JP2000015404A - Production of continuously cast slab having little inclusion defect - Google Patents

Production of continuously cast slab having little inclusion defect

Info

Publication number
JP2000015404A
JP2000015404A JP10201093A JP20109398A JP2000015404A JP 2000015404 A JP2000015404 A JP 2000015404A JP 10201093 A JP10201093 A JP 10201093A JP 20109398 A JP20109398 A JP 20109398A JP 2000015404 A JP2000015404 A JP 2000015404A
Authority
JP
Japan
Prior art keywords
mold
molten steel
flow
magnetic field
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10201093A
Other languages
Japanese (ja)
Inventor
Katsuhiro Fuchigami
勝弘 淵上
Hiroaki Iiboshi
弘昭 飯星
Masamitsu Wakao
昌光 若生
Kiyoshi Shigematsu
清 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10201093A priority Critical patent/JP2000015404A/en
Publication of JP2000015404A publication Critical patent/JP2000015404A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To continuously cast a cast slab excellent in the cleanliness and the surface characteristic by reducing inclusion on the surface layer of solidified shell starting the solidification in a mold and also, dispersing and reducing the inclusion in the inner layer in the continuous casting method of the cast slab. SOLUTION: At the time of producing the cast slab with the continuous casting, the fluidity in the horizontal direction with stirring magnetic field is given to molten steel in the portion corresponding to a meniscus at the upper part in the mold. Further, the brake is given to the molten steel at the lower part from the portion, in which the flow of the molten steel spouted from an immersion nozzle collides against short side surfaces of the mold and becomes a descending flow, by impressing braking magnetic field, satisfying the following inequality: 1700+3000*V(B<2100+3000*V, wherein V is the descending flow speed (m/s) at the short side of the mold just before the electromagnetic braking device and B is the intensity (Gauss) of the impressed braking magnetic field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋳片の連続鋳造方
法において、鋳型内から凝固開始する凝固シェルの表層
における介在物を低減すると共に、内層における介在物
を分散し低減せしめ、清浄性および表面性状に優れた鋳
片を連続鋳造するための方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for continuously casting slabs, which reduces inclusions in the surface layer of a solidified shell which starts to solidify from the inside of a mold, and disperses and reduces inclusions in the inner layer to improve cleanliness and cleanliness. The present invention relates to a method for continuously casting a cast piece having excellent surface properties.

【0002】[0002]

【従来の技術】通常の連続鋳造においては、図4に示す
ように一般に短辺方向に向いた2個の吐出口3を有する
浸漬ノズル2を、鋳型1中央部に配置して溶鋼を鋳型内
へ注入しており、この吐出流6は、鋳型短辺面に衝突し
て上部方向に反転し上昇流13となり、他方は下部方向
に向かう下降流14に分岐する。これら吐出流6によっ
て鋳型溶鋼内に持たらされた介在物の一部は溶鋼表面に
浮上して除去されるが、残りは下降流14によって溶鋼
の深部に運ばれ、浮上過程で凝固シェル9に捕捉され
る。この凝固シェル内に捕捉された表層介在物は、製品
においてスリバーと呼ばれる欠陥に至る。
2. Description of the Related Art In ordinary continuous casting, as shown in FIG. 4, a dipping nozzle 2 having two discharge ports 3 generally oriented in a short side direction is arranged at the center of a mold 1, and molten steel is placed in the mold. The discharge flow 6 collides with the short side surface of the mold and reverses in the upward direction to become an upward flow 13, and the other branches into a downward flow 14 in a downward direction. Some of the inclusions held in the molten steel by the discharge flow 6 float on the surface of the molten steel and are removed, while the remainder is carried to the deep part of the molten steel by the downward flow 14 and becomes solidified in the solidification shell 9 during the floating process. Be captured. The surface inclusions trapped in this solidified shell lead to defects in the product called slivers.

