JP5023989B2 - Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake - Google Patents

Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake Download PDF

Info

Publication number
JP5023989B2
JP5023989B2 JP2007298484A JP2007298484A JP5023989B2 JP 5023989 B2 JP5023989 B2 JP 5023989B2 JP 2007298484 A JP2007298484 A JP 2007298484A JP 2007298484 A JP2007298484 A JP 2007298484A JP 5023989 B2 JP5023989 B2 JP 5023989B2
Authority
JP
Japan
Prior art keywords
electromagnetic
turns
coil
electromagnetic coil
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007298484A
Other languages
Japanese (ja)
Other versions
JP2009119515A (en
Inventor
信宏 岡田
幸司 高谷
正幸 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007298484A priority Critical patent/JP5023989B2/en
Priority to PCT/JP2008/068486 priority patent/WO2009063711A1/en
Priority to EP08848743.4A priority patent/EP2218528B1/en
Priority to BRPI0820371A priority patent/BRPI0820371B1/en
Priority to CN2008801163259A priority patent/CN101868311B/en
Priority to KR1020107013161A priority patent/KR101207679B1/en
Publication of JP2009119515A publication Critical patent/JP2009119515A/en
Application granted granted Critical
Publication of JP5023989B2 publication Critical patent/JP5023989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

本発明は、鋳型内溶鋼の流れを制御しつつ鋼を連続鋳造する際に適用する電磁ブレーキと電磁攪拌を兼用可能な電磁コイル装置に関するものである。   The present invention relates to an electromagnetic coil device that can be used for both electromagnetic braking and electromagnetic stirring applied when continuously casting steel while controlling the flow of molten steel in a mold.

鋼の連続鋳造において、鋳型内における溶鋼の流動を制御することは、操業上ならびに鋳片の品質管理上、重要な技術である。この鋳型内溶鋼の流動状態の制御を実現する方法には、浸漬ノズルの形状を工夫する方法、鋳型内の溶鋼に電磁力を作用させる方法などがあるが、後者の溶鋼に電磁力を作用させる方法が広く利用されており、溶鋼吐出流に制動力を作用させる電磁ブレーキと、溶鋼を電磁力により撹拌する電磁撹拌に大別される。   In continuous casting of steel, controlling the flow of molten steel in a mold is an important technique in terms of operation and quality control of slabs. As a method for realizing the control of the flow state of the molten steel in the mold, there are a method of devising the shape of the immersion nozzle, a method of applying an electromagnetic force to the molten steel in the mold, etc., but an electromagnetic force is applied to the latter molten steel. The method is widely used, and is roughly classified into an electromagnetic brake for applying a braking force to the molten steel discharge flow and an electromagnetic stirring for stirring the molten steel by the electromagnetic force.

このうち、電磁ブレーキは、吐出流を制動することにより、吐出流が鋳型短辺に衝突して凝固シェルが再融解し、品質が低下するのを抑制することや、メニスカス流速を抑制して鋳造速度を増加させることを目的として用いられている。一方、電磁撹拌は、品質改善に効果を有することが知られており、主として高品質材の鋳造に用いられている。   Among them, the electromagnetic brake controls the discharge flow to prevent the discharge flow from colliding with the short side of the mold and re-melting the solidified shell to reduce the quality, and the meniscus flow rate to be reduced. It is used for the purpose of increasing speed. On the other hand, electromagnetic stirring is known to have an effect on quality improvement, and is mainly used for casting high quality materials.

これらの電磁ブレーキ装置、電磁攪拌装置は、共に磁性体のコア部に巻き線を施した電磁コイル装置を鋳型背面に設置したものである。このうち、コア部には、強磁性体である鉄材が用いられることが多く、鉄芯と呼ばれる。この鉄芯材として、電磁ブレーキでは、軟鉄のバルク材が用いられる場合が多いが、交流電流を用いる電磁攪拌では、電磁誘導による鉄損を軽減するために、電磁鋼板が用いられる。   Both of these electromagnetic brake devices and electromagnetic stirring devices are obtained by installing an electromagnetic coil device in which a core of a magnetic material is wound on the back of a mold. Of these, the core portion is often made of an iron material which is a ferromagnetic material and is called an iron core. As the iron core material, a soft iron bulk material is often used in an electromagnetic brake, but in an electromagnetic stirring using an alternating current, an electromagnetic steel sheet is used to reduce iron loss due to electromagnetic induction.

これらの電磁コイル装置は、通常、電磁ブレーキ又は電磁攪拌のどちらか単独の機能しか有していない。   These electromagnetic coil devices usually have only a single function of either electromagnetic braking or electromagnetic stirring.

そこで、発明者らは、以前から電磁ブレーキと電磁攪拌の両機能の兼用が可能な電磁コイル装置(以後、兼用コイル装置と言う。)の開発を行ってきた(例えば特許文献1)。
特開2007−007719号公報
Therefore, the inventors have been developing an electromagnetic coil device (hereinafter referred to as a combined coil device) that can be used for both functions of electromagnetic brake and electromagnetic stirring (for example, Patent Document 1).
JP 2007-007719 A

本発明の兼用コイル装置の形状も基本的に特許文献1で開示したものと同じであり、出願人が特許文献2で開示した電磁コイル構造を利用している。
特開昭60−044157号公報
The shape of the combined coil device of the present invention is basically the same as that disclosed in Patent Document 1, and uses the electromagnetic coil structure disclosed in Patent Document 2 by the applicant.
JP-A-60-04157

この特許文献2で開示した兼用コイル装置1を、鋳型2の長辺2a側に各2個ずつ連続配置したものを図10に示す。この兼用コイル装置1は、2個のティース部1aaの夫々に巻き線(内側巻き線)1bを施し、更に2個のティース部1aaをまとめて外側から巻き線(外側巻き線)1cを施していることが特徴である。この兼用コイル装置1は2個のティース部1aaとヨーク部1abからなるコア部1aがギリシア文字のパイ(Π)に似ていることから、パイ型コイルと呼ばれている。なお、図10中の2bは鋳型2の短辺、3はバックアッププレート、4は浸漬ノズルを示す。   FIG. 10 shows a configuration in which two dual-purpose coil devices 1 disclosed in Patent Document 2 are continuously arranged on the long side 2 a side of the mold 2. The combined coil device 1 is provided with a winding (inner winding) 1b on each of the two tooth portions 1aa, and further, the two teeth portions 1aa are collectively put on the winding (outer winding) 1c from the outside. It is a feature. This combined coil device 1 is called a pie-type coil because the core portion 1a composed of two tooth portions 1aa and a yoke portion 1ab resembles a Greek letter pie. In FIG. 10, 2b denotes the short side of the mold 2, 3 denotes a backup plate, and 4 denotes an immersion nozzle.

