭素鋼の連続鋳造)
A.浸漬ノズルの浸漬深さが220mmの場合
鋳造速度Vcが1.46m/min、タンディッシュ内溶鋼の過熱度ΔTが27℃の条件で電磁攪拌を適用した場合、凝固シェル短辺のホワイトライン観察により、凝固不均一度の悪化を確認した。特に、鋳片コーナ部の凝固遅れが顕著であり、鋳片コーナ部に長手方向の割れが生じた。
(Continuous casting of low carbon steel with a carbon concentration of 0.04% by mass)
A. When the immersion depth of the immersion nozzle is 220 mm When electromagnetic stirring is applied under the conditions of a casting speed Vc of 1.46 m/min and a degree of superheat ΔT of the molten steel in the tundish of 27°C, a white line on the short side of the solidified shell is observed. , confirmed the deterioration of coagulation heterogeneity. In particular, the solidification delay at the slab corner portion was remarkable, and longitudinal cracks occurred at the slab corner portion.

また、鋳造速度Vcが1.12m/min、タンディッシュ内溶鋼の過熱度ΔTが8℃の条件で電磁ブレーキを適用した場合、鋳片表層の高周波超音波探傷により、電磁攪拌を適用した場合よりパウダー等の介在物増加を確認した。 In addition, when the casting speed Vc is 1.12 m/min and the degree of superheat ΔT of the molten steel in the tundish is 8°C, when the electromagnetic brake is applied, the high-frequency ultrasonic flaw detection of the surface layer of the cast slab shows that the electromagnetic stirring is applied. An increase in inclusions such as powder was confirmed.

B.浸漬ノズルの浸漬深さが230mmの場合
鋳造速度Vcが1.27m/min、タンディッシュ内溶鋼の過熱度ΔTが34℃の条件で電磁攪拌を適用した場合、鋳片表層に異常が発生しないことを確認した。
B. When the immersion depth of the immersion nozzle is 230 mm When electromagnetic stirring is applied under the conditions of a casting speed Vc of 1.27 m/min and a degree of superheat ΔT of the molten steel in the tundish of 34°C, no abnormalities occur on the slab surface layer. It was confirmed.

一方、同じ溶鋼過熱度で、鋳造速度Vcを1.33m/minとした場合において、電磁攪拌を適用したスラブは、電磁ブレーキを適用したスラブより、表面の介在物個数が大幅に低減することが確認された。それに加え、電磁ブレーキを適用したスラブと電磁攪拌を適用したスラブを圧延し、圧延後の表面の気泡や介在物起因の欠陥個数を比較した結果、電磁攪拌を適用したスラブの方が気泡や介在物起因の欠陥が少ないことを確認した。 On the other hand, when the molten steel superheat is the same and the casting speed Vc is 1.33 m/min, the number of inclusions on the surface of the slab to which electromagnetic stirring is applied is significantly lower than the number of inclusions on the surface of the slab to which electromagnetic braking is applied. confirmed. In addition, we rolled slabs to which electromagnetic brakes were applied and slabs to which electromagnetic stirring was applied, and compared the number of defects caused by air bubbles and inclusions on the surface after rolling. It was confirmed that there were few defects caused by material.

(炭素濃度が0.002質量%の極低炭素鋼の連続鋳造)
A.浸漬ノズルの浸漬深さが220mmの場合
鋳造速度Vcが1.25m/min、タンディッシュ内溶鋼の過熱度ΔTが42℃の条件で電磁攪拌を適用した場合、凝固シェル短辺のホワイトライン観察により、凝固不均一度の悪化を確認した。
(Continuous casting of ultra-low carbon steel with a carbon concentration of 0.002% by mass)
A. When the immersion depth of the immersion nozzle is 220 mm When electromagnetic stirring is applied under the conditions of a casting speed Vc of 1.25 m/min and a degree of superheat ΔT of the molten steel in the tundish of 42°C, a white line on the short side of the solidified shell is observed. , confirmed the deterioration of coagulation heterogeneity.

また、鋳造速度Vcが1.65m/min、タンディッシュ内溶鋼の過熱度ΔTが34℃の条件で電磁ブレーキを適用した場合、鋳片表層の高周波超音波探傷により、パウダー等の介在物増加を確認した。 In addition, when an electromagnetic brake is applied under the conditions of a casting speed Vc of 1.65 m/min and a degree of superheat ΔT of the molten steel in the tundish of 34°C, high-frequency ultrasonic flaw detection of the slab surface prevents inclusions such as powder from increasing. confirmed.

B.浸漬ノズルの浸漬深さが230mmの場合
鋳造速度Vcが1.33m/min、タンディッシュ内溶鋼の過熱度ΔTが40℃の条件で電磁攪拌を適用した場合、鋳片表層に異常が発生しないことを確認した。
B. When the immersion depth of the immersion nozzle is 230 mm When electromagnetic stirring is applied under the conditions of a casting speed Vc of 1.33 m/min and a degree of superheat ΔT of the molten steel in the tundish of 40°C, no abnormalities occur on the slab surface layer. It was confirmed.

また、同じ溶鋼過熱度で、鋳造速度Vcを1.30m/minとした場合において、電磁ブレーキを適用したスラブと電磁攪拌を適用したスラブを圧延し、圧延後の表面の気泡や介在物起因の欠陥個数を比較した。その結果、電磁攪拌を適用したスラブの方が気泡や介在物起因の欠陥が少ないことを確認した。 In addition, when the casting speed Vc was set to 1.30 m/min at the same molten steel superheating degree, the slab to which the electromagnetic brake was applied and the slab to which the electromagnetic stirring was applied were rolled. The number of defects was compared. As a result, it was confirmed that the slab to which electromagnetic stirring was applied had fewer defects due to bubbles and inclusions.

上記結果より、兼用コイル装置を用いて鋼を連続鋳造する際に、鋳造速度Vc、溶鋼の過熱度ΔT、及び浸漬ノズルの浸漬深さXを考慮して電磁攪拌と電磁ブレーキの切り替えを行うことが、生産効率の向上と品質改善に寄与することが判明した。 From the above results, when continuously casting steel using a dual-purpose coil device, switching between electromagnetic stirring and electromagnetic braking should be performed in consideration of the casting speed Vc, the degree of superheat ΔT of the molten steel, and the immersion depth X of the immersion nozzle. contributed to the improvement of production efficiency and quality improvement.

そこで、発明者らは、鋳型の各長辺に、以下に示す仕様の兼用コイル装置を2つずつ、計4つ配置した連続鋳造機を使用した連続鋳造において、電磁攪拌、電磁ブレーキを選択するに際し、鋼の基礎成分である炭素濃度と、タンディッシュ内溶鋼の過熱度ΔT、鋳造速度Vc、及び浸漬ノズルの浸漬深さXを変化させて試験を行った。 Therefore, the inventors select electromagnetic stirring and electromagnetic braking in continuous casting using a continuous casting machine in which two dual-purpose coil devices with the following specifications are arranged on each long side of the mold, a total of four. At this time, the test was conducted by changing the carbon concentration, which is a basic component of steel, the degree of superheat ΔT of the molten steel in the tundish, the casting speed Vc, and the immersion depth X of the immersion nozzle.

(兼用コイル装置の仕様)
鋳型中心部の電磁力:3000Gauss
周波数:4.0Hz
コイルへの印加電流(起磁力):45000A
交流電流の位相:120°位相の3相交流
(Specifications of dual-purpose coil device)
Electromagnetic force at center of mold: 3000 Gauss
Frequency: 4.0Hz
Applied current to coil (magnetomotive force): 45000A
Phase of alternating current: 3-phase alternating current with 120° phase

使用した連続鋳造機は、幅が700~1625mm、厚さが250,270mmの鋳片を製造可能な垂直曲げ型連続鋳造機で、下記表1に示す化学組成の溶鋼を鋳造した。なお、鋼の酸素精錬-真空脱ガス・脱炭プロセスにおいては、炭素濃度の技術的な限界値は0.0005質量%である。 The continuous casting machine used was a vertical bending type continuous casting machine capable of producing slabs with a width of 700 to 1625 mm and a thickness of 250, 270 mm. In the steel oxygen refining-vacuum degassing/decarburizing process, the technical limit of carbon concentration is 0.0005% by mass.