【0003】一方、上昇流13は、メニスカス8の近傍
では両側の短辺側からノズル側へ向かう反転流15が生
成される。このようなメニスカス8近傍の流れがあるこ
とによって、流れによる介在物の洗浄効果が得られてお
り、表層での介在物の捕捉による表面疵の発生を抑制し
ている。他方、このメニスカス8の流れが強すぎると、
連鋳パウダーを巻き込んで欠陥が増加する。また鋳片幅
中央部では、メニスカス8近傍の反転流の流速が遅くな
り、洗浄効果が得られず介在物や気泡の捕捉が起こり、
表面疵が発生する。
On the other hand, in the upward flow 13, in the vicinity of the meniscus 8, a reverse flow 15 is generated from the short sides on both sides toward the nozzle. The presence of such a flow in the vicinity of the meniscus 8 provides a cleaning effect of inclusions by the flow, and suppresses the generation of surface flaws due to the inclusion of inclusions on the surface layer. On the other hand, if the flow of the meniscus 8 is too strong,
Defects increase due to the involvement of continuous casting powder. At the center of the slab width, the flow velocity of the reverse flow near the meniscus 8 becomes slow, so that the cleaning effect cannot be obtained and inclusions and bubbles are trapped.
Surface flaws occur.

【0004】このような問題を解決するために、鋳型下
方部に溶鋼の流れを止める電磁制動装置を設置して、鋳
造ノズルからの吐出流6を鋳型短辺に衝突させ、これに
沿って流れる下降流14に制動磁界(静磁場)を作用さ
せて減衰させるとともに、鋳型上部に溶鋼を攪拌するた
めの電磁攪拌装置を設置して、メニスカス8部の反転流
15に攪拌磁界(移動磁場)を作用させ、攪拌による強
制流れによってメニスカス8部の流れを促進させて、鋳
片内部、表層共に介在物がなく欠陥発生の少ない鋳片を
製造するための方法や装置が数多く提案されている(例
えば、特開平5−177317号、特開平7−1122
4号公報)。
In order to solve such a problem, an electromagnetic braking device for stopping the flow of molten steel is installed below the mold so that the discharge flow 6 from the casting nozzle collides with the short side of the mold and flows along the same. A braking magnetic field (static magnetic field) acts on the descending flow 14 to attenuate it, and an electromagnetic stirrer for stirring the molten steel is installed above the mold, and a stirring magnetic field (moving magnetic field) is applied to the reverse flow 15 of the meniscus 8 part. Many methods and devices have been proposed for producing a slab having few inclusions in both the inside and the surface of the slab and having few inclusions by promoting the flow of the meniscus 8 parts by acting and forcing the flow by stirring. JP-A-5-177317, JP-A-7-1122
No. 4).

【0005】[0005]

【発明が解決しようとする課題】上記した従来例によっ
て鋳片の介在物の発生を抑制することは不可能なことで
はなかったが、例えば前記公報に記載の電磁制動装置で
の印加制動力が大き過ぎると、鋳片中央部での溶鋼の流
れが止まり、電磁制動装置下部において鋳片短辺側から
鋳片幅中央部への溶鋼の流れ込みが生じ、幅中央部での
介在物集積現象が生じ、介在物を分散する効果が得られ
なかった。また電磁攪拌と電磁制動の両者を単に併用し
て、電磁界を印加するのみでは目的とする品質を確実に
保証するまでには至っていなかった。その理由は、電磁
攪拌および電磁制動をやみくもに作動させるだけでは、
電磁界付与による効果を適確に享受していたことにはな
らず、適切な条件のもとで鋳造を行わなければ、優れた
品質の鋳片を得ることは難しいものであった。
Although it was not impossible to suppress the generation of inclusions in the slab by the above-mentioned conventional example, for example, the braking force applied by the electromagnetic braking device described in the above-mentioned publication was reduced. If it is too large, the flow of molten steel at the center of the slab stops, and molten steel flows from the short side of the slab to the center of the slab width at the lower part of the electromagnetic braking device, and the phenomenon of inclusion accumulation at the center of the width occurs. As a result, the effect of dispersing inclusions was not obtained. Further, simply applying both electromagnetic agitation and electromagnetic braking and applying an electromagnetic field has not been able to reliably guarantee the desired quality. The reason is that simply operating electromagnetic stirring and electromagnetic braking blindly
The effects of the application of the electromagnetic field have not been properly enjoyed, and it has been difficult to obtain cast pieces of excellent quality unless casting is performed under appropriate conditions.

【0006】本発明は、上述の鋳片表面および内部の介
在物を鋳片幅方向および厚み方向に均等に分散させると
共に、介在物の少ない連続鋳造鋳片の製造方法を提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a continuous cast slab which has the above-described slab surface and internal inclusions uniformly dispersed in the slab width direction and the thickness direction and has few inclusions. Is what you do.

