JPS6153145B2 - - Google Patents

Info

Publication number
JPS6153145B2
JPS6153145B2 JP55151351A JP15135180A JPS6153145B2 JP S6153145 B2 JPS6153145 B2 JP S6153145B2 JP 55151351 A JP55151351 A JP 55151351A JP 15135180 A JP15135180 A JP 15135180A JP S6153145 B2 JPS6153145 B2 JP S6153145B2
Authority
JP
Japan
Prior art keywords
slab
electromagnetic stirring
stirring device
casting
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55151351A
Other languages
Japanese (ja)
Other versions
JPS5775259A (en
Inventor
Shinobu Myahara
Shuhei Takeda
Seishi Mizuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP15135180A priority Critical patent/JPS5775259A/en
Publication of JPS5775259A publication Critical patent/JPS5775259A/en
Publication of JPS6153145B2 publication Critical patent/JPS6153145B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/122Accessories for subsequent treating or working cast stock in situ using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 この発明は、鋼の水平連続鋳造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for horizontal continuous casting of steel.

水平連続鋳造法によつて鋳造した鋳片の横断面
組織は、鋳片軸心部に至るまで柱状晶や分枝状柱
状晶が発達している。この結果、最終凝固部の鋳
片軸心位置には、第1図に示すように、相対して
成長して来た柱状晶1や分枝状柱状晶2が相互に
衝突することによつて、ブリツジング(たなつ
り)3が発生し易く、また、溶鋼の凝固収縮と溶
鋼静圧との相互作用により生じる鋳造方向への凝
固前面濃化浴鋼の移動力により、更に、不連続的
に前記ブリツジング部が変形、破断し、前記濃化
浴鋼が鋳造方向に不連続的に移動しながら凝固す
る結果、V状の流動パターンを伴つた不連続な偏
析、所謂中心正負偏析帯及び粗大なセンターポロ
シテイが生じ易い。このような欠陥が鋳片軸心部
に残留すると、その後の加熱加工段階で、所謂端
面酸化現象を引起し、歩留り低下の原因となるば
かりか、成品段階でも、鋳片軸心部ボイドとして
残留したり、材質特性、例えば、硬度等のバラツ
キを増す。更に、二次、三次加工時にもカツピー
破断、表面開口疵等種々の材質、品質劣化の原因
となり、その防止が必要とされてきた。
In the cross-sectional structure of a slab cast by the horizontal continuous casting method, columnar crystals and branched columnar crystals are developed up to the axial center of the slab. As a result, as shown in Fig. 1, the columnar crystals 1 and branched columnar crystals 2 that have grown relative to each other collide with each other at the axial center of the slab in the final solidification zone. , bridging 3 is likely to occur, and further discontinuous bridging occurs due to the movement force of the solidified front concentrated bath steel in the casting direction caused by the interaction between the solidification shrinkage of the molten steel and the static pressure of the molten steel. The bridging portion is deformed and fractured, and the enriched bath steel solidifies while moving discontinuously in the casting direction, resulting in discontinuous segregation with a V-shaped flow pattern, a so-called central positive and negative segregation zone, and a coarse Center porosity tends to occur. If such defects remain in the axial center of the slab, they not only cause a so-called end face oxidation phenomenon in the subsequent heating processing stage, causing a decrease in yield, but also remain as voids in the axial center of the slab even at the finished product stage. or increase variations in material properties, such as hardness. Furthermore, during secondary and tertiary processing, it causes various material and quality deterioration such as cutlet breakage and surface opening flaws, and there is a need to prevent such deterioration.

