JP2004042068A - Continuous casting method of molten metal and continuous casting apparatus - Google Patents

Continuous casting method of molten metal and continuous casting apparatus Download PDF

Info

Publication number
JP2004042068A
JP2004042068A JP2002200796A JP2002200796A JP2004042068A JP 2004042068 A JP2004042068 A JP 2004042068A JP 2002200796 A JP2002200796 A JP 2002200796A JP 2002200796 A JP2002200796 A JP 2002200796A JP 2004042068 A JP2004042068 A JP 2004042068A
Authority
JP
Japan
Prior art keywords
molten metal
continuous casting
casting mold
mold
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002200796A
Other languages
Japanese (ja)
Inventor
Takehiko Fuji
藤 健彦
Masahiro Tani
谷 雅弘
Hiroshi Harada
原田 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002200796A priority Critical patent/JP2004042068A/en
Publication of JP2004042068A publication Critical patent/JP2004042068A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method of molten metal wherein by making molten metal in a continuous casting mold fluidal a non-metallic inclusion is prevented from being captured particularly near to the surface of a cast piece to effectively improve a quality of the cast piece, and to provide a continuous casting apparatus. <P>SOLUTION: The continuous casting method of molten metal is characterized in that a temperature of molten metal 2 at a central part of a depth beneath the surface of molten metal in the continuous casting mold 1 is made higher by 5°C or more than a liquid-phase line temperature and a forced fluidity of molten metal 2 along a solid-liquid interface is provided in the continuous casting mold. A linear-motor electromagnetic coil 5 having an iron core is arrayed in the periphery of the continuous casting mold 1 to give a velocity to molten metal 2 and an electromagnetic inductive coil 8 is arrayed in the periphery of the continuous casting mold 1 to give Joule heat to molten metal 2. Therefore, molten metal is heated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、溶融金属の連続鋳造方法及び連続鋳造装置に関するものである。
【0002】
【従来の技術】
溶鋼をはじめとする溶融金属を連続鋳造するに際しては、連続鋳造鋳型内に溶融金属を注入し、連続鋳造鋳型と溶融金属との接触部において溶融金属を凝固させて凝固シェルを形成し、凝固を進行させつつ凝固シェルを下方に引抜き、最終的に鋳片を形成する。
【0003】
連続鋳造鋳型内に注入される溶融金属中には、脱酸生成物をはじめとする微細な非金属介在物が含まれている。この非金属介在物が凝固シェル中に取り込まれて凝固が完了すると、金属製品の品質欠陥の原因となるので、溶融金属中の非金属介在物は極力連続鋳造鋳型内で浮上させ、溶融金属中から排除することが重要である。
【0004】
例えば、鋼スラブを連続鋳造する場合、矩形の鋳造用鋳型の長辺側に沿って移動磁界生成コイルを配置して該コイルに交流電流を流し、それによって生じる移動磁界を溶鋼に印加させ、鋳型内の溶鋼横断面方向に旋回攪拌流を形成し、その結果溶鋼の偏析・酸化物の凝固シェルへの付着等を防止して欠陥の少ない鋳片を鋳造する技術、いわゆる電磁攪拌が知られている。その代表的な文献を挙げれば、「電磁力を利用したマテリアルプロセシング(第129・130回西山記念技術講座 1989年4月)に、交流磁場の電磁誘導及び攪拌技術と効果に関して説明されている。また、連続鋳造鋳型に配置した電磁攪拌装置の構造例として特公昭58−49172号公報に「連続鋳造用電磁攪拌装置」が開示されている。
【0005】
この鋳型内電磁攪拌においては、連続鋳造鋳造内の溶融金属に水平に旋回する流れを形成し、鋳片表層にあたる凝固シェル前面に一定の流速を付与することにより、鋼中に存在する不純物粒子である脱酸により溶鋼に混在するアルミナやスラグ系の介在物を洗い流し、鋳片の表層の品質を高めることが可能であることが示されている。
【0006】
凝固シェル前面の溶融金属が流動している場合においても、凝固シェルの凝固は進行している。溶融金属中の粒子が単純に凝固シェルに平行に移動しているだけでは、凝固の進行に伴う固液界面の前進により、結局、粒子は凝固シェルに捕捉されてしまう。一方、粒子がシェルの凝固方向に凝固速度よりも速い速度で凝固シェルから遠ざかる速度成分を有していれば、粒子が凝固シェルに捕捉されることはない。従って、この捕捉現象は、シェルの凝固速度とシェルからの粒子の離反速度の差で決まっている。
【0007】
溶融金属が流速を有する場合、固液界面近傍の溶融金属は速度境界層を有し、固液界面に近づくほど流速が小さくなる。このため、この速度境界層内に存在する粒子は、固液界面から遠ざかる方向に力を受け、固液界面から遠ざかる方向の速度成分を有することとなる。溶融金属の流速が速いほど、粒子が固液界面から遠ざかる速度成分も大きくなる。鋳型内電磁攪拌においては、このような原理に基づき、溶融金属中に懸濁する粒子が凝固シェルに捕捉されるのを防止し、連続鋳造鋳片の清浄化を図っている。
【0008】
【発明が解決しようとする課題】
一般に凝固シェル前面における溶融金属の流速を上昇させると、凝固シェル前面の温度勾配が大きくなり抜熱が促進され凝固速度が上昇するので、結果的に粒子が固液界面から遠ざかる速度と凝固シェルの凝固速度との速度差がかえって小さくなるという矛盾する現象があり、鋳片表層の清浄化効果を小さくするという矛盾があった。
【0009】
