JP4848656B2 - Method and apparatus for continuous casting of steel - Google Patents

Method and apparatus for continuous casting of steel Download PDF

Info

Publication number
JP4848656B2
JP4848656B2 JP2005091579A JP2005091579A JP4848656B2 JP 4848656 B2 JP4848656 B2 JP 4848656B2 JP 2005091579 A JP2005091579 A JP 2005091579A JP 2005091579 A JP2005091579 A JP 2005091579A JP 4848656 B2 JP4848656 B2 JP 4848656B2
Authority
JP
Japan
Prior art keywords
magnetic field
slab
steel
continuous casting
static magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005091579A
Other languages
Japanese (ja)
Other versions
JP2006272357A (en
Inventor
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005091579A priority Critical patent/JP4848656B2/en
Publication of JP2006272357A publication Critical patent/JP2006272357A/en
Application granted granted Critical
Publication of JP4848656B2 publication Critical patent/JP4848656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼の連続鋳造方法及び装置に係り、特に、鋳片中心部の偏析、いわゆる中心偏析を低減することが可能な鋼の連続鋳造方法及び装置に関する。   The present invention relates to a steel continuous casting method and apparatus, and more particularly to a steel continuous casting method and apparatus capable of reducing segregation at the center of a slab, so-called center segregation.

連続鋳造においては、図1(A)に全体構成を示す如く、溶鋼10が、図示しない取鍋からタンディッシュ14と浸漬ノズル16を介して水冷式の鋳型18に注入された後、鋳片(スラブとも称する)20を鋳造方向に引き抜き、且つ冷却を加えながら、鋳片を連続的に製造する。まず、最初の鋳型部においては、鋳片は鋳型18と接することによって抜熱し、初期凝固シェルを形成する。その後、鋳型18を抜けた鋳片20は、徐々にピンチロール22によって、鋳造方向に引き抜かれる。その際、鋳片20は冷却されて、徐々に凝固シェルを厚くし、連鋳機の機長内で凝固を完了させる。   In continuous casting, as shown in FIG. 1A, the molten steel 10 is poured into a water-cooled mold 18 from a ladle (not shown) through a tundish 14 and an immersion nozzle 16, and then a slab ( The slab is continuously produced while drawing out 20 in the casting direction and applying cooling. First, in the first mold part, the slab is removed from heat by coming into contact with the mold 18 to form an initial solidified shell. Thereafter, the slab 20 that has passed through the mold 18 is gradually pulled out in the casting direction by the pinch roll 22. At that time, the slab 20 is cooled to gradually thicken the solidified shell and complete solidification within the length of the continuous casting machine.

その後、トーチカッター24により所定の長さに鋳片を切断することにより、鋳片を安定的に、且つ、大量に製造することが可能になっている。   Thereafter, by cutting the slab into a predetermined length by the torch cutter 24, the slab can be manufactured stably and in large quantities.

この連続鋳造に際して、鋳片の厚み中心部にマクロ的な偏析が発生すると、鋼の均質性が損なわれ、製品が規格外れになったりする。このように、鋳片の中心偏析を低減することは、例えば、高強度のラインパイプ等のような耐水素誘起割れ鋼を製造する上で極めて重要な問題である。このため、従来から、中心偏析を防止するための方法が数多く報告されている。   When macro segregation occurs at the thickness center of the slab during the continuous casting, the homogeneity of the steel is impaired and the product becomes out of specification. Thus, reducing the center segregation of a slab is an extremely important problem in producing a hydrogen-resistant cracked steel such as a high-strength line pipe. For this reason, conventionally, many methods for preventing center segregation have been reported.

