JPH05138320A - Method for pouring molten metal into mold for continuous casting - Google Patents
Method for pouring molten metal into mold for continuous castingInfo
- Publication number
- JPH05138320A JPH05138320A JP35550391A JP35550391A JPH05138320A JP H05138320 A JPH05138320 A JP H05138320A JP 35550391 A JP35550391 A JP 35550391A JP 35550391 A JP35550391 A JP 35550391A JP H05138320 A JPH05138320 A JP H05138320A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- coil
- mold
- nozzle
- immersion nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、連続鋳造用の鋳型への
注湯方法に関し、特に、スラブ用の鋳型等の広幅の鋳型
への浸漬ノズルによる注湯方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pouring molten metal into a continuous casting mold, and more particularly to a method for pouring molten metal into a wide mold such as a slab mold by a dipping nozzle.
【0002】[0002]
【従来の技術】連続鋳造法は、上下に開口を有する筒形
の鋳型に溶融金属(溶湯)を注入し、該鋳型の水冷され
た内壁に接触せしめて冷却し、外側を凝固シェルにて被
覆された鋳片を得て、これを鋳型の下側開口部から連続
的に引き抜きつつ更に冷却し、内側にまで凝固が進行し
た後に所定の寸法に切断して、圧延等の後工程での素材
となる製品鋳片を得る方法である。2. Description of the Related Art In the continuous casting method, molten metal (molten metal) is poured into a cylindrical mold having openings at the top and bottom, and the water is cooled by contacting it with the inner wall of the mold which is cooled by water, and the outside is covered with a solidified shell. Obtained cast slab, further cooling while continuously pulling it from the lower opening of the mold, cut into a predetermined size after solidification has progressed to the inside, the material in the post-process such as rolling It is a method of obtaining a product slab that becomes
【0003】鋳型への溶湯の注入(注湯)は、これの上
方に配されて溶湯を貯留するタンディッシュから延設さ
れた注湯ノズルを介して行われており、この注湯ノズル
としては、鋳型の内部に滞留する溶湯中にその先端を所
定長浸漬させてあり、内部を流れる溶湯と外気との接触
を防止し得るようになした浸漬ノズルが広く用いられて
いる。Pouring of molten metal into the mold (pouring) is performed through a pouring nozzle extending from a tundish which is arranged above the casting mold and stores the molten metal. 2. Description of the Related Art An immersion nozzle has been widely used in which the tip of the mold is immersed in a molten metal that remains inside a mold for a predetermined length to prevent contact between the molten metal flowing inside and the outside air.
【0004】[0004]
【発明が解決しようとする課題】ところで、以上の如く
行われる連続鋳造用鋳型の注湯においては、浸漬ノズル
の内部を流れる溶湯の地金、及び溶湯中に含まれるアル
ミナが内壁に付着して堆積し、流路の閉塞、所謂ノズル
詰まりを招来する問題があり、操業を継続するためにノ
ズル及びタンディッシュの頻繁な交換を強いられ、この
ことが連続鋳造法の生産性を阻害する要因となってい
る。By the way, in the pouring of the casting mold for continuous casting performed as described above, the base metal of the molten metal flowing inside the immersion nozzle and the alumina contained in the molten metal adhere to the inner wall. There is a problem of accumulation and clogging of the flow path, so-called nozzle clogging, and the nozzles and tundish are forced to be replaced frequently in order to continue the operation, which is a factor that hinders the productivity of the continuous casting method. Is becoming
【0005】なおこのノズル詰まりは、溶湯の流れに淀
みが生じる部位に発生し易く、タンディッシュ内部への
浸漬ノズルの開口端(吸込口)の近傍において特に顕著
であり、また、広幅のスラブ用の鋳型への注湯を行うた
めの浸漬ノズルにおいては、この鋳型の幅方向両側に向
けて開口する複数の吐出口を備え、内部を流下する溶湯
が両側の吐出口に向けて流れ方向を変えることから、こ
れらの吐出口の近傍にも顕著なノズル詰まりが発生す
る。The nozzle clogging is apt to occur at a portion where the molten metal flow is stagnant, and is particularly remarkable in the vicinity of the opening end (suction port) of the immersion nozzle inside the tundish, and for a wide slab. The dipping nozzle for pouring molten metal into the mold is provided with a plurality of discharge ports that open toward both sides in the width direction of the mold, and the molten metal flowing inside changes the flow direction toward both discharge ports. Therefore, remarkable nozzle clogging also occurs near these discharge ports.
【0006】このようなノズル詰まりに対する従来の対
策として、浸漬ノズルの内部にアルゴンガスを吹き込み
つつ注湯を行う方法、及び浸漬ノズルを加熱しつつ注湯
を行う方法(特開昭54-6816 号公報)がある。ところが
これらの方法はいずれも、浸漬ノズルの中途部分を対象
としているのに対し、前述の如く実際のノズル詰まり
は、基端側の吸込口及び先端側の吐出口の近傍に集中す
ることから、これらのノズル詰まりを効果的に解消する
ことは難しい。As conventional measures against such nozzle clogging, a method of pouring molten metal while blowing argon gas into the immersion nozzle, and a method of pouring molten metal while heating the immersion nozzle (Japanese Patent Laid-Open No. 54-6816). Gazette). However, all of these methods are intended for the middle part of the immersion nozzle, whereas as described above, the actual nozzle clogging is concentrated near the suction port on the proximal side and the discharge port on the distal side, It is difficult to effectively eliminate these nozzle clogging.
【0007】また、特開昭60-250862 号公報には、吸込
口近傍におけるノズル詰まりの防止方法が開示されてい
る。この方法は、吸込口近傍に周設したコイルに高周波
電流を通電し、これによりノズルの内部に生じる磁界の
作用により、導電体である溶湯の流れをノズルの内壁か
ら浮かせた状態に保持しつつ注湯を行い、ノズルの内壁
と溶湯との直接的な接触をなくし、ノズル詰まりの発生
を防止しようとするものである。Further, Japanese Patent Laid-Open No. 60-250862 discloses a method of preventing nozzle clogging near the suction port. This method applies a high-frequency current to a coil provided near the suction port, and the action of a magnetic field generated inside the nozzle by this causes the flow of the molten metal, which is a conductor, to be kept floating from the inner wall of the nozzle. It is intended to prevent the occurrence of nozzle clogging by pouring molten metal to eliminate direct contact between the inner wall of the nozzle and the molten metal.
