JP2917223B2 - Metal solidification structure refinement casting method - Google Patents

Metal solidification structure refinement casting method

Info

Publication number
JP2917223B2
JP2917223B2 JP9304089A JP9304089A JP2917223B2 JP 2917223 B2 JP2917223 B2 JP 2917223B2 JP 9304089 A JP9304089 A JP 9304089A JP 9304089 A JP9304089 A JP 9304089A JP 2917223 B2 JP2917223 B2 JP 2917223B2
Authority
JP
Japan
Prior art keywords
solidification
molten metal
frequency
low
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9304089A
Other languages
Japanese (ja)
Other versions
JPH02274350A (en
Inventor
栄一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9304089A priority Critical patent/JP2917223B2/en
Publication of JPH02274350A publication Critical patent/JPH02274350A/en
Application granted granted Critical
Publication of JP2917223B2 publication Critical patent/JP2917223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電磁力によて、金属の凝固組織および偏析
を制御した鋳造方法に係り、更に詳しくは、連続鋳造等
によって得られる成品金属材の材質欠陥の原因となる溶
質のマクロ凝固偏析を軽減し、凝固組織の微細化を達成
する方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a casting method in which the solidification structure and segregation of a metal are controlled by an electromagnetic force, and more particularly, to a method of forming a metal product obtained by continuous casting or the like. The present invention relates to a method for reducing macro-solidification segregation of a solute which causes a material defect and achieving finer solidification structure.

従来の技術 従来より連続鋳造においては、凝固時の溶質の偏析に
よって、成品の品質が悪化するため、その改善が望まれ
ていた。
2. Description of the Related Art Conventionally, in continuous casting, the quality of a product is deteriorated due to segregation of solutes during solidification.

これらの改善方法としては、 (イ)精錬によって有害な偏析の原因となる溶質を予め
低減させておく方法、 (ロ)連続鋳造最終凝固部のマクロ偏析(中心偏析)の
発生する部位の鋳片を軽圧化する方法、 または (ハ)電磁撹拌(特開昭50−23338号)によって凝固組
織を微細化(等軸晶化)し、中心偏析を軽減する方法、 などが行われている。
These improvement methods include (a) a method in which solutes causing harmful segregation are reduced by refining in advance, and (b) a slab where macrosegregation (center segregation) occurs in the final solidification part of continuous casting. Or (c) a method of miniaturizing (equiaxed) the solidified structure by electromagnetic stirring (JP-A-50-23338) to reduce center segregation.

特に、(ハ)の電磁撹拌は、装置的にも、また操作性
の点でも簡便であるため、広く一般に用いられている
が、ここで得られる効果は、溶融金属の流動を伴う撹拌
を発生させて得られるため、溶融金属の流れを発生させ
るある程度の広さの場が必要なことや、その大きな流れ
による非金属介在物の鋳片内部への浸入、あるいは鋳型
内で利用する場合に、パウダーを巻き込むという問題が
あった。また、デンドライト間に溜る溶質元素が、凝固
前面の強い流れで掃き出されるため、その部位での溶質
元素の負偏析(鋼の連初鋳造の場合にはホワイトバンド
と呼ばれる)欠陥を発生させるなどの問題があった。
In particular, the electromagnetic stirring (c) is widely used because it is simple in terms of equipment and operability, but the effect obtained here is that stirring accompanied by the flow of molten metal occurs. Because it is obtained by making it necessary to have a certain size of field to generate the flow of molten metal, or when the large flow infiltrates the slab of nonmetallic inclusions, or when used in a mold, There was a problem of involving powder. In addition, since the solute elements accumulated between the dendrites are swept away by the strong flow of the solidification front, negative segregation of the solute elements (called white band in the case of continuous casting of steel) at the site is generated. There was a problem.