従来、連続鋳造操業における中心偏析を防止するために、凝固末期の鋳片を軽圧下すること(軽圧下法)、又は、鋳片の中心部に等軸晶帯を増やすことが、その手段として採用されてきた。そして、等軸晶帯を増やす手段は、更に、低温鋳造法と電磁攪拌法に分類される(非特許文献1)。   Conventionally, in order to prevent center segregation in continuous casting operations, it is possible to lightly reduce the slab at the end of solidification (light reduction method) or increase the equiaxed crystal zone at the center of the slab. Has been adopted. The means for increasing the equiaxed crystal zone is further classified into a low temperature casting method and an electromagnetic stirring method (Non-patent Document 1).

これらの方法のうち、軽圧下法は、凝固末期の凝固に伴う体積収縮分を圧下することによって溶鋼の流動を抑制する方法である。   Among these methods, the light reduction method is a method of suppressing the flow of molten steel by reducing the volume shrinkage accompanying solidification at the end of solidification.

又、低温鋳造法や電磁攪拌法は、鋳片中心部に等軸晶帯を増やすことによって、偏析を分散させる方法である。   The low temperature casting method and the electromagnetic stirring method are methods for dispersing segregation by increasing the equiaxed crystal zone at the center of the slab.

低温鋳造法においては、溶鋼の過熱度(溶鋼温度と液相線温度との差)をできるだけ低くして鋳造し、凝固初期の段階で等軸晶を生成させるようにする。   In the low temperature casting method, casting is performed with the superheat degree of the molten steel (difference between the molten steel temperature and the liquidus temperature) as low as possible to produce equiaxed crystals at the initial stage of solidification.

又、電磁攪拌法においては、電磁攪拌によって溶鋼に流動を与えてデンドライトの先端を剪断して凝固核を生成させ、これによって、等軸晶を増やすと共に、この等軸晶を攪拌して結晶を充填性よく配置(結晶と結晶との間にできる間隙をできるだけ少なくする配置)して凝固させるようにする。例えば、特許文献1には、交流磁界を印加することが記載され、特許文献2には、鋳型から引き抜かれた凝固初期の鋳片に静磁界を印加して凝固組織を柱状晶にした後、最終凝固段階直前の鋳片に静磁界を印加しながら軽圧下することが記載され、特許文献3には、鋳造開始から5分以内の凝固界面付近に静磁界を印加してデンドライトの成長を促進させた後、電磁攪拌によりデンドライトを破断させて、鋳片の軸心部に等軸晶を堆積させることが記載され、特許文献4には、低周波交流静止磁界を印加することが記載されている。   In the electromagnetic stirring method, the molten steel is flowed by electromagnetic stirring to shear the tip of the dendrite to generate solidified nuclei, thereby increasing the equiaxed crystals and stirring the equiaxed crystals to form crystals. Arrangement is made with good filling properties (arrangement that minimizes the gap between crystals) to solidify. For example, Patent Document 1 describes that an alternating magnetic field is applied, and Patent Document 2 describes that after applying a static magnetic field to an initial solidified slab drawn from a mold to form a solidified structure in a columnar crystal, It is described that light reduction is applied to the slab immediately before the final solidification stage while applying a static magnetic field, and Patent Document 3 applies a static magnetic field near the solidification interface within 5 minutes from the start of casting to promote dendrite growth. After that, the dendrite is broken by electromagnetic stirring, and equiaxed crystals are deposited on the axial center of the slab. Patent Document 4 describes that a low-frequency alternating static magnetic field is applied. Yes.

又、出願人は、特許文献5で、鋳型に静止磁界と交流磁界を重畳して印加することを提案している。   In addition, the applicant has proposed in Patent Document 5 that a static magnetic field and an alternating magnetic field are superimposed and applied to a mold.

内堀;第126回、第127回、西記念技術講座「高清浄鋼の現状と将来」、昭和63年11、12月、p.17〜19、日本鉄鋼協会Uchibori; 126th, 127th, Nishi Memorial Technology Course "Present and Future of Highly Clean Steel", November, December 1988, p. 17-19, Japan Iron and Steel Association 特開平9−206897号公報Japanese Patent Laid-Open No. 9-206897 特開平6−608号公報JP-A-6-608 特開平4−319053号公報Japanese Patent Laid-Open No. 4-319053 特開平2−274350号公報JP-A-2-274350 特開2003−103349号公報JP 2003-103349 A

しかしながら、上記従来技術には、それぞれ問題点がある。   However, each of the above conventional techniques has problems.