【0007】[0007]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、下記手段にある。連続鋳造によって鋳片を製造す
るのに際し、鋳型内上部メニスカス該当部分の溶鋼に、
攪拌磁界による水平方向の流動を付与すると共に、浸漬
ノズルからの溶鋼吐出流が鋳型短辺面に衝突し、下降流
となる部分より下方に下記(1)式を満たす制動磁界を
印加し、溶鋼に制動を付与することを特徴とする介在物
欠陥の少ない連続鋳造鋳片の製造方法。 1700+3000*V<B<2100+3000*V ・・・・(1) ただし、V:電磁制動装置直前での鋳型短辺下降流速
(m/s) B:印加制動磁界の強さ(Gauss)
The gist of the present invention lies in the following means. When producing a slab by continuous casting, the molten steel in the upper meniscus applicable part in the mold,
In addition to applying a horizontal flow due to the stirring magnetic field, the molten steel discharge flow from the immersion nozzle collides with the short side surface of the mold, and a braking magnetic field that satisfies the following equation (1) is applied below the downward flow. A method for producing a continuous cast slab having few inclusion defects, characterized by applying braking to a steel sheet. 1700 + 3000 * V <B <2100 + 3000 * V (1) where V is the flow velocity of the mold short side descent immediately before the electromagnetic braking device (m / s) B: The strength of the applied braking magnetic field (Gauss)

【0008】[0008]

【発明の実施の形態】本発明者らは、鋳型内上部で溶鋼
を電磁攪拌すると共に、鋳型内の浸漬ノズルから吐出す
る溶鋼流を鋳型下方部において電磁制動するに当たり、
その装置の設定位置を数多く変動させ、種々の実験を繰
り返し、試行錯誤の結果、鋳型下方部に設置する電磁制
動装置の適正配設位置を見出すことに成功したが、この
電磁制動装置の適正な配設位置のみでは目的とするに足
る充分な効果が得られず、電磁制動装置の作動時に発生
する制動磁界の強さによっても大きな影響を受けること
を確認した。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention performed electromagnetic stirring of molten steel in the upper part of a mold, and electromagnetically braked molten steel flow discharged from an immersion nozzle in the lower part of the mold.
By changing the setting position of the device a lot, and repeating various experiments, as a result of trial and error, we succeeded in finding the appropriate arrangement position of the electromagnetic braking device installed below the mold, but this electromagnetic braking device It was confirmed that the arrangement position alone did not provide a sufficient effect as intended, and was greatly affected by the strength of the braking magnetic field generated when the electromagnetic braking device was operated.

【0009】そこで、溶鋼の溶製過程で生成したスラグ
がたとえ鋳型内に流入したとしても本発明においては、
連続鋳造用鋳型下方部の適正位置に電磁制動装置を配設
して、浸漬ノズルからの吐出流が鋳型短辺に当たり、こ
れに沿って流れる下降流に適正な制動磁場を作用せしめ
て溶鋼流を制動し、凝固シェル内層に集積する介在物を
低減すると共に均一に分散させ、鋳型上部に配設した電
磁攪拌装置によって鋳型短辺側に当たって上昇し、メニ
スカス表層部を流れる溶鋼の上昇反転流に攪拌磁場を作
用せしめて、短辺面に沿って上昇する上昇流の流れを促
進し、表層介在物を低減せしめ、凝固シェルの内層、表
層共に清浄性に優れた鋳片を確実に得ようとするもので
ある。
Therefore, even if the slag generated in the process of smelting molten steel flows into the mold, the present invention provides
An electromagnetic braking device is installed at an appropriate position below the continuous casting mold, and the discharge flow from the immersion nozzle hits the short side of the mold, and an appropriate braking magnetic field is applied to the descending flow flowing along this side to cause the molten steel flow to flow. It brakes and reduces the inclusions that accumulate in the inner layer of the solidified shell and distributes it evenly. By applying a magnetic field, the ascending flow that rises along the short side surface is promoted, the surface layer inclusions are reduced, and the inner layer of the solidified shell and the surface layer are surely obtained with excellent cleanliness. Things.