ところで、電磁コイル装置の電磁攪拌能力や電磁ブレーキ能力は、励磁コイルに印加する電流値とコイル巻き数の積に依存する。よって、電磁コイル装置の性能を向上させるためには、コイル巻き数か電流値を増加する必要がある。但し、電流値を増加するためには、大電流に対応できるようにコイル巻き線の断面積を拡大する必要があり、その結果、コイル巻き数が減少してしまう。従って、電磁コイル装置の性能を向上させるには、コイル巻き数を増やすことが第一条件となる。この点は兼用コイル装置も同様である。   By the way, the electromagnetic stirring ability and the electromagnetic braking ability of the electromagnetic coil device depend on the product of the current value applied to the exciting coil and the number of coil turns. Therefore, in order to improve the performance of the electromagnetic coil device, it is necessary to increase the number of coil turns or the current value. However, in order to increase the current value, it is necessary to increase the cross-sectional area of the coil winding so that it can cope with a large current, and as a result, the number of coil turns decreases. Therefore, in order to improve the performance of the electromagnetic coil device, the first condition is to increase the number of coil turns. This also applies to the combined coil device.

しかしながら、兼用コイル装置の場合は、内側励磁コイルと外側励磁コイルの二重の巻き線を必要とするため、巻き線を施すために広い領域が必要になる。特に、内側励磁コイルは2本のティース部間という限られた空間に設置する必要があり、その巻き数が制限されるので、電磁攪拌能力と電磁ブレーキの能力も制限されるという問題がある。   However, in the case of the combined coil device, since a double winding of the inner excitation coil and the outer excitation coil is required, a wide area is required to perform the winding. In particular, the inner excitation coil needs to be installed in a limited space between two teeth, and the number of turns is limited, so that there is a problem that the electromagnetic stirring ability and the electromagnetic brake ability are also limited.

本発明が解決しようとする問題点は、出願人が先に提案した兼用コイル装置では、2本のティース部間という限られた空間に設置する内側励磁コイルの巻き数が制限されるので、電磁攪拌能力と電磁ブレーキの能力も制限される場合があるという点である。   The problem to be solved by the present invention is that the number of turns of the inner excitation coil installed in the limited space between the two teeth is limited in the dual coil device previously proposed by the applicant. The stirring ability and the electromagnetic braking ability may also be limited.

本発明の兼用コイル装置は、
電磁ブレーキ性能と電磁攪拌性能を確保するために、
鋳型長辺の外周に配置する電磁コイルに直流電流又は3相以上の交流電流を通電することにより、鋳型内の溶鋼に電磁ブレーキ又は電磁攪拌を選択的に作用させて鋼を連続鋳造する電磁攪拌・電磁ブレーキ兼用の電磁コイル装置であって、
この電磁コイル装置は、
電磁コイルと、直流電源及び3相以上の交流電源を有し、
このうちの電磁コイルは、
ヨーク部から2個のティース部を突出状に設け、
これら各ティース部は、外側に夫々内側巻き線を施し、これら内側巻き線を施した2個のティース部のさらに外側に外側巻き線を施してひとまとめになすと共に、この外側巻き線の巻き数を、
(1) 内側巻き線の巻き数を十分に確保できる場合は、前記内側巻き線の巻き数と等しくし、
(2) 内側巻き線の巻き数が不足する場合は、前記内側巻き線の巻き数よりも多く、かつ2.5倍以下とした構成で、
この電磁コイルを前記各長辺にn個(nは2以上の自然数)ずつ配置すると共に、
前記のヨーク部とティース部からなるコア部を、メニスカス位置から浸漬ノズルの吐出孔を含む鋳片引抜き方向の範囲に配置したことを最も主要な特徴としている。
The combined coil device of the present invention is
To ensure electromagnetic brake performance and electromagnetic stirring performance,
Electromagnetic stirrer that continuously casts steel by selectively applying an electromagnetic brake or electromagnetic stirrer to the molten steel in the mold by applying a direct current or an AC current of three or more phases to the electromagnetic coil placed on the outer periphery of the long side of the mold An electromagnetic coil device also used as an electromagnetic brake,
This electromagnetic coil device
It has an electromagnetic coil, a DC power supply, and an AC power supply with three or more phases.
Of these, the electromagnetic coil
Two teeth are provided in a protruding shape from the yoke,
Each of these teeth portions is provided with an inner winding on the outer side, and the outer windings are further applied on the outer sides of the two teeth portions to which these inner windings are applied. ,
(1) When a sufficient number of turns of the inner winding can be secured, it is equal to the number of turns of the inner winding,
(2) When the number of turns of the inner winding is insufficient, it is more than the number of turns of the inner winding and 2.5 times or less,
N electromagnetic coils are arranged on each long side (n is a natural number of 2 or more), and
The most important feature is that the core portion including the yoke portion and the tooth portion is disposed in the range of the slab drawing direction including the discharge hole of the immersion nozzle from the meniscus position.

本発明によれば、電磁ブレーキ・電磁攪拌兼用コイルにおいて、内側励磁コイルに必要な巻き線を施せる場合は勿論、空間が足りず必要な巻き線を施せない場合でも、十分な電磁ブレーキ性能と電磁攪拌性能を確保することができる。   According to the present invention, in an electromagnetic brake / electromagnetic stirring combined coil, sufficient electromagnetic brake performance and electromagnetic force can be achieved not only when necessary windings can be applied to the inner excitation coil, but also when necessary windings cannot be performed due to insufficient space. Stirring performance can be ensured.