即ち、軽圧下法においては、最終凝固位置における凝固組織の結晶形態が、鋳片上面側では柱状晶が中心位置まで成長しており、一方、下面側では鋳型内や最終凝固以前に発生した凝固核が沈降し、これが堆積することによって生成した分岐柱状晶と言われる形態の結晶が存在している。このように、上下の結晶形態が異なっていると、最終凝固時に凝固殻同士がぶつかり合って一体の鋳片が形成される際に、結晶が隙間なく配置されないので、結晶の充填性が悪い配置部分(隙間がある部分)に未凝固相(濃化溶鋼)が入り、この部分に島状若しくは粒状の偏析ができる(この偏析は、偏析粒の面積が大きい程、その度合が大きい)。   That is, in the light reduction method, the crystal structure of the solidified structure at the final solidification position is such that the columnar crystal grows to the center position on the upper surface side of the slab, while the solidification that has occurred in the mold or before final solidification on the lower surface side. There are crystals in a form called branched columnar crystals formed by the nucleation of sediment and deposition. Thus, if the upper and lower crystal forms are different, the solidified shells collide with each other at the time of final solidification to form a single slab, so that the crystals are not arranged without gaps, so that the crystal filling property is poor. An unsolidified phase (concentrated molten steel) enters a part (a part having a gap), and island-like or granular segregation can be generated in this part (the degree of segregation increases as the area of the segregated grains increases).

又、低温鋳造法は、溶鋼の過熱温度を低くして鋳造するので、安定した鋳造操業を行なう上では問題がある。即ち、浸漬ノズルの詰まりが起こったり、鋳型内の溶鋼表面に皮張りが起こったり、溶鋼内に介在物が巻き込まれて鋳片品質が著しく低下したりする。   In addition, the low-temperature casting method has a problem in performing stable casting operation because casting is performed at a low superheat temperature of molten steel. That is, the clogging of the immersion nozzle occurs, the surface of the molten steel in the mold is covered, or inclusions are caught in the molten steel and the quality of the slab is remarkably deteriorated.

一方、電磁攪拌法においては、攪拌する流速を上げれば、等軸晶が増えるが、溶鋼が流動する領域では、固−液界面の溶質の分配が変わってしまうので、攪拌流速を上げ過ぎると、ホワイトバンドと言われる負偏析帯(平均濃度よりも低い濃度域)が発生する。又、この方法は、攪拌によって偏析粒を小さくして分散させるものであるが、偏析粒を細分化できる度合は十分であるとは言えない。   On the other hand, in the electromagnetic stirring method, if the stirring flow rate is increased, equiaxed crystals increase, but in the region where the molten steel flows, the distribution of the solute at the solid-liquid interface changes, so if the stirring flow rate is increased too much, A negative segregation band (concentration range lower than the average concentration) called white band occurs. In this method, the segregated grains are reduced and dispersed by stirring, but the degree to which the segregated grains can be subdivided is not sufficient.

更に、特許文献1〜3に開示されるような静磁界、あるいは、移動磁界の組み合わせ、又、特許文献4に開示されるような、低周波交流磁界によるデンドライトの分断だけでは、温度場が不均一となり、未だ、近年の品質向上ニーズを満足する中心偏析の低減には不十分であった。   Furthermore, a combination of a static magnetic field or a moving magnetic field as disclosed in Patent Documents 1 to 3 or a dendrite segmentation by a low-frequency AC magnetic field as disclosed in Patent Document 4 does not cause a temperature field. It has become uniform and is still insufficient for reducing the central segregation that satisfies the recent quality improvement needs.

又、特許文献5は、表面欠陥を防止することを目的としており、中心偏析を低減することはできなかった。   Further, Patent Document 5 aims to prevent surface defects and cannot reduce center segregation.