Figure 0007247777000001
Figure 0007247777000001

(鋼種A)
鋼種Aは、炭素濃度が、0.07質量%以上、0.18質量%以下の亜包晶鋼であって、不均一凝固が発生しやすい特性があり、ブレークアウトに代表されるトラブルを引き起こす懸念が大きい。一方、建材や自動車の足回り品などで多く用いられるため、後述の極低炭素鋼に比べて表面検査の基準は厳しくない。
(Steel type A)
Steel type A is a hypoperitectic steel with a carbon concentration of 0.07% by mass or more and 0.18% by mass or less, and has a characteristic that uneven solidification easily occurs, causing troubles typified by breakout. big concern. On the other hand, since it is often used in building materials and automobile underbody parts, the standards for surface inspection are not as strict as those for ultra-low carbon steel, which will be described later.

そこで、鋼種Aでは、発明の効果の指標を、ブレークアウトの発生率は0.5回/年以下、表面格落率は0.4%以下とした。なお、表面格落率とは、コイルの表面検査において要求される表面品位を満たさなかった重量の割合をいい、要求される表面品位は鋼種によって相違する。 Therefore, for steel type A, the index of the effect of the invention was set to 0.5 times/year or less for the occurrence rate of breakouts and 0.4% or less for the surface failure rate. Note that the surface rejection rate refers to the percentage of the weight that does not meet the required surface quality in the surface inspection of the coil, and the required surface quality differs depending on the steel type.

鋼種Aについて、タンディッシュ内溶鋼の過熱度ΔT、鋳造速度Vc、及び浸漬ノズルの浸漬深さXを変化させて鋳造した結果を下記表2に示す。 Table 2 below shows the results of casting steel type A while changing the degree of superheat ΔT of the molten steel in the tundish, the casting speed Vc, and the immersion depth X of the immersion nozzle.

Figure 0007247777000002
Figure 0007247777000002

鋼種Aは、特許文献3で開示された手法では、溶鋼の供給量Qが3t/min(鋳造速度Vcに換算すると1.03m/min)未満の場合は電磁攪拌を適用するものである。浸漬ノズルの浸漬深さXが195mm、鋳造速度Vcが0.80m/minでタンディッシュ内溶鋼の過熱度ΔTが5℃、7℃の場合、電磁攪拌を適用すると、表面格落率は0.3%、0.2%で製品歩留まりの改善に効果があった(表2のNo.1,No.2)。一方、電磁ブレーキを適用すると、表面格落率は0.9%、0.6%に悪化した(表2のNo.9,No.10)。 For steel type A, according to the method disclosed in Patent Document 3, electromagnetic stirring is applied when the supply amount Q of molten steel is less than 3 t/min (1.03 m/min when converted to casting speed Vc). When the immersion depth X of the immersion nozzle is 195 mm, the casting speed Vc is 0.80 m/min, and the degree of superheat ΔT of the molten steel in the tundish is 5° C. or 7° C., the surface drop rate is 0.5° C. when electromagnetic stirring is applied. 3% and 0.2% were effective in improving product yield (No. 1 and No. 2 in Table 2). On the other hand, when electromagnetic brakes were applied, the surface drop rates deteriorated to 0.9% and 0.6% (No.9 and No.10 in Table 2).

また、鋼種Aは、特許文献3で開示された手法では、溶鋼の供給量Qが3t/min(鋳造速度Vcに換算すると1.03m/min)以上の場合は電磁ブレーキを適用するものである。浸漬ノズルの浸漬深さXが200mm、鋳造速度Vcが1.17m/minでタンディッシュ内溶鋼の過熱度ΔTが7℃、15℃の場合、電磁ブレーキを適用すると、ブレークアウトの発生率が0.4回/年、0.5回/年と抑制できた(表2のNo.13,No.14)。一方、電磁攪拌を適用すると、ブレークアウトの発生率が0.9回/年、1.4回/年に増加した(表2のNo.6,No.7)。この場合、表面格落率も0.6%、0.5%に悪化した。 For steel type A, according to the method disclosed in Patent Document 3, an electromagnetic brake is applied when the supply amount Q of molten steel is 3 t/min (1.03 m/min when converted to casting speed Vc) or more. . When the immersion depth X of the immersion nozzle is 200 mm, the casting speed Vc is 1.17 m/min, and the degree of superheat ΔT of the molten steel in the tundish is 7°C or 15°C, the occurrence rate of breakout is 0 when the electromagnetic brake is applied. .4 times/year and 0.5 times/year (No. 13 and No. 14 in Table 2). On the other hand, when electromagnetic stirring was applied, the incidence of breakout increased to 0.9 times/year and 1.4 times/year (No. 6 and No. 7 in Table 2). In this case, the face disqualification rate also deteriorated to 0.6% and 0.5%.

しかしながら、鋼種Aにおいて、浸漬ノズルの浸漬深さXが195mm、鋳造速度Vcが0.80m/minでタンディッシュ内溶鋼の過熱度ΔTが15℃の表2のNo.3の場合、ブレークアウトの発生率が1.1回/年と増加した。また、浸漬ノズルの浸漬深さXが200mm、鋳造速度Vcが1.17m/minでタンディッシュ内溶鋼の過熱度ΔTが5℃の表2のNo.12の場合、表面格落率が0.8%と悪化した。 However, in the case of No. 3 in Table 2, where the immersion depth X of the immersion nozzle is 195 mm, the casting speed Vc is 0.80 m/min, and the degree of superheat ΔT of the molten steel in the tundish is 15° C., breakout occurs. The incidence increased to 1.1 times/year. In the case of No. 12 in Table 2, where the immersion depth X of the immersion nozzle is 200 mm, the casting speed Vc is 1.17 m/min, and the degree of superheat ΔT of the molten steel in the tundish is 5°C, the surface drop rate is 0. worsened to 8%.

一方、浸漬ノズルの浸漬深さXを230mmとした場合、タンディッシュ内溶鋼の過熱度ΔTが33℃では鋳造速度Vcが1.23m/minで電磁攪拌を適用しても(表2のNo.8)、また、浸漬ノズルの浸漬深さXを255mmとした場合、タンディッシュ内溶鋼の過熱度ΔTが40℃では鋳造速度Vcが1.10m/minで電磁攪拌を適用しても(表2のNo.4)、表面格落率はどちらも0.2%で製品歩留まりの改善に効果があった。 On the other hand, when the immersion depth X of the immersion nozzle is 230 mm and the degree of superheat ΔT of the molten steel in the tundish is 33° C., even if electromagnetic stirring is applied at a casting speed Vc of 1.23 m/min (No. 8) Also, when the immersion depth X of the immersion nozzle is 255 mm, and the degree of superheat ΔT of the molten steel in the tundish is 40°C, even if electromagnetic stirring is applied at a casting speed Vc of 1.10 m/min (Table 2 No. 4 of No. 4), both of which had a surface rejection rate of 0.2%, and were effective in improving the product yield.

つまり、鋼種Aの連続鋳造において、特許文献3で開示された手法のように、溶鋼の供給量Qだけで電磁攪拌と電磁ブレーキの切り替えを行う場合、タンディッシュ内溶鋼の過熱度ΔTによっては、表面格落率が悪化したり、ブレークアウトの発生率が増加する場合があった。 That is, in the continuous casting of steel type A, when switching between electromagnetic stirring and electromagnetic braking is performed only by the supply amount Q of molten steel as in the method disclosed in Patent Document 3, depending on the degree of superheat ΔT of the molten steel in the tundish, In some cases, surface drop rates worsened and breakout rates increased.