以下、本発明の着想から課題解決に至るまでの過程と共に、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described together with the process from the idea of the present invention to the solution of the problem.

上述したように、兼用コイル装置では、電磁ブレーキ装置や電磁攪拌装置に使用されていた従来の電磁コイル装置と異なり、内側と外側の2種類の励磁コイルが存在する。そして、内側励磁コイルは巻き数がティース部の間隔で制限されるのに対して、外側励磁コイルでは巻き数を増やす空間的な余裕がある。   As described above, in the combined coil device, there are two types of exciting coils on the inner side and the outer side, unlike the conventional electromagnetic coil device used in the electromagnetic brake device and the electromagnetic stirring device. The number of turns of the inner excitation coil is limited by the interval between the teeth, whereas the outer excitation coil has a spatial margin for increasing the number of turns.

従って、内側励磁コイルと外側励磁コイルとでは、可能な巻き数が相違することになるが、従来は、これら内側励磁コイルや外側励磁コイルの巻き数の関係について、考慮されることはなかった。   Therefore, although the number of possible turns differs between the inner excitation coil and the outer excitation coil, conventionally, the relationship between the number of turns of the inner excitation coil and the outer excitation coil has not been considered.

そこで、発明者らは、ティース部の間隔で制限される内側励磁コイルの巻き数に対する外側励磁コイルの巻き数を変化させ、兼用コイルの性能に及ぼす影響について検討を行なった。   Therefore, the inventors changed the number of turns of the outer exciting coil with respect to the number of turns of the inner exciting coil, which is limited by the interval between the tooth portions, and examined the influence on the performance of the dual-purpose coil.

兼用コイル装置の性能のうち、電磁攪拌能力は溶鋼中に発生する電磁力による攪拌力で評価できる。また、電磁ブレーキ性能は溶鋼に印加される磁束密度の大きさで評価できる。   Among the performances of the combined coil device, the electromagnetic stirring ability can be evaluated by the stirring force by the electromagnetic force generated in the molten steel. The electromagnetic brake performance can be evaluated by the magnitude of the magnetic flux density applied to the molten steel.

外側励磁コイルの巻き数を増加すれば、静磁場として作用する電磁ブレーキは単純に磁束密度が増加すると予測されるが、交流電流を重複して印加する電磁攪拌に支障がないかが問題となる。   If the number of turns of the outer excitation coil is increased, the electromagnetic brake acting as a static magnetic field is expected to simply increase the magnetic flux density. However, there is a problem whether there is no problem in electromagnetic stirring that applies an alternating current in an overlapping manner.

そこで、発明者らは、数値解析シミュレーションの電磁場解析から、外側励磁コイルの巻き数を変化させた場合の攪拌力と磁束密度変化について検討を行った。   Therefore, the inventors examined the stirring force and the change in magnetic flux density when the number of turns of the outer excitation coil was changed from the electromagnetic field analysis of the numerical analysis simulation.

図1に電磁場解析の計算モデルを示す。(a)図は全体像を示す斜視図、(b)図は水平断面図、(c)図は垂直断面図を示し、図中の数字は当該モデルの各部の寸法(mm)を示す。   FIG. 1 shows a calculation model for electromagnetic field analysis. (A) is a perspective view showing the whole image, (b) is a horizontal cross-sectional view, (c) is a vertical cross-sectional view, and the numbers in the figure indicate the dimensions (mm) of each part of the model.

銅製鋳型2の外側に非磁性ステンレスをバックアッププレート3として設置し、コア部1aの上端をメニスカスMと同じ高さとした。励磁コイルの巻き数は、内側、外側ともに60回である。   Nonmagnetic stainless steel was installed as a backup plate 3 on the outside of the copper mold 2, and the upper end of the core portion 1 a was set to the same height as the meniscus M. The number of turns of the exciting coil is 60 on both the inner side and the outer side.

電磁攪拌を実施する場合は、750Aで周波数を4.0Hzの交流電流を印加した。また、電磁ブレーキを実施する場合は、900Aの直流電流を印加した。   When carrying out electromagnetic stirring, an alternating current with a frequency of 4.0 Hz was applied at 750A. Moreover, when implementing an electromagnetic brake, the direct current of 900A was applied.

電磁攪拌時のコイル電流位相は、特願2007−150627号で開示した電流位相の組み合わせである。   The coil current phase during electromagnetic stirring is a combination of the current phases disclosed in Japanese Patent Application No. 2007-150627.

すなわち、図2に示すように、励磁コイル(イ)〜(ハ)、励磁コイル(ニ)〜(ヘ)、励磁コイル(ト)〜(リ)、励磁コイル(ヌ)〜(オ)が夫々1つの電磁コイルで、励磁コイル(イ)、(ニ)、(ト)、(ヌ)が夫々2個のティース部1aaをひとまとめにすべく外側巻き線1cを施した外側励磁コイルである。   That is, as shown in FIG. 2, the excitation coils (A) to (C), the excitation coils (D) to (F), the excitation coils (G) to (L), and the excitation coils (N) to (O) are respectively provided. In one electromagnetic coil, the exciting coils (a), (d), (g), and (n) are outer exciting coils each provided with an outer winding 1c so as to group two tooth portions 1aa together.

そして、励磁コイル(イ)〜(ハ)と励磁コイル(ニ)〜(ヘ)を有する電磁コイルを、鋳型2の一方の長辺2a側に順に配置し、他方の長辺2a側の励磁コイル(ト)〜(リ)と励磁コイル(ヌ)〜(オ)を有する電磁コイルは、励磁コイル(イ)〜(ハ)と(ニ)〜(ヘ)を有する電磁コイルと向き合って配置する。   Then, an electromagnetic coil having exciting coils (a) to (c) and exciting coils (d) to (f) is sequentially arranged on one long side 2a side of the mold 2, and the exciting coil on the other long side 2a side is arranged. The electromagnetic coil having (g) to (ri) and the exciting coils (n) to (e) is arranged to face the electromagnetic coil having the exciting coils (a) to (c) and (d) to (f).