本発明は、上記従来技術におけるような問題が発生せず、中心偏析が非常に少ない鋳片の製造が可能な鋼の連続鋳造方法及び装置を提供することを目的とする。   An object of the present invention is to provide a steel continuous casting method and apparatus capable of producing a slab that does not cause the problems as in the prior art and has very little center segregation.

上記の目的を達成するために、本発明においては、凝固前面のデンドライトを破断しつつ、内部溶鋼の流動を抑制するため、鋳片の両面から鋳片厚み方向に貫いて作用する静磁界と交流磁界(移動磁界、振動磁界あるいは振動のピーク位置が移動する磁界)を鋳片の鋳造方向同一位置に重畳して、鋳片の全幅にわたって磁束を中心部まで印加する。 In order to achieve the above object, in the present invention, in order to suppress the flow of the internal molten steel while breaking the dendrite on the solidification front surface, a static magnetic field acting through the slab in the thickness direction from both sides of the slab Then, an alternating magnetic field (a moving magnetic field, an oscillating magnetic field, or a magnetic field in which the vibration peak position moves) is superimposed on the same position in the casting direction of the slab, and a magnetic flux is applied to the central part over the entire width of the slab .

印加する適正固相率は、中心部の固相率で0.1〜0.8までの広い範囲で効果がある。0.1のような低い固相率では、静磁界で溶鋼の流動を抑制することによる温度分布の均一化の効果が大きく、一方、高固相率の領域では、交流磁界又は振動する静磁界でデンドライト破断による等軸晶率増加の効果が大きい。鋼種の違いや鋳造速度の変化によって、最適な周波数が変化するが、交流磁界と直流磁界を同じ位置で組み合せて印加することにより、上記の2つの相乗効果によって、中間領域の広い固相率範囲で、交流磁界あるいは直流磁界個別の印加よりも大きな偏析低減効果が得られる。   The appropriate solid phase ratio to be applied is effective in a wide range of 0.1 to 0.8 as the solid phase ratio at the center. At a low solid fraction such as 0.1, the effect of uniforming the temperature distribution by suppressing the flow of molten steel with a static magnetic field is large, whereas in the region with a high solid fraction, an alternating magnetic field or an oscillating static magnetic field The effect of increasing the equiaxed crystal ratio due to dendrite fracture is large. The optimum frequency changes depending on the difference in steel type and casting speed, but by applying the AC magnetic field and the DC magnetic field in combination at the same position, the above two synergistic effects result in a wide solid phase ratio range in the intermediate region. Thus, a greater segregation reduction effect can be obtained than when an AC magnetic field or a DC magnetic field is individually applied.

又、交流磁界を印加すると、溶鋼が攪拌されて、温度場が不均一となるが、静磁界を組合せることにより、温度場を均一にできるので、デンドライト破断と均一化が両立できる。   When an alternating magnetic field is applied, the molten steel is agitated and the temperature field becomes non-uniform, but by combining a static magnetic field, the temperature field can be made uniform, so that both dendrite fracture and homogenization can be achieved.

本発明においては、鋳片中心部の上面及び下面の双方を同じ結晶形態にして凝固させ、鋳片中心部の結晶形態を柱状晶にすることができる。従って、上記上下面両側の凝固殻(何れも柱状晶)がぶつかり合った際における結晶間の隙間は、等軸晶を生成させた場合よりも少ない。このため、中心偏析低減については、等軸晶を生成させた場合よりも、その効果が大きい。   In the present invention, both the upper surface and the lower surface of the center part of the slab can be solidified with the same crystal form, and the crystal form of the center part of the slab can be converted into a columnar crystal. Therefore, the gaps between the crystals when the solidified shells (both columnar crystals) on both sides of the upper and lower surfaces collide with each other are smaller than when the equiaxed crystals are generated. For this reason, the effect of reducing the center segregation is greater than when the equiaxed crystal is generated.