【0008】ところがこの方法の実施に際しては、ノズ
ルの内壁と溶湯との間の間隙が、鋳型への注湯量、タン
ディッシュ内部の貯留量、ノズルの内径等の注湯条件に
応じて異なることから、操業中に常時適正な間隙を確保
することは困難であり、実際にはノズル内壁への溶湯の
接触が生じ、ノズル詰まりの発生を防ぎ得ない難点があ
った。However, in carrying out this method, the gap between the inner wall of the nozzle and the molten metal differs depending on the amount of molten metal poured into the mold, the amount of storage inside the tundish, the inner diameter of the nozzle, etc. However, it is difficult to always ensure a proper gap during operation, and in reality, contact of the molten metal with the inner wall of the nozzle occurs, and there is a drawback that the occurrence of nozzle clogging cannot be prevented.
【0009】一方、前記吐出口近傍でのノズル詰まり
は、ノズルの先端での流れ方向の変化に起因することか
ら、ノズル先端面の全面を吐出口とし、溶湯の流れを直
線的にすることにより緩和される。ところがこのような
浸漬ノズルを用いた場合、注湯の流れが鋳型の深部にま
で達し、鋳型内に滞留する溶湯の表面に浮上し難くなる
結果、滞留溶湯の表面温度が低下し、該表面での皮張り
が阻害され、また、該表面に供給されるパウダの滓化不
良が引き起こされて、製品鋳片の品質低下を招来する問
題が生じる。On the other hand, since the nozzle clogging near the discharge port is caused by the change in the flow direction at the tip of the nozzle, the entire nozzle tip surface is used as the discharge port and the molten metal flow is made linear. Will be alleviated. However, when using such an immersion nozzle, the flow of pouring reaches the deep part of the mold, and as a result of being difficult to float on the surface of the molten metal retained in the mold, the surface temperature of the retained molten metal decreases, and at the surface However, there is a problem in that the quality of the product slab is deteriorated due to the impeding of the skinning and the poor slag formation of the powder supplied to the surface.
【0010】本発明は斯かる事情に鑑みてなされたもの
であり、連続鋳造用の鋳型、特にスラブ用の鋳型等の広
幅の鋳型に浸漬ノズルにより注湯を行うに際し、ノズル
各部における詰まりの発生を有効に回避でき、長期間に
亘って良好な注湯状態を維持し得る注湯方法を提供する
ことを目的とする。The present invention has been made in view of the above circumstances, and when pouring molten metal into a wide mold such as a mold for continuous casting, particularly a mold for slabs, by using an immersion nozzle, clogging occurs in each part of the nozzle. It is an object of the present invention to provide a pouring method capable of effectively avoiding the above and maintaining a good pouring state for a long period of time.
【0011】[0011]
【課題を解決するための手段】本発明の第1発明に係る
連続鋳造用鋳型の注湯方法は、連続鋳造用の鋳型に、該
鋳型上方のタンディッシュから延設された浸漬ノズルに
より溶湯を注入する方法において、タンディッシュの内
部に開口する浸漬ノズルの吸込口近傍に制御コイルを周
設し、該制御コイルへの通電により前記吸込口の中心に
向かう電磁力を生ぜしめ、該吸込口の近傍での溶湯の流
れを浸漬ノズルの内壁との間に間隙を隔てて保持すると
共に、前記吸込口の近傍と該吸込口の下方に所定長離隔
した位置とに一対のコイルを埋設し、一方のコイルに低
周波の励磁電流を通電して磁場を生ぜしめ、該磁場によ
り他方のコイルに誘起される誘導電流を捉え、該誘導電
流と前記励磁電流との間の位相差及び/ 又は強度差を検
出し、該検出結果に基づいて前記間隙の大きさを演算し
て、該演算結果を所定の目標値に保つべく前記制御コイ
ルの通電を制御することを特徴とする。According to a first aspect of the present invention, there is provided a continuous casting mold pouring method for pouring molten metal into a continuous casting mold by a dipping nozzle extending from a tundish above the casting mold. In the method of pouring, a control coil is provided around the suction port of the immersion nozzle that opens inside the tundish, and an electromagnetic force toward the center of the suction port is generated by energizing the control coil. The molten metal flow in the vicinity is held with a gap between it and the inner wall of the immersion nozzle, and a pair of coils is embedded in the vicinity of the suction port and at a position separated by a predetermined length below the suction port. A low-frequency exciting current is passed through the coil to generate a magnetic field, and the induced current induced in the other coil by the magnetic field is detected, and the phase difference and / or the intensity difference between the induced current and the exciting current is detected. Detected and the detection result Based calculates the size of the gap, the and controlling the energization of the control coil to maintain the result of the calculation to a predetermined target value.
【0012】更に本発明の第2発明に係る連続鋳造用鋳
型の注湯方法は、連続鋳造用の鋳型に、該鋳型の上方の
タンディッシュから延設された浸漬ノズルにより溶湯を
注入する方法において、前記鋳型の内部に先端部全面が
開口された吐出口を備えた浸漬ノズルを用いると共に、
該吐出口の下部に臨ませて前記鋳型にコイルを埋設し、
該コイルへの通電により上向きの電磁力を生ぜしめ、前
記吐出口から流出する溶湯の流れを制動することを特徴
とする。Further, the method for pouring the molten metal for the continuous casting mold according to the second aspect of the present invention is a method for injecting the molten metal into the continuous casting mold by a dipping nozzle extending from a tundish above the casting mold. While using a dipping nozzle equipped with a discharge port in which the entire front end portion is opened inside the mold,
A coil is embedded in the mold so as to face the lower portion of the discharge port,
The coil is energized to generate an upward electromagnetic force to dampen the flow of molten metal flowing out from the discharge port.