これに対して、浸漬ノズルの浸漬深さXが195mm、200mm、205mmの場合、鋼種Aの連続鋳造において、タンディッシュ内溶鋼の過熱度ΔTと、鋳造速度Vcを用い、「ΔT-8≦-1.14Vc」∩「Vc≦1.74」が成立するか否かで電磁攪拌と電磁ブレーキの切り替えを行う場合、表2に示すように、表面格落率が悪化したり、ブレークアウトの発生率が増加することはなかった。 On the other hand, when the immersion depth X of the immersion nozzle is 195 mm, 200 mm, and 205 mm, in the continuous casting of steel type A, using the degree of superheat ΔT of the molten steel in the tundish and the casting speed Vc, "ΔT -8 ≤ - 1.14Vc"∩"Vc≤1.74", when switching between electromagnetic stirring and electromagnetic braking, as shown in Table 2, the surface drop rate deteriorates and breakouts occur. rate did not increase.

すなわち、浸漬ノズルの浸漬深さXが230mm未満の、表2のNo.1,No.2は「ΔT-8≦-1.14Vc」∩「Vc≦1.74」が成立するので、特許文献3で開示された手法と同様、電磁攪拌を適用する。しかしながら、タンディッシュ内溶鋼の過熱度ΔTが15(℃)の場合は「ΔT-8≦-1.14Vc」∩「Vc≦1.74」が成立しないので、本発明では、電磁ブレーキを適用する(表2のNo.11)。この表2のNo.11の場合、ブレークアウトの発生率が0.4(回/年)に抑制でき、安定鋳造に効果があった。 That is, for No. 1 and No. 2 in Table 2 where the immersion depth X of the immersion nozzle is less than 230 mm, "ΔT - 8 ≤ -1.14 Vc" ∩ "Vc ≤ 1.74" is established, so the patent document Similar to the technique disclosed in 3, electromagnetic stirring is applied. However, when the degree of superheat ΔT of the molten steel in the tundish is 15 (° C.), the relationship “ΔT−8≦−1.14Vc”∩“Vc≦1.74” does not hold, so in the present invention, an electromagnetic brake is applied. (No. 11 in Table 2). In the case of No. 11 in Table 2, the occurrence rate of breakouts could be suppressed to 0.4 (times/year), which was effective for stable casting.

また、浸漬ノズルの浸漬深さXが230mm未満の、表2のNo.13,No.14は「ΔT-8≦-1.14Vc」∩「Vc≦1.74」が成立しないので、特許文献3で開示された手法と同様、電磁ブレーキを適用する。しかしながら、タンディッシュ内溶鋼の過熱度ΔTが5℃の場合は「ΔT-8≦-1.14Vc」∩「Vc≦1.74」が成立するので、本発明では、電磁攪拌を適用する(表2のNo.5)。この表2のNo.5の場合、表面格落率が0.2%に抑制でき、製品歩留まり改善に効果があった。 In addition, in No. 13 and No. 14 in Table 2, where the immersion depth X of the immersion nozzle is less than 230 mm, "ΔT - 8 ≤ -1.14 Vc" ∩ "Vc ≤ 1.74" does not hold. Similar to the method disclosed in 3, an electromagnetic brake is applied. However, when the degree of superheat ΔT of the molten steel in the tundish is 5°C, "ΔT - 8 ≤ -1.14 Vc" ∩ "Vc ≤ 1.74" is established, so in the present invention, electromagnetic stirring is applied (Table 2 No. 5). In the case of No. 5 in Table 2, the surface rejection rate could be suppressed to 0.2%, which was effective in improving product yield.

一方、浸漬ノズルの浸漬深さXが230mm以上の場合の表2のNo.4は、「ΔT-8≦-1.14Vc」∩「Vc≦1.74」が成立しないが「ΔT≦40」∩「Vc≦1.14」が成立するので電磁攪拌を適用する。同様に、表2のNo.8も、「ΔT-8≦-1.14Vc」∩「Vc≦1.74」が成立しないが「ΔT≦33」∩「Vc≦1.24」が成立するので、No.15のように電磁ブレーキを適用するのではなく、電磁攪拌を適用する。 On the other hand, No. 4 in Table 2 when the immersion depth X of the immersion nozzle is 230 mm or more does not satisfy "ΔT - 8 ≤ -1.14 Vc" ∩ "Vc ≤ 1.74", but "ΔT ≤ 40". Since ∩“Vc≦1.14” holds, electromagnetic stirring is applied. Similarly, in No. 8 of Table 2, "ΔT - 8 ≤ -1.14Vc" ∩ "Vc ≤ 1.74" does not hold, but "ΔT ≤ 33" ∩ "Vc ≤ 1.24" holds. , apply electromagnetic stirring instead of applying an electromagnetic brake as in No.15.

(鋼種B)
鋼種Bは、炭素濃度が、0.01質量%以上、0.065質量%以下の低炭素鋼である。亜包晶鋼に比べて不均一凝固は発生しにくく、操業上の懸念は小さい。また、建材や自動車の足回り品などで多く用いられるため、後述の極低炭素鋼に比べて表面検査の基準は厳しくない。
(Steel type B)
Steel type B is a low-carbon steel with a carbon concentration of 0.01% by mass or more and 0.065% by mass or less. Compared to hypo-peritectic steel, non-uniform solidification is less likely to occur, so there is little concern in operation. In addition, since it is often used in building materials and automobile underbody parts, the standards for surface inspection are not as strict as those for ultra-low carbon steel, which will be described later.

そこで、鋼種Bでは、発明の効果の指標を、ブレークアウトの発生率は0.4回/年以下、表面格落率は0.4%以下とした。 Therefore, for steel type B, the index of the effect of the invention was set to 0.4 times/year or less for the incidence rate of breakouts and 0.4% or less for the surface failure rate.

鋼種Bについて、タンディッシュ内溶鋼の過熱度ΔT、鋳造速度Vc、及び浸漬ノズルの浸漬深さXを変化させて鋳造した結果を下記表3に示す。 Table 3 below shows the results of casting steel type B while changing the degree of superheat ΔT of the molten steel in the tundish, the casting speed Vc, and the immersion depth X of the immersion nozzle.

Figure 0007247777000003
Figure 0007247777000003

鋼種Bは、特許文献3で開示された手法では、溶鋼の供給量Qが4t/min(鋳造速度Vcに換算すると1.40m/min)未満の場合は電磁攪拌を適用するものである。浸漬ノズルの浸漬深さXが195mm、鋳造速度Vcが1.12m/minでタンディッシュ内溶鋼の過熱度ΔTが8℃、10℃の場合、電磁攪拌を適用すると、表面格落率は共に0.4%で製品歩留まりの改善に効果があった(表3のNo.1,No.2)。一方、電磁ブレーキを適用すると、表面格落率は1.2%、0.9%と悪化した(表3のNo.11,No.12)。 For steel type B, according to the method disclosed in Patent Document 3, electromagnetic stirring is applied when the supply amount Q of molten steel is less than 4 t/min (1.40 m/min when converted to casting speed Vc). When the immersion depth X of the immersion nozzle is 195 mm, the casting speed Vc is 1.12 m/min, and the degree of superheat ΔT of the molten steel in the tundish is 8°C and 10°C, the surface drop rate is 0 when electromagnetic stirring is applied. .4% was effective in improving product yield (No. 1 and No. 2 in Table 3). On the other hand, when electromagnetic brakes were applied, the surface drop rates deteriorated to 1.2% and 0.9% (No.11 and No.12 in Table 3).