なお、静磁界を印加しながら凝固させると柱状晶が発達し易い。その理由は、鋳型から引き出された鋳片に静磁界を印加すると、溶鋼の流動が抑制されるので、溶鋼が冷却される過程の熱移動が、対流による熱移動から、主として伝導による熱移動に変わる。このため、鋳片の凝固界面付近では、厚み方向に温度勾配ができると同時に熱拡散が小さくなるので、溶鋼の加熱度が長く保たれる。この結果、鋳型内で生成した凝固核が沈降してきても、上述のように、溶鋼の加熱度が十分に確保されていると、凝固核は、その沈降過程で容易に溶解してしまい、結晶の成長は凝固殻のみから進行して柱状晶になる。   When solidified while applying a static magnetic field, columnar crystals tend to develop. The reason is that when a static magnetic field is applied to the slab drawn from the mold, the flow of the molten steel is suppressed, so that the heat transfer in the process of cooling the molten steel is changed from the heat transfer by convection to the heat transfer mainly by conduction. change. For this reason, in the vicinity of the solidification interface of the slab, a temperature gradient is formed in the thickness direction, and at the same time, thermal diffusion is reduced, so that the heating degree of the molten steel is kept long. As a result, even if the solidified nuclei generated in the mold have settled, as described above, if the heating degree of the molten steel is sufficiently secured, the solidified nuclei are easily dissolved during the sedimentation process, The growth proceeds from the solidified shell only to become columnar crystals.

以下図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1実施形態は、図1(A)に示す如く、鋳型18より下方で、鋳造中の適正固相率の位置に、図1(B)に示すような、静磁界を印加するための、例えば直流コイル又は永久磁石でなる静磁界発生装置30と、交流磁界を印加するための、例えば櫛歯状のコア42、及び、これに巻回されたコイル(図示省略)で構成される多数の電磁石からなる交流磁界発生装置40を重ねて設けたものである。   In the first embodiment of the present invention, as shown in FIG. 1 (A), a static magnetic field as shown in FIG. 1 (B) is applied at a position of an appropriate solid phase ratio during casting below the mold 18. For example, a static magnetic field generating device 30 made of a DC coil or a permanent magnet, an AC magnetic field, for example, a comb-like core 42, and a coil (not shown) wound around the core. The AC magnetic field generator 40 made up of a large number of electromagnets is provided in an overlapping manner.

前記静磁界発生装置30は、図2に模式的に示す如く、バルク流速を抑えて温度を均一化させ、デンドライトを成長させる。   As schematically shown in FIG. 2, the static magnetic field generating device 30 suppresses the bulk flow rate and makes the temperature uniform, thereby growing dendrites.

一方、前記交流磁界発生装置40は、例えば図3(A)に示すような、鋳片20の幅方向に広範囲に亘って移動する移動磁界、又は、図3(B)に示すような、その場で幅方向に振動する振動磁界、又は、図3(C)に示すような、振動のピーク位置が移動する磁界を印加することにより、デンドライトを破断する。   On the other hand, the AC magnetic field generator 40 is a moving magnetic field that moves over a wide range in the width direction of the slab 20, for example, as shown in FIG. 3 (A), or as shown in FIG. The dendrite is broken by applying an oscillating magnetic field that vibrates in the width direction in the field, or a magnetic field whose peak position of vibration moves as shown in FIG.

このようにして、静磁界と交流磁界を鋳片の同一位置で重ね合わせ、凝固界面をバルク流速を抑えつつ振動させることによって、デンドライトを破断して等軸晶化し、偏析を低減することができる。   In this way, by overlapping the static magnetic field and the alternating magnetic field at the same position of the slab and vibrating the solidification interface while suppressing the bulk flow rate, the dendrite can be fractured and equiaxed to reduce segregation. .

なお、前記第1実施形態においては、交流磁界発生装置40として、櫛歯状コア42にコイルを巻いたものが用いられていたが、交流磁界発生装置の構成は、これに限定されない。   In the first embodiment, as the AC magnetic field generator 40, a coil wound around the comb-shaped core 42 is used. However, the configuration of the AC magnetic field generator is not limited to this.