本発明は、溶融金属の連続鋳造において、連続鋳造鋳型内の溶融金属に流動を生じさせることにより、非金属介在物が鋳片の特に表面付近に捕捉されることを防止し、有効に鋳片の品質を向上する連続鋳造方法及び連続鋳造装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
即ち、本発明の要旨とするところは以下のとおりである。
(1)溶融金属の連続鋳造方法であって、連続鋳造鋳型1内の溶融金属表面直下の厚み中央部における溶融金属2の温度を液相線温度+5℃以上とし、連続鋳造鋳型内において固液界面に沿った溶融金属2の強制流動を起こさせることを特徴とする溶融金属の連続鋳造方法。
(2)連続鋳造鋳型1の外周に鉄心を有したリニアモーター電磁コイル5を配置し、該電磁コイル5によって溶融金属2に流速を付与することを特徴とする上記(1)に記載の溶融金属の連続鋳造方法。
(3)前記連続鋳造鋳型内における溶融金属2の強制流動は、溶融金属表面直下の鋳型長辺の1/4幅部において、固液界面に垂直な方向に固液界面から10mm離れた部分における溶融金属の流速を0.2m/s以上とすることを特徴とする上記(1)又は(2)に記載の溶融金属の連続鋳造方法。
(4)連続鋳造鋳型内の溶融金属2を加熱することを特徴とする上記(1)乃至(3)のいずれかに記載の溶融金属の連続鋳造方法。
(5)連続鋳造鋳型1の外周に電磁誘導コイル8を配置し、電磁誘導コイル8によって溶融金属2にジュール熱を付加することによって溶融金属を加熱することを特徴とする上記(4)に記載の溶融金属の連続鋳造方法。
(6)前記溶融金属表面直下とは、溶融金属表面から0.05〜0.1m下方の範囲であることを特徴とする上記(1)乃至(5)のいずれかに記載の溶融金属の連続鋳造方法。
(7)前記溶融金属は、液相線温度と固相線温度の差が5℃未満であることを特徴とする上記(1)乃至(6)のいずれかに記載の溶融金属の連続鋳造方法。
(8)連続鋳造鋳型1の外周に配置したリニアモーター電磁コイル5と電磁誘導コイル8とを有し、リニアモーター電磁コイル5は鉄心7を有し、リニアモーター電磁コイル5は連続鋳造鋳型1内の溶融金属2に流速を付与することができ、電磁誘導コイル8は連続鋳造鋳型1内の溶融金属2を加熱することができることを特徴とする溶融金属の連続鋳造装置。
【0011】
【発明の実施の形態】
図1、2に基づいて本発明の実施の形態を説明する。
本発明においては、連続鋳造鋳型1内の溶融金属表面直下の厚み中央部における溶融金属2の温度を液相線温度+5℃以上とし、その状態において、連続鋳造鋳型内で固液界面に沿った溶融金属2の強制流動を起こさせることを特徴とする。連続鋳造鋳型内の溶融金属温度を液相線温度+5℃以上という高温に保持することにより、鋳型内における凝固シェルの凝固速度を遅くすることができる。その結果、連続鋳造鋳型内で固液界面に沿った溶融金属2の強制流動を起こした場合において、強制流動に伴って溶融金属内の非金属介在物が固液界面から遠ざかる速度を凝固シェルの凝固速度より速い速度に維持することができ、非金属介在物が凝固シェルに捕捉されるのを防止する。これにより、本発明の連続鋳造方法を適用した結果として、鋳片表面近くにおける非金属介在物を低減することが可能になり、鋳片品質を向上することができる。
【0012】
連続鋳造鋳型内の溶融金属温度は、溶融金属表面直下の厚み中央部、鋳型長辺1aの1/4幅部において測定している。溶融金属表面直下とは、溶融金属表面から0.05〜0.1m下方の範囲内とすると好ましい。このように測定部位を特定することにより、凝固シェルの凝固速度や鋳片品質を安定化させることができる。
【0013】
連続鋳造鋳型内の溶融金属温度を液相線温度+5℃以上ととするのは、これによって鋳型内における凝固シェルの凝固速度を十分に遅延化させることができ、連続鋳造鋳型内における固液界面に沿った強制流動が十分に効果を発揮して非金属介在物の凝固シェルへの捕捉を防止できるからである。ただし、連続鋳造鋳型内の溶融金属温度が液相線温度+20℃を超えると、鋳型内における凝固シェルの再溶解が発生する可能性があるので好ましくない。連続鋳造鋳型内の溶融金属表面直下の厚み中央部、鋳型長辺の1/4幅部における溶融金属温度は、液相線温度+5℃〜液相線温度+15℃の範囲であるとより好ましい。
【0014】
連続鋳造鋳型内における固液界面に沿った溶融金属の強制流動の発生は、連続鋳造鋳型1の外周に鉄心7を有したリニアモーター電磁コイル5を配置し、該電磁コイル5によって溶融金属2に流速を付与することとすると好ましい。例えばスラブ型連続鋳造装置であれば、図1、2に示すように、鋳型長辺1aに沿って両長辺面の外側にリニアモーター電磁コイル5を配置する。このリニアモーター電磁コイル5に3相交流電源6を用いて交流電流を流すことにより、鋳型内の溶融金属に移動磁界を発生させ、溶融金属2に強制流動を起こさせる。長辺両サイドの移動磁界の方向を逆方向とすれば、図1に示すように、鋳造方向に垂直な面内において溶融金属2に旋回流4を発生させることができる。
【0015】
固液界面に沿って溶融金属2に強制流を発生させた場合、固液界面付近には界面に近づくほど速度が小さくなる速度境界層が発生する。しかし、固液界面から10mm以上離れれば速度境界層の範囲から外れる。これより鋳造空間3の中心側については、溶融金属空間の中心に近くなるほど磁界の強度が弱くなるので、固液界面から距離が離れるほど流速が徐々に減少する。
【0016】
本発明においては、連続鋳造鋳型内における溶融金属の強制流動は、溶融金属表面直下の鋳型長辺の1/4幅部において、固液界面に垂直な方向に固液界面から10mm離れた部分における溶融金属の流速を0.2m/s以上とすると好ましい。溶融金属の流速が0.2m/min以上であれば、溶融金属中の粒子が固液界面から遠ざかる速度を十分に付与することができ、鋳片の表面近傍における非金属介在物密度を低減して鋳片品質を向上することができる。一方、溶融金属の流速が0.5m/minを超えると、逆に鋳片の表面近傍における非金属介在物密度の増大が見られるので好ましくない。高速流速における非金属介在物密度の増大は、潤滑剤として用いられるモールドフラックス(パウダー)が、溶鋼流速の増大によって発生する溶融したフラックスと溶鋼の界面の不安定化により多量に液滴として巻き込まれ、一部捕捉されることに起因しているものと考えられる。
【0017】
溶融金属に強制流を起こさせる範囲は、鋳型内表面直下の溶融金属表面から0.05〜0.1m下方の範囲を含む領域とすると好ましい。この範囲において溶融金属が固液界面に沿った流速を保持することにより、鋳片表層部における非金属介在物の捕捉を防止することができる。もちろん、溶融金属表面から0.05〜0.1m下方の範囲において十分な流速を有していれば、それよりもさらに下方の領域における溶融金属の流動については、流動が存在していても存在していなくてもかまわない。
【0018】
本発明において、連続鋳造鋳型内の特に溶融金属表面直下における強制流動を対象としているのは、溶融金属表面直下の固液界面における非金属介在物の捕捉が問題となるからである。
【0019】
連続鋳造鋳型内における溶融金属の流速は、鋳造後の鋳片断面を腐食し組織を可視化し、その樹枝状組織(デンドライト)が流速と一定の関係を有して上流側に傾くことを利用し、その傾きを測定することにより算出するか、あるいは歪ゲージを貼りつけた耐火物ロッドを鋳造中に溶鋼に浸漬し、ロッドの流動による変形により発生する歪を、予めオフラインで検量した値で換算する方法により測定することができる。デンドライトの傾きと流速に関する文献として、例えばH.Esaka et.al., ISIJ.int.Vol.36,(1996), No.10, pp1264−1272がある。
【0020】
連続鋳造鋳型内の溶融金属温度を液相線温度+5℃以上とするための手段は、連続鋳造鋳型1の外周に電磁誘導コイル8を配置し、電磁誘導コイル8によって溶融金属にジュール熱を付加することによって溶融金属2を加熱することとすると好ましい。電磁誘導コイル8は、例えば図1、2に示すように連続鋳造鋳型1を取り巻くように配置し、この電磁誘導コイル8に単相交流電源9を接続して100Hz以下の電流を流すことによって溶融金属2に誘導電流を発生させ、この誘導電流によって溶融金属2をジュール加熱する。