このような配置とした場合、前記各電磁コイルの各ティース部1aaに内側巻き線1bを施した励磁コイル(イ)〜(オ)に、3相交流電流における120度の位相差を有する各位相U、V及びWを、前記励磁コイルの順番に、図2(a)のように−W、+V、+U、+W、−V、−U、−W、+U、+V、+W、−U及び−Vを印加するか、または図2(b)のように−W、+V、+U、−V、+U、+W、+V、−W、−U、+W、−U及び−Vを印加するのである。   In such an arrangement, each phase having a phase difference of 120 degrees in the three-phase alternating current is applied to the exciting coils (a) to (e) in which the inner winding 1b is applied to each tooth portion 1aa of each electromagnetic coil. U, V and W in the order of the excitation coils, as shown in FIG. 2A, -W, + V, + U, + W, -V, -U, -W, + U, + V, + W, -U and- V is applied, or −W, + V, + U, −V, + U, + W, + V, −W, −U, + W, −U and −V are applied as shown in FIG.

一方、電磁ブレーキ時は、2本のティース部1aaの巻かれている3つの巻き線1b,1c全てに同方向の電流を印加するのである。   On the other hand, during electromagnetic braking, current in the same direction is applied to all three windings 1b and 1c around which the two tooth portions 1aa are wound.

図3は、外側励磁コイルの巻き数と鋳型厚み中心における磁束密度の関係を示した図である。この図3から、磁束密度は外側励磁コイルの巻き数に比例して増加することが分かる。   FIG. 3 is a diagram showing the relationship between the number of turns of the outer excitation coil and the magnetic flux density at the mold thickness center. FIG. 3 shows that the magnetic flux density increases in proportion to the number of turns of the outer excitation coil.

図4は、鋳型厚み中心における磁束密度分布を示した図で、(a)図は内側と外側の励磁コイルの巻き数が同一の60巻きの場合、(b)図は60巻きの内側励磁コイルに対して外側励磁コイルの巻き数を100巻きにした場合を示す。図4は磁束密度の最大値から10等分した等高線を示している。   4A and 4B are diagrams showing the magnetic flux density distribution at the center of the mold thickness. FIG. 4A shows the case where the inner and outer exciting coils have the same number of turns, and FIG. 4B shows the inner coil having 60 turns. The case where the number of turns of the outer excitation coil is 100 turns is shown. FIG. 4 shows contour lines obtained by dividing the magnetic flux density into 10 equal parts.

この図4から、外側励磁コイルの巻き数を内側励磁コイルの巻き数よりも増加した場合でも、磁束密度分布に大きな変化がないことが確認できた。   From FIG. 4, it was confirmed that there was no significant change in the magnetic flux density distribution even when the number of turns of the outer excitation coil was increased from the number of turns of the inner excitation coil.

発明者らは、次に内側励磁コイルに対して外側励磁コイルの巻き数を増加した場合の電磁攪拌能力について検討を行った。   The inventors next examined the electromagnetic stirring ability when the number of turns of the outer excitation coil was increased with respect to the inner excitation coil.

図5は、外側励磁コイルの巻き数と鋳型内に発生する最大攪拌力の関係を示した図である。この図5より、外側励磁コイルの巻き数を増加させることにより攪拌力を向上できることが分かる。   FIG. 5 is a diagram showing the relationship between the number of turns of the outer excitation coil and the maximum stirring force generated in the mold. It can be seen from FIG. 5 that the stirring force can be improved by increasing the number of turns of the outer excitation coil.

図6は、外側励磁コイルの巻き数を変化させた場合の鋳型長辺近傍における攪拌力分布を示す図である。この図6に示した攪拌力分布は、メニスカス位置の鋳型長辺から5mmの位置のものであり、図7のA−A’の位置の長辺方向の攪拌力分布である。   FIG. 6 is a diagram showing a stirring force distribution in the vicinity of the mold long side when the number of turns of the outer excitation coil is changed. The stirring force distribution shown in FIG. 6 is a position 5 mm from the long side of the mold at the meniscus position, and is the stirring force distribution in the long side direction at the position A-A ′ in FIG. 7.

この図6から、60巻きの内側励磁コイルに対して外側励磁コイルの巻き数を40巻きに減じた場合(破線)は、鋳型長辺の全域において攪拌力が低下していることが分かる。一方、外側励磁コイルの巻き数を120巻きに増加した場合(点線)は、最大攪拌力は増加しているものの、鋳型長辺左端の逆方向の攪拌力が大きくなり、鋳型中心においても攪拌力は0以下となっている。   From FIG. 6, it can be seen that when the number of turns of the outer excitation coil is reduced to 40 with respect to the 60 turns of the inner excitation coil (broken line), the stirring force is reduced over the entire long side of the mold. On the other hand, when the number of turns of the outer excitation coil is increased to 120 (dotted line), although the maximum stirring force is increased, the stirring force in the reverse direction at the left end of the long side of the mold is increased, and the stirring force is also increased at the mold center. Is 0 or less.

この攪拌力分布から判断すると、内側励磁コイルに目標の巻き数を施せる場合は、内側励磁コイルと外側励磁コイルの巻き数が等しい場合が最適であることが分かる。但し、ティース部の間隔から内側励磁コイルに目標の巻き数を施せない場合がある。その場合は、攪拌状況は若干悪化してしまうものの、外側励磁コイルの巻き数を増せば必要とする電磁攪拌を実現できると考えられる。   Judging from this stirring force distribution, it can be seen that when the target number of turns can be applied to the inner exciting coil, it is optimal that the number of turns of the inner exciting coil and the outer exciting coil is equal. However, there are cases where the target number of turns cannot be applied to the inner excitation coil due to the spacing between the teeth portions. In that case, although the stirring situation is slightly worsened, it is considered that the required electromagnetic stirring can be realized by increasing the number of turns of the outer excitation coil.