一方、中心偏析あるいはマクロ偏析の発生を起こしに
くい凝固組織である等軸晶を得る方法として、鉄温鋳造
法や、Zr等の凝固核生成を促す物質の添加による方法も
提案されているが、前者ではノズル閉塞などの搬送上の
問題が発生しやすいこと、後者の場合には効果を得るた
めに多量の添加を行なわなければならず、これらの添加
元素が一般的に高価なことから、実用的ではなかった。
On the other hand, as a method for obtaining an equiaxed crystal having a solidification structure that is unlikely to cause the occurrence of center segregation or macrosegregation, a method of adding a substance that promotes solidification nucleation such as iron casting or Zr has been proposed. In the former case, transport problems such as nozzle blockage tend to occur, and in the latter case, a large amount of addition must be performed to obtain the effect. It was not a target.

発明が解決しようとする課題 本発明は、上記問題点を改善する金属の鋳造方法で、
電磁力によって引き起こされる凝固前面の振動によりデ
ンドライトの破断を行ない、これを核として凝固組織を
微細化すると共に、局所的な不均一性をなくして、偏析
を軽減しようとするものである。
Problem to be Solved by the Invention The present invention is a metal casting method for improving the above problems,
The dendrite is broken by the vibration of the solidification front caused by the electromagnetic force, and the dendrite is used as a nucleus to refine the solidification structure and to reduce local non-uniformity to reduce segregation.

課題を解決するための手段 本発明は、 (1)溶融金属の連続鋳造に際して、鋳型内に設けた電
磁コイルにより時間的に移動しない低周波交流静止磁界
を付与し、少なくとも凝固前面に低周波電磁振動を励起
させることによって、凝固前面の柱状デンドライトを破
断させ、溶融金属中に遊離させることを特徴とする、金
属の凝固組織微細化鋳造方法、 (2)溶融金属の連続鋳造に際して、ストランド部に設
けた電磁コイルにより時間的に移動しない低周波交流静
止磁界を付与し、少なくとも凝固前面に低周波電磁振動
を励起させることによって、凝固前面の柱状デンドライ
トを破断させ、溶融金属中に遊離させることを特徴とす
る、金属の凝固組織微細化鋳造方法、 (3)低周波電磁振動を与えるコイル電流周波数が1〜
30Hz、また、コイル内平均磁束密度が1000ガウス以上で
ある上記(1)または(2)の金属の凝固組織微細化鋳
造方法、 である。
Means for Solving the Problems The present invention provides (1) a continuous casting of a molten metal, in which an electromagnetic coil provided in a mold applies a low-frequency AC static magnetic field that does not move over time, and a low-frequency electromagnetic A method for refining the solidification structure of a metal, wherein the columnar dendrite on the solidification front surface is broken and released into the molten metal by exciting vibration. (2) In the continuous casting of the molten metal, By applying a low-frequency AC static magnetic field that does not move over time by the provided electromagnetic coil, and by exciting low-frequency electromagnetic vibration at least on the solidification front, the columnar dendrite on the solidification front is broken and released into the molten metal. (3) The coil current frequency for applying low-frequency electromagnetic vibration is 1 to
The method of (1) or (2), wherein the metal has an average magnetic flux density of 30 gauss or more and 1000 gauss or more.

すなわち本発明は、溶融金属が冷却されて凝固開始す
るとき、あるいは凝固しつつあるときに、低周波数の電
磁気力を用いて溶融金属を振動させ、この振動により分
断された微小デンドライト結晶を液中に分散させて、溶
質元素の偏析が少なく、かつ微細な凝固組織を得る方法
である。
That is, the present invention uses a low-frequency electromagnetic force to vibrate the molten metal when the molten metal is cooled and starts to solidify, or when the molten metal is being solidified. To obtain a fine solidified structure with less segregation of solute elements.

この方法は、電磁撹拌等の流れによる同等の効果を気
体できない小断面鋳造磁に特に有効である。
This method is particularly effective for small-section cast magnets that cannot achieve the same effect by flow such as electromagnetic stirring.

作用 以下、本発明を詳細に説明する。Operation Hereinafter, the present invention will be described in detail.