【0013】[0013]
【作用】本発明の第1発明においては、浸漬ノズルの吸
込口の近傍及びこれの下方に埋設した一対のコイルの一
方(送信コイル)への励磁電流の通電により発生する磁
場のエネルギが、浸漬ノズルの周壁、これの内部の溶
湯、及び両者間の間隙を伝播して他方(受信コイル)に
誘起する誘導電流には、磁場の伝播経路の相違、特に前
記間隙の大小に応じた位相遅れ及び強度低下が生じるこ
とを利用して、励磁電流と誘導電流との間の位相差及び
/又は強度差から間隙の大きさを演算し、この結果を所
定値に保つべく制御コイルの通電電流を制御することに
より、吸込口近傍での溶湯の流れと浸漬ノズルの内壁と
の間に常に適正な間隙を維持して、吸込口近傍でのノズ
ル詰まりの発生を回避する。In the first aspect of the present invention, the energy of the magnetic field generated by passing the exciting current to one of the pair of coils (transmitting coil) embedded near and below the suction port of the immersion nozzle is immersed. The peripheral wall of the nozzle, the molten metal inside the nozzle, and the induced current that propagates through the gap between them and induces the other (reception coil) include the phase delay and the phase lag depending on the difference in the propagation path of the magnetic field. Utilizing the fact that the strength decreases, the size of the gap is calculated from the phase difference and / or the strength difference between the exciting current and the induced current, and the energizing current of the control coil is controlled to keep this result at a predetermined value. By doing so, an appropriate gap is always maintained between the flow of molten metal near the suction port and the inner wall of the immersion nozzle, and the occurrence of nozzle clogging near the suction port is avoided.
【0014】また本発明の第2発明においては、先端部
全面に開口された吐出口を備えた浸漬ノズルを用いて吐
出側でのノズル詰まりを緩和する一方、前記吐出口の下
部に臨ませたコイルへの通電により生じる上向きの電磁
力により、吐出口から下向きに流出する溶湯の流れを制
動して上向きに転換させ、鋳型内部の溶湯表面への浮上
を促進し、該表面での皮張りの阻害及びパウダの滓化不
良を解消して、製品鋳片の品質低下を防ぐ。Further, in the second aspect of the present invention, while the nozzle clogging on the discharge side is alleviated by using the immersion nozzle having the discharge port opened on the entire front end portion, it is exposed to the lower part of the discharge port. The upward electromagnetic force generated by energizing the coil brakes the flow of the molten metal flowing downward from the discharge port and converts it upward, facilitating the floating to the surface of the molten metal inside the mold, and Prevents deterioration of product slabs by eliminating obstruction and poor powder slag formation.
【0015】[0015]
【実施例】以下本発明をその実施例を示す図面に基づい
て詳述する。図1は本発明に係る連続鋳造用鋳型の注湯
方法(以下本発明方法という)の実施状態を示す模式図
である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing the embodiments. FIG. 1 is a schematic diagram showing an implementation state of a method for pouring a continuous casting mold according to the present invention (hereinafter referred to as the method of the present invention).
【0016】図中1は、上下に開口を有し筒形をなす連
続鋳造用の鋳型である。該鋳型1には、これの上方に配
したタンディッシュ2の内部に貯留された溶湯3が、該
タンディッシュ2の下方に延設された浸漬ノズル4を経
て注湯されており、この溶湯3は、鋳型1の内部に滞留
する間に、該鋳型1の水冷された内壁と接触して冷却さ
れ、凝固シェル5aにより外側を被覆された鋳片5とな
り、鋳型1の下側開口部から下方に連続的に引き抜かれ
る。タンディッシュ2の底面に開口する浸漬ノズル4の
吸込口4aは、これの上部にその先端を臨ませたストッパ
6の昇降により開閉され、鋳型1への注湯量が調節され
るようになっている。In the figure, reference numeral 1 denotes a cylindrical continuous casting mold having upper and lower openings. The molten metal 3 stored in the tundish 2 arranged above the mold 1 is poured into the mold 1 through a dipping nozzle 4 extending below the tundish 2. Is a slab 5 that is cooled while contacting with the water-cooled inner wall of the mold 1 while staying inside the mold 1, and becomes a slab 5 that is coated on the outside with a solidification shell 5a. Is continuously pulled out. The suction port 4a of the immersion nozzle 4 which is opened on the bottom surface of the tundish 2 is opened and closed by raising and lowering a stopper 6 having its tip facing the upper part of the tundish 2, so that the pouring amount to the mold 1 is adjusted. ..
【0017】浸漬ノズル4の上部外側には、前記吸込口
4aの周囲を囲繞する態様にて制御コイル7が周設してあ
る。この制御コイル7は、高周波発振器70に接続してあ
り、該発振器70の出力である高周波電流の通電により励
磁され、この通電量に対応する強さの磁界を形成して、
浸漬ノズル4の内部を流れる溶湯3に中心部に向かう電
磁力を付与し、溶湯3の流れを浸漬ノズル4の内壁との
間に間隙を隔てて保持する作用をなす。The suction port is provided outside the upper part of the immersion nozzle 4.
A control coil 7 is provided so as to surround the periphery of 4a. The control coil 7 is connected to a high-frequency oscillator 70, is excited by energization of a high-frequency current output from the oscillator 70, and forms a magnetic field having a strength corresponding to the energization amount,
An electromagnetic force toward the center is applied to the molten metal 3 flowing inside the immersion nozzle 4 to maintain the flow of the molten metal 3 with the inner wall of the immersion nozzle 4 with a gap.
【0018】また浸漬ノズル4の周壁には、前記吸込口
4aの近傍に送信コイル10が、これの下方に適長離隔した
位置に受信コイル11が夫々埋設してある。送信コイル10
は、低周波発振器12に接続してあり、該発振器12の出力
である低周波電流の通電により励磁されて、その周辺に
磁場を形成する作用をなす。この磁場のエネルギは、後
述の如く伝播して受信コイル11に達し、これにより受信
コイル11に誘起される誘導電流は、増幅器13を経て位相
差検出器14に与えられている。Further, the suction port is provided on the peripheral wall of the immersion nozzle 4.
A transmitter coil 10 is embedded in the vicinity of 4a, and a receiver coil 11 is embedded below the transmitter coil 10 at an appropriate distance. Transmit coil 10
Is connected to the low-frequency oscillator 12 and is excited by the energization of a low-frequency current, which is the output of the oscillator 12, to form a magnetic field around it. The energy of this magnetic field propagates as described later and reaches the receiving coil 11, and the induced current induced in the receiving coil 11 by this is given to the phase difference detector 14 via the amplifier 13.
【0019】位相差検出器14には、前記低周波発振器12
の出力もまた与えられており、該位相差検出器14は、送
信コイル10に通電される励磁電流と受信コイル11に誘起
される誘導電流との間の位相差を求め、この結果を演算
制御部15に出力する。The phase difference detector 14 includes the low frequency oscillator 12
Is also given, the phase difference detector 14 obtains the phase difference between the exciting current applied to the transmitter coil 10 and the induced current induced in the receiver coil 11, and controls this result by arithmetic control. Output to section 15.