【0021】
連続鋳造鋳型内の溶融金属表面直下における溶融金属の温度を、液相線温度+0℃〜5℃の範囲となるように注入を行い、その上で連続鋳造鋳型内で誘導加熱を行って溶融金属温度を10℃〜15℃の範囲で加熱することとすると好ましい。これは、適正温度が必要なモールド内で熱を付与すればよいために、タンディッシュ内でそれほど温度を上げる必要がなく、また鋳型内の加熱によってシェルが溶融して鋳片表面性状が悪くならない範囲にとどめたいことによる。
【0022】
連続鋳造鋳型内の溶融金属温度を液相線温度+5℃以上とするための手段としては、連続鋳造鋳型内で溶融金属2を誘導加熱するのではなく、例えばタンディッシュ内の溶融金属を加熱することとしても良い。この場合は、プラズマ加熱などの手段を採用することができる。ただし、タンディッシュ内の溶融金属を加熱する手段においては効率が悪いという問題があるので、上記連続鋳造鋳型内における誘導加熱の方が好ましい。
【0023】
また、連続鋳造鋳型内の溶融金属温度を液相線温度+5℃以上とするための手段としては、タンディッシュに注入する前の取鍋内溶融金属温度を上昇させる手段を用いることもできる。ただし、この場合には、昇温後ノズルや鋳型内を溶鋼流が通過する際に抜熱を受けてメニスカス直下の温度上昇効率が悪くなるという問題がある。
【0024】
本発明を適用して連続鋳造を行う溶融金属としては、液相線温度と固相線温度の差が5℃未満の溶融金属において特に有効である。これは、両温度差が小さい場合には、メニスカスの初期凝固部に爪状の凝固を起こしやすく、この爪状のものが介在物の捕捉しやすさを増すことによる。液相線温度と固相線温度の差は、計算によってもしくは測定によって定めることができる。
【0025】
本発明は、スラブ連続鋳造において最も好ましい結果を得ることができるが、ブルーム連続鋳造やビレット連続鋳造において用いても良好な効果を発揮できることはいうまでもない。
【0026】
図1、2は鋼のスラブ連続鋳造において本発明を適用した場合における連続鋳造鋳型の一例を示す図である。図1(a)は平面図、図1(b)は側面図、図2は斜視図である。連続鋳造鋳型1は、銅板及びステンレス等の板で冷却水流路を備えたバックプレートから成る1対の長辺1aと短辺1bで構成される。この連続鋳造鋳型1で囲まれた鋳造空間内で、鋳造空間3のメニスカス部に、鋳造空間の注入用ノズルを中心として鋳型内溶鋼の上表面付近の溶鋼を旋回運動4させる。溶鋼に旋回運動を起こさせるためのリニアモーター電磁コイルは、移動磁界発生電磁コイル(リニアモーター)5、これに接続された交流電源6によって構成される。これにより、鋳型内溶鋼表面直下における溶鋼は鋳型壁面付近ほど強く水平旋回運動させられる。また旋回流速は概ね磁場の2乗と周波数の積で決まる。また、図1に示すように、リニアモーター電磁コイルの上下には溶鋼加熱用の電磁誘導コイル(8a、8b)を配置している。この電磁誘導コイル8で発生した誘導電流は溶鋼にジュール熱を発生し、凝固せんとする溶融金属に熱を供給する。
【0027】
【実施例】
鋼のスラブ連続鋳造装置において本発明を適用した。図1に示すような、幅1650mm、高さ800mm、キャビティー(鋳造空間)厚み255mmの鋳型1に対し、鋳造幅と同程度の幅を有し、高さ150mm、厚み150mmの鉄芯に3相交流を流すコイル24本のスロットを有する4ポールリニアモーター電磁コイル5を配置した。さらに該リニアモーター電磁コイル5の上方及び下方に、鋳造方向と同軸に連続鋳造鋳型1を取り囲むように電磁誘導コイル(8a、8b)を配置した。
【0028】
リニアモーター電磁コイル5に交流電流を付加することにより、鋳型内溶鋼に図1に示すような旋回流4を発生させた。鋳型内の溶鋼表面から0.05〜0.1m下方の長辺1/4幅部の固液界面から10mm離れた部分における溶鋼の流速を、前述のデンドライト傾角による方法によって測定した。このようにして測定した溶鋼の流速を、0〜0.6m/sの範囲で0.1m/sピッチで変化させた。また、電磁誘導コイル8によって付加する磁束密度と周波数を変化させることにより、鋳型内溶鋼を0〜15℃の範囲で5℃ピッチで変化させて加熱した。
【0029】
この装置を用いて、鋳造速度1.5m/minで低炭アルミキルド鋼の鋳造を行った。電磁誘導コイル8による加熱を行わない場合において、鋳型内の長辺1/4幅部の厚み中央部において、溶鋼表面から0.05〜0.1mにおける溶鋼温度が液相線温度+3℃となるように鋳造を行い、上記の種々の処理条件において鋳片品質を比較した。表面及び内部の品質は、図3に示すように、鋳片10の表層から深さ10mmまでの表層サンプル12を切り出し、電解抽出法によって介在物を取り出し、大型介在物個数とその種類(アルミナ系及びパウダー系に識別)別に評価して表層と内部品質への影響を調査した。
【0030】
品質評価結果を図4に示す。鋳型内溶鋼加熱を行わなかった●印のものは、鋳型内の溶鋼温度が液相線温度+3℃程度であり、固液界面の流速のいずれの領域においても鋳片表層介在物指数の改善が十分ではなかった。鋳型内溶鋼を5℃加熱した■印は鋳型内溶鋼温度が液相線温度+8℃程度であり、鋳型内溶鋼を10℃加熱した△印は鋳型内溶鋼温度が液相線温度+13℃程度であり、いずれも、固液界面の流速が0.2〜0.5m/minの範囲において鋳片表層介在物指数が低い値を示し、本発明の効果を発揮していることがわかった。一方、鋳型内溶鋼を15℃加熱した鋳造については、鋳型内において凝固シェルの再溶解が発生し、ブリードと呼ばれる凝固シェルが一部溶融し鋳片表面状態が悪くなり、一部ブレークアウトしかかった状況となったために鋳造を行うことができなかった。
【0031】
【発明の効果】
本発明は、鋳型内の溶融金属の温度を加熱などの手段によって液相線温度+5℃以上にしつつ鋳型内容遊金属に強制流動を起こさせることにより、溶融金属中に含まれる非金属介在物が凝固シェルに捕捉されることを防止し、鋳片の品質を向上させることができる。
【図面の簡単な説明】
【図1】本発明の連続鋳造装置における連続鋳造鋳型近傍を示す図であり、(a)は平面図、(b)は側面図である。
【図2】本発明の連続鋳造装置における連続鋳造鋳型近傍を示す斜視図である。
【図3】鋳片から採取する品質評価サンプルの採取位置を示す図である。
【図4】溶融金属に付与した流速及び溶融金属の加熱状況と、鋳片表層介在物評価結果との関係を示す図である。
【符号の説明】
1 連続鋳造鋳型
1a 鋳型長辺
1b 鋳型短辺
2 溶融金属
3 鋳造空間
4 旋回流
5 リニアモーター電磁コイル
6 3相交流電源
7 鉄心
8 電磁誘導コイル
9 単相交流電源
10 鋳片
11 鋳造方向
12 表層サンプル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous casting method and a continuous casting apparatus for molten metal.
[0002]
[Prior art]
When continuously casting molten metal such as molten steel, the molten metal is poured into a continuous casting mold, and the molten metal is solidified at a contact portion between the continuous casting mold and the molten metal to form a solidified shell. While proceeding, the solidified shell is pulled downward, and finally a slab is formed.
[0003]