次に、静磁界発生装置30を走査することにより交流磁界発生装置を不要とした、本発明の第2実施形態を説明する。   Next, a second embodiment of the present invention in which the AC magnetic field generator is not required by scanning the static magnetic field generator 30 will be described.

本実施形態は、図4に示す如く、例えば永久磁石32でなる静磁界発生装置を、鋳片20の幅方向に複数個(図では4個)設け、これをその場で鋳片20の板厚方向と垂直な方向(図では左右の幅方向)に振動させることにより、図3(B)の電磁石による振動磁界と同様の効果を得るようにしたものである。   In the present embodiment, as shown in FIG. 4, a plurality of static magnetic field generators made of, for example, permanent magnets 32 are provided in the width direction of the slab 20 (four in the figure), and these are installed on the plate of the slab 20 on the spot. By oscillating in the direction perpendicular to the thickness direction (left and right width direction in the figure), the same effect as the oscillating magnetic field by the electromagnet in FIG. 3B is obtained.

なお、永久磁石32を個別に振動させず、永久磁石32を固定したベース(図示省略)を振動させて、構成を簡略化することができる。   The configuration can be simplified by vibrating the base (not shown) to which the permanent magnet 32 is fixed without vibrating the permanent magnet 32 individually.

又、永久磁石32の走査方法は、図3(B)に対応するものに限定されず、図3(A)又は(C)のように走査しても良い。   Further, the scanning method of the permanent magnet 32 is not limited to that corresponding to FIG. 3B, and scanning may be performed as shown in FIG.

本実施形態においては、第1実施形態のような複雑な形状の磁極及びコイルを組合せた高価な交流磁界発生装置が不要であるので、安価に構成できる。特に、静磁界発生装置を永久磁石で構成した場合には、直流コイル用の電源や配線も不要である。なお、永久磁石32の代りに直流コイルを用いることもできる。   In the present embodiment, an expensive alternating-current magnetic field generator that combines magnetic poles and coils having a complicated shape as in the first embodiment is unnecessary, and can be configured at low cost. In particular, when the static magnetic field generator is composed of permanent magnets, a power source and wiring for a DC coil are not necessary. A DC coil may be used in place of the permanent magnet 32.

又、永久磁石32(静磁界)の走査方向は、鋳片20の幅方向(図4の左右方向)に限定されず、図5に示す如く、鋳造方向に走査したり、図6に示す如く、鋳片20の板厚方向と垂直な任意の方向に走査しても良い。更に、静磁界の走査方向は一方向に限定されず、例えば、幅方向と鋳造方向の走査を組合せて、デンドライトの破断を一層確実にすることもできる。   Further, the scanning direction of the permanent magnet 32 (static magnetic field) is not limited to the width direction of the cast slab 20 (left and right direction in FIG. 4), and as shown in FIG. The scanning may be performed in an arbitrary direction perpendicular to the plate thickness direction of the slab 20. Furthermore, the scanning direction of the static magnetic field is not limited to one direction. For example, the dendrites can be more reliably broken by combining scanning in the width direction and casting direction.

中炭素鋼を湾曲ブルーム連鋳機(鋳型サイズ300×400mm)で鋳造し、鋳片の中心偏析を評価した。偏析は鋳片のC断面を研磨・マクロエッチングして、中心偏析部分の面積を定量化し、偏析が殆んど認められないものを0、偏析程度が最も強いものを1として規格化して評価した。   Medium carbon steel was cast with a curved bloom continuous caster (mold size 300 × 400 mm), and the center segregation of the slab was evaluated. Segregation was evaluated by polishing and macro-etching the C cross-section of the slab, quantifying the area of the center segregation portion, standardizing as 0 where segregation was hardly observed, and 1 as having the strongest segregation. .