【0020】位相差検出器14の出力である前記励磁電流
と誘導電流との間の位相差は、後述の如く、両コイル1
0,11の埋設位置間において浸漬ノズル4の内壁とこれ
の内部の溶湯3との間に生じている間隙の大小に対応す
る。演算制御部15は、位相差検出器14の出力を用いて前
記間隙の大きさを演算し、この演算結果を表示部16に出
力し、該表示部16上に表示させると共に、演算結果を予
め設定された目標値と比較し、この比較結果に基づいて
前記制御コイル7に接続された高周波発振器70に制御信
号を発する動作をなす。As will be described later, the phase difference between the exciting current and the induced current, which is the output of the phase difference detector 14, will be
It corresponds to the size of the gap generated between the inner wall of the immersion nozzle 4 and the molten metal 3 inside it between the buried positions 0 and 11. The calculation control unit 15 calculates the size of the gap using the output of the phase difference detector 14, outputs the calculation result to the display unit 16 and displays the calculation result on the display unit 16 in advance. The target value is compared with the set target value, and a control signal is issued to the high frequency oscillator 70 connected to the control coil 7 based on the comparison result.
【0021】この制御信号は、前記演算結果が目標値を
下回っている場合に制御コイル7への通電量を増し、逆
に適正値を上回っている場合に制御コイル7への通電量
を減じるものであり、制御コイル7への通電量の増減
は、浸漬ノズル4の内部を流れる溶湯3に中心部に向け
て付与される電磁力を増減し、溶湯3の流れと浸漬ノズ
ル4の内壁との間の間隙を増減する作用をなすから、演
算制御部15での間隙の大きさの演算が正しく行われた場
合、吸込口4a近傍の内壁と溶湯3の流れとの間の間隙を
適正な幅に維持でき、両者の接触を完全に断つことが可
能となって、吸込口4a近傍でのノズル詰まりの発生は回
避される。This control signal increases the energization amount to the control coil 7 when the calculation result is below the target value, and conversely decreases the energization amount to the control coil 7 when it exceeds the appropriate value. The increase or decrease in the amount of electricity supplied to the control coil 7 increases or decreases the electromagnetic force applied toward the center of the molten metal 3 flowing inside the immersion nozzle 4, and the flow of the molten metal 3 and the inner wall of the immersion nozzle 4 are increased or decreased. When the calculation of the size of the gap is correctly performed by the calculation control unit 15, the gap between the inner wall near the suction port 4a and the flow of the molten metal 3 has an appropriate width. Therefore, the contact between the two can be completely cut off, and the occurrence of nozzle clogging near the suction port 4a can be avoided.
【0022】演算制御部15における演算は、以下に示す
原理に従って行われる。図2は、この原理の説明図であ
る。送信コイル10が、前述の如き励磁電流の通電に応じ
て発生する磁場は、これらの図中に白抜矢符にて示す如
く、浸漬ノズル4の周壁を直接伝播する第1の経路、浸
漬ノズル4の周壁内面と溶湯3との間の間隙Aを伝播す
る第2の経路、及び溶湯3の内部を伝播する第3の経路
を夫々経て受信コイル11に達し、該受信コイル11に誘導
電流を誘起する。The calculation in the calculation control unit 15 is performed according to the principle described below. FIG. 2 is an explanatory diagram of this principle. The magnetic field generated by the transmission coil 10 in response to the energization of the exciting current as described above is the first path through which the magnetic field directly propagates on the peripheral wall of the immersion nozzle 4, the immersion nozzle, as indicated by the white arrow in these drawings. 4 passes through the second path propagating through the gap A between the inner surface of the peripheral wall of No. 4 and the molten metal 3 and the third path propagating inside the molten metal 3 to reach the receiving coil 11, and an induced current is applied to the receiving coil 11. Induce.
【0023】このとき第1の経路、即ち、浸漬ノズル4
の周壁を直接伝播する磁場は、そのエネルギの減衰程度
が大きく、送信コイル10と受信コイル11との離隔距離が
所定長を超えると無視出来るレベルとなる。また、非導
電体である間隙Aからなる第2の経路を伝播する磁場エ
ネルギと、導電体である溶湯3からなる第3の経路を伝
播する磁場エネルギとを比較した場合、前者は後者に比
して位相遅れが少ないことから、これら双方の伝播によ
り受信コイル11に誘起される誘導電流の位相遅れは、第
2の経路を構成する間隙Aの幅の増加に伴って減少す
る。At this time, the first path, that is, the immersion nozzle 4
The magnetic field directly propagating through the peripheral wall of the is greatly attenuated in energy, and becomes a negligible level when the separation distance between the transmitting coil 10 and the receiving coil 11 exceeds a predetermined length. When comparing the magnetic field energy propagating through the second path formed of the gap A which is a non-conductor and the magnetic field energy propagating through the third path formed of the molten metal 3 which is a conductor, the former is compared with the latter. Since the phase delay is small, the phase delay of the induced current induced in the receiving coil 11 by both of these propagations decreases as the width of the gap A forming the second path increases.
【0024】従って、浸漬ノズル4及び溶湯3の夫々と
同種の金属を用いた予備試験を実施し、両者間の間隙A
の幅を種々に変えて各場合に生じる位相差を調べ、この
結果を演算制御部15に記憶させておけば、該演算制御部
15においては、連続鋳造設備の操業中に得られる位相差
検出器14の出力を用い、吸込口4aの近傍において浸漬ノ
ズル4の内壁と溶湯3の流れとの間に生じている間隙の
大きさの演算が可能となる。Therefore, a preliminary test using the same kind of metal as the immersion nozzle 4 and the molten metal 3 was carried out, and the gap A between them was obtained.
The phase difference generated in each case is checked by changing the width of each of the values, and if the result is stored in the arithmetic control unit 15, the arithmetic control unit
In 15, the output of the phase difference detector 14 obtained during the operation of the continuous casting equipment is used, and the size of the gap generated between the inner wall of the immersion nozzle 4 and the flow of the molten metal 3 in the vicinity of the suction port 4a. Can be calculated.