本発明は、溶融金属の凝固の開始時および/または進
行中に、交流磁界によって低周波振動を与えるものであ
り、その振動を付与する範囲は、好ましくは凝固面全体
であるが、鋼の連続鋳造の場合は、等軸晶を得たい鋳片
厚みに相当する任意の範囲で付与することが可能であ
る。例えば、鋳型内にコイルを設けることもできるし、
ストランドのある特定の位置に接地することも可能であ
る。また、複数個のコイルを設けることでより高い効果
を得ることができる。
The present invention provides low-frequency vibration by an AC magnetic field at the start and / or during the progress of solidification of a molten metal, and the range for applying the vibration is preferably the entire solidification surface, In the case of casting, it is possible to provide an arbitrary axis corresponding to the thickness of the slab to obtain an equiaxed crystal. For example, a coil can be provided in a mold,
It is also possible to ground at a specific location on the strand. In addition, a higher effect can be obtained by providing a plurality of coils.

振動は、凝固先端を振動させる方向、好ましくは凝固
生成方向に直角な方向に振動させる。この方向は、電磁
コイルの設置角度を変えることによって容易に変えるこ
とが可能である。この振動により、樹間の溶質元素
(C、P、Sなど)を溶融金属鋳に掃き出させることな
く、凝固前面の結晶を破断させ、これらを核とした等軸
晶の発生を促すことが可能となる。
The vibration causes the solidification tip to vibrate, preferably in a direction perpendicular to the solidification generation direction. This direction can be easily changed by changing the installation angle of the electromagnetic coil. By this vibration, the solute elements (C, P, S, etc.) between the trees are not swept out into the molten metal casting, but the crystals on the solidification front face are broken, and the generation of equiaxed crystals using these as nuclei is promoted. It becomes possible.

低周波振動は、ソレノイド型等の電磁コイルを鋳型内
からストランド周囲にかけて配置し、溶融金属に1000ガ
ウス以上の平均磁束密度を与える交流静止磁界を印加す
ることによって発生させる。1000ガウス未満の磁束密度
では振動力が弱く、十分な効果を得ることができない。
また、コイル電流周波数は1〜30Hz、好ましくは1〜10
Hzである。周波数が30Hzを超えると、溶融金属の強い撹
拌が発生するので好ましくない。
The low-frequency vibration is generated by disposing an electromagnetic coil of a solenoid type or the like from the inside of the mold to around the strand, and applying an AC static magnetic field that gives an average magnetic flux density of 1000 gauss or more to the molten metal. If the magnetic flux density is less than 1000 Gauss, the vibration force is weak, and a sufficient effect cannot be obtained.
The coil current frequency is 1 to 30 Hz, preferably 1 to 10 Hz.
Hz. If the frequency exceeds 30 Hz, strong stirring of the molten metal occurs, which is not preferable.

本発明における溶融金属は特に限定するものではない
が、ここでは鋼を中心とし、以下実施例によって具体的
に説明する。
Although the molten metal in the present invention is not particularly limited, it will be specifically described below with reference to examples mainly of steel.

実施例 実施例1 第1図にこの実施例に相当する本発明の実施態様例を
示す。すなわち、第1図に示した次の2ケースの場合の
鋼の連続鋳造を実施した。
Embodiment 1 Embodiment 1 FIG. 1 shows an embodiment of the present invention corresponding to this embodiment. That is, continuous casting of steel in the following two cases shown in FIG. 1 was performed.

(a)鋳型1内に電磁コイル3を設置した場合、 (b)ストランド部2の未凝固部分、すなわちメニスカ
スより5m下の位置に電磁コイル3を設置した場合。
(A) When the electromagnetic coil 3 is installed in the mold 1, (b) When the electromagnetic coil 3 is installed in an unsolidified portion of the strand portion 2, that is, 5 m below the meniscus.