ちなみに、図1(b)(c)に示したように、ティース部1aaの幅を140mm、ティース部1aaの間隔を140mmとした兼用コイル装置を作製するに当たり、数値解析の結果から電磁攪拌時は750A×60Turnの電流が必要となった。   By the way, as shown in FIGS. 1B and 1C, when producing a combined coil device in which the width of the teeth 1aa is 140 mm and the distance between the teeth 1aa is 140 mm, the results of numerical analysis indicate that during electromagnetic stirring A current of 750 A × 60 Turn was required.

しかしながら、ティース部1aaの間隔が140mmの兼用コイルに、750A以上の電流を印加可能な銅管を励磁コイルの巻き線として使用すると、内側励磁コイルの巻き線を60巻きにするだけの空間がなく、40巻きが限界であった。   However, if a copper tube capable of applying a current of 750 A or more is used as a winding for an exciting coil in a dual-purpose coil having a spacing of 140 mm between teeth portions 1aa, there is not enough space for winding the inner exciting coil to 60 turns. 40 turns was the limit.

図8は、内側励磁コイルの巻き数を理想的な巻き数の60巻きとし、外側励磁コイルの巻き数を60巻きとした場合(実線)と、内側励磁コイルの巻き数を理想的な巻き数よりも少ない40巻きとし、外側励磁コイルの巻き数を100とした(内側と外側巻き数の比が2.5)場合(破線)の流速分布を示す図である。   FIG. 8 shows the case where the number of turns of the inner exciting coil is 60, which is an ideal number of turns, and the number of turns of the outer exciting coil is 60 (solid line), and the number of turns of the inner exciting coil is the ideal number of turns. It is a figure which shows the flow-velocity distribution when it is less than 40 turns and the winding number of the outer side excitation coil is 100 (ratio of inner side and outer side winding number is 2.5) (broken line).

この図8の流速は、メニスカス位置の鋳型長辺から5mmの位置における値であり、図7のA−A’ の位置の長辺方向の値である。   The flow velocity in FIG. 8 is a value at a position 5 mm from the long side of the mold at the meniscus position, and is a value in the long side direction at the position A-A ′ in FIG. 7.

図8から、内側励磁コイルと外側励磁コイルの巻き数が60巻きで等しい場合(実線)には、鋳型長辺のほぼ全域において10cm/s以上の流速が得られており、良好な攪拌であるといえる。   From FIG. 8, when the number of turns of the inner exciting coil and the outer exciting coil is equal to 60 turns (solid line), a flow velocity of 10 cm / s or more is obtained in almost the entire area of the long side of the mold, which is good stirring. It can be said.

一方、内側励磁コイルの巻き数が40巻きで外側励磁コイルの巻き数が100巻きの場合(破線)には、鋳型中心において流速が5cm/sに低下してしまっているが、内側と外側の励磁コイルの巻き数が等しい場合に準ずる流速分布が得られている。   On the other hand, when the number of turns of the inner excitation coil is 40 and the number of turns of the outer excitation coil is 100 (broken line), the flow velocity is reduced to 5 cm / s at the center of the mold. A flow velocity distribution according to the case where the number of turns of the exciting coil is equal is obtained.

図9は、内側励磁コイルの巻き数を理想的な巻き数よりも少ない40巻きとし、外側励磁コイルの巻き数を120巻きとした(内側と外側の巻き数比が3)場合(実線)と、内側と外側の巻き数を等しく40巻きとした場合(破線)の流速分布を示す図である。   FIG. 9 shows a case where the number of turns of the inner excitation coil is 40, which is smaller than the ideal number of turns, and the number of turns of the outer excitation coil is 120 (the ratio of the number of turns inside and outside is 3) (solid line). It is a figure which shows the flow-velocity distribution at the time of making the inner side and the outer side winding number into 40 turns equally (broken line).

図9より、内側励磁コイルの巻き数が理想的な巻き数よりも少ない場合に、外側励磁コイルの巻き数を内側励磁コイルの巻き数の3倍としたときは、最大流速は増加しているものの、鋳型中心における流速が0以下まで低下してしまっていることが分かる。   From FIG. 9, when the number of turns of the inner excitation coil is smaller than the ideal number of turns, the maximum flow velocity increases when the number of turns of the outer excitation coil is set to three times the number of turns of the inner excitation coil. However, it can be seen that the flow velocity at the mold center has decreased to 0 or less.

このことから、外側励磁コイルの巻き数を内側励磁コイルの巻き数の3倍とした場合は、浸漬ノズルの近傍にて流速が停滞または反転してしまって、電磁攪拌として不適であることが分かる。   From this, it is understood that when the number of turns of the outer exciting coil is three times the number of turns of the inner exciting coil, the flow velocity is stagnated or reversed in the vicinity of the immersion nozzle, which is not suitable for electromagnetic stirring. .

また、図9より、内側励磁コイルの巻き数が理想的な巻き数よりも少ない場合は、内側と外側の励磁コイルの巻き数を等しくしても攪拌力が不足して流速が0程度となる領域が広く存在し、電磁攪拌として不適であることも分かる。   Further, as shown in FIG. 9, when the number of turns of the inner excitation coil is smaller than the ideal number of turns, the stirring force is insufficient and the flow rate becomes about 0 even if the number of turns of the inner and outer excitation coils is equal. It can also be seen that the area is wide and unsuitable for electromagnetic stirring.

以上の検討結果より、兼用コイル装置における励磁コイルの巻き数は、内側励磁コイルの巻き数が十分に確保できる場合は、内側と外側の励磁コイルの巻き数を等しくするのが最適であることが判明した。   From the above examination results, the number of turns of the exciting coil in the dual-purpose coil device may be optimal when the number of turns of the inner exciting coil is sufficient to equalize the number of turns of the inner and outer exciting coils. found.

一方、内側励磁コイルの巻き数が十分に確保できない場合は、外側励磁コイルの巻き数を内側励磁コイルの巻き数よりも多く、かつ2.5倍以下とすれば適切な電磁攪拌が可能となることが判明した。   On the other hand, if the number of turns of the inner excitation coil cannot be secured sufficiently, the number of turns of the outer excitation coil is larger than the number of turns of the inner excitation coil and 2.5 times or less, so that appropriate electromagnetic stirring is possible. It has been found.