また、鋼種Bは、特許文献3で開示された手法では、溶鋼の供給量Qが4t/min(鋳造速度Vcに換算すると1.40m/min)以上の場合は電磁ブレーキを適用するものである。浸漬ノズルの浸漬深さXが195mm、鋳造速度Vcが1.65m/minでタンディッシュ内溶鋼の過熱度ΔTが10℃、13℃の場合、電磁ブレーキを適用すると、ブレークアウトの発生率が0.2回/年、0.4回/年と抑制できた(表3のNo.16,No.17)。一方、電磁攪拌を適用すると、前記溶鋼の過熱度ΔTが13℃の場合は、ブレークアウトの発生率は0.5回/年と増加し、表面格落率も0.5%と悪化した(表3のNo.10)。また、前記溶鋼の過熱度ΔTが10℃の場合は、ブレークアウトの発生率が0.2回/年と変化はないものの、表面格落率が0.5%と悪化した(表3のNo.9)。また、浸漬ノズルの浸漬深さXが220mm、鋳造速度Vcが1.46m/minでタンディッシュ内溶鋼の過熱度ΔTが27℃の場合も、電磁攪拌を適用すると、ブレークアウトの発生率は0.5回/年と増加した(表3のNo.7)。 For steel type B, according to the method disclosed in Patent Document 3, an electromagnetic brake is applied when the supply amount Q of molten steel is 4 t/min (1.40 m/min when converted to casting speed Vc) or more. . When the immersion depth X of the immersion nozzle is 195 mm, the casting speed Vc is 1.65 m/min, and the degree of superheat ΔT of the molten steel in the tundish is 10°C or 13°C, the occurrence rate of breakout is 0 when the electromagnetic brake is applied. .2 times/year and 0.4 times/year (No. 16 and No. 17 in Table 3). On the other hand, when electromagnetic stirring was applied, when the degree of superheat ΔT of the molten steel was 13°C, the breakout rate increased to 0.5 times/year, and the surface drop rate worsened to 0.5% ( No. 10 in Table 3). Further, when the degree of superheat ΔT of the molten steel was 10° C., the breakout incidence rate remained unchanged at 0.2 times/year, but the surface drop rate deteriorated to 0.5% (No .9). Also, when the immersion depth X of the immersion nozzle is 220 mm, the casting speed Vc is 1.46 m/min, and the degree of superheat ΔT of the molten steel in the tundish is 27° C., the occurrence rate of breakout is 0 when electromagnetic stirring is applied. .5 times/year (No.7 in Table 3).

しかしながら、鋼種Bにおいて、浸漬ノズルの浸漬深さXが195mm、鋳造速度Vcが1.12m/minでタンディッシュ内溶鋼の過熱度ΔTが13℃の表3のNo.3の場合、表面格落率が0.5%と悪化した。また、浸漬ノズルの浸漬深さXが195mm、鋳造速度Vcが1.65m/minでタンディッシュ内溶鋼の過熱度ΔTが8℃の表3のNo.15の場合、表面格落率が0.6%と悪化した。 However, in the case of No. 3 in Table 3, in which the immersion depth X of the immersion nozzle is 195 mm, the casting speed Vc is 1.12 m/min, and the degree of superheat ΔT of the molten steel in the tundish is 13° C. in steel type B, the surface is degraded. rate deteriorated to 0.5%. In the case of No. 15 in Table 3, where the immersion depth X of the immersion nozzle is 195 mm, the casting speed Vc is 1.65 m/min, and the degree of superheat ΔT of the molten steel in the tundish is 8°C, the surface drop rate is 0. worsened to 6%.

一方、浸漬ノズルの浸漬深さXを230mmとした場合、タンディッシュ内溶鋼の過熱度ΔTが34℃では鋳造速度Vcが1.27m/min、1.33m/minで電磁攪拌を適用しても、また、タンディッシュ内溶鋼の過熱度ΔTが40℃では鋳造速度Vcが1.24m/minで電磁攪拌を適用しても、表面格落率は0.2%、0.3%で製品歩留まりの改善に効果があった(表3のNo.5,No.6,No.4)。 On the other hand, when the immersion depth X of the immersion nozzle is 230 mm and the degree of superheat ΔT of the molten steel in the tundish is 34° C., even if the casting speed Vc is 1.27 m/min and 1.33 m/min, electromagnetic stirring is applied. Also, when the degree of superheat ΔT of the molten steel in the tundish is 40°C, even if electromagnetic stirring is applied at a casting speed Vc of 1.24 m/min, the surface drop rates are 0.2% and 0.3%, respectively. (No.5, No.6, No.4 in Table 3).

つまり、鋼種Bの連続鋳造においても、特許文献3で開示された手法のように、溶鋼の供給量Qだけで電磁攪拌と電磁ブレーキの切り替えを行う場合、タンディッシュ内溶鋼の過熱度ΔTによっては、表面格落率が悪化したり、ブレークアウトの発生率が増加する場合があった。 That is, even in the continuous casting of steel type B, when switching between electromagnetic stirring and electromagnetic braking is performed only by the supply amount Q of molten steel as in the method disclosed in Patent Document 3, depending on the degree of superheat ΔT of the molten steel in the tundish, , there were cases where the surface drop rate worsened and the incidence of breakouts increased.

これに対して、浸漬ノズルの浸漬深さXが195mm、220mmの場合、鋼種Bの連続鋳造において、タンディッシュ内溶鋼の過熱度ΔTと、鋳造速度Vcを用い、「ΔT-12≦-1.46Vc」∩「Vc≦2.04」が成立するか否かで電磁攪拌と電磁ブレーキの切り替えを行う場合、表3に示すように、表面格落率が悪化したり、ブレークアウトの発生率が増加することはなかった。 On the other hand, when the immersion depth X of the immersion nozzle is 195 mm and 220 mm, in the continuous casting of steel type B, using the degree of superheat ΔT of the molten steel in the tundish and the casting speed Vc, "ΔT -12 ≤ -1. 46Vc" ∩ "Vc ≤ 2.04", when switching between electromagnetic stirring and electromagnetic braking, as shown in Table 3, the surface drop rate worsens and the breakout rate increases. never increased.

すなわち、浸漬ノズルの浸漬深さXが230mm未満の、表3のNo.1,No.2は「ΔT-12≦-1.46Vc」∩「Vc≦2.04」が成立するので、特許文献3で開示された手法と同様、電磁攪拌を適用する。しかしながら、タンディッシュ内溶鋼の過熱度ΔTが13℃の場合は「ΔT-12≦-1.46Vc」∩「Vc≦2.04」が成立しないので、本発明では、電磁ブレーキを適用する(表3のNo.13)。この表3のNo.13の場合、表面格落率が0.2%に抑制でき、製品歩留まり改善に効果があった。 That is, for No. 1 and No. 2 in Table 3, where the immersion depth X of the immersion nozzle is less than 230 mm, "ΔT-12 ≤ -1.46 Vc" ∩ "Vc ≤ 2.04" is established. Similar to the technique disclosed in 3, electromagnetic stirring is applied. However, when the degree of superheat ΔT of the molten steel in the tundish is 13°C, "ΔT -12 ≤ -1.46 Vc" ∩ "Vc ≤ 2.04" does not hold, so in the present invention, an electromagnetic brake is applied (Table 3 No. 13). In the case of No. 13 in Table 3, the surface rejection rate could be suppressed to 0.2%, which was effective in improving product yield.

また、浸漬ノズルの浸漬深さXが230mm未満の、表3のNo.13,No.16,No.17は「ΔT-12≦-1.46Vc」∩「Vc≦2.04」が成立しないので、特許文献3で開示された手法と同様、電磁ブレーキを適用する。しかしながら、タンディッシュ内溶鋼の過熱度ΔTが8℃の場合は「ΔT-12≦-1.46Vc」∩「Vc≦2.04」が成立するので、本発明では、電磁攪拌を適用する(表3のNo.8)。この表3のNo.8の場合、表面格落率が0.2%に抑制でき、製品歩留まり改善に効果があった。 In addition, No. 13, No. 16, and No. 17 in Table 3, where the immersion depth X of the immersion nozzle is less than 230 mm, "ΔT - 12 ≤ -1.46 Vc" ∩ "Vc ≤ 2.04" does not hold. Therefore, an electromagnetic brake is applied in the same manner as the method disclosed in Patent Document 3. However, when the degree of superheat ΔT of the molten steel in the tundish is 8°C, "ΔT -12 ≤ -1.46 Vc" ∩ "Vc ≤ 2.04" is established, so in the present invention, electromagnetic stirring is applied (Table No. 8 of 3). In the case of No. 8 in Table 3, the surface rejection rate could be suppressed to 0.2%, which was effective in improving product yield.