何れの場合も、鋳片を取り巻くように設けた電磁コイ
ル3に、周波数5Hzの電流を流して、コイル内部に平均3
000ガウスの低周波磁界を発生させた。鋳型には、中炭
素鋼厚板材相当の成分系を有する1550〜1555℃の溶鋼を
注入し、鋳造後得られる鋳片サイズは、幅1200mm、厚さ
200mm、鋳造速度は1m/minとした。ここで使用した連鋳
機による鋳造では、第1図(b)で電磁コイル3を設置
した位置、すなわちメニスカス4より5m下の位置での凝
固シェル6の厚さが何れの場合も50〜52mmの範囲内であ
った。
In any case, a current of 5 Hz was passed through the electromagnetic coil 3 provided around the slab, and the average
A low frequency magnetic field of 000 gauss was generated. The mold is filled with molten steel of 1550-1555 ° C, which has a component system equivalent to a medium carbon steel plate, and the slab size obtained after casting is 1200 mm in width and thickness
The casting speed was 200 mm and the casting speed was 1 m / min. In the casting by the continuous casting machine used here, the thickness of the solidified shell 6 at the position where the electromagnetic coil 3 is installed in FIG. 1B, that is, at a position 5 m below the meniscus 4 is 50 to 52 mm in any case. Was within the range.

こうして上記2ケースのそれぞれの場合に得られた鋳
片を切断し、そのC断面を腐食して組織観察を行なった
ところ、第1図(a)の場合には、第2図(a)に示す
ような微細等軸晶8の組織が全体に見られた。また、第
1図(b)の場合には、第2図(b)に示すような組織
が生成して、鋳片表面から約50mm内部に微細等軸晶8が
観察され、柱状晶7と微細等軸晶8の境界部には、第2
図(c)に見られるような溶質の負偏析帯(ホワイトバ
ンド10)は発生していなかった。
The slabs obtained in each of the above two cases were cut and the C cross section was corroded to observe the structure. In the case of FIG. 1 (a), the results were as shown in FIG. 2 (a). The structure of the fine equiaxed crystal 8 as shown in the entire figure was observed. In the case of FIG. 1 (b), a structure as shown in FIG. 2 (b) is generated, and fine equiaxed crystals 8 are observed within about 50 mm from the surface of the slab, and columnar crystals 7 and At the boundary of the fine equiaxed crystal 8, the second
No negative solute segregation zone (white band 10) as shown in FIG.

実施例2 上述の実施例1で第1図(b)のケース、すなわちメ
ニスカス4より5m下の位置に鋳片を取り巻くように電磁
コイル3を設けた場合について、平均磁束密度をそのま
ま3000ガウスとし、コイル電流周波数を1Hz、2Hz、10H
z、20Hz、30Hz、及び50Hzと変化させて連続鋳造を行な
った。ここでも、実施例1と同じく、鋳型に鋳炭素鋼厚
板材相当の成分系を有する1550〜1555℃の溶鋼を注入
し、鋳造後得られる鋳片サイズは、幅1200mm、厚さ200m
m、鋳造速度は1m/minとした。一方、電磁コイル3を設
置した位置での凝固シェル6の厚さは、何れの場合も50
±5mmの範囲内にあった。
Embodiment 2 In the case of Embodiment 1 described above, in the case of FIG. 1B, that is, when the electromagnetic coil 3 is provided so as to surround the slab at a position 5 m below the meniscus 4, the average magnetic flux density is set to 3000 Gauss as it is. , Coil current frequency 1Hz, 2Hz, 10H
Continuous casting was carried out while changing to z, 20 Hz, 30 Hz and 50 Hz. Here, as in Example 1, molten steel of 1550 to 1555 ° C. having a component system equivalent to a cast carbon steel thick plate material is poured into a mold, and the slab size obtained after casting is 1200 mm in width and 200 m in thickness.
m and the casting speed were 1 m / min. On the other hand, the thickness of the solidified shell 6 at the position where the electromagnetic coil 3 is installed is 50 in each case.
It was within the range of ± 5 mm.

その結果、30Hz以下では、第2図(b)のように溶質
の負偏析帯(ホワイトバンド10)は生成しなかったが、
50Hzでは、第2図(c)の状況に類似し、ホワイトバン
ド10が生成した。
As a result, below 30 Hz, a negative segregation zone (white band 10) of the solute was not generated as shown in FIG.
At 50 Hz, a white band 10 was generated, similar to the situation in FIG. 2 (c).