【0025】以上の原理は、本願出願人により特願平2-
298536号に提案された「金属体の面間間隙計測方法」に
基づくものであり、本発明方法においては、吸込口4a近
傍の内壁と溶湯3の流れとの間の間隙をオンラインにて
知ることができ、この結果に基づいて中心に向けて溶湯
3に加わる電磁力が増減される結果、前記間隙を適正な
幅に維持しての注湯が可能となり、吸込口4a近傍でのノ
ズル詰まりの発生は略完全に回避される。前記間隙の適
正幅は、少なくとも 1.0mm以上とする必要があり、好ま
しくは 1.5mm以上とするのがよい。The above principle is based on Japanese Patent Application No.
It is based on the "method for measuring the interplanar gap of a metal body" proposed in No. 298536. In the method of the present invention, it is possible to know the gap between the inner wall near the suction port 4a and the flow of the molten metal 3 online. As a result, the electromagnetic force applied to the molten metal 3 toward the center is increased or decreased based on this result, so that the molten metal can be poured with the gap maintained at an appropriate width, and nozzle clogging near the suction port 4a can be prevented. Occurrence is almost completely avoided. The appropriate width of the gap needs to be at least 1.0 mm or more, preferably 1.5 mm or more.
【0026】なお、送信コイル10と受信コイル11との離
隔距離を前記第1の経路の伝播エネルギが十分小さくな
るように設定した場合、受信コイル11の受信結果中に生
じる浸漬ノズル4による電磁的な影響は排除されるか
ら、送信コイル10及び受信コイル11の浸漬ノズル4の内
壁面からの埋設深さは適宜に設定でき、両コイル10,11
が高温の溶湯3からの熱放射による損傷を防ぐことがで
きる。When the separation distance between the transmission coil 10 and the reception coil 11 is set so that the propagation energy of the first path is sufficiently small, the electromagnetic force generated by the immersion nozzle 4 generated in the reception result of the reception coil 11 is generated. Since such influences are eliminated, the burying depth of the transmitting coil 10 and the receiving coil 11 from the inner wall surface of the immersion nozzle 4 can be set appropriately, and both coils 10, 11
It is possible to prevent damage due to heat radiation from the molten metal 3 having a high temperature.
【0027】また、受信コイル11に誘起される誘導電流
には、前述した磁場エネルギの伝播経路の相違に応じた
強度低下もまた生じるから、前記位相差検出器14に換え
て強度差検出器を設け、これの出力を用いて間隙幅の演
算を行わせるようにしてもよい。Further, the induced current induced in the receiving coil 11 is also reduced in intensity according to the difference in the propagation path of the magnetic field energy described above. Therefore, instead of the phase difference detector 14, an intensity difference detector is used. Alternatively, the output of this may be used to calculate the gap width.
【0028】さて一方、図1に示す如く前記浸漬ノズル
4は、その先端部(下端部)の全面を開口させてなる吐
出口4bを備えており、鋳型1の短辺には、この吐出口4b
のやや下方に位置してコイル8が埋設してある。このコ
イル8は、高周波発振器80に接続してあり、該発振器80
の出力である高周波電流の通電により励磁され、この通
電量に対応する強さの磁界を形成し、鋳型1の内部の溶
湯3に、上向きの電磁力を付与するようになしてある。
コイル8への通電は、連続鋳造設備の操業中、常時一定
のレベルにて行われている。On the other hand, as shown in FIG. 1, the immersion nozzle 4 is provided with a discharge port 4b formed by opening the entire front end (lower end) thereof, and the discharge port is formed on the short side of the mold 1. 4b
A coil 8 is buried at a position slightly lower than. This coil 8 is connected to a high frequency oscillator 80,
Is excited by the energization of a high-frequency current, which is the output of, to form a magnetic field having a strength corresponding to this energization amount, and an upward electromagnetic force is applied to the molten metal 3 inside the mold 1.
Energization of the coil 8 is always performed at a constant level during the operation of the continuous casting equipment.
【0029】而して、浸漬ノズル4の内部を流下する溶
湯3の流れは、該浸漬ノズル4の先端に開口する前記吐
出口4bから下向きに流出し、図中に破線の矢符にて示す
如く鋳型1の内部に深く進入しようとするが、この流れ
には、前記コイル8の通電に伴う上向きの電磁力が前記
進入を妨げる制動力として作用するから、吐出口4bから
流出する溶湯3の流れは、図中に矢符にて示す如く上向
きの流れに転換せしめられ、鋳型1の内部に滞留する溶
湯3の表面に速やかに浮上する。Thus, the flow of the molten metal 3 flowing down inside the immersion nozzle 4 flows downward from the discharge port 4b opening at the tip of the immersion nozzle 4, and is shown by a dashed arrow in the figure. As a result, the electromagnetic force in the upward direction accompanying the energization of the coil 8 acts as a braking force that obstructs the penetration of the molten metal 3 flowing out from the discharge port 4b. The flow is converted into an upward flow as indicated by the arrow in the figure, and quickly rises to the surface of the molten metal 3 that remains inside the mold 1.
【0030】つまり、先端の全面に開口する吐出口4bを
備えた浸漬ノズル4の採用により、吐出口4b近傍でのノ
ズル詰まりの発生を防ぐことができ、このような浸漬ノ
ズル4の使用に伴う問題、即ち、鋳型1内部の溶湯3表
面での皮張りの阻害、及び溶鋼2の表面に供給されてい
るパウダ9の滓化不良の問題は、コイル8への通電によ
り生じる電磁力の作用により解消されるから、製品鋳片
の品質低下を招来することなく吐出側でのノズル詰まり
を防止できる。That is, by adopting the immersion nozzle 4 having the discharge port 4b opened at the entire tip, it is possible to prevent the occurrence of nozzle clogging in the vicinity of the discharge port 4b. The problem, that is, the inhibition of skinning on the surface of the molten metal 3 inside the mold 1 and the poor slag formation of the powder 9 supplied to the surface of the molten steel 2 is caused by the action of electromagnetic force generated by energizing the coil 8. Since the problem is solved, it is possible to prevent the nozzle clogging on the discharge side without deteriorating the quality of the product slab.
【0031】最後に、以上の如き本発明方法の効果を調
べるため、1600w×200tなるサイズのスラブを製造する
湾曲半径が10mの1点矯正型連続鋳造設備において、本
発明方法と従来の方法とにより同一条件下での連鋳試験
を行い、両者を比較した結果について述べる。なお、鋳
込速度は3.0m/minであり、試験に用いた材料は、表1に
示す如き組成を有する低炭材である。Finally, in order to investigate the effect of the method of the present invention as described above, the method of the present invention and the conventional method are used in a one-point straightening type continuous casting facility with a bending radius of 10 m for producing a slab of a size of 1600 w × 200 t. The continuous casting test was conducted under the same conditions, and the results of comparing the two will be described. The casting speed was 3.0 m / min, and the material used in the test was a low carbon material having the composition shown in Table 1.