このために、第2図に示すように、通常の垂直
連続鋳造においては、電磁撹拌装置4をモールド
内又はモールド下の二次冷却帯に設置し、鋳片軸
心部の凝固形態を制御して等軸晶組織に変換し、
これによつて、ブリツジングの発生を防止して、
等軸晶片5と濃化浴鋼の連続一体となつた鋳造方
向への移動を保証し、前記欠陥を分散軽減化させ
る技術が実施されている。即ち、従来の垂直連続
鋳造では、その鋳造方向と重力方向とが一致もし
くは比較的凝固末期に至るまで近接しているため
に、電磁撹拌により凝固前面に生成された等軸晶
片が第2図に示したように最終凝固位置である鋳
造軸心相当部まで容易に沈降成長して堆積する傾
向が強く、このため、容易に電磁撹拌効果が得ら
れるのである。
For this purpose, as shown in Fig. 2, in normal vertical continuous casting, an electromagnetic stirring device 4 is installed inside the mold or in the secondary cooling zone under the mold to control the solidification form of the axial center of the slab. to convert it into an equiaxed crystal structure,
This prevents the occurrence of bridging and
A technique has been implemented to ensure that the equiaxed crystal pieces 5 and the enriched bath steel move continuously and integrally in the casting direction, and to disperse and reduce the defects. In other words, in conventional vertical continuous casting, the casting direction and the direction of gravity coincide or are relatively close to each other until the final stage of solidification, so the equiaxed crystal pieces generated at the front of solidification due to electromagnetic stirring are shown in Figure 2. As shown, there is a strong tendency to easily settle and grow and accumulate up to the part corresponding to the casting axis, which is the final solidification position, and for this reason, the electromagnetic stirring effect can be easily obtained.

ところが、水平連続鋳造では、重力作用方向が
凝固開始から終了に至るまで鋳造方向と90゜の角
度をなすため、第3図に示すように、電磁撹拌装
置4により、凝固しつつある鋳片の限られた凝固
前面を局部的に撹拌揺動させて、その位置に等軸
晶片5を生成させても、それら等軸晶片5は速や
かに下面側凝固界面に沈降してしまい、目的とす
る鋳片軸心部組織形態を制御可能な最終凝固位
置、即ち、クレータエンド位置に至るまで等軸晶
片を溶鋼中に浮遊維持させておくことは不可能で
あつた。
However, in horizontal continuous casting, the direction of gravity acts at an angle of 90° with the casting direction from the start to the end of solidification, so as shown in Figure 3, the electromagnetic stirring device 4 is used to stir the solidifying slab. Even if the limited solidification front is locally stirred and oscillated to generate equiaxed crystal pieces 5 at that position, the equiaxed crystal pieces 5 will quickly settle to the lower solidification interface, and the desired casting will not be achieved. It has been impossible to maintain equiaxed crystal pieces floating in molten steel until the final solidification position, ie, the crater end position, where the uniaxial core structure can be controlled, is reached.

この発明は、上述の問題点を解決するためにな
されたものであつて、 鋼を水平連続鋳造するに当り、二次冷却帯の未
凝固鋳片を滞留する部分に、電磁撹拌装置を少な
くとも二段設置し、モールド側に設置した前段の
複合型電磁撹拌装置によつて前記未凝固鋳片内部
の溶鋼に鋳造方向に進行する鋳造方向回りの回転
流を、付与し、これによつて形成された等軸晶片
をクレータエンド側に設置した後段のリニア型電
磁撹拌装置によつてクレータエンド側に移動せし
め、かくして、中心偏析やマクロポロシテイのな
い健全な鋳片を鋳造することに特徴を有する。
This invention has been made to solve the above-mentioned problems, and includes installing at least two electromagnetic stirring devices in the secondary cooling zone where unsolidified slabs are retained during horizontal continuous casting of steel. A rotating flow is applied to the molten steel inside the unsolidified slab in the casting direction by a composite type electromagnetic stirring device installed in the former stage and installed on the mold side, and this causes the formation of The feature is that the equiaxed crystal slab is moved to the crater end side by a linear electromagnetic stirrer installed at the latter stage, and thus a sound slab without center segregation or macroporosity is cast. .

この発明を実施例により図面を参照しながら説
明する。
The present invention will be described by way of examples with reference to the drawings.

第4図は、この発明の実施例の説明図である。 FIG. 4 is an explanatory diagram of an embodiment of the invention.