The molten metal injected into the continuous casting mold contains fine nonmetallic inclusions including deoxidation products. When this non-metallic inclusion is taken into the solidified shell and solidification is completed, it causes a quality defect of the metal product.Therefore, the non-metallic inclusion in the molten metal is raised as much as possible in the continuous casting mold, and It is important to exclude from.
[0004]
For example, when continuously casting a steel slab, a moving magnetic field generating coil is arranged along a long side of a rectangular casting mold, an alternating current is applied to the coil, and a moving magnetic field generated by the coil is applied to molten steel, and the mold is cast. A technique of forming a swirling agitated flow in the direction of the cross section of the molten steel in the inside, thereby preventing the segregation of the molten steel and the adhesion of oxides to the solidified shell, and casting a slab with few defects, so-called electromagnetic stirring is known. I have. As a typical document, "Material Processing Using Electromagnetic Force (129.130th Nishiyama Memorial Technical Lecture, April 1989)" describes the electromagnetic induction and agitation techniques and effects of an AC magnetic field. Japanese Patent Publication No. 58-49172 discloses an "electromagnetic stirrer for continuous casting" as a structural example of an electromagnetic stirrer arranged in a continuous casting mold.
[0005]
In the electromagnetic stirring in the mold, a horizontally swirling flow is formed in the molten metal in the continuous casting, and a constant flow rate is given to the front surface of the solidified shell corresponding to the surface layer of the slab, so that the impurity particles present in the steel are removed. It has been shown that alumina and slag-based inclusions mixed in molten steel can be washed out by a certain deoxidation to improve the quality of the surface layer of a slab.
[0006]
Even when the molten metal in front of the solidified shell is flowing, solidification of the solidified shell is progressing. If the particles in the molten metal simply move parallel to the solidification shell, the particles are eventually captured by the solidification shell due to the advance of the solid-liquid interface as the solidification progresses. On the other hand, if the particles have a velocity component moving away from the solidification shell at a speed higher than the solidification speed in the solidification direction of the shell, the particles will not be captured by the solidification shell. Therefore, this trapping phenomenon is determined by the difference between the solidification speed of the shell and the separation speed of the particles from the shell.
[0007]
When the molten metal has a flow velocity, the molten metal near the solid-liquid interface has a velocity boundary layer, and the flow velocity decreases as approaching the solid-liquid interface. Therefore, the particles existing in the velocity boundary layer receive a force in a direction away from the solid-liquid interface, and have a velocity component in a direction away from the solid-liquid interface. The higher the flow rate of the molten metal, the greater the velocity component at which the particles move away from the solid-liquid interface. In the electromagnetic stirring in the mold, particles suspended in the molten metal are prevented from being captured by the solidified shell based on such a principle, and the continuous cast slab is cleaned.