【0010】前記鋳型内溶鋼メニスカス部に印加するた
めの電磁攪拌方法には、別段特定すべき条件はなかった
が、浸漬ノズルからの吐出した溶鋼流が鋳型短辺面にお
いて下降流に転じた流れを制動するための制動電磁界の
強さについては、本発明者らの研究結果により適正範囲
が存在することを見出した。すなわち、電磁制動を付与
する溶鋼流の降下流速に応じ、印加する磁界の強さを調
整してやらなければ目的とする溶鋼流の制動効果が得ら
れず、介在物の減少および分散を図ることはできない。
The electromagnetic stirring method for applying to the molten steel meniscus in the mold had no particular conditions to be specified. However, the flow of molten steel discharged from the immersion nozzle turned into a downward flow on the short side of the mold was not used. As a result of the research conducted by the present inventors, it has been found that there is an appropriate range for the strength of the braking electromagnetic field for braking the. That is, if the strength of the applied magnetic field is not adjusted according to the descending flow velocity of the molten steel flow to apply the electromagnetic braking, the intended braking effect of the molten steel flow cannot be obtained, and the reduction and dispersion of inclusions cannot be achieved. .

【0011】図2は寸法282mm(厚み)×1550
mm(幅)の鋳片を鋳造するに際し、鋳型内に浸漬した
ノズル吐出口(角度が35度)より溶鋼量3.7t/m
in供給すると共にノズル内Ar流量が5Nl/min
で、さらに鋳造速度を1.1m/minとし、該ノズル
吐出口からの溶鋼流が、鋳型短辺面と衝突する位置から
0.5m下方部位に設置した電磁制動装置により、印加
制動磁界の強さを変え、それによる鋳片での介在物量
(介在物指数)の変化を調査した結果である。なお、鋳
型短辺面における下降流速は0.1m/sであった。
FIG. 2 shows a size of 282 mm (thickness) × 1550.
When casting a slab of mm (width), the molten steel amount was 3.7 t / m from the nozzle discharge port (angle: 35 degrees) immersed in the mold.
and the Ar flow rate in the nozzle is 5 Nl / min
Further, the casting speed was set to 1.1 m / min, and the strength of the applied braking magnetic field was increased by an electromagnetic braking device installed 0.5 m below the position where the molten steel flow from the nozzle outlet collided with the short side of the mold. This is a result of investigating a change in the amount of inclusions (inclusion index) in the slab due to the change in the thickness. The descending flow velocity on the short side of the mold was 0.1 m / s.

【0012】同様に、図3は寸法282mm(厚み)×
1830mm(幅)の鋳片を鋳造するに際し、鋳型内に
浸漬したノズル吐出口(角度が35度)より溶鋼量5.
2t/min供給すると共に、ノズル内Ar流量が15
Nl/minで、さらに鋳造速度を1.3m/minと
し、該ノズル吐出口からの溶鋼流が、鋳型内短辺面と衝
突する位置から0.5m下方部位に設置した電磁制動装
置により印加制動磁界の強さを変え、それによる鋳片で
の介在物量(介在物指数)の変化を調査した結果であ
る。なお、鋳型短辺面における下降流速は0.23m/
sであった。ノズル内にArガスを供給するのは、溶鋼
中の介在物がノズル内面に付着し、溶鋼の流れを阻害し
たり、吐出口を閉塞するのを防止するためであり、普通
の鋳造作業においては通常用いられている事柄である。
Similarly, FIG. 3 shows a size of 282 mm (thickness) ×
When casting a slab of 1830 mm (width), the amount of molten steel from the nozzle discharge port (angle of 35 degrees) immersed in the mold was 5.
2 t / min and Ar flow rate in the nozzle was 15
Nl / min, the casting speed was set to 1.3 m / min, and the molten steel flow from the nozzle discharge port was applied and braked by an electromagnetic brake installed 0.5 m below the position where it collides with the short side surface in the mold. It is a result of investigating a change in the amount of inclusions (inclusion index) in a slab due to a change in the strength of a magnetic field. The descending flow velocity on the short side of the mold was 0.23 m /
s. The reason for supplying Ar gas into the nozzle is to prevent inclusions in the molten steel from adhering to the inner surface of the nozzle and obstructing the flow of the molten steel or closing the discharge port. This is a commonly used thing.