一方、浸漬ノズルの浸漬深さXが230mm以上の場合の表3のNo.4は、「ΔT-12≦-1.46Vc」∩「Vc≦2.04」が成立しないが「ΔT≦40」∩「Vc≦1.24」が成立するので電磁攪拌を適用する。また、同様に表3のNo.6は「ΔT-12≦-1.46Vc」∩「Vc≦2.04」が成立しないが「ΔT≦35」∩「Vc≦1.44」が成立するので、表3のNo.14のように電磁ブレーキを適用することなく、電磁攪拌を適用する。 On the other hand, No. 4 in Table 3, where the immersion depth X of the immersion nozzle is 230 mm or more, does not satisfy "ΔT - 12 ≤ -1.46 Vc" ∩ "Vc ≤ 2.04", but "ΔT ≤ 40". Since ∩“Vc≦1.24” holds, electromagnetic stirring is applied. Similarly, in No. 6 of Table 3, "ΔT - 12 ≤ -1.46Vc" ∩ "Vc ≤ 2.04" does not hold, but "ΔT ≤ 35" ∩ 'Vc ≤ 1.44' does. , applying electromagnetic stirring without applying an electromagnetic brake as in No. 14 of Table 3.

(鋼種C)
鋼種Cは、炭素濃度が、0.0005質量%以上、0.0050質量%以下の極低炭素鋼であって、不均一凝固は発生しにくいが、固相線温度と液相線温度の差が小さいため、鋳型内で皮張りが生じやすい特性がある。また、自動車用の外板素材として多く用いられるため、表面検査の基準も厳しい。
(steel grade C)
Steel type C is an ultra-low carbon steel with a carbon concentration of 0.0005% by mass or more and 0.0050% by mass or less. Due to its small size, it is prone to skinning in the mold. In addition, since it is often used as an outer panel material for automobiles, the standards for surface inspection are strict.

そこで、鋼種Cでは、発明の効果の指標を、ブレークアウトの発生率は0.2回/年以下、表面格落率は1.7%以下とした。 Therefore, for steel type C, the index of the effect of the invention was set to 0.2 times/year or less for the incidence rate of breakouts and 1.7% or less for the surface failure rate.

鋼種Cについて、タンディッシュ内溶鋼の過熱度ΔT、鋳造速度Vc、及び浸漬ノズルの浸漬深さXを変化させて鋳造した結果を下記表4に示す。 Table 4 below shows the results of casting steel type C while changing the degree of superheat ΔT of the molten steel in the tundish, the casting speed Vc, and the immersion depth X of the immersion nozzle.

Figure 0007247777000004
Figure 0007247777000004

鋼種Cは、特許文献3で開示された手法では、溶鋼の供給量Qが5t/min(鋳造速度Vcに換算すると1.74m/min)未満の場合は電磁攪拌を適用するものである。浸漬ノズルの浸漬深さXが200mm、鋳造速度Vcが1.51m/minでタンディッシュ内溶鋼の過熱度ΔTが32℃、35℃の場合、電磁攪拌を適用すると、表面格落率は0.8%、0.9%で製品歩留まりの改善に効果があった(表4のNo.4,No.5)。一方、電磁ブレーキを適用すると、表面格落率は2.2%、1.9%と悪化した(表4のNo.12,No.13)。また、浸漬ノズルの浸漬深さXが220mm、鋳造速度Vcが1.65m/minでタンディッシュ内溶鋼の過熱度ΔTが34℃の場合、電磁攪拌を適用すると、表面格落率は0.9%で製品歩留まりの改善に効果があった(表4のNo.7)。一方、電磁ブレーキを適用すると、表面格落率は1.9%と悪化した(表4のNo.15)。 For steel type C, according to the method disclosed in Patent Document 3, electromagnetic stirring is applied when the supply amount Q of molten steel is less than 5 t/min (1.74 m/min when converted to casting speed Vc). When the immersion depth X of the immersion nozzle is 200 mm, the casting speed Vc is 1.51 m/min, and the degree of superheat ΔT of the molten steel in the tundish is 32° C. and 35° C., the surface drop rate is 0.5° C. when electromagnetic stirring is applied. 8% and 0.9% were effective in improving product yield (No. 4 and No. 5 in Table 4). On the other hand, when electromagnetic brakes were applied, the surface drop rate worsened to 2.2% and 1.9% (No.12 and No.13 in Table 4). Further, when the immersion depth X of the immersion nozzle is 220 mm, the casting speed Vc is 1.65 m/min, and the degree of superheat ΔT of the molten steel in the tundish is 34° C., the surface drop rate is 0.9 when electromagnetic stirring is applied. % was effective in improving product yield (No. 7 in Table 4). On the other hand, when electromagnetic brakes were applied, the surface drop rate worsened to 1.9% (No. 15 in Table 4).

また、鋼種Cは、特許文献3で開示された手法では、溶鋼の供給量Qが5t/min(鋳造速度Vcに換算すると1.74m/min)以上の場合は電磁ブレーキを適用するものである。浸漬ノズルの浸漬深さXが200mm、鋳造速度Vcが1.74m/minでタンディッシュ内溶鋼の過熱度ΔTが35℃、42℃の場合、電磁ブレーキを適用すると、ブレークアウトの発生率が共に0.1回/年と抑制でき、安定鋳造に効果があった(表4のNo.17,No.18)。一方、電磁攪拌を適用すると、ブレークアウトの発生率が0.4回/年、0.5回/年と増加した(表4のNo.9,No.10)。前記溶鋼の過熱度ΔTが42℃の場合は、表面格落率も2.5%と悪化した(表4のNo.10)。 For steel type C, according to the method disclosed in Patent Document 3, an electromagnetic brake is applied when the supply amount Q of molten steel is 5 t/min (1.74 m/min when converted to casting speed Vc) or more. . When the immersion depth X of the immersion nozzle is 200 mm, the casting speed Vc is 1.74 m/min, and the degree of superheat ΔT of the molten steel in the tundish is 35°C or 42°C, when the electromagnetic brake is applied, both breakout rates are reduced. It was possible to suppress it to 0.1 times/year, which was effective for stable casting (No. 17 and No. 18 in Table 4). On the other hand, when electromagnetic stirring was applied, the incidence of breakout increased to 0.4 times/year and 0.5 times/year (No. 9 and No. 10 in Table 4). When the degree of superheat ΔT of the molten steel was 42° C., the surface drop rate deteriorated to 2.5% (No. 10 in Table 4).

しかしながら、鋼種Cにおいて、浸漬ノズルの浸漬深さXが200mm、鋳造速度Vcが1.51m/minでタンディッシュ内溶鋼の過熱度ΔTが42℃の表4のNo.6の場合、ブレークアウトの発生率が0.4%と悪化した。また、浸漬ノズルの浸漬深さXが200mm、鋳造速度Vcが1.74m/minでタンディッシュ内溶鋼の過熱度ΔTが32℃の表4のNo.16の場合、表面格落率が2.7%と悪化した。 However, in the case of No. 6 in Table 4, in which the immersion depth X of the immersion nozzle is 200 mm, the casting speed Vc is 1.51 m/min, and the degree of superheat ΔT of the molten steel in the tundish is 42° C., breakout occurs. The incidence worsened to 0.4%. In the case of No. 16 in Table 4, where the immersion depth X of the immersion nozzle is 200 mm, the casting speed Vc is 1.74 m/min, and the degree of superheat ΔT of the molten steel in the tundish is 32°C, the surface drop rate is 2. worsened to 7%.