実施例3 同じく上述の実施例1で第1図(b)のケース、すな
わち、メニスカス4より5m下の位置に鋳片を取り巻くよ
うに電磁コイル3を設けた場合に対して、コイル電流周
波数をそのまま5Hzとし、コイル内平均磁束密度を、500
ガウス、1000ガウス、2000ガウス、5000ガウス、及び10
000ガウスに変化させて連続鋳造を行なった。ここで
も、実施例1と同じく鋳型に中炭素鋼厚板材相当の成分
系を有する1550〜1555℃の溶鋼を注入し、鋳造後得られ
る鋳片サイズは幅1200mm、厚さ200mm、鋳造速度は1m/mi
nとした。ここでも、電磁コイル3を設置した位置での
凝固シェル6の厚さは、何れの場合も50±5mmの範囲内
にあった。
Embodiment 3 Similarly, in the case of Embodiment 1 described above, the case where the electromagnetic coil 3 is provided so as to surround the slab at a position 5 m below the meniscus 4 in the case of FIG. 5 Hz as it is, and the average magnetic flux density in the coil is 500
Gauss, 1000 Gauss, 2000 Gauss, 5000 Gauss, and 10
Continuous casting was performed while changing to 000 gauss. Here, as in Example 1, molten steel of 1550 to 1555 ° C. having a component system equivalent to a medium carbon steel thick plate material was poured into a mold, and the slab size obtained after casting was 1200 mm in width, 200 mm in thickness, and the casting speed was 1 m. / mi
n. Here, the thickness of the solidified shell 6 at the position where the electromagnetic coil 3 was installed was within the range of 50 ± 5 mm in each case.

その結果、1000ガウス以上では、第2図(b)のよう
な微細等軸晶8が生成して良好な組織となったが、500
ガウスでは、第2図(d)の状況に類似し、中央部にマ
クロ偏析11が生成した。
As a result, at 1000 Gauss or more, fine equiaxed crystals 8 as shown in FIG.
In Gauss, the macrosegregation 11 was generated at the center, similar to the situation in FIG. 2 (d).

比較例1 次に、第1図(a)の電磁コイル3に代え、鋳型部分
に一般に使用されている移動磁界型の電磁撹拌装置を設
置し、実施例1と同様に、鋳型には、中炭素鋼厚板材相
当の成分系を有する1551℃の溶鋼を注入し、鋳造後得ら
れる鋳片サイズは幅1200mm、厚さ200mm、鋳造速度は1m/
minとした。ここでは電磁コイル3を設置した位置での
凝固シェル6の厚さが52mmであった。また、電磁力は電
磁撹拌装置部分で約1m/secの溶鋼流速が得られるように
調整した。
Comparative Example 1 Next, instead of the electromagnetic coil 3 of FIG. 1 (a), a commonly used moving magnetic field type electromagnetic stirrer was installed in the mold part. Inject molten steel at 1551 ° C with a component system equivalent to a thick plate of carbon steel, the slab size obtained after casting is 1200 mm wide, 200 mm thick, and the casting speed is 1 m /
min. Here, the thickness of the solidified shell 6 at the position where the electromagnetic coil 3 was installed was 52 mm. The electromagnetic force was adjusted so that a molten steel flow rate of about 1 m / sec was obtained in the electromagnetic stirring device.

このとき得られた鋳片のC断面組織を第2図(c)に
示す。鋳片内部は等軸晶9となっているものの、その粒
度は上記実施例1の何れの場合よりも大きく、しかもそ
の境界には溶質の負偏析帯(ホワイトバンド10)が発生
していた。
FIG. 2 (c) shows the C sectional structure of the slab obtained at this time. Although the inside of the slab was an equiaxed crystal 9, the grain size was larger than in either case of Example 1 described above, and a negative segregation zone (white band 10) of the solute was generated at the boundary.