【0013】ここで、図2および図3の縦軸の介在物指
数とは過去数年間に渡るユーザーからの鋼板の清浄度に
対する要望から、本発明者らが解析して経験的に求めた
値であり、一般的な鋼板であれば介在物指数1が鋳片で
の品質(清浄度)の合格レベルとして採用している値で
ある。なお、この図においては鋳型内上部の電磁攪拌も
同時に行ったものである。この図2、3からわかるよう
に、鋳造速度が速くなれば電磁制動装置直前の溶鋼下降
流速も速くなるので、印加する制動磁界の強さも大きく
しなければ介在物を分散減少することはできない。
Here, the inclusion index on the vertical axis in FIGS. 2 and 3 is a value empirically obtained by analysis by the present inventors based on requests from users for the cleanliness of steel sheets over the past several years. In the case of a general steel sheet, the inclusion index 1 is a value adopted as a passing level of the quality (cleanliness) of the slab. In this figure, the electromagnetic stirring of the upper part in the mold was performed at the same time. As can be seen from FIGS. 2 and 3, if the casting speed is increased, the descending flow velocity of the molten steel immediately before the electromagnetic braking device is also increased. Therefore, unless the strength of the applied braking magnetic field is increased, the inclusions cannot be dispersed and reduced.

【0014】これを数式で示すと下記(1)式の如く表
すことができる。 1700+3000*V<B<2100+3000*V ・・・・(1) ただし、V:電磁制動装置直前での鋳型短辺降下溶鋼流
速(m/s) B:印加制動磁界の強さ(Gauss) ここで鋳型短辺降下流速(V)については実際には、測
定することは不可能であり推定で求める。この下降流速
値は鋳造条件(鋳造鋳片寸法、鋳型への溶鋼供給量等)
によって変動する。下降流速値は、ノズル吐出口からの
吐出流速とノズル吐出口から電磁制動装置までの距離と
減衰の効果により定まる。ノズル吐出口からの吐出流速
は、溶鋼供給量に比例し、溶鋼流の経路は幾何学的配置
により定まる。また、減衰の効果はノズル内Ar流量や
短辺衝突後の減衰がある。
This can be expressed by the following mathematical expression (1). 1700 + 3000 * V <B <2100 + 3000 * V (1) where, V: flow rate of molten steel on the short side of the mold immediately before the electromagnetic braking device (m / s) B: strength of applied braking magnetic field (Gauss) In practice, it is impossible to measure the mold short-side descending flow velocity (V), and it is determined by estimation. This descent velocity value is the casting condition (cast slab size, molten steel supply to the mold, etc.)
Will vary. The descending flow velocity value is determined by the discharge flow velocity from the nozzle discharge port, the distance from the nozzle discharge port to the electromagnetic braking device, and the effect of attenuation. The discharge flow rate from the nozzle outlet is proportional to the amount of molten steel supplied, and the path of the molten steel flow is determined by the geometrical arrangement. In addition, the effects of the attenuation include the Ar flow rate in the nozzle and the attenuation after the short side collision.

【0015】これを経験的に求めた数式は、下記(2)
式の如く表すことができる。 V=0.45*Q*exp(−0.041*R*L1−10.2*L2) ・・・・・(2) L1=W/2/cosθ L2=1−X−W/2*tanθ V:下降流速(m/sec) Q:溶鋼供給量(t/min) L1:吐出口から短辺衝突点までの距離(m) L2:短辺衝突点から電磁制動装置までの距離(m) R:ノズル内Ar流量(Nl/min) W:鋳造幅(m) X:メニスカスから吐出口までの距離(m) θ:吐出口角度(deg) であり、この値を用いることにより、印加すべき制動磁
界の強さを算出することができ、適切な鋳片の鋳造を実
施することができる。
The equation obtained empirically is as follows:
It can be expressed as an equation. V = 0.45 * Q * exp (−0.041 * R * L1-10.2 * L2) (2) L1 = W / 2 / cos θ L2 = 1−X−W / 2 * tanθ V: descending flow velocity (m / sec) Q: molten steel supply amount (t / min) L1: distance from discharge port to short side collision point (m) L2: distance from short side collision point to electromagnetic braking device (m) R: Ar flow rate in nozzle (Nl / min) W: Casting width (m) X: Distance from meniscus to discharge port (m) θ: Discharge port angle (deg) The strength of the braking magnetic field to be calculated can be calculated, and appropriate casting of the slab can be performed.