第4図において、6はタンデイツシユに接続さ
れた注入ノズル、7は注入ノズル6にブレークリ
ング8を介して水平に取付けられたモールド、9
はモールド7の鋳片出側に設置した。未凝固鋳片
内部の溶鋼に鋳造方向に進行する鋳造方向回りの
回転流を付与する複合型電磁撹拌装置、そして、
10はクレータエンド11側に設置した、未凝固
鋳片内部の溶鋼に鋳造方向の流れを付与するリニ
ア型電磁撹拌装置である。
In FIG. 4, 6 is an injection nozzle connected to the tundish, 7 is a mold horizontally attached to the injection nozzle 6 via a break ring 8, and 9 is a mold.
was installed on the slab exit side of the mold 7. A composite electromagnetic stirring device that applies a rotational flow around the casting direction that advances in the casting direction to the molten steel inside the unsolidified slab, and
10 is a linear electromagnetic stirring device installed on the side of the crater end 11 for imparting a flow in the casting direction to the molten steel inside the unsolidified slab.

二次冷却帯の未凝固鋳片内部の溶鋼は、前段の
複合型電磁撹拌装置9によつて、鋳造方向回りに
回転撹拌され、多量の等軸晶片12が形成され
る。この等軸晶片12は、複合型電磁撹拌装置9
の作用により沈降することなくクレータエンド1
1方向に移動するが、この移動は後段のリニア型
電磁撹拌装置10により更に促進される。この結
果、鋳片軸心部の凝固組織が微細化し、中心偏析
やマクロポロシテイのない健全な鋳片が得られ
る。
The molten steel inside the unsolidified slab in the secondary cooling zone is rotated and stirred around the casting direction by the composite electromagnetic stirring device 9 in the previous stage, and a large amount of equiaxed crystal slabs 12 are formed. This equiaxed crystal piece 12 is a composite electromagnetic stirring device 9
crater end 1 without settling due to the action of
Although it moves in one direction, this movement is further promoted by the linear electromagnetic stirring device 10 at the rear stage. As a result, the solidified structure of the axial center of the slab becomes finer, and a healthy slab without center segregation or macroporosity is obtained.

第4図に示した実施例は、リニア型電磁撹拌装
置10を鋳片下辺に1台設置したものであるが、
これは、第4図に点線で示すように鋳片の上下辺
に設置しても良く、この場合には上下の撹拌装置
の撹拌方向を夫々逆方向にすれば、より効率の良
い等軸晶片の発生及び移動を行わしめることがで
きる。
In the embodiment shown in FIG. 4, one linear electromagnetic stirring device 10 is installed at the bottom of the slab.
This may be installed on the upper and lower sides of the slab as shown by the dotted lines in Figure 4. In this case, if the stirring directions of the upper and lower stirring devices are reversed, the equiaxed slab will be more efficient. can be caused to occur and move.

上記実施例は、複合型電磁撹拌装置とリニア型
電磁撹拌装置を前段、後段二段に設置したもので
あるが、これらは二段以上設置しても良いことは
勿論である。
In the above embodiment, a composite electromagnetic stirring device and a linear electromagnetic stirring device are installed in two stages, one in the front stage and the other in the latter stage, but it goes without saying that these devices may be installed in two or more stages.

次に、第4図の場合の前段の複合型電磁撹拌装
置9の設置位置と、これと後段のリニア型電磁撹
拌装置10との設置間隔及びこれら電磁撹拌装置
による溶鋼の撹拌流速について説明する。
Next, the installation position of the front-stage composite type electromagnetic stirring device 9, the installation interval between this and the rear-stage linear type electromagnetic stirring device 10, and the stirring flow rate of molten steel by these electromagnetic stirring devices in the case of FIG. 4 will be explained.