また、電磁ブレーキ時の磁束密度を比較すると、外側励磁コイルが100巻きの場合は3179Gaussであるが、40巻きの場合は2465Gaussであり、本発明を適用すると電磁ブレーキ性能として十分な3000Gauss以上の磁束密度を得ることができた。   Further, when comparing the magnetic flux density during electromagnetic braking, 3179 Gauss is obtained when the outer excitation coil is 100 turns, but 2465 Gauss is obtained when it is 40 turns, and a magnetic flux of 3000 Gauss or more sufficient for electromagnetic braking performance when the present invention is applied. The density could be obtained.

本発明は、以上の電磁場解析の結果に基づいてなされたもので、鋳型長辺の外周に配置する電磁コイルに直流電流又は3相以上の交流電流を通電することにより、鋳型内の溶鋼に電磁ブレーキ又は電磁攪拌を選択的に作用させて鋼を連続鋳造する電磁攪拌・電磁ブレーキ兼用の電磁コイル装置において、十分な電磁ブレーキ性能と電磁攪拌性能を確保するために、以下の構成の電磁コイルを使用する。   The present invention has been made on the basis of the results of the electromagnetic field analysis described above. By passing a DC current or an AC current of three or more phases through an electromagnetic coil disposed on the outer periphery of the long side of the mold, the present invention can be In an electromagnetic coil device for both electromagnetic stirring and electromagnetic brake that continuously cast steel by selectively applying brakes or electromagnetic stirring, in order to ensure sufficient electromagnetic braking performance and electromagnetic stirring performance, an electromagnetic coil having the following configuration is used. use.

すなわち、直流電源と3相以上の交流電源に繋げる電磁コイルを、
ヨーク部から2個のティース部を突出状に設け、
これら各ティース部は、外側に夫々内側巻き線を施し、これら内側巻き線を施した2個のティース部のさらに外側に外側巻き線を施してひとまとめになすと共に、この外側巻き線の巻き数を、
(1) 内側巻き線の巻き数を十分に確保できる場合は、前記内側巻き線の巻き数と等しくし、
(2) 内側巻き線の巻き数が不足する場合は、前記内側巻き線の巻き数よりも多く、かつ2.5倍以下とした構成で、
この電磁コイルを前記各長辺にn個(nは2以上の自然数)ずつ配置すると共に、
前記のヨーク部とティース部からなるコア部を、メニスカス位置から浸漬ノズルの吐出孔を含む鋳片引抜き方向の範囲に配置した構成とするのである。
これが本発明の兼用コイル装置である。
In other words, the electromagnetic coil connected to the DC power supply and the AC power supply of three or more phases,
Two teeth are provided in a protruding shape from the yoke,
Each of these teeth portions is provided with an inner winding on the outer side, and the outer windings are further applied on the outer sides of the two teeth portions to which these inner windings are applied. ,
(1) When a sufficient number of turns of the inner winding can be secured, it is equal to the number of turns of the inner winding,
(2) When the number of turns of the inner winding is insufficient, it is more than the number of turns of the inner winding and 2.5 times or less,
N electromagnetic coils are arranged on each long side (n is a natural number of 2 or more), and
The core part composed of the yoke part and the tooth part is arranged in the range of the slab drawing direction including the discharge hole of the immersion nozzle from the meniscus position.
This is the combined coil device of the present invention.

本発明は上記した例に限らないことは勿論であり、各請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。   It goes without saying that the present invention is not limited to the above-described examples, and the embodiments may be appropriately changed within the scope of the technical idea described in each claim.

例えば、交流電流は3相でなくても、電流位相差が90度から120度であればそれ以上でも良い。   For example, the AC current may not be three-phase, but may be more as long as the current phase difference is 90 degrees to 120 degrees.

以上の本発明は、連続鋳造であれば、湾曲型、垂直型など、どのような方式の連続鋳造であっても適用できる。また、スラブの連続鋳造だけでなくブルームの連続鋳造にも適用できる。   The present invention described above can be applied to any type of continuous casting such as a curved type and a vertical type as long as it is continuous casting. Moreover, it can be applied not only to continuous casting of slabs but also to continuous casting of blooms.

電磁場解析の計算モデルを示す図で、(a)は全体像を示す斜視図、(b)は水平断面図、(c)図は垂直断面図を示す図である。It is a figure which shows the calculation model of an electromagnetic field analysis, (a) is a perspective view which shows the whole image, (b) is a horizontal sectional view, (c) A figure is a figure which shows a vertical sectional view. (a)(b)は特願2007−150627号で開示した兼用コイルの電流位相の組み合わせを説明する図である。(A) (b) is a figure explaining the combination of the current phase of the combined coil disclosed by Japanese Patent Application No. 2007-150627. 外側励磁コイルの巻き数と鋳型厚み中心における磁束密度の関係を示した図である。It is the figure which showed the relationship between the winding number of an outer side excitation coil, and the magnetic flux density in the mold thickness center. 鋳型厚み中心における磁束密度分布(磁束密度の最大値から10等分した等高線)を示した図で、(a)図は内側と外側の励磁コイルの巻き数が同一の60巻きの場合、(b)図は外側励磁コイルの巻き数を100巻きにした場合を示す。FIG. 6 is a diagram showing a magnetic flux density distribution (contour line divided by 10 from the maximum value of the magnetic flux density) at the center of the mold thickness. FIG. 5 (a) shows a case where the number of turns of the inner and outer exciting coils is 60, The figure shows the case where the number of turns of the outer excitation coil is 100. 外側励磁コイルの巻き数と鋳型内に発生する最大攪拌力の関係を示した図である。It is the figure which showed the relationship between the winding number of an outer side excitation coil, and the maximum stirring force generate | occur | produced in a casting_mold | template. 外側励磁コイルの巻き数を変化させた場合の鋳型長辺近傍における攪拌力分布を示す図である。It is a figure which shows the stirring force distribution in the mold long side vicinity at the time of changing the winding number of an outer side excitation coil. 攪拌力と流速の比較位置を示した図である。It is the figure which showed the comparison position of stirring force and flow velocity. 内側励磁コイルの巻き数を理想的な巻き数の60巻き、外側励磁コイルの巻き数を60巻きとした場合と、内側励磁コイルの巻き数を理想的な巻き数よりも少ない40巻き、外側励磁コイルの巻き数を100とした場合の流速分布を示す図である。The number of turns of the inner excitation coil is 60, which is an ideal number of turns, and the number of turns of the outer excitation coil is 60, and the number of turns of the inner excitation coil is 40 turns, which is smaller than the ideal number of turns. It is a figure which shows the flow-velocity distribution when the winding number of coils is set to 100. 内側励磁コイルの巻き数を理想的な巻き数よりも少ない40巻きとし、外側励磁コイルの巻き数を120巻きとした場合と、内側と外側の巻き数を等しく40巻きとした場合の流速分布を示す図である。The flow velocity distribution when the number of turns of the inner excitation coil is 40, which is smaller than the ideal number of turns, and the number of turns of the outer excitation coil is 120, and when the number of turns inside and outside is equal to 40 turns, FIG. 兼用コイルの形状を説明する図で、(a)は水平断面図、(b)は垂直断面図である。It is a figure explaining the shape of a combined use coil, (a) is a horizontal sectional view, (b) is a vertical sectional view.