【0032】 [0032]
【0033】なおこの試験における本発明方法は、制御
コイル7への通電により浸漬ノズル4の中心部において
7000ガウスの前後で変化する磁場を生ぜしめ、また鋳型
1に埋設したコイル8への通電により、吐出口4bの開口
位置に4500ガウスの一定磁場を生ぜしめる条件にて実施
した。The method of the present invention in this test is conducted in the central portion of the immersion nozzle 4 by energizing the control coil 7.
It was carried out under the condition that a magnetic field varying before and after 7,000 gauss was generated, and by energizing the coil 8 embedded in the mold 1, a constant magnetic field of 4500 gauss was generated at the opening position of the discharge port 4b.
【0034】図3に本発明方法と従来法とにおけるノズ
ル開度の時間的変化の様子を示す。本図の縦軸はノズル
開度を、横軸はタンディッシュ2及びこれの底部の浸漬
ノズル4を交換することなく行った操業の回数、所謂連
々回数を示している。本図に示す如く従来法において
は、4連鋳目の中途から所定の鋳込速度(3.0m/min)を
維持するためにノズル開度が大きくなり始め、6連鋳目
の終了前にはノズル開度が80%を超え、以降の制御が困
難となって操業を中止せざるを得なくなったのに対し、
本発明方法においては、7連鋳目においても1連鋳目と
略等しい溶湯とノズルの断面積比により所定の鋳込速度
を維持でき、ノズル詰まりが殆ど発生しないことがわか
る。FIG. 3 shows how the nozzle opening changes with time according to the method of the present invention and the conventional method. The vertical axis of this figure shows the nozzle opening, and the horizontal axis shows the number of operations performed without replacing the tundish 2 and the immersion nozzle 4 at the bottom of the tundish 2, that is, the so-called consecutive number. As shown in this figure, in the conventional method, in order to maintain a predetermined casting speed (3.0 m / min) in the middle of the fourth continuous casting, the nozzle opening started to increase and before the sixth continuous casting was completed. While the nozzle opening exceeded 80%, it became difficult to control after that and the operation had to be stopped.
In the method of the present invention, it can be seen that even in the 7th continuous casting, the predetermined casting speed can be maintained and the nozzle clogging hardly occurs by the molten metal and the nozzle cross-sectional area ratio that are substantially the same as in the 1st continuous casting.
【0035】また、本発明方法と従来法とにより夫々得
られたスラブ中の介在物の混入状態を比較した結果を図
4に示す。この比較は、両スラブの同一の断面位置にお
いて採取した同一の大きさのサンプルに対するミクロ検
鏡検査により介在物の個数を数え、これを一定面積当た
りの個数に換算した値(介在物指数)によって行ったも
のであり、本発明方法の優位性は本図から明らかであ
る。FIG. 4 shows the results of comparison of the inclusion states of inclusions in the slab obtained by the method of the present invention and the conventional method. This comparison is based on a value (inclusion index) obtained by counting the number of inclusions by microscopic inspection of samples of the same size taken at the same cross-sectional position of both slabs and converting this to the number per fixed area. It was carried out, and the superiority of the method of the present invention is clear from this figure.
【0036】これは、浸漬ノズル4の内壁におけるアル
ミナ等の介在物の付着量が少なく、この付着物が離脱し
て溶湯3と共に鋳型1内に流入し、該鋳型1から引き抜
かれる鋳片5中に混入する虞が少ない上、浸漬ノズル4
の吐出口4bに臨ませたコイル8が形成する磁界の作用に
より、鋳型1に流入する溶湯3の流れが上向きに転換さ
れて、溶湯3中に混入する介在物が、鋳型1内に滞留す
る溶湯3の表面に浮き上がり、該表面を覆うパウダ9に
捕捉されるためである。即ち本発明方法によれば、製品
スラブの清浄度を増す付加的な効果も得られる。This is because the amount of inclusions such as alumina adhered to the inner wall of the dipping nozzle 4 is small, and these deposits are released and flow into the mold 1 together with the molten metal 3 in the cast piece 5 that is pulled out from the mold 1. It is less likely to be mixed in the water, and the immersion nozzle 4
The flow of the molten metal 3 flowing into the mold 1 is changed upward by the action of the magnetic field formed by the coil 8 facing the discharge port 4b of the above, and inclusions mixed in the molten metal 3 stay in the mold 1. This is because it floats on the surface of the molten metal 3 and is captured by the powder 9 that covers the surface. That is, the method of the present invention has the additional effect of increasing the cleanliness of the product slab.
【0037】更に、浸漬ノズル4の内壁とこれの内部の
溶湯3との間の間隙の大きさの適正値を求めるべく、制
御コイル7への通電により形成される磁場の強度を変
え、種々に異なる大きさの間隙を保って1チャージの操
業を行い、浸漬ノズル4内壁の付着物の厚さを測定する
試験を行った。この結果を図5に示す。Further, in order to obtain an appropriate value of the size of the gap between the inner wall of the immersion nozzle 4 and the molten metal 3 inside thereof, the strength of the magnetic field formed by energizing the control coil 7 is changed to various values. A test for measuring the thickness of the deposit on the inner wall of the dipping nozzle 4 was performed by carrying out one charge operation while maintaining gaps of different sizes. The result is shown in FIG.
【0038】本図から、浸漬ノズル4の内壁とこれの内
部の溶湯3との間の間隙を 1.0mm以下とした場合には付
着物の厚さは大きく、ノズル詰まりの解消に殆ど役立た
ないのに対し、前記間隙を 1.0mm以上とした場合に付着
物の厚さが激減することがわかる。これは、制御コイル
7への通電により形成される磁場内においても、前記間
隙が 1.0mm以下である場合、溶湯3が完全な棒状をなし
て保持されなくなり、局所的な膨らみが生じて浸漬ノズ
ル4の内壁との接触が生じるからである。From this figure, when the gap between the inner wall of the dipping nozzle 4 and the molten metal 3 inside the dipping nozzle 4 is 1.0 mm or less, the thickness of the deposit is large and it is of little use in eliminating the nozzle clogging. On the other hand, it can be seen that when the gap is 1.0 mm or more, the thickness of the deposit is drastically reduced. This is because even in the magnetic field formed by energizing the control coil 7, when the gap is 1.0 mm or less, the molten metal 3 does not have a perfect rod shape and is not retained, and a local bulge occurs to cause an immersion nozzle. This is because contact with the inner wall of No. 4 occurs.