[0008]
[Problems to be solved by the invention]
In general, increasing the flow rate of the molten metal in front of the solidification shell increases the temperature gradient in the front of the solidification shell, promotes heat removal, and increases the solidification rate.As a result, the speed at which particles move away from the solid-liquid interface and the solidification shell There is a contradictory phenomenon that the speed difference from the solidification speed is rather small, and there is a contradiction that the cleaning effect of the slab surface layer is reduced.
[0009]
The present invention, in continuous casting of molten metal, by causing the molten metal in the continuous casting mold to flow, to prevent non-metallic inclusions from being trapped particularly near the surface of the slab, effectively cast slab It is an object of the present invention to provide a continuous casting method and a continuous casting apparatus that improve the quality of steel.
[0010]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
(1) A method for continuous casting of molten metal, wherein the temperature of molten metal 2 at the center of thickness immediately below the surface of molten metal in continuous casting mold 1 is set to a liquidus temperature + 5 ° C. or higher, and solid-liquid A continuous casting method for molten metal, characterized by causing a forced flow of the molten metal 2 along the interface.
(2) The molten metal according to the above (1), wherein a linear motor electromagnetic coil 5 having an iron core is arranged on the outer periphery of the continuous casting mold 1, and a flow rate is given to the molten metal 2 by the electromagnetic coil 5. Continuous casting method.
(3) The forced flow of the molten metal 2 in the continuous casting mold is caused in a portion 10 mm away from the solid-liquid interface in a direction perpendicular to the solid-liquid interface in a quarter width section of the long side of the mold immediately below the molten metal surface. The continuous casting method of molten metal according to the above (1) or (2), wherein the flow rate of the molten metal is 0.2 m / s or more.
(4) The method for continuously casting molten metal according to any one of the above (1) to (3), wherein the molten metal 2 in the continuous casting mold is heated.
(5) The electromagnetic induction coil 8 is arranged on the outer periphery of the continuous casting mold 1, and the molten metal is heated by applying Joule heat to the molten metal 2 by the electromagnetic induction coil 8. Continuous casting method of molten metal.
(6) The continuation of the molten metal according to any one of (1) to (5), wherein the term “immediately below the surface of the molten metal” means a range of 0.05 to 0.1 m below the surface of the molten metal. Casting method.
(7) The method for continuous casting of molten metal according to any one of (1) to (6), wherein a difference between a liquidus temperature and a solidus temperature of the molten metal is less than 5 ° C. .
(8) It has a linear motor electromagnetic coil 5 and an electromagnetic induction coil 8 arranged on the outer periphery of the continuous casting mold 1, the linear motor electromagnetic coil 5 has an iron core 7, and the linear motor electromagnetic coil 5 is inside the continuous casting mold 1. A continuous casting apparatus for molten metal, characterized in that the molten metal 2 can be given a flow velocity and the electromagnetic induction coil 8 can heat the molten metal 2 in the continuous casting mold 1.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
In the present invention, the temperature of the molten metal 2 at the center of the thickness immediately below the surface of the molten metal in the continuous casting mold 1 is set to the liquidus temperature + 5 ° C. or more, and in that state, the temperature along the solid-liquid interface in the continuous casting mold is increased. It is characterized in that a forced flow of the molten metal 2 is caused. By maintaining the temperature of the molten metal in the continuous casting mold at a high temperature equal to or higher than the liquidus temperature + 5 ° C., the solidification rate of the solidified shell in the mold can be reduced. As a result, when the forced flow of the molten metal 2 along the solid-liquid interface occurs in the continuous casting mold, the speed at which nonmetallic inclusions in the molten metal move away from the solid-liquid interface with the forced flow is increased by the solidification shell. It can be maintained at a higher speed than the solidification rate, preventing non-metallic inclusions from being trapped in the solidification shell. Thereby, as a result of applying the continuous casting method of the present invention, nonmetallic inclusions near the slab surface can be reduced, and slab quality can be improved.
[0012]
The temperature of the molten metal in the continuous casting mold is measured at the center of the thickness immediately below the surface of the molten metal and at the quarter width of the long side 1a of the mold. It is preferable that the term “immediately below the surface of the molten metal” be within a range of 0.05 to 0.1 m below the surface of the molten metal. By specifying the measurement site in this manner, the solidification speed of the solidified shell and the quality of the slab can be stabilized.
[0013]
The reason why the temperature of the molten metal in the continuous casting mold is equal to or higher than the liquidus temperature + 5 ° C. is that the solidification rate of the solidified shell in the casting mold can be sufficiently delayed, and the solid-liquid interface in the continuous casting mold can be reduced. This is because the forced flow along the surface exerts a sufficient effect to prevent the nonmetallic inclusions from being trapped in the solidified shell. However, if the temperature of the molten metal in the continuous casting mold exceeds the liquidus temperature + 20 ° C., the solidified shell in the mold may be remelted, which is not preferable. More preferably, the molten metal temperature at the center of the thickness immediately below the surface of the molten metal in the continuous casting mold and at the quarter width of the long side of the mold is in the range of liquidus temperature + 5 ° C to liquidus temperature + 15 ° C.
[0014]
To generate the forced flow of the molten metal along the solid-liquid interface in the continuous casting mold, a linear motor electromagnetic coil 5 having an iron core 7 is arranged on the outer periphery of the continuous casting mold 1, and the molten metal 2 is formed by the electromagnetic coil 5. It is preferable to provide a flow rate. For example, in the case of a slab-type continuous casting apparatus, as shown in FIGS. 1 and 2, the linear motor electromagnetic coil 5 is arranged outside both long sides along the mold long side 1a. By passing an alternating current through the linear motor electromagnetic coil 5 using a three-phase AC power supply 6, a moving magnetic field is generated in the molten metal in the mold, and the molten metal 2 is forced to flow. If the directions of the moving magnetic fields on both sides of the long side are reversed, a swirling flow 4 can be generated in the molten metal 2 in a plane perpendicular to the casting direction, as shown in FIG.
[0015]
When a forced flow is generated in the molten metal 2 along the solid-liquid interface, a velocity boundary layer is generated near the solid-liquid interface, in which the velocity decreases as approaching the interface. However, if it is more than 10 mm away from the solid-liquid interface, it will be out of the range of the velocity boundary layer. Thus, on the center side of the casting space 3, the magnetic field strength becomes weaker as it approaches the center of the molten metal space, so that the flow velocity gradually decreases as the distance from the solid-liquid interface increases.