符号の説明Explanation of symbols

1 兼用コイル装置
1a コア部
1aa ティース部
1ab ヨーク部
1b 内側巻き線
1c 外側巻き線
2 鋳型
2a 長辺
2b 短辺
4 浸漬ノズル
DESCRIPTION OF SYMBOLS 1 Combined coil apparatus 1a Core part 1aa Teeth part 1ab Yoke part 1b Inner winding 1c Outer winding 2 Mold 2a Long side 2b Short side 4 Immersion nozzle

Claims (2)

鋳型長辺の外周に配置する電磁コイルに直流電流又は3相以上の交流電流を通電することにより、鋳型内の溶鋼に電磁ブレーキ又は電磁攪拌を選択的に作用させて鋼を連続鋳造する電磁攪拌・電磁ブレーキ兼用の電磁コイル装置であって、
この電磁コイル装置は、
電磁コイルと、直流電源及び3相以上の交流電源を有し、
このうちの電磁コイルは、
ヨーク部から2個のティース部を突出状に設け、
これら各ティース部は、外側に夫々内側巻き線を施し、これら内側巻き線を施した2個のティース部のさらに外側に外側巻き線を施してひとまとめになすと共に、この外側巻き線の巻き数を前記内側巻き線の巻き数と等しくした構成で、
この電磁コイルを前記各長辺にn個(nは2以上の自然数)ずつ配置すると共に、
前記のヨーク部とティース部からなるコア部を、メニスカス位置から浸漬ノズルの吐出孔を含む鋳片引抜き方向の範囲に配置したことを特徴とする電磁攪拌・電磁ブレーキ兼用電磁コイル装置。
Electromagnetic stirrer that continuously casts steel by selectively applying an electromagnetic brake or electromagnetic stirrer to the molten steel in the mold by applying a direct current or an AC current of three or more phases to the electromagnetic coil placed on the outer periphery of the long side of the mold An electromagnetic coil device also used as an electromagnetic brake,
This electromagnetic coil device
It has an electromagnetic coil, a DC power supply, and an AC power supply with three or more phases.
Of these, the electromagnetic coil
Two teeth are provided in a protruding shape from the yoke,
Each of these teeth portions is provided with an inner winding on the outer side, and the outer windings are further applied on the outer sides of the two teeth portions to which these inner windings are applied. In a configuration equal to the number of turns of the inner winding,
N electromagnetic coils are arranged on each long side (n is a natural number of 2 or more), and
An electromagnetic coil device for both electromagnetic stirring and electromagnetic brake, wherein the core portion comprising the yoke portion and the tooth portion is disposed in a range from the meniscus position to the slab drawing direction including the discharge hole of the immersion nozzle.
鋳型長辺の外周に配置する電磁コイルに直流電流又は3相以上の交流電流を通電することにより、鋳型内の溶鋼に電磁ブレーキ又は電磁攪拌を選択的に作用させて鋼を連続鋳造する電磁攪拌・電磁ブレーキ兼用の電磁コイル装置であって、
この電磁コイル装置は、
電磁コイルと、直流電源及び3相以上の交流電源を有し、
このうちの電磁コイルは、
ヨーク部から2個のティース部を突出状に設け、
これら各ティース部は、外側に夫々内側巻き線を施し、これら内側巻き線を施した2個のティース部のさらに外側に外側巻き線を施してひとまとめになすと共に、この外側巻き線の巻き数を前記内側巻き線の巻き数よりも多く、かつ2.5倍以下とした構成で、
この電磁コイルを前記各長辺にn個(nは2以上の自然数)ずつ配置すると共に、
前記のヨーク部とティース部からなるコア部を、メニスカス位置から浸漬ノズルの吐出孔を含む鋳片引抜き方向の範囲に配置したことを特徴とする電磁攪拌・電磁ブレーキ兼用電磁コイル装置。
Electromagnetic stirrer that continuously casts steel by selectively applying an electromagnetic brake or electromagnetic stirrer to the molten steel in the mold by applying a direct current or an AC current of three or more phases to the electromagnetic coil placed on the outer periphery of the long side of the mold An electromagnetic coil device also used as an electromagnetic brake,
This electromagnetic coil device
It has an electromagnetic coil, a DC power supply, and an AC power supply with three or more phases.
Of these, the electromagnetic coil
Two teeth are provided in a protruding shape from the yoke,
Each of these teeth portions is provided with an inner winding on the outer side, and the outer windings are further applied on the outer sides of the two teeth portions to which these inner windings are applied. More than the number of turns of the inner winding and 2.5 times or less,
N electromagnetic coils are arranged on each long side (n is a natural number of 2 or more), and
An electromagnetic coil device for both electromagnetic stirring and electromagnetic brake, wherein the core portion comprising the yoke portion and the tooth portion is disposed in a range from the meniscus position to the slab drawing direction including the discharge hole of the immersion nozzle.
JP2007298484A 2007-11-16 2007-11-16 Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake Active JP5023989B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007298484A JP5023989B2 (en) 2007-11-16 2007-11-16 Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
PCT/JP2008/068486 WO2009063711A1 (en) 2007-11-16 2008-10-10 Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
EP08848743.4A EP2218528B1 (en) 2007-11-16 2008-10-10 Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
BRPI0820371A BRPI0820371B1 (en) 2007-11-16 2008-10-10 cast cast steel electromagnetic coil system capable of serving as both an electromagnetic stirrer and an electromagnetic brake
CN2008801163259A CN101868311B (en) 2007-11-16 2008-10-10 Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
KR1020107013161A KR101207679B1 (en) 2007-11-16 2008-10-10 Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007298484A JP5023989B2 (en) 2007-11-16 2007-11-16 Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake

Publications (2)

Publication Number Publication Date
JP2009119515A JP2009119515A (en) 2009-06-04
JP5023989B2 true JP5023989B2 (en) 2012-09-12

Family

ID=40638564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007298484A Active JP5023989B2 (en) 2007-11-16 2007-11-16 Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake

Country Status (6)

Country Link
EP (1) EP2218528B1 (en)
JP (1) JP5023989B2 (en)
KR (1) KR101207679B1 (en)
CN (1) CN101868311B (en)
BR (1) BRPI0820371B1 (en)
WO (1) WO2009063711A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001092A (en) * 2018-06-22 2020-01-09 日本製鉄株式会社 Continuous casting method for steel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2663470T3 (en) * 2012-08-29 2018-04-12 Nippon Steel & Sumitomo Metal Corporation Electromagnetic stirring apparatus and continuous casting method
EP3221070B1 (en) 2014-11-20 2020-06-03 ABB Schweiz AG Electromagnetic brake system and method of controllong molten metal flow in a metal-making process
CN105014029A (en) * 2015-07-08 2015-11-04 上海大学 Slab continuous-casting electromagnetic stirrer capable of regulating magnetic field action area
CN106466708A (en) * 2015-08-21 2017-03-01 上海宝信软件股份有限公司 Modular plate slab crystallizer electromagnetic agitation induction apparatuss and its manufacture method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044157A (en) 1983-08-17 1985-03-09 Sumitomo Metal Ind Ltd Electromagnetic stirrer
JP3372958B2 (en) * 1997-12-08 2003-02-04 新日本製鐵株式会社 Method and apparatus for casting molten metal and cast slab
JP3700396B2 (en) * 1998-06-16 2005-09-28 Jfeスチール株式会社 Steel continuous casting equipment
JP3420966B2 (en) * 1999-03-03 2003-06-30 新日本製鐵株式会社 Continuous casting machine for molten metal
JP3965545B2 (en) * 1999-06-28 2007-08-29 Jfeスチール株式会社 Steel continuous casting method and apparatus
CN2504014Y (en) * 2001-10-31 2002-08-07 宝山钢铁股份有限公司 Electromagnetic brake of continuous cast molten pool liquid wave
DE10237188A1 (en) * 2002-08-14 2004-02-26 Sms Demag Ag Electromagnetic braking device for steel melts flowing into a continuous casting mold, comprises a magnetic coil having a core consisting of a main part receiving a magnetic coil and travelling toward the wide side walls of a mold
CN1295043C (en) * 2003-03-03 2007-01-17 新日本制铁株式会社 Continuous casting mold
JP4438705B2 (en) * 2005-07-04 2010-03-24 住友金属工業株式会社 Steel continuous casting method
JP4779602B2 (en) 2005-11-25 2011-09-28 パナソニック電工株式会社 Telephone device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020001092A (en) * 2018-06-22 2020-01-09 日本製鉄株式会社 Continuous casting method for steel
JP7247777B2 (en) 2018-06-22 2023-03-29 日本製鉄株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
CN101868311A (en) 2010-10-20
KR101207679B1 (en) 2012-12-03
JP2009119515A (en) 2009-06-04
CN101868311B (en) 2012-11-28
WO2009063711A1 (en) 2009-05-22
EP2218528A1 (en) 2010-08-18
EP2218528B1 (en) 2015-06-24
BRPI0820371A2 (en) 2015-05-12
EP2218528A4 (en) 2014-01-08
KR20100080945A (en) 2010-07-13
BRPI0820371B1 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
JP5023990B2 (en) Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP4438705B2 (en) Steel continuous casting method
JP5023989B2 (en) Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP2009006370A (en) Continuous casting method for steel
JP4441435B2 (en) Linear moving magnetic field type electromagnetic stirrer
JP5040999B2 (en) Steel continuous casting method and flow control device for molten steel in mold
JP3570601B2 (en) Electromagnetic stirrer
JP4356531B2 (en) Steel continuous casting method and electromagnetic force control device for molten steel in mold
JP4910997B2 (en) Electromagnetic coil device for both electromagnetic stirring and electromagnetic brake
JP2007534492A (en) Continuous casting mold magnetic brake
JP7180383B2 (en) continuous casting machine
JP2004322179A (en) Electromagnetic force control device in mold and continuous casting method
JP7119684B2 (en) continuous casting machine
JP5124873B2 (en) Slab continuous casting method
JPS63119962A (en) Rolling device for electromagnetic agitation
JP2001521444A (en) Apparatus for continuous casting of two strands in parallel
JPH11156502A (en) Equipment and method for controlling molten steel flow in mold, in continuous casting
JP4192651B2 (en) Mold for continuous casting
JP2003266152A (en) Electromagnetic brake-device in mold
JP2009285677A (en) Continuous casting method for steel
JP2004042065A (en) Electromagnetic stirring device
JPH0137229B2 (en)
JP2002239694A (en) Control unit for fluidity of molten steel
JP2004042064A (en) Electromagnetic stirring device and electromagnetic stirring method
JP2001219255A (en) Flow control apparatus for molten metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5023989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350