【0039】即ち、ノズル詰まりを有効に防止するため
には、前記接触を回避すべく少なくとも 1.0mm以上、好
ましくは 1.5mm以上の間隙を確保する必要があり、本発
明方法においては、演算制御部15の演算結果と比較する
目標値を 1.5mm以上に設定し、この目標値を維持すべく
制御コイル7への通電制御を行うことにより、適正な間
隙の維持が可能であり、ノズル詰まりを有効に防止でき
る。That is, in order to effectively prevent the nozzle clogging, it is necessary to secure a gap of at least 1.0 mm or more, preferably 1.5 mm or more in order to avoid the contact, and in the method of the present invention, the arithmetic control unit. By setting the target value to be compared with the calculation result of 15 to 1.5 mm or more and controlling the energization of the control coil 7 to maintain this target value, it is possible to maintain an appropriate gap and effectively prevent nozzle clogging. Can be prevented.
【0040】なお制御コイル7への通電量は、浸漬ノズ
ル4の断面積、更に詳しくは、該浸漬ノズル4の内部を
流れる溶湯3の流れの断面積に応じて異なる。浸漬ノズ
ル4の中心における磁場強度の必要量を調べた結果を表
2に示す。制御コイル7の通電量は、表2に示された磁
場強度を得るために必要な通電量を基準として設定すれ
ばよい。The amount of electricity supplied to the control coil 7 differs depending on the cross-sectional area of the immersion nozzle 4, more specifically, the cross-sectional area of the flow of the molten metal 3 flowing inside the immersion nozzle 4. Table 2 shows the results of examining the required amount of magnetic field strength at the center of the immersion nozzle 4. The energization amount of the control coil 7 may be set based on the energization amount required to obtain the magnetic field strength shown in Table 2.
【0041】 [0041]
【0042】[0042]
【発明の効果】以上詳述した如く本発明方法において
は、浸漬ノズルの吸込口近傍及びこれの下方に埋設した
一対のコイルの一方を送信コイルとし、他方を受信コイ
ルとして、前者への通電により発生する磁場のエネルギ
の伝播により後者に誘起される誘導電流を捉えて、吸込
口近傍での溶湯の流れと浸漬ノズルの内壁との間の間隙
の大きさを求め、この結果を適正範囲に維持すべく前記
吸込口に周設した制御コイルへの通電量を制御して、こ
の通電により生じる電磁力の作用により、吸込口周辺の
溶湯の流れを保持するから、吸込口周辺における浸漬ノ
ズルの内壁への溶湯の接触を回避でき、吸込口近傍での
ノズル詰まりの発生を防止できる。As described in detail above, in the method of the present invention, one of a pair of coils buried near the suction port of the immersion nozzle and below the suction port is used as a transmission coil, and the other is used as a reception coil. By capturing the induced current induced in the latter by the propagation of the energy of the generated magnetic field, the size of the gap between the molten metal flow in the vicinity of the suction port and the inner wall of the immersion nozzle is determined, and this result is maintained within an appropriate range. In order to maintain the flow of the molten metal around the suction port by controlling the amount of electricity supplied to the control coil around the suction port and the action of the electromagnetic force generated by this energization, the inner wall of the immersion nozzle around the suction port is controlled. It is possible to avoid contact of the molten metal with the molten metal, and to prevent the occurrence of nozzle clogging near the suction port.
【0043】また、浸漬ノズルの吐出口に臨ませて鋳型
に埋設したコイルへの通電により、上向きの電磁力を生
ぜしめ、吐出口から流出する溶湯の流れを制動して上向
きに転換させるから、先端部の全面に開口する吐出口を
備えた浸漬ノズルを製品鋳片の品質低下を招来すること
なく用いることができ、吐出側でのノズル詰まりの発生
を防止できる。Further, by energizing the coil embedded in the mold so as to face the discharge port of the immersion nozzle, an upward electromagnetic force is generated, and the flow of the molten metal flowing out from the discharge port is braked and converted to the upward direction. It is possible to use the immersion nozzle provided with a discharge port that opens to the entire front end portion without deteriorating the quality of the product slab, and prevent nozzle clogging on the discharge side.
【0044】即ち本発明方法によれば、連鋳設備の操業
中に生じるノズル詰まりの発生を吸込側及び吐出側の夫
々において有効に防止でき、長期間に亘って良好な注湯
状態を維持し得ることになり、タンディッシュ及び浸漬
ノズルの交換頻度の減少により生産性の大幅な向上が図
れる等、本発明は優れた効果を奏する。That is, according to the method of the present invention, it is possible to effectively prevent the nozzle clogging that occurs during the operation of continuous casting equipment on both the suction side and the discharge side, and maintain a good pouring state for a long period of time. As a result, the present invention has excellent effects such that productivity can be significantly improved by reducing the frequency of replacement of the tundish and the immersion nozzle.
【図1】本発明方法の実施状態を示す模式図である。FIG. 1 is a schematic view showing an implementation state of a method of the present invention.
【図2】間隙の大きさの演算原理の説明図である。FIG. 2 is an explanatory diagram of a calculation principle of a gap size.
【図3】本発明方法と従来法とにおけるノズル開度の時
間的変化の様子を比較した結果を示す図である。FIG. 3 is a diagram showing a result of comparison of changes in nozzle opening with time between the method of the present invention and the conventional method.
【図4】本発明方法と従来法とにより夫々得られたスラ
ブ中の介在物の混入状態を比較した結果を示す図であ
る。FIG. 4 is a diagram showing a result of comparing inclusion states of inclusions in a slab obtained by the method of the present invention and the conventional method.
【図5】磁場強度と付着物の量との相関関係を示す図で
ある。FIG. 5 is a diagram showing a correlation between magnetic field strength and the amount of deposits.