[0016]
In the present invention, the forced flow of the molten metal in the continuous casting mold occurs at a portion 10 mm away from the solid-liquid interface in a direction perpendicular to the solid-liquid interface in a quarter of the long side of the mold immediately below the molten metal surface. It is preferable that the flow rate of the molten metal be 0.2 m / s or more. When the flow rate of the molten metal is 0.2 m / min or more, the velocity at which the particles in the molten metal move away from the solid-liquid interface can be sufficiently provided, and the density of nonmetallic inclusions near the surface of the slab is reduced. As a result, the quality of the slab can be improved. On the other hand, if the flow rate of the molten metal exceeds 0.5 m / min, the density of nonmetallic inclusions near the surface of the slab increases, which is not preferable. The increase in the density of non-metallic inclusions at high flow velocity is due to the fact that the mold flux (powder) used as a lubricant is caught in large quantities as droplets due to the instability of the molten flux-molten steel interface generated by the increase in molten steel flow velocity. Is partly captured.
[0017]
The range in which the forced flow is caused in the molten metal is preferably a region including a range of 0.05 to 0.1 m below the surface of the molten metal immediately below the inner surface of the mold. By keeping the flow rate of the molten metal along the solid-liquid interface in this range, it is possible to prevent nonmetallic inclusions from being captured in the surface layer of the slab. Of course, if there is a sufficient flow velocity in the range of 0.05 to 0.1 m below the surface of the molten metal, the flow of the molten metal in a region further below that exists even if the flow exists. You don't have to.
[0018]
In the present invention, the purpose of forced flow in the continuous casting mold, particularly immediately below the surface of the molten metal, is because trapping of nonmetallic inclusions at the solid-liquid interface immediately below the surface of the molten metal becomes a problem.
[0019]
The flow velocity of the molten metal in the continuous casting mold is based on the fact that the cross section of the cast slab after casting is corroded to visualize the structure, and that the dendritic structure (dendrites) has a certain relationship with the flow speed and tilts upstream. Calculate by measuring the inclination, or immerse a refractory rod with a strain gauge attached in molten steel during casting, and convert the strain generated by deformation due to the flow of the rod to a value previously calibrated offline Can be measured by the following method. For example, H. H. Esaka et. al. , ISIJ. int. Vol. 36, (1996), no. 10, pp1264-1272.
[0020]
Means for setting the temperature of the molten metal in the continuous casting mold to be equal to or higher than the liquidus temperature + 5 ° C. is to dispose an electromagnetic induction coil 8 on the outer periphery of the continuous casting mold 1 and add Joule heat to the molten metal by the electromagnetic induction coil 8. It is preferable to heat the molten metal 2 by performing the heat treatment. The electromagnetic induction coil 8 is arranged, for example, so as to surround the continuous casting mold 1 as shown in FIGS. 1 and 2, and a single-phase AC power supply 9 is connected to the electromagnetic induction coil 8 to flow a current of 100 Hz or less, thereby melting the electromagnetic induction coil 8. An induced current is generated in the metal 2, and the molten metal 2 is Joule-heated by the induced current.
[0021]
Injection is performed so that the temperature of the molten metal immediately below the surface of the molten metal in the continuous casting mold is in the range of liquidus temperature + 0 ° C. to 5 ° C., and then induction heating is performed in the continuous casting mold. It is preferable to heat at a temperature in the range of 10C to 15C. This is because it is only necessary to apply heat in a mold that requires an appropriate temperature, so it is not necessary to raise the temperature so much in the tundish, and the shell in the mold is not melted by heating in the mold and the slab surface properties do not deteriorate It depends on what you want to stay in the range.
[0022]
As a means for setting the temperature of the molten metal in the continuous casting mold to be equal to or higher than the liquidus temperature + 5 ° C., the molten metal 2 is heated, for example, in a tundish, instead of induction heating the molten metal 2 in the continuous casting mold. It is good. In this case, means such as plasma heating can be employed. However, since there is a problem that the efficiency of the means for heating the molten metal in the tundish is low, induction heating in the continuous casting mold is preferable.
[0023]
Further, as means for setting the temperature of the molten metal in the continuous casting mold to be equal to or higher than the liquidus temperature + 5 ° C., means for increasing the temperature of the molten metal in the ladle before pouring into the tundish can also be used. However, in this case, there is a problem that the temperature rise efficiency just below the meniscus is deteriorated due to heat removal when the molten steel flow passes through the nozzle or the mold after the temperature rise.
[0024]
As a molten metal subjected to continuous casting by applying the present invention, it is particularly effective for a molten metal having a difference between a liquidus temperature and a solidus temperature of less than 5 ° C. This is because when the difference between the two temperatures is small, nail-like solidification is likely to occur in the initial solidification portion of the meniscus, and the nail-like thing increases the easiness of capturing inclusions. The difference between the liquidus temperature and the solidus temperature can be determined by calculation or by measurement.
[0025]
The present invention can obtain the most preferable results in continuous slab casting, but it goes without saying that good effects can be exhibited even when used in continuous bloom casting or continuous billet casting.
[0026]
1 and 2 are views showing an example of a continuous casting mold in a case where the present invention is applied to continuous slab casting of steel. 1A is a plan view, FIG. 1B is a side view, and FIG. 2 is a perspective view. The continuous casting mold 1 is composed of a pair of a long side 1a and a short side 1b composed of a copper plate and a plate made of stainless steel or the like and provided with a cooling water channel. In the casting space surrounded by the continuous casting mold 1, the molten steel near the upper surface of the molten steel in the casting mold is swirled 4 around the injection nozzle of the casting space in the meniscus portion of the casting space 3. A linear motor electromagnetic coil for causing the molten steel to make a turning motion is constituted by a moving magnetic field generating electromagnetic coil (linear motor) 5 and an AC power supply 6 connected thereto. As a result, the molten steel immediately below the surface of the molten steel in the mold is caused to make a horizontal swiveling motion more strongly near the mold wall surface. In addition, the swirling flow velocity is generally determined by the product of the square of the magnetic field and the frequency. As shown in FIG. 1, electromagnetic induction coils (8a, 8b) for heating molten steel are arranged above and below the linear motor electromagnetic coil. The induction current generated by the electromagnetic induction coil 8 generates Joule heat in the molten steel and supplies heat to the molten metal to be solidified.