複合型電磁撹拌装置9は、モールド7の鋳片出
口端からクレータエンド11までの距離の50%以
下の位置に設置し、リニア型電磁撹拌装置10と
の間隔は、同様に55%以下に設定し、一方、溶鋼
の撹拌流速は、複合型電磁撹拌装置9で20cm/sec
以上、リニア型電磁撹拌装置10で10cm/sec以上
とする。これにより安定した等軸晶片の形成及び
移動を図ることができる。
The composite electromagnetic stirring device 9 is installed at a position of 50% or less of the distance from the slab outlet end of the mold 7 to the crater end 11, and the distance from the linear electromagnetic stirring device 10 is similarly set to 55% or less. On the other hand, the stirring flow rate of molten steel is 20 cm/sec with the composite electromagnetic stirring device 9.
The above is 10 cm/sec or more using the linear electromagnetic stirring device 10. This allows stable formation and movement of equiaxed crystal pieces.

尚、ホワイトバンドの発生を防止するには、複
合型電磁撹拌装置9で最大70cm/sec以下、リニア
型電磁撹拌装置10で最大45cm/sec以下の撹拌流
速とすれば、より良い結果が得られる。また、一
定周期ごとにそれらの撹拌方向を変えるいわゆる
交番方式を採用してもよい。
In addition, in order to prevent the occurrence of white bands, better results can be obtained by setting the stirring flow rate to a maximum of 70 cm/sec or less for the composite type electromagnetic stirring device 9 and a maximum of 45 cm/sec or less for the linear type electromagnetic stirring device 10. . Alternatively, a so-called alternating method may be adopted in which the stirring directions are changed at regular intervals.

以上説明したように、この発明によれば、前段
の電磁撹拌装置により溶鋼を撹拌して等軸晶片の
生成を促進し、この等軸晶片を後段の電磁撹拌装
置によつて沈降させることなくクレータエンド側
に移動させることができるので、鋳片軸心部の凝
固組織を微細化できる結果、中心偏析、マクロポ
ロシテイのない健全な鋳片の鋳造が行えるといつ
た有用な効果がもたらされる。
As explained above, according to the present invention, the electromagnetic stirring device in the first stage stirs the molten steel to promote the formation of equiaxed crystal flakes, and the electromagnetic stirring device in the latter stage creates a crater without causing the equiaxed crystal flakes to settle. Since it can be moved to the end side, the solidified structure at the axial center of the slab can be made finer, resulting in useful effects such as casting of a healthy slab without center segregation or macroporosity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、鋳片の凝固形態を示す図、第2図
は、垂直連続鋳造において電磁撹拌した場合の溶
鋼中の等軸晶片の状態を示す図、第3図は、水平
連続鋳造において電磁撹拌した場合の溶鋼中の等
軸晶片の状態を示す図、第4図は、この発明の方
法の一実施例を示す説明図である。図面におい
て、 1……柱状晶、2……分岐柱状晶、3……ブリ
ツジング、4……電磁撹拌装置、5……等軸晶
片、6……タンデイツシユ、7……モールド、8
……ブレークリング、9……複合型電磁撹拌装
置、10……リニア型電磁撹拌装置、11……ク
レータエンド、12……等軸晶片。
Figure 1 shows the solidification form of a slab, Figure 2 shows the state of equiaxed crystal pieces in molten steel when magnetically stirred in vertical continuous casting, and Figure 3 shows the state of equiaxed crystal pieces in horizontal continuous casting. FIG. 4, a diagram showing the state of equiaxed crystal pieces in molten steel when stirred, is an explanatory diagram showing an embodiment of the method of the present invention. In the drawings, 1... Columnar crystal, 2... Branched columnar crystal, 3... Bridging, 4... Electromagnetic stirring device, 5... Equiaxed crystal piece, 6... Tundish, 7... Mold, 8
... Break ring, 9 ... Composite electromagnetic stirring device, 10 ... Linear type electromagnetic stirring device, 11 ... Crater end, 12 ... Equiaxed crystal piece.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼を水平連続鋳造するに当り、二次冷却帯の
未凝固鋳片が滞留する部分に、電磁撹拌装置を少
なくとも二段設置し、モールド側に設置した前段
の複合型電磁撹拌装置によつて前記未凝固鋳片内
部の溶鋼に鋳造方向に進行する鋳造方向回りの回
転流を付与し、これによつて形成された等軸晶片
を、クレータエンド側に設置した後段のリニア型
電磁撹拌装置によつてクレータエンド側に移動せ
しめ、かくして、中心偏析やマクロポロシテイの
ない健全な鋳片を鋳造することを特徴とする鋼の
水平連続鋳造法。
1. When performing horizontal continuous casting of steel, at least two stages of electromagnetic stirring devices are installed in the part of the secondary cooling zone where unsolidified slabs accumulate, and the combined electromagnetic stirring device in the previous stage installed on the mold side The molten steel inside the unsolidified slab is given a rotational flow around the casting direction that advances in the casting direction, and the equiaxed crystal pieces formed thereby are sent to a subsequent linear type electromagnetic stirring device installed on the crater end side. A horizontal continuous casting method for steel, which is characterized by moving the steel slab to the crater end side, thereby casting a sound slab without center segregation or macroporosity.
JP15135180A 1980-10-30 1980-10-30 Continuous horizontal casting method for steel Granted JPS5775259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15135180A JPS5775259A (en) 1980-10-30 1980-10-30 Continuous horizontal casting method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15135180A JPS5775259A (en) 1980-10-30 1980-10-30 Continuous horizontal casting method for steel