一方、浸漬ノズルの浸漬深さXを230mmとした場合、タンディッシュ内溶鋼の過熱度ΔTが40℃では鋳造速度Vcが1.30m/minで電磁攪拌を適用しても、表面格落率は1.0%で製品歩留まりの改善に効果があった(表3のNo.2)。 On the other hand, when the immersion depth X of the immersion nozzle is 230 mm and the degree of superheat ΔT of the molten steel in the tundish is 40°C, even if electromagnetic stirring is applied at a casting speed Vc of 1.30 m/min, the surface drop rate is 1.0% was effective in improving product yield (No. 2 in Table 3).

つまり、鋼種Cの連続鋳造においても、特許文献3で開示された手法のように、溶鋼の供給量Qだけで電磁攪拌と電磁ブレーキの切り替えを行う場合、タンディッシュ内溶鋼の過熱度ΔTによっては、表面格落率が悪化したり、ブレークアウトの発生率が増加する場合があった。 That is, even in the continuous casting of steel type C, when switching between electromagnetic stirring and electromagnetic braking is performed only by the supply amount Q of molten steel as in the method disclosed in Patent Document 3, depending on the degree of superheat ΔT of the molten steel in the tundish, , there were cases where the surface drop rate worsened and the incidence of breakouts increased.

これに対して、浸漬ノズルの浸漬深さXが220mmの場合、鋼種Cの連続鋳造において、タンディッシュ内溶鋼の過熱度ΔT℃と、鋳造速度Vcを用い、「ΔT-40≦-3.42Vc」∩「Vc≦1.74」が成立するか否かで電磁攪拌と電磁ブレーキの切り替えを行う場合、表4に示すように、表面格落率が悪化したり、ブレークアウトの発生率が増加することはなかった。 On the other hand, when the immersion depth X of the immersion nozzle is 220 mm, in continuous casting of steel type C, using the degree of superheat ΔT ° C. of the molten steel in the tundish and the casting speed Vc, "ΔT -40 ≤ -3.42 Vc "∩"Vc ≤ 1.74", when switching between electromagnetic stirring and electromagnetic braking, as shown in Table 4, the surface drop rate worsens and the breakout rate increases. never did.

すなわち、浸漬ノズルの浸漬深さXが230mm未満の、表4のNo.4,No.5は「ΔT-40≦-3.42Vc」∩「Vc≦1.74」が成立するので、特許文献3で開示された手法と同様、電磁攪拌を適用する。しかしながら、タンディッシュ内溶鋼の過熱度ΔTが42℃の、表4のNo.1,No.6の場合は「ΔT-40≦-3.42Vc」∩「Vc≦1.74」が成立しないので、本発明では、電磁攪拌を適用せず、電磁ブレーキを適用する(表4のNo.14)。この表4のNo.14の場合、表面格落率が1.1%に抑制でき、製品歩留まり改善に効果があった。 That is, for No. 4 and No. 5 in Table 4, where the immersion depth X of the immersion nozzle is less than 230 mm, "ΔT-40 ≤ -3.42 Vc" ∩ "Vc ≤ 1.74" is established, so the patent document Similar to the technique disclosed in 3, electromagnetic stirring is applied. However, in the case of No. 1 and No. 6 in Table 4, where the degree of superheat ΔT of the molten steel in the tundish is 42°C, "ΔT - 40 ≤ -3.42Vc" ∩ "Vc ≤ 1.74" does not hold. , the present invention does not apply electromagnetic stirring, but applies an electromagnetic brake (No. 14 in Table 4). In the case of No. 14 in Table 4, the surface rejection rate could be suppressed to 1.1%, which was effective in improving product yield.

また、浸漬ノズルの浸漬深さXが230mm未満の、表4のNo.17、No.18は「ΔT-40≦-3.42Vc」∩「Vc≦1.74」が成立しないので、特許文献3で開示された手法と同様、電磁ブレーキを適用する。しかしながら、タンディッシュ内溶鋼の過熱度ΔTが32℃の場合は「ΔT-40≦-3.42Vc」∩「Vc≦1.74」が成立するので、本発明では、電磁攪拌を適用する(表4のNo.8)。この表4のNo.8の場合、表面格落率が1.0%に抑制でき、製品歩留まり改善に効果があった。 In addition, in No. 17 and No. 18 in Table 4, where the immersion depth X of the immersion nozzle is less than 230 mm, "ΔT - 40 ≤ -3.42 Vc" ∩ "Vc ≤ 1.74" does not hold. Similar to the method disclosed in 3, an electromagnetic brake is applied. However, when the degree of superheat ΔT of the molten steel in the tundish is 32° C., “ΔT−40≦−3.42Vc”∩“Vc≦1.74” is established, so electromagnetic stirring is applied in the present invention (Table 4 No. 8). In the case of No. 8 in Table 4, the surface rejection rate could be suppressed to 1.0%, which was effective in improving product yield.

一方、浸漬ノズルの浸漬深さXが230mm以上の場合の表4のNo.2,No.3は、「ΔT-40≦-3.42Vc」∩「Vc≦1.74」が成立しないが、「ΔT≦40」∩「Vc≦1.34」が成立するので、表4のNo.11のように電磁ブレーキを適用するのではなく、電磁攪拌を適用する。 On the other hand, in No. 2 and No. 3 in Table 4 where the immersion depth X of the immersion nozzle is 230 mm or more, "ΔT - 40 ≤ -3.42 Vc" ∩ "Vc ≤ 1.74" does not hold, Since "ΔT≦40"∩"Vc≦1.34" holds, electromagnetic agitation is applied instead of applying an electromagnetic brake as in No. 11 in Table 4.

上記の試験結果より、兼用コイル装置を用いて鋼を連続鋳造する際には、鋳造速度、浸漬ノズルの浸漬深さとタンディッシュ内溶鋼の過熱度により電磁攪拌と電磁ブレーキの切り替えを行うことで、鍋交換直後などの鋳型への溶鋼の供給量が少なく、かつ溶鋼の過熱度が高い場合にもブレークアウトの発生率を低減することができる。また、鋳込み末期などの鋳型への溶鋼供給量が多く、かつ溶鋼の過熱度が低い場合にも表面格落率を低減することができる。 From the above test results, when continuously casting steel using a dual-purpose coil device, by switching between electromagnetic stirring and electromagnetic braking depending on the casting speed, the immersion depth of the immersion nozzle, and the degree of superheat of the molten steel in the tundish, Even when the amount of molten steel supplied to the mold is small and the degree of superheat of the molten steel is high, such as immediately after the ladle is replaced, the occurrence rate of breakouts can be reduced. In addition, the surface drop rate can be reduced even when a large amount of molten steel is supplied to the mold at the end of casting and the degree of superheat of the molten steel is low.

本発明は上記した例に限らないことは勿論であり、各請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。 Of course, the present invention is not limited to the above examples, and it goes without saying that the embodiments may be changed as appropriate within the scope of the technical idea described in each claim.

例えば、交流電流は3相でなくても、電流位相差が90度から120度であればそれ以上でも良い。 For example, the alternating current does not have to be three-phase, and if the current phase difference is from 90 degrees to 120 degrees, it may be more than that.

また、上記試験に使用した成分濃度の溶鋼でなくても、請求項に規定する範囲の炭素濃度を有する溶鋼であれば、本発明方法を適用できる。 Moreover, the method of the present invention can be applied to any molten steel having a carbon concentration within the range defined in the claims, even if the molten steel does not have the component concentrations used in the above tests.

以上の本発明は、連続鋳造であれば、湾曲型、垂直型など、どのような方式の連続鋳造であっても適用できる。また、スラブの連続鋳造だけでなくブルームの連続鋳造にも適用できる。 The above-described present invention can be applied to any type of continuous casting, such as curved type and vertical type, as long as it is continuous casting. Moreover, it can be applied not only to the continuous casting of slabs but also to the continuous casting of blooms.