[0027]
【Example】
The present invention was applied to a steel slab continuous casting apparatus. As shown in FIG. 1, a mold 1 having a width of 1650 mm, a height of 800 mm, and a cavity (casting space) of 255 mm thick has a width approximately equal to the casting width, and a 150 mm high, 150 mm thick iron core. A 4-pole linear motor electromagnetic coil 5 having 24 slots for passing a phase alternating current was arranged. Further, electromagnetic induction coils (8a, 8b) were arranged above and below the linear motor electromagnetic coil 5 so as to surround the continuous casting mold 1 coaxially with the casting direction.
[0028]
By applying an alternating current to the linear motor electromagnetic coil 5, a swirling flow 4 as shown in FIG. 1 was generated in the molten steel in the mold. The flow rate of the molten steel at a portion 10 mm away from the solid-liquid interface of the long side 1/4 width portion 0.05 to 0.1 m below the surface of the molten steel in the mold was measured by the above-described method using the dendrite tilt angle. The flow rate of the molten steel thus measured was changed at a pitch of 0.1 m / s in a range of 0 to 0.6 m / s. Further, by changing the magnetic flux density and frequency added by the electromagnetic induction coil 8, the molten steel in the mold was heated at a pitch of 5 ° C. in a range of 0 to 15 ° C.
[0029]
Using this apparatus, low-carbon aluminum killed steel was cast at a casting speed of 1.5 m / min. When the heating by the electromagnetic induction coil 8 is not performed, the molten steel temperature at 0.05 to 0.1 m from the molten steel surface at the center of the thickness of the long side 1/4 width portion in the mold becomes the liquidus temperature + 3 ° C. Casting was performed as described above, and the slab quality was compared under the above various processing conditions. As shown in FIG. 3, the quality of the surface and the inside was determined by cutting out a surface layer sample 12 from the surface layer of the slab 10 to a depth of 10 mm, taking out inclusions by electrolytic extraction, and determining the number of large inclusions and their types (alumina-based materials). And the powder type) were evaluated separately to investigate the effects on the surface layer and internal quality.
[0030]
FIG. 4 shows the quality evaluation results. In the case where the molten steel in the mold was not heated, the mark marked with ● indicates that the temperature of the molten steel in the mold was approximately the liquidus temperature + 3 ° C, and the index of inclusions in the slab surface layer was improved in any region of the flow velocity at the solid-liquid interface. Was not enough. The symbol “■” where the molten steel in the mold was heated at 5 ° C. indicates that the temperature of the molten steel in the mold was about liquidus temperature + 8 ° C., and the symbol “△” where the molten steel in the mold was heated at about 10 ° C. indicates that the molten steel temperature in the mold was about + 13 ° C. In any case, in the case where the flow velocity at the solid-liquid interface was in the range of 0.2 to 0.5 m / min, the index of inclusions in the slab surface layer was low, and it was found that the effects of the present invention were exhibited. On the other hand, in the casting in which the molten steel in the mold was heated at 15 ° C., the solidified shell was re-melted in the mold, the solidified shell called bleed partially melted, the surface condition of the slab deteriorated, and partial breakout began. Casting could not be performed due to the situation.
[0031]
【The invention's effect】
In the present invention, the non-metallic inclusions contained in the molten metal are caused by forcibly flowing the molten metal in the mold while raising the temperature of the molten metal in the mold to a liquidus temperature + 5 ° C. or higher by means such as heating. It is possible to prevent the slab from being caught by the solidified shell and improve the quality of the slab.
[Brief description of the drawings]
FIG. 1 is a view showing the vicinity of a continuous casting mold in a continuous casting apparatus of the present invention, wherein (a) is a plan view and (b) is a side view.
FIG. 2 is a perspective view showing the vicinity of a continuous casting mold in the continuous casting apparatus of the present invention.
FIG. 3 is a view showing a sampling position of a quality evaluation sample collected from a slab.
FIG. 4 is a diagram showing the relationship between the flow rate applied to the molten metal and the state of heating of the molten metal, and the results of evaluating the slab surface layer inclusions.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Continuous casting mold 1a Mold long side 1b Mold short side 2 Molten metal 3 Casting space 4 Swirling flow 5 Linear motor electromagnetic coil 6 Three-phase AC power supply 7 Iron core 8 Electromagnetic induction coil 9 Single-phase AC power supply 10 Slab 11 Casting direction 12 Surface layer sample

Claims (8)

溶融金属の連続鋳造方法であって、連続鋳造鋳型内の溶融金属表面直下の厚み中央部における溶融金属の温度を液相線温度+5℃以上とし、連続鋳造鋳型内において固液界面に沿った溶融金属の強制流動を起こさせることを特徴とする溶融金属の連続鋳造方法。A method for continuously casting molten metal, wherein the temperature of the molten metal at the center of the thickness immediately below the surface of the molten metal in the continuous casting mold is set to a liquidus temperature + 5 ° C or higher, and the molten metal is melted along the solid-liquid interface in the continuous casting mold. A continuous casting method for molten metal, characterized by causing forced flow of metal. 連続鋳造鋳型の外周に鉄心を有したリニアモーター電磁コイルを配置し、該電磁コイルによって溶融金属に流速を付与することを特徴とする請求項1に記載の溶融金属の連続鋳造方法。2. The continuous casting method for molten metal according to claim 1, wherein a linear motor electromagnetic coil having an iron core is arranged on an outer periphery of the continuous casting mold, and a flow rate is given to the molten metal by the electromagnetic coil. 前記連続鋳造鋳型内における溶融金属の強制流動は、溶融金属表面直下の鋳型長辺の1/4幅部において、固液界面に垂直な方向に固液界面から10mm離れた部分における溶融金属の流速を0.2m/s以上とすることを特徴とする請求項1又は2に記載の溶融金属の連続鋳造方法。