比較例2 比較例1と全く同様な鋳造条件で、ただし、電磁撹拌
装置は稼働せず、従って、電磁力を全く付与しなかった
場合に得られた鋳片のC断面凝固組織を第2図(d)に
示す。鋳片の最終凝固部である中央に溶質のマクロ偏析
11が認められた。
Comparative Example 2 Under the same casting conditions as in Comparative Example 1, except that the electromagnetic stirrer was not operated, and therefore the solidified C-section structure of the cast slab obtained when no electromagnetic force was applied was shown in FIG. (D). Macrosegregation of solute in the center, the final solidification part of the slab
Eleven were found.

以上の結果から、本発明による方法は、凝固組織微細
化およびマクロ偏析防止に非常に有効であることが分か
る。
From the above results, it can be seen that the method according to the present invention is very effective for refining the solidification structure and preventing macro segregation.

発明の効果 本発明では、交流静止磁界によって、凝固前面に低周
波振動を付与するため、電磁撹拌のような溶融金属の大
きな流れにより引き起こされる溶質元素の負偏析を発生
させることなく、柱状デンドライトを破断させ、これを
核とした等軸晶生成を促す結果、凝固組織の微細化とマ
クロ偏析防止を図ることができる。このようにして得ら
れた鋳片を加工して得られる成品は、材質的に非常に優
れたものとなる。
Effect of the Invention In the present invention, an alternating static magnetic field applies low-frequency vibration to the solidification front, so that columnar dendrites are generated without generating negative segregation of solute elements caused by a large flow of molten metal such as electromagnetic stirring. As a result of breaking and promoting the generation of equiaxed crystals using the nuclei as a nucleus, the solidification structure can be refined and macrosegregation can be prevented. The product obtained by processing the cast slab thus obtained is very excellent in material.

この方法は、装置面、操作面共に簡便であり、特に溶
融金属に電磁力を用いて低周波振動による局所的な運動
を引き起こすため、他の方法では上述のような組織微細
化およびマクロ偏析防止効果を期待しにくい小断面鋳造
にも特に有効である。
This method is simple in terms of both equipment and operation, and in particular, it causes local movement due to low-frequency vibration using molten metal by using electromagnetic force. It is also particularly effective for small section castings where it is difficult to expect the effect.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の実施態様例を示す説明図、 また、第2図は、得られた鋳片のC断面組織観察状況を
示す説明図で、 (a)及び(b)は、本発明実施時の鋳片組織、 (c)及び(d)は、比較例の鋳片組織、 である。 1……鋳型、2……ストランド部、3……電磁コイル、
4……メニスカス、5……溶融金属、6……凝固シェ
ル、7……柱状晶、8……微細等軸晶、9……等軸晶、
10……ホワイトバンド、11……中心偏析。
FIG. 1 is an explanatory view showing an embodiment of the present invention, and FIG. 2 is an explanatory view showing an observation state of a C cross-sectional structure of the obtained cast slab. (C) and (d) are slab structures of a comparative example at the time of the invention. 1 ... mold, 2 ... strand part, 3 ... electromagnetic coil,
4 ... meniscus, 5 ... molten metal, 6 ... solidified shell, 7 ... columnar crystal, 8 ... fine equiaxed crystal, 9 ... equiaxed crystal,
10: White band, 11: Central segregation.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶融金属の連続鋳造に際して、鋳型内に設
けた電磁コイルにより時間的に移動しない低周波交流静
止磁界を付与し、少なくとも凝固前面に低周波電磁振動
を励起させることによって、凝固前面の柱状デンドライ
トを破断させ、溶融金属中に遊離させることを特徴とす
る、金属の凝固組織微細化鋳造方法。
In a continuous casting of a molten metal, an electromagnetic coil provided in a mold applies a low-frequency AC static magnetic field which does not move over time to excite a low-frequency electromagnetic vibration at least on a solidification front, so that a solidification front can be obtained. A method for refining the solidification structure of a metal, characterized in that the columnar dendrite is broken and released into the molten metal.
【請求項2】溶融金属の連続鋳造に際して、ストランド
部に設けた電磁コイルにより時間的に移動しない低周波
交流静止磁界を付与し、少なくとも凝固前面に低周波電
磁振動を励起させることによって、凝固前面の柱状デン
ドライトを破断させ、溶融金属中に遊離させることを特
徴とする、金属の凝固組織微細化鋳造方法。
2. A method for continuously casting a molten metal, wherein a low-frequency AC static magnetic field which does not move over time is applied by an electromagnetic coil provided on a strand portion to excite at least a low-frequency electromagnetic vibration on a solidification front surface, whereby a solidification front surface is formed. A method for refining the solidification structure of a metal, characterized in that the columnar dendrite is broken and released into the molten metal.
【請求項3】低周波電磁振動を与えるコイル電流周波数
が1〜30Hz、また、コイル内平均磁束密度が1000ガウス
以上である請求項1または2記載の金属の凝固組織微細
化鋳造方法。
3. The method of claim 1, wherein the coil current frequency for applying low-frequency electromagnetic vibration is 1 to 30 Hz, and the average magnetic flux density in the coil is 1000 gauss or more.
JP9304089A 1989-04-14 1989-04-14 Metal solidification structure refinement casting method Expired - Lifetime JP2917223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9304089A JP2917223B2 (en) 1989-04-14 1989-04-14 Metal solidification structure refinement casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9304089A JP2917223B2 (en) 1989-04-14 1989-04-14 Metal solidification structure refinement casting method