2 溶鋼
3 鋳型
3b 長辺
8 兼用コイル装置
8a 磁極鉄芯
8b コイル
8c コイル
2 molten steel 3 mold 3b long side 8 combined coil device 8a magnetic pole iron core 8b coil 8c coil

Claims (3)

2個の磁極鉄芯と、この磁極鉄芯のそれぞれの外周部に巻き回した2個のコイルと、2個の磁極鉄芯を合わせた外周部に巻き回した1個のコイルを有する電磁コイルを、鋳型長辺の外周に、各長辺で同じ個数で、鋳型長辺の外周合計で(2n+2)個(nは自然数)配置し、
鋳型内溶鋼を電磁攪拌する際には、全ての前記電磁コイルにおける各コイルに、電流位相差が90度から120度の3相以上の多相交流電流を通電し、
鋳型内溶鋼に電磁ブレーキを作用させる際には、前記各電磁コイル当たり、前記2個の磁極鉄芯を合わせた外周部に巻き回された1個の前記コイルに直流電流を通電するか、またはこれら3個のコイルに直流電流を通電する、電磁攪拌・電磁ブレーキ兼用電磁コイル装置を用いた鋼の連続鋳造方法であって、
鋳型に供給する前記溶鋼の成分炭素濃度、0.07質量%以上、0.18質量%以下とし、
タンディッシュ内溶鋼の過熱度をΔT(℃、ΔT≧0)、鋳造速度をVc(m/min、Vc>0)として、
浸漬ノズルの浸漬深さXが230mm未満では、下記(1)式が成立する領域には電磁攪拌を適用し、下記(1)式が成立しない領域には電磁ブレーキを適用する一方、浸漬ノズルの浸漬深さXが230mm以上では、下記(2)式が成立する領域には電磁攪拌を適用し、下記(2)式が成立しない領域には電磁ブレーキを適用することを特徴とする鋼の連続鋳造方法。
「ΔT-8≦-1.14Vc」∩「Vc≦1.74」…(1)
「ΔT-8≦-1.14Vc」∩「Vc≦1.74」もしくは「ΔT≦40」∩「Vc≦1.14」もしくは「ΔT≦33」∩「Vc≦1.24」…(2)
An electromagnetic coil having two magnetic pole iron cores, two coils wound around the outer circumference of each of the magnetic pole iron cores, and one coil wound around the outer circumference of the two magnetic pole iron cores together. are arranged on the outer circumference of the long side of the mold in the same number on each long side, and (2n + 2) pieces (n is a natural number) in total on the outer circumference of the long side of the mold,
When the molten steel in the mold is electromagnetically stirred, a multiphase alternating current of three or more phases with a current phase difference of 90 degrees to 120 degrees is applied to each coil of all the electromagnetic coils,
When the electromagnetic brake is applied to the molten steel in the mold, a direct current is applied to each of the electromagnetic coils, and the coil is wound around the outer circumference of the two magnetic pole iron cores, or A continuous casting method for steel using an electromagnetic coil device for both electromagnetic stirring and electromagnetic braking, in which direct current is applied to these three coils,
The component carbon concentration of the molten steel supplied to the mold is set to 0.07% by mass or more and 0.18% by mass or less,
Assuming that the degree of superheat of the molten steel in the tundish is ΔT (°C, ΔT≧0) and the casting speed is Vc (m/min, Vc>0),
When the immersion depth X of the immersion nozzle is less than 230 mm, electromagnetic stirring is applied to the area where the following formula (1) holds, and an electromagnetic brake is applied to the area where the following formula (1) does not hold. When the immersion depth X is 230 mm or more, electromagnetic stirring is applied to the area where the following formula (2) holds, and electromagnetic braking is applied to the area where the following formula (2) does not hold. casting method.
“ΔT−8≦−1.14Vc” ∩ “Vc≦1.74” (1)
"ΔT-8≦-1.14Vc" ∩ "Vc≦1.74" or "ΔT≦40" ∩ "Vc≦1.14" or "ΔT≦33" ∩ "Vc≦1.24" (2)
2個の磁極鉄芯と、この磁極鉄芯のそれぞれの外周部に巻き回した2個のコイルと、2個の磁極鉄芯を合わせた外周部に巻き回した1個のコイルを有する電磁コイルを、鋳型長辺の外周に、各長辺で同じ個数で、鋳型長辺の外周合計で(2n+2)個(nは自然数)配置し、
鋳型内溶鋼を電磁攪拌する際には、全ての前記電磁コイルにおける各コイルに、電流位相差が90度から120度の3相以上の多相交流電流を通電し、
鋳型内溶鋼に電磁ブレーキを作用させる際には、前記各電磁コイル当たり、前記2個の磁極鉄芯を合わせた外周部に巻き回された1個の前記コイルに直流電流を通電するか、またはこれら3個のコイルに直流電流を通電する、電磁攪拌・電磁ブレーキ兼用電磁コイル装置を用いた鋼の連続鋳造方法であって、
鋳型に供給する前記溶鋼の成分炭素濃度、0.0050質量%を超え、0.07質量%未満とし、
タンディッシュ内溶鋼の過熱度をΔT(℃、ΔT≧0)、鋳造速度をVc(m/min、Vc>0)として、
浸漬ノズルの浸漬深さXが230mm未満では、下記(3)式が成立する領域には電磁攪拌を適用し、下記(3)式が成立しない領域には電磁ブレーキを適用する一方、浸漬ノズルの浸漬深さXが230mm以上では、下記(4)式が成立する領域には電磁攪拌を適用し、下記(4)式が成立しない領域には電磁ブレーキを適用することを特徴とする鋼の連続鋳造方法。
「ΔT-12≦-1.46Vc」∩「Vc≦2.04」…(3)
「ΔT-12≦-1.46Vc」∩「Vc≦2.04」もしくは「ΔT≦40」∩「Vc≦1.24」もしくは「ΔT≦35」∩「Vc≦1.44」…(4)
An electromagnetic coil having two magnetic pole iron cores, two coils wound around the outer circumference of each of the magnetic pole iron cores, and one coil wound around the outer circumference of the two magnetic pole iron cores together. are arranged on the outer circumference of the long side of the mold in the same number on each long side, and (2n + 2) pieces (n is a natural number) in total on the outer circumference of the long side of the mold,
When the molten steel in the mold is electromagnetically stirred, a multiphase alternating current of three or more phases with a current phase difference of 90 degrees to 120 degrees is applied to each coil of all the electromagnetic coils,
When the electromagnetic brake is applied to the molten steel in the mold, a direct current is applied to each of the electromagnetic coils, and the coil is wound around the outer circumference of the two magnetic pole iron cores, or A continuous casting method for steel using an electromagnetic coil device for both electromagnetic stirring and electromagnetic braking, in which direct current is applied to these three coils,
The component carbon concentration of the molten steel supplied to the mold is more than 0.0050% by mass and less than 0.07% by mass ,
Assuming that the degree of superheat of the molten steel in the tundish is ΔT (°C, ΔT≧0) and the casting speed is Vc (m/min, Vc>0),
When the immersion depth X of the immersion nozzle is less than 230 mm, electromagnetic stirring is applied to the area where the following formula (3) holds, and an electromagnetic brake is applied to the area where the following formula (3) does not hold. When the immersion depth X is 230 mm or more, electromagnetic stirring is applied to the area where the following formula (4) holds, and electromagnetic braking is applied to the area where the following formula (4) does not hold. casting method.
“ΔT−12≦−1.46Vc” ∩ “Vc≦2.04” (3)
"ΔT-12≦-1.46Vc" ∩ "Vc≦2.04" or "ΔT≦40" ∩ "Vc≦1.24" or "ΔT≦35" ∩ "Vc≦1.44" (4)
2個の磁極鉄芯と、この磁極鉄芯のそれぞれの外周部に巻き回した2個のコイルと、2個の磁極鉄芯を合わせた外周部に巻き回した1個のコイルを有する電磁コイルを、鋳型長辺の外周に、各長辺で同じ個数で、鋳型長辺の外周合計で(2n+2)個(nは自然数)配置し、
鋳型内溶鋼を電磁攪拌する際には、全ての前記電磁コイルにおける各コイルに、電流位相差が90度から120度の3相以上の多相交流電流を通電し、
鋳型内溶鋼に電磁ブレーキを作用させる際には、前記各電磁コイル当たり、前記2個の磁極鉄芯を合わせた外周部に巻き回された1個の前記コイルに直流電流を通電するか、またはこれら3個のコイルに直流電流を通電する、電磁攪拌・電磁ブレーキ兼用電磁コイル装置を用いた鋼の連続鋳造方法であって、
鋳型に供給する前記溶鋼の成分炭素濃度、0.0050質量%以下とし、
タンディッシュ内溶鋼の過熱度をΔT(℃、ΔT≧0)、鋳造速度をVc(m/min、Vc>0)として、
浸漬ノズルの浸漬深さXが230mm未満では、下記(5)式が成立する領域には電磁攪拌を適用し、下記(5)式が成立しない領域には電磁ブレーキを適用する一方、浸漬ノズルの浸漬深さXが230mm以上では、下記(6)式が成立する領域には電磁攪拌を適用し、下記(6)式が成立しない領域には電磁ブレーキを適用することを特徴とする鋼の連続鋳造方法。
「ΔT-40≦-3.42Vc」∩「Vc≦1.74」…(5)
「ΔT-40≦-3.42Vc」∩「Vc≦1.74」もしくは「ΔT≦40」∩「Vc≦1.34」…(6)
An electromagnetic coil having two magnetic pole iron cores, two coils wound around the outer circumference of each of the magnetic pole iron cores, and one coil wound around the outer circumference of the two magnetic pole iron cores together. are arranged on the outer circumference of the long side of the mold in the same number on each long side, and (2n + 2) pieces (n is a natural number) in total on the outer circumference of the long side of the mold,
When the molten steel in the mold is electromagnetically stirred, a multiphase alternating current of three or more phases with a current phase difference of 90 degrees to 120 degrees is applied to each coil of all the electromagnetic coils,
When the electromagnetic brake is applied to the molten steel in the mold, a direct current is applied to each of the electromagnetic coils, and the coil is wound around the outer circumference of the two magnetic pole iron cores, or A continuous casting method for steel using an electromagnetic coil device for both electromagnetic stirring and electromagnetic braking, in which direct current is applied to these three coils,
The component carbon concentration of the molten steel supplied to the mold is set to 0.0050% by mass or less,
Assuming that the degree of superheat of the molten steel in the tundish is ΔT (°C, ΔT≧0) and the casting speed is Vc (m/min, Vc>0),
When the immersion depth X of the immersion nozzle is less than 230 mm, electromagnetic stirring is applied to the area where the following formula (5) holds, and an electromagnetic brake is applied to the area where the following formula (5) does not hold. When the immersion depth X is 230 mm or more, electromagnetic stirring is applied to the area where the following formula (6) holds, and electromagnetic braking is applied to the area where the following formula (6) does not hold. casting method.
“ΔT−40≦−3.42Vc” ∩ “Vc≦1.74” (5)
"ΔT-40≦-3.42Vc" ∩ "Vc≦1.74" or "ΔT≦40" ∩ "Vc≦1.34" (6)
JP2019113811A 2018-06-22 2019-06-19 Steel continuous casting method Active JP7247777B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018118607 2018-06-22
JP2018118607 2018-06-22