The forced flow of the molten metal in the continuous casting mold is caused by the flow rate of the molten metal at a portion 10 mm away from the solid-liquid interface in a direction perpendicular to the solid-liquid interface at a quarter width of the long side of the mold immediately below the surface of the molten metal. 3. The method for continuous casting of molten metal according to claim 1, wherein the pressure is 0.2 m / s or more. 連続鋳造鋳型内の溶融金属を加熱することを特徴とする請求項1乃至3のいずれかに記載の溶融金属の連続鋳造方法。The method for continuously casting molten metal according to any one of claims 1 to 3, wherein the molten metal in the continuous casting mold is heated. 連続鋳造鋳型の外周に電磁誘導コイルを配置し、該電磁誘導コイルによって溶融金属にジュール熱を付加することによって溶融金属を加熱することを特徴とする請求項4に記載の溶融金属の連続鋳造方法。The method for continuously casting molten metal according to claim 4, wherein an electromagnetic induction coil is arranged on the outer periphery of the continuous casting mold, and the molten metal is heated by applying Joule heat to the molten metal by the electromagnetic induction coil. . 前記溶融金属表面直下とは、溶融金属表面から0.05〜0.1m下方の範囲であることを特徴とする請求項1乃至5のいずれかに記載の溶融金属の連続鋳造方法。The method according to any one of claims 1 to 5, wherein the term "immediately below the molten metal surface" means a range of 0.05 to 0.1 m below the molten metal surface. 前記溶融金属は、液相線温度と固相線温度の差が5℃未満であることを特徴とする請求項1乃至6のいずれかに記載の溶融金属の連続鋳造方法。The method according to any one of claims 1 to 6, wherein a difference between a liquidus temperature and a solidus temperature of the molten metal is less than 5 ° C. 連続鋳造鋳型の外周に配置したリニアモーター電磁コイルと電磁誘導コイルとを有し、該リニアモーター電磁コイルは鉄心を有し、該リニアモーター電磁コイルは連続鋳造鋳型内の溶融金属に流速を付与することができ、該電磁誘導コイルは連続鋳造鋳型内の溶融金属を加熱することができることを特徴とする溶融金属の連続鋳造装置。It has a linear motor electromagnetic coil and an electromagnetic induction coil arranged on the outer periphery of the continuous casting mold, the linear motor electromagnetic coil has an iron core, and the linear motor electromagnetic coil imparts a flow rate to the molten metal in the continuous casting mold. Wherein said electromagnetic induction coil is capable of heating molten metal in a continuous casting mold.
JP2002200796A 2002-07-10 2002-07-10 Continuous casting method of molten metal and continuous casting apparatus Withdrawn JP2004042068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002200796A JP2004042068A (en) 2002-07-10 2002-07-10 Continuous casting method of molten metal and continuous casting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002200796A JP2004042068A (en) 2002-07-10 2002-07-10 Continuous casting method of molten metal and continuous casting apparatus

Publications (1)

Publication Number Publication Date
JP2004042068A true JP2004042068A (en) 2004-02-12

Family

ID=31707514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200796A Withdrawn JP2004042068A (en) 2002-07-10 2002-07-10 Continuous casting method of molten metal and continuous casting apparatus

Country Status (1)

Country Link
JP (1) JP2004042068A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218512A (en) * 2005-02-10 2006-08-24 Kobe Steel Ltd Continuously cast slab for thin steel sheet having excellent surface property, and its production method
JP2007098398A (en) * 2005-09-30 2007-04-19 Nippon Steel Corp Apparatus for controlling fluidity of molten steel
JP2011218408A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Continuous casting method of metal
JP2011218409A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Continuous casting method of metal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218512A (en) * 2005-02-10 2006-08-24 Kobe Steel Ltd Continuously cast slab for thin steel sheet having excellent surface property, and its production method
JP4485969B2 (en) * 2005-02-10 2010-06-23 株式会社神戸製鋼所 Manufacturing method of continuous cast slab slab for thin steel sheet with excellent surface properties
JP2007098398A (en) * 2005-09-30 2007-04-19 Nippon Steel Corp Apparatus for controlling fluidity of molten steel
JP4669367B2 (en) * 2005-09-30 2011-04-13 新日本製鐵株式会社 Molten steel flow control device
JP2011218408A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Continuous casting method of metal
JP2011218409A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Continuous casting method of metal

Similar Documents

Publication Publication Date Title
JP2017515687A (en) Non-contact molten metal flow control
AU2002222478B2 (en) Treating molten metals by moving electric arc
Cho et al. Electromagnetic effects on solidification defect formation in continuous steel casting
AU2002222478A1 (en) Treating molten metals by moving electric arc
Park et al. Continuous casting of steel billet with high frequency electromagnetic field
JP6164040B2 (en) Steel continuous casting method
JP2004042068A (en) Continuous casting method of molten metal and continuous casting apparatus
Kunstreich Electromagnetic stirring for continuous casting-Part 2
JP7151247B2 (en) Flow controller for thin slab continuous casting and thin slab continuous casting method
JP6278168B1 (en) Steel continuous casting method
JPH11514585A (en) Metal casting method and apparatus
JP5772767B2 (en) Steel continuous casting method
JP4113967B2 (en) Metal ingot casting apparatus and casting method
Nakada et al. Reduction of macrosegregation by applying a DC magnetic field at the final stage of solidification
JP2004009064A (en) Method for producing continuously cast slab
JPH0515949A (en) Apparatus and method for continuously casting metal
JP2008290136A (en) Continuous casting method for low carbon high sulfur steel
JP4492333B2 (en) Steel continuous casting method
RU2216427C1 (en) Method for casting metallic ingots and apparatus for performing the same
Qingfeng et al. Effect of combined electromagnetic fields on surface quality and structure of a HDC casting 5182 Al alloy ingot
ABDULLAYEV et al. Effect of linear final electromagnetic stirrer operational parameters on continuous cast high carbon steel billet quality
ACHARYA PALYA VENKATESH Evolution of effect of final linear electromagnetic stirrer on (140mm X 140mm) continuous cast carbon steel billet
JPH05138320A (en) Method for pouring molten metal into mold for continuous casting
JPH04138843A (en) Device and method for continuously casting metal
RU2464123C1 (en) Method of adjusting conditions of electromagnetic mixing of ingot liquid phase in slab continuous casting machine and device to this end

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004