【0016】上記した条件で溶鋼の流れを抑えるために
制動磁界の強さを設定したならば、介在物が鋳片内部へ
の侵入するのを抑制することができると共に、介在物の
分散が図られ本発明の目的とする鋳片表面および内層部
において欠点の少ない良好な製品を得ることが可能であ
る。
If the strength of the braking magnetic field is set in order to suppress the flow of molten steel under the above conditions, it is possible to prevent inclusions from entering the inside of the slab and to reduce the dispersion of the inclusions. As a result, it is possible to obtain a good product with few defects on the slab surface and the inner layer portion, which is the object of the present invention.

【0017】[0017]

【実施例】以下、本発明を実施例と共に比較例によって
その内容を詳細に説明し、本発明の効果を明らかにす
る。実施例に用いた溶鋼は低炭アルミキルド鋼である。
この溶鋼を図1に示した如き垂直曲げ型連続鋳造装置に
適用した。浸漬ノズル2は、内径95mm、外径200
mmで水平から下向き35度の吐出口3を有し、この吐
出口から鋳型1の短辺側に溶鋼流が吐出される。鋳型1
内の溶鋼メニスカス8の該当部分に移動磁界による水平
方向の電磁力を印加する電磁攪拌装置4を配設した。鋳
型1内の浸漬ノズル2の吐出口3から鋳型1の溶鋼が鋳
型短辺側を流れる流速は、吐出口片側当り0.2〜0.
5m/sであった。溶鋼の下降流14を制動するための
制動電磁界を印加する電磁制動装置5は、ノズル吐出口
3よりの溶鋼が鋳型短辺面に衝突する部位より下方0.
5mの位置に配設した。このような条件下で鋼を鋳造し
た結果を表1に比較例と共に示した。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples to clarify the effects of the present invention. The molten steel used in the examples is a low-carbon aluminum killed steel.
This molten steel was applied to a vertical bending type continuous casting apparatus as shown in FIG. The immersion nozzle 2 has an inner diameter of 95 mm and an outer diameter of 200
It has a discharge port 3 of 35 mm downward from the horizontal and from which the molten steel flow is discharged to the short side of the mold 1. Mold 1
An electromagnetic stirrer 4 for applying a horizontal electromagnetic force by a moving magnetic field to a corresponding portion of the molten steel meniscus 8 therein was provided. The flow velocity at which the molten steel of the mold 1 flows from the discharge port 3 of the immersion nozzle 2 in the mold 1 to the short side of the mold is 0.2 to 0.
It was 5 m / s. The electromagnetic braking device 5 for applying a braking electromagnetic field for braking the descending flow 14 of molten steel is provided at a position 0.1 mm below the portion where the molten steel from the nozzle discharge port 3 collides with the short side surface of the mold.
It was arranged at a position of 5 m. The results of casting the steel under these conditions are shown in Table 1 together with Comparative Examples.

【0018】[0018]

【表1】 [Table 1]

【0019】本実施例では上述したように高い清浄度を
要求される鋼であったので、介在物指数を0.8以下を
狙い値としてそれに見合った制動磁界を印加して製造を
行った。その結果、表1から明らかなように本実施例で
実験番号1〜7については、何れも目標とした値を満足
するものであり、また、介在物も均一に分散しており、
良好な鋳片が得られた。これに対し比較例の8は制動磁
界の強さが本発明範囲を下回り、比較例9、10は制動
磁界の強さが本発明範囲を上回り、介在物指数の狙い値
0.8を満たすことができなかった。また比較例11〜
13は制動磁界の強さは本発明範囲内であったが、攪拌
磁界を印加しなかったため、やはり介在物指数は0.8
以下を確保することはできなかった。さらに、これら比
較例は何れも介在物の分散性も悪く、本発明例の如き良
好な鋳片を得ることが困難なことを示している。
In this embodiment, as described above, the steel is required to have a high degree of cleanliness. Therefore, the target was set at an inclusion index of 0.8 or less, and a braking magnetic field corresponding to the inclusion index was applied to manufacture the steel. As a result, as is clear from Table 1, in this example, for Experiment Nos. 1 to 7, all satisfied the target values, and the inclusions were also uniformly dispersed.
Good slabs were obtained. On the other hand, in Comparative Example 8, the strength of the braking magnetic field was lower than the range of the present invention, and in Comparative Examples 9 and 10, the strength of the braking magnetic field exceeded the range of the present invention, and the target value of the inclusion index of 0.8 was satisfied. Could not. Comparative Examples 11 to
In No. 13, although the strength of the braking magnetic field was within the range of the present invention, the inclusion index was also 0.8 because no stirring magnetic field was applied.
The following could not be secured. Furthermore, all of these comparative examples have poor dispersibility of inclusions, indicating that it is difficult to obtain good cast slabs as in the present invention.