Publications (2)

Publication Number Publication Date
JP2020001092A JP2020001092A (en) 2020-01-09
JP7247777B2 true JP7247777B2 (en) 2023-03-29

Family

ID=69098069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019113811A Active JP7247777B2 (en) 2018-06-22 2019-06-19 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP7247777B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087046A (en) 2006-10-03 2008-04-17 Sumitomo Metal Ind Ltd Continuous casting method for medium-carbon steel
JP2009131855A (en) 2007-11-28 2009-06-18 Sumitomo Metal Ind Ltd Operating method in initial stage of casting at the time of continuous casting for steel
JP2009131856A (en) 2007-11-28 2009-06-18 Sumitomo Metal Ind Ltd Continuous casting method of steel
JP2009285677A (en) 2008-05-28 2009-12-10 Sumitomo Metal Ind Ltd Continuous casting method for steel
JP4967856B2 (en) 2007-06-28 2012-07-04 住友金属工業株式会社 Steel continuous casting method
JP5023990B2 (en) 2007-11-16 2012-09-12 住友金属工業株式会社 Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP5023989B2 (en) 2007-11-16 2012-09-12 住友金属工業株式会社 Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP2014024072A (en) 2012-07-24 2014-02-06 Nippon Steel & Sumitomo Metal Continuous casting method of steel
JP2015080792A (en) 2013-10-22 2015-04-27 新日鐵住金株式会社 Continuous casting method of steel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1177267A (en) * 1997-09-12 1999-03-23 Nkk Corp Method for continuously casting steel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008087046A (en) 2006-10-03 2008-04-17 Sumitomo Metal Ind Ltd Continuous casting method for medium-carbon steel
JP4967856B2 (en) 2007-06-28 2012-07-04 住友金属工業株式会社 Steel continuous casting method
JP5023990B2 (en) 2007-11-16 2012-09-12 住友金属工業株式会社 Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP5023989B2 (en) 2007-11-16 2012-09-12 住友金属工業株式会社 Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP2009131855A (en) 2007-11-28 2009-06-18 Sumitomo Metal Ind Ltd Operating method in initial stage of casting at the time of continuous casting for steel
JP2009131856A (en) 2007-11-28 2009-06-18 Sumitomo Metal Ind Ltd Continuous casting method of steel
JP2009285677A (en) 2008-05-28 2009-12-10 Sumitomo Metal Ind Ltd Continuous casting method for steel
JP2014024072A (en) 2012-07-24 2014-02-06 Nippon Steel & Sumitomo Metal Continuous casting method of steel
JP2015080792A (en) 2013-10-22 2015-04-27 新日鐵住金株式会社 Continuous casting method of steel

Also Published As

Publication number Publication date
JP2020001092A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP4967856B2 (en) Steel continuous casting method
EP1508389A2 (en) Method and apparatus for continuous casting of metals
CN112296294B (en) Method for improving cleanliness of plate blank
JP6164040B2 (en) Steel continuous casting method
JP7247777B2 (en) Steel continuous casting method
JP4591156B2 (en) Steel continuous casting method
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
JP5772767B2 (en) Steel continuous casting method
CA3084772A1 (en) Molding facility
JP4203167B2 (en) Continuous casting method for molten steel
JP5825215B2 (en) Steel continuous casting method
JP4330518B2 (en) Continuous casting method
WO2022138002A1 (en) Continuous casting method for steel
JP5018144B2 (en) Steel continuous casting method
JP6627744B2 (en) Method and apparatus for continuous casting of steel
JP5359653B2 (en) Steel continuous casting method
JP5124873B2 (en) Slab continuous casting method
JP2004042068A (en) Continuous casting method of molten metal and continuous casting apparatus
JP2000015404A (en) Production of continuously cast slab having little inclusion defect
JP6287901B2 (en) Steel continuous casting method
JP4983320B2 (en) Method and apparatus for continuous casting of steel
JP2022165468A (en) Method of continuously casting carbon-steel slab
JP5079663B2 (en) Continuous casting method of slab in which static magnetic field is applied to upward flow of mold narrow surface.
JP2010000518A (en) Method and apparatus for controlling flow of molten steel in continuous casting mold
JP2020157330A (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R151 Written notification of patent or utility model registration

Ref document number: 7247777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151