Figure 0004848656
Figure 0004848656

一般に、鋳造速度の増加とともに、中心偏析は劣化することが知られているが、本発明方法により、鋳造速度が増加しても、偏析の程度が良くなっていることが確認できた。   In general, it is known that the center segregation deteriorates with an increase in casting speed, but it was confirmed that the degree of segregation was improved by the method of the present invention even when the casting speed was increased.

本発明の第1実施形態の(A)全体構成図、及び、(B)磁界発生装置の構成を示す横断面図1A is a general configuration diagram of the first embodiment of the present invention, and FIG. 1B is a cross-sectional view showing the configuration of a magnetic field generator. 同じく静磁界の作用を示す縦断面図Longitudinal section showing the effect of static magnetic field 同じく交流磁界の作用を示す横断面図Cross-sectional view showing the effect of AC magnetic field 本発明の第2実施形態で用いられる静磁界発生装置の構成を示す斜視図The perspective view which shows the structure of the static magnetic field generator used in 2nd Embodiment of this invention. 静磁界発生装置の変形例の作用を示す縦断面図Longitudinal sectional view showing the operation of a modification of the static magnetic field generator 静磁界発生装置の他の変形例の作用を示す縦断面図Vertical sectional view showing the operation of another modification of the static magnetic field generator

符号の説明Explanation of symbols

10…溶鋼
14…タンディッシュ
16…浸漬ノズル
18…鋳型
20…鋳片
22…ピンチロール
24…トーチカッター
30…静磁界発生装置
32…永久磁石
40…交流磁界発生装置
42…コア
DESCRIPTION OF SYMBOLS 10 ... Molten steel 14 ... Tundish 16 ... Immersion nozzle 18 ... Mold 20 ... Slab 22 ... Pinch roll 24 ... Torch cutter 30 ... Static magnetic field generator 32 ... Permanent magnet 40 ... AC magnetic field generator 42 ... Core

Claims (5)

鋳型下端より下方で、鋳造中に、鋳片の両面から鋳片厚み方向に貫いて作用する静磁界と交流磁界を鋳片の鋳造方向同一位置に重畳して、鋳片の全幅にわたって磁束を中心部まで印加しながら鋳造することを特徴とする鋼の連続鋳造方法。 In below the mold bottom, during casting, a static magnetic field acting through from both sides of the slab the slab in the thickness direction, by superimposing the AC magnetic field in the casting direction the same position of the slab, over the entire width of the slab A continuous casting method of steel, wherein casting is performed while applying magnetic flux to the center . 前記交流磁界が、移動磁界であることを特徴とする請求項1に記載の鋼の連続鋳造方法。   The continuous casting method for steel according to claim 1, wherein the alternating magnetic field is a moving magnetic field. 前記交流磁界が、振動磁界であることを特徴とする請求項1に記載の鋼の連続鋳造方法。   2. The steel continuous casting method according to claim 1, wherein the alternating magnetic field is an oscillating magnetic field. 前記交流磁界が、振動のピーク位置が移動する磁界であることを特徴とする請求項1に記載の鋼の連続鋳造方法。   2. The steel continuous casting method according to claim 1, wherein the AC magnetic field is a magnetic field in which a vibration peak position moves. 鋳型下端より下方で、鋳片の両面から鋳片を厚み方向に貫いて作用する静磁界と、交流磁界とを鋳片の鋳造方向同一位置に重畳するための静磁界発生装置及び交流磁界発生装置を、鋳片の全幅にわたって備えたことを特徴とする鋼の連続鋳造装置。 A static magnetic field generator and an alternating magnetic field generator for superimposing a static magnetic field acting through the slab from both sides of the slab in the thickness direction and an alternating magnetic field at the same position in the casting direction of the slab below the lower end of the mold Is a continuous casting apparatus for steel, characterized in that it is provided over the entire width of the slab .
JP2005091579A 2005-03-28 2005-03-28 Method and apparatus for continuous casting of steel Active JP4848656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091579A JP4848656B2 (en) 2005-03-28 2005-03-28 Method and apparatus for continuous casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091579A JP4848656B2 (en) 2005-03-28 2005-03-28 Method and apparatus for continuous casting of steel