Publications (2)

Publication Number Publication Date
JPH02274350A JPH02274350A (en) 1990-11-08
JP2917223B2 true JP2917223B2 (en) 1999-07-12

Family

ID=14071387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9304089A Expired - Lifetime JP2917223B2 (en) 1989-04-14 1989-04-14 Metal solidification structure refinement casting method

Country Status (1)

Country Link
JP (1) JP2917223B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448431B2 (en) 2003-04-11 2008-11-11 Jfe Steel Corporation Method of continuous steel casting

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2325808C (en) 2000-07-10 2010-01-26 Kawasaki Steel Corporation Method and apparatus for continuous casting of metals
JP4848656B2 (en) * 2005-03-28 2011-12-28 Jfeスチール株式会社 Method and apparatus for continuous casting of steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448431B2 (en) 2003-04-11 2008-11-11 Jfe Steel Corporation Method of continuous steel casting

Also Published As

Publication number Publication date
JPH02274350A (en) 1990-11-08

Similar Documents

Publication Publication Date Title
US5355935A (en) Method and device for vibrating an ingot mould for the continuous casting of metals
JP3372958B2 (en) Method and apparatus for casting molten metal and cast slab
US5246060A (en) Process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot
US6619377B1 (en) Method for vertical continuous casting of metals using electromagnetic fields and casting installation therefor
JP2917223B2 (en) Metal solidification structure refinement casting method
JP3180164B2 (en) Method and apparatus for improving internal quality of continuous cast slab
JP2955863B2 (en) Metal casting method
US3397733A (en) Method for removal of gas from molten metal during continuous casting
JP3318451B2 (en) Continuous casting method of multilayer slab
JP3257546B2 (en) Steel continuous casting method
US3552481A (en) Apparatus for removing gas from molten metal during continuous casting
JPS6153144B2 (en)
JP3704329B2 (en) Method for casting molten metal
JP2885824B2 (en) Metal continuous casting method
JP2541953B2 (en) Center segregation prevention method for continuously cast slabs
JP4848656B2 (en) Method and apparatus for continuous casting of steel
JPH06234050A (en) Method for continuously casting half-solidified metal and apparatus therefor
RU2464123C1 (en) Method of adjusting conditions of electromagnetic mixing of ingot liquid phase in slab continuous casting machine and device to this end
JPH04309436A (en) Continuous casting method for double layer cast billet
JPH02255246A (en) Method and apparatus for electromagnetic field casting
JPS5825846A (en) Horizontal and continuous casting method
JPS59113156A (en) Manufacture of lead free-cutting steel
JPS6092063A (en) Casting method of free-cutting lead steel
JPS6153145B2 (en)
SU1470446A1 (en) Method of producing steel billets

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090423

EXPY Cancellation because of completion of term