【0020】[0020]

【発明の効果】本発明によれば、鋳型内に注入された溶
鋼は電磁攪拌装置によりメニスカス近傍を凝固シェル内
周面に沿って水平方向に回転せしめられ、かつ浸漬ノズ
ルから吐出した溶鋼が鋳型短辺面に当たって反転した下
降流に制動磁界を印加してその流れを減衰させることに
より、介在物を均一に分散せしめることができると共
に、鋳片内部の介在物および鋳片表面の介在物を同時に
低減せしめることができ、表面および内部品質の優れた
鋳片を製造することが可能となり、連続鋳造における鋳
片製造に寄与する効果は多大なものがある。
According to the present invention, the molten steel injected into the mold is rotated by an electromagnetic stirrer in the vicinity of the meniscus in the horizontal direction along the inner peripheral surface of the solidified shell. By applying a braking magnetic field to the descending flow that has reversed on the short side surface to attenuate the flow, the inclusions can be uniformly dispersed and the inclusions inside the slab and the inclusions on the slab surface can be simultaneously formed. It is possible to produce a slab having excellent surface and internal quality, which has a great effect to contribute to the slab production in continuous casting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の概要を説明するための概略側面図FIG. 1 is a schematic side view for explaining an outline of the present invention.

【図2】鋳型下方部の溶鋼に印加する磁場の大きさと介
在物指数の関係(鋳造速度1.1m/min)を示した
FIG. 2 is a diagram showing a relationship between a magnitude of a magnetic field applied to molten steel below a mold and an inclusion index (a casting speed of 1.1 m / min).

【図3】鋳型下方部の溶鋼に印加する磁場の大きさと介
在物指数の関係(鋳造速度1.3m/min)を示した
FIG. 3 is a diagram showing a relationship between the magnitude of a magnetic field applied to molten steel below a mold and an inclusion index (a casting speed of 1.3 m / min).

【図4】従来の連続鋳造鋳型内における溶鋼の流動状況
を説明する概略側面図
FIG. 4 is a schematic side view illustrating a flow state of molten steel in a conventional continuous casting mold.

【符号の説明】[Explanation of symbols]

1 鋳型 2 浸漬ノズル 3 吐出口 4 電磁攪拌装置 5 電磁制動装置 6 吐出流 7 攪拌流 8 メニスカス 9 凝固シェル 13 上昇流 14 下降流 15 反転流 DESCRIPTION OF SYMBOLS 1 Mold 2 Immersion nozzle 3 Discharge port 4 Electromagnetic stirring device 5 Electromagnetic braking device 6 Discharge flow 7 Stirring flow 8 Meniscus 9 Solidification shell 13 Upflow 14 Downflow 15 Reverse flow