Publications (2)

Publication Number Publication Date
JPS5775259A JPS5775259A (en) 1982-05-11
JPS6153145B2 true JPS6153145B2 (en) 1986-11-17

Family

ID=15516652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15135180A Granted JPS5775259A (en) 1980-10-30 1980-10-30 Continuous horizontal casting method for steel

Country Status (1)

Country Link
JP (1) JPS5775259A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58215251A (en) * 1982-06-08 1983-12-14 Kawasaki Steel Corp Electromagnetic stirring method of unsolidified molten steel in crater end in continuous casting of bloom
JPS59133957A (en) * 1983-01-20 1984-08-01 Kobe Steel Ltd Electromagnetic stirring method in horizontal continuous casting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994522A (en) * 1973-01-16 1974-09-07
JPS6153144A (en) * 1984-08-23 1986-03-17 日東産業株式会社 Manufacture of incombustible refractory construction material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4994522A (en) * 1973-01-16 1974-09-07
JPS6153144A (en) * 1984-08-23 1986-03-17 日東産業株式会社 Manufacture of incombustible refractory construction material

Also Published As

Publication number Publication date
JPS5775259A (en) 1982-05-11

Similar Documents

Publication Publication Date Title
US4495984A (en) Continuous casting mold stirring
WO1999029452A1 (en) Method and apparatus for casting molten metal, and cast piece
JPS6153145B2 (en)
JPS6153144B2 (en)
KR100352535B1 (en) Continuous casting machine and casting method using the same
US3718173A (en) Method of removing alumina scum from a continuous-casting mold
JPH048134B2 (en)
JP2917223B2 (en) Metal solidification structure refinement casting method
JP2541953B2 (en) Center segregation prevention method for continuously cast slabs
CA1237869A (en) Method for the continuous casting of steel, particularly steel slabs
JPS60137562A (en) Continuous casting method for thin sheet
US3552481A (en) Apparatus for removing gas from molten metal during continuous casting
JPH06210410A (en) Single belt type continuous casting apparatus
KR950014491B1 (en) Process for making strip and mold thereby
RU2464123C1 (en) Method of adjusting conditions of electromagnetic mixing of ingot liquid phase in slab continuous casting machine and device to this end
JPH0243575B2 (en)
JPH01271031A (en) Method for continuously casting double-layer cast slab
JPS58128253A (en) Method for stirring molten metal which decreases inclusion of continuous casting ingot
JP2845706B2 (en) Molding equipment for continuous casting equipment
JP2003080353A (en) Method for casting molten metal
JPH01127158A (en) Production of composite metal material by continuous casting
JPH0673727B2 (en) Continuous casting method
JPS5853358A (en) Electromagnetic agitating method in continuous casting of bloom
JPS63238951A (en) Mold for horizontally continuous casting
JPS6153147B2 (en)