1 鋳型 2 タンディッシュ 3 溶湯 4 浸漬ノズル 4a 吸込口 4b 吐出口 7 制御コイル 8 コイル 10 送信コイル 11 受信コイル 12 低周波発振器 14 位相差検出器 15 演算制御部 70 高周波発振器 80 高周波発振器 1 mold 2 tundish 3 molten metal 4 immersion nozzle 4a suction port 4b discharge port 7 control coil 8 coil 10 transmission coil 11 reception coil 12 low frequency oscillator 14 phase difference detector 15 arithmetic control unit 70 high frequency oscillator 80 high frequency oscillator
Claims (2)
ディッシュから延設された浸漬ノズルにより溶湯を注入
する方法において、タンディッシュの内部に開口する浸
漬ノズルの吸込口近傍に制御コイルを周設し、該制御コ
イルへの通電により前記吸込口の中心に向かう電磁力を
生ぜしめ、該吸込口の近傍での溶湯の流れを浸漬ノズル
の内壁との間に間隙を隔てて保持すると共に、前記吸込
口の近傍と該吸込口の下方に所定長離隔した位置とに一
対のコイルを埋設し、一方のコイルに低周波の励磁電流
を通電して磁場を生ぜしめ、該磁場により他方のコイル
に誘起される誘導電流を捉え、該誘導電流と前記励磁電
流との間の位相差及び/又は強度差を検出し、該検出結
果に基づいて前記間隙の大きさを演算して、該演算結果
を所定の目標値に保つべく前記制御コイルの通電を制御
することを特徴とする連続鋳造用鋳型の注湯方法。1. A method of injecting molten metal into a continuous casting mold by means of an immersion nozzle extending from a tundish above the mold, wherein a control coil is provided in the vicinity of the suction port of the immersion nozzle opening inside the tundish. Around the suction coil, an electromagnetic force directed toward the center of the suction port is generated by energizing the control coil, and the flow of molten metal in the vicinity of the suction port is held with a gap between it and the inner wall of the immersion nozzle. , A pair of coils are embedded in the vicinity of the suction port and at a position separated by a predetermined length below the suction port, a low-frequency exciting current is passed through one coil to generate a magnetic field, and the magnetic field causes the other The induced current induced in the coil is captured, the phase difference and / or the intensity difference between the induced current and the exciting current is detected, and the size of the gap is calculated based on the detection result. Keeping the result at the specified target value Pouring method of continuous casting mold, characterized by controlling the energization of the control coil so.
ンディッシュから延設された浸漬ノズルにより溶湯を注
入する方法において、前記鋳型の内部に先端部全面が開
口された吐出口を備えた浸漬ノズルを用いると共に、該
吐出口の下部に臨ませて前記鋳型にコイルを埋設し、該
コイルへの通電により上向きの電磁力を生ぜしめ、前記
吐出口から流出する溶湯の流れを制動することを特徴と
する請求項1記載の連続鋳造用鋳型の注湯方法。2. A method for injecting molten metal into a casting mold for continuous casting by means of a dipping nozzle extending from a tundish above the casting mold, wherein the casting mold is provided with a discharge port having the entire front end opened. A dipping nozzle is used, a coil is embedded in the mold so as to face the lower portion of the discharge port, and an upward electromagnetic force is generated by energizing the coil to brake the flow of the molten metal flowing out from the discharge port. The method for pouring a continuous casting mold according to claim 1, characterized in that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35550391A JP2638369B2 (en) | 1991-11-20 | 1991-11-20 | Pouring method of continuous casting mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35550391A JP2638369B2 (en) | 1991-11-20 | 1991-11-20 | Pouring method of continuous casting mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05138320A true JPH05138320A (en) | 1993-06-01 |
JP2638369B2 JP2638369B2 (en) | 1997-08-06 |
Family
ID=18444331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35550391A Expired - Lifetime JP2638369B2 (en) | 1991-11-20 | 1991-11-20 | Pouring method of continuous casting mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2638369B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103252490A (en) * | 2013-05-22 | 2013-08-21 | 莱芜钢铁集团有限公司 | Magnetic field detector used for electromagnetic stirrer |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106077542A (en) * | 2016-06-28 | 2016-11-09 | 山东钢铁股份有限公司 | A kind of judge to corrode and the method for air-breathing between tundish lower nozzle and submersed nozzle plate |
-
1991
- 1991-11-20 JP JP35550391A patent/JP2638369B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103252490A (en) * | 2013-05-22 | 2013-08-21 | 莱芜钢铁集团有限公司 | Magnetic field detector used for electromagnetic stirrer |
CN103252490B (en) * | 2013-05-22 | 2016-09-14 | 莱芜钢铁集团有限公司 | Detector for magnetic field for magnetic stirrer |
Also Published As
Publication number | Publication date |
---|---|
JP2638369B2 (en) | 1997-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5755438B2 (en) | Control device and method for metal casting machine | |
KR100641618B1 (en) | Method and device for control of metal flow during continuous casting using electromagnetic fields | |
JPH02284750A (en) | Method for continuously casting steel using static magnetic field | |
Park et al. | Continuous casting of steel billet with high frequency electromagnetic field | |
KR100330509B1 (en) | Metal strip casting method and its continuous casting device | |
EP0445328B1 (en) | Method for continuous casting of steel | |
JPH05138320A (en) | Method for pouring molten metal into mold for continuous casting | |
JP3491120B2 (en) | Method and apparatus for removing nonmetallic inclusions in slab in continuous casting | |
JP2004042068A (en) | Continuous casting method of molten metal and continuous casting apparatus | |
WO1996036449A1 (en) | A method of continuously casting a metal | |
JP3094904B2 (en) | Apparatus and method for melting and solidifying material | |
JPS5931415B2 (en) | Hollow tube manufacturing method and device | |
JP2856060B2 (en) | Adjustment method of metal surface position in continuous casting of metal | |
JP2607334B2 (en) | Flow control device for molten steel in continuous casting mold | |
JP3491099B2 (en) | Continuous casting method of steel using static magnetic field | |
JP2887625B2 (en) | Continuous casting equipment | |
JPH04138843A (en) | Device and method for continuously casting metal | |
JPH01150450A (en) | Method and device for treating non-solidifying section of casting strand | |
JP2607333B2 (en) | Flow control device for molten steel in continuous casting mold | |
JPH09277006A (en) | Method for continuously casting molten metal | |
JPH11123515A (en) | Method for controlling solidification at initial stage in continuous casting | |
JPH03275247A (en) | Twin roll type strip continuous casting method | |
JPH0342156A (en) | Method and apparatus for continuously casting metal | |
JPH0390255A (en) | Method for continuously casting metal | |
JPH11123506A (en) | Method for removing inclusion in tundish for continuous casting |