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若生 昌光 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 重松 清 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Masamitsu Wakao 1 Nishinosu, Oji, Oita City, Oita Prefecture Inside Nippon Steel Corporation Oita Works (72) Inventor Kiyoshi Shigematsu 1 Nishinosu, Oita City, Oita City, Oita New Japan Inside Oita Works of Iron Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造によって鋳片を製造するのに際
し、鋳型内上部メニスカス該当部分の溶鋼に、攪拌磁界
による水平方向の流動を付与すると共に、浸漬ノズルか
らの溶鋼吐出流が鋳型短辺面に衝突し、下降流となる部
分より下方に下記(1)式を満たす制動磁界を印加し、
溶鋼に制動を付与することを特徴とする介在物欠陥の少
ない連続鋳造鋳片の製造方法。 1700+3000*V<B<2100+3000*V ・・・・(1) ただし、V:電磁制動装置直前での鋳型短辺下降流速
(m/s) B:印加制動磁界の強さ(Gauss)
In producing a slab by continuous casting, a molten steel in a portion corresponding to an upper meniscus in a mold is given a horizontal flow by a stirring magnetic field, and a molten steel discharge flow from an immersion nozzle is applied to a short side surface of the mold. A braking magnetic field that satisfies the following equation (1) is applied below the downward flow,
A method for producing a continuously cast slab having few inclusion defects, wherein braking is applied to molten steel. 1700 + 3000 * V <B <2100 + 3000 * V (1) where V is the flow velocity of the mold short side descent immediately before the electromagnetic braking device (m / s) B: The strength of the applied braking magnetic field (Gauss)
JP10201093A 1998-07-02 1998-07-02 Production of continuously cast slab having little inclusion defect Withdrawn JP2000015404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10201093A JP2000015404A (en) 1998-07-02 1998-07-02 Production of continuously cast slab having little inclusion defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10201093A JP2000015404A (en) 1998-07-02 1998-07-02 Production of continuously cast slab having little inclusion defect

Publications (1)

Publication Number Publication Date
JP2000015404A true JP2000015404A (en) 2000-01-18

Family

ID=16435289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10201093A Withdrawn JP2000015404A (en) 1998-07-02 1998-07-02 Production of continuously cast slab having little inclusion defect

Country Status (1)

Country Link
JP (1) JP2000015404A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105745A (en) * 2005-10-11 2007-04-26 Nippon Steel Corp Continuous casting method of steel
JP2007301626A (en) * 2006-05-15 2007-11-22 Nippon Steel Corp Method of continuous casting
JP2017131934A (en) * 2016-01-28 2017-08-03 新日鐵住金株式会社 Continuous casting method
CN108500228A (en) * 2017-02-27 2018-09-07 宝山钢铁股份有限公司 FLUID FLOW INSIDE CONTINUOUS SLAB CASTING MOLD control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105745A (en) * 2005-10-11 2007-04-26 Nippon Steel Corp Continuous casting method of steel
JP4746398B2 (en) * 2005-10-11 2011-08-10 新日本製鐵株式会社 Steel continuous casting method
JP2007301626A (en) * 2006-05-15 2007-11-22 Nippon Steel Corp Method of continuous casting
JP4705515B2 (en) * 2006-05-15 2011-06-22 新日本製鐵株式会社 Continuous casting method
JP2017131934A (en) * 2016-01-28 2017-08-03 新日鐵住金株式会社 Continuous casting method
CN108500228A (en) * 2017-02-27 2018-09-07 宝山钢铁股份有限公司 FLUID FLOW INSIDE CONTINUOUS SLAB CASTING MOLD control method

Similar Documents

Publication Publication Date Title
US5381857A (en) Apparatus and method for continuous casting
JPH02284750A (en) Method for continuously casting steel using static magnetic field
JP3692253B2 (en) Continuous casting method of steel
JP2000015404A (en) Production of continuously cast slab having little inclusion defect
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
JP3096879B2 (en) Continuous casting method for slabs with excellent surface and internal quality
JP3583955B2 (en) Continuous casting method
JP3566904B2 (en) Steel continuous casting method
JP3583954B2 (en) Continuous casting method
JP3096878B2 (en) Continuous casting method for slabs with excellent surface and internal quality
JP3984476B2 (en) Continuous casting method of cast slab with few bubble defects and manufactured slab
JP2990555B2 (en) Continuous casting method
JPH11254103A (en) Production of clean continuously cast slab
JPH0673722B2 (en) Continuous casting method
JP3538967B2 (en) Continuous casting method
JP2921352B2 (en) Discharge flow control method for continuous casting machine
JP3267545B2 (en) Continuous casting method
JPH06226409A (en) Method for continuously casting high clean steel
JP6627744B2 (en) Method and apparatus for continuous casting of steel
JPS5924903B2 (en) Continuous casting method for weakly deoxidized steel slabs
JPH08187557A (en) Method for continuously casting steel using electromagnetic field
JPH04333353A (en) Method for continuously casting steel utilizing static magnetic field
JPH11320054A (en) Continuous caster and continuous casting method
JPH0584551A (en) Method for continuously casting steel using static magnetic field
JP3077572B2 (en) Continuous casting method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906