Publications (2)

Publication Number Publication Date
JP2006272357A JP2006272357A (en) 2006-10-12
JP4848656B2 true JP4848656B2 (en) 2011-12-28

Family

ID=37207591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091579A Active JP4848656B2 (en) 2005-03-28 2005-03-28 Method and apparatus for continuous casting of steel

Country Status (1)

Country Link
JP (1) JP4848656B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872723B2 (en) * 2007-03-13 2012-02-08 Jfeスチール株式会社 Steel continuous casting method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976649A (en) * 1982-10-26 1984-05-01 Nippon Steel Corp Continuous casting method of steel
JPS60102253A (en) * 1983-11-08 1985-06-06 Sumitomo Metal Ind Ltd Continuous casting method
JP2917223B2 (en) * 1989-04-14 1999-07-12 新日本製鐵株式会社 Metal solidification structure refinement casting method
JPH04319053A (en) * 1991-04-19 1992-11-10 Nkk Corp Method for continuously casting steel
JPH06608A (en) * 1991-07-08 1994-01-11 Nkk Corp Method for continuously casting steel
JPH07214262A (en) * 1994-02-02 1995-08-15 Nkk Corp Method for preventing center segregation of continuous casting slab
JPH09206897A (en) * 1996-01-31 1997-08-12 Kawasaki Steel Corp Method for reducing center segregation of slab in continuous casting of steel
JP3700396B2 (en) * 1998-06-16 2005-09-28 Jfeスチール株式会社 Steel continuous casting equipment
JP4132653B2 (en) * 2000-12-14 2008-08-13 新日本製鐵株式会社 Steel
JP3697585B2 (en) * 2001-02-20 2005-09-21 Jfeスチール株式会社 Steel continuous casting method and equipment
JP4263396B2 (en) * 2001-11-30 2009-05-13 Jfeスチール株式会社 Steel continuous casting method and equipment
JP4539024B2 (en) * 2003-04-22 2010-09-08 Jfeスチール株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP2006272357A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4824502B2 (en) Metal vertical continuous casting method using electromagnetic field and casting equipment for its implementation
US20060054296A1 (en) Device and a method for continuous casting
EP0972591B1 (en) Method and apparatus for casting molten metal, and cast piece
US10486228B2 (en) Method and device for thin-slab strand casting
US3952791A (en) Method of continuous casting using linear magnetic field for core agitation
JP4848656B2 (en) Method and apparatus for continuous casting of steel
JP2004314096A (en) Continuous casting method for steel
JP2004322120A (en) Continuous casting method of steel
JP5029324B2 (en) Steel continuous casting method
JP4519600B2 (en) Electromagnetic stirring coil
JPS58119445A (en) Continuous casting method of copper or copper alloy
JP3697585B2 (en) Steel continuous casting method and equipment
JP4263396B2 (en) Steel continuous casting method and equipment
JPH09262650A (en) Method for controlling fluidity in mold in continuous casting and device therefor
JP3257546B2 (en) Steel continuous casting method
JP2007098398A (en) Apparatus for controlling fluidity of molten steel
JP3697584B2 (en) Steel continuous casting method and equipment
JP2020015083A (en) Flow control apparatus for thin slab continuous casting and continuous casting method for thin slab
JP3937961B2 (en) Continuous casting method of steel
JPH10180426A (en) Electromagnetic stirring method in mold in continuous casting
JPH07214262A (en) Method for preventing center segregation of continuous casting slab
JP2019030892A (en) Continuous casting method for steel
JP7211197B2 (en) Continuous casting method
JP2007118090A (en) Method for continuously casting steel
WO1999011404A1 (en) Method and device for continuous or semi-continuous casting of metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110804

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

R150 Certificate of patent or registration of utility model

Ref document number: 4848656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250