JPH0673727B2 - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH0673727B2
JPH0673727B2 JP2050118A JP5011890A JPH0673727B2 JP H0673727 B2 JPH0673727 B2 JP H0673727B2 JP 2050118 A JP2050118 A JP 2050118A JP 5011890 A JP5011890 A JP 5011890A JP H0673727 B2 JPH0673727 B2 JP H0673727B2
Authority
JP
Japan
Prior art keywords
mold
molten steel
stirring
immersion nozzle
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2050118A
Other languages
Japanese (ja)
Other versions
JPH03254338A (en
Inventor
省三 渡辺
清 蝦名
松秀 青木
正道 竹内
善則 尾上
孝彦 佐藤
研三 綾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2050118A priority Critical patent/JPH0673727B2/en
Publication of JPH03254338A publication Critical patent/JPH03254338A/en
Publication of JPH0673727B2 publication Critical patent/JPH0673727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電磁撹拌装置を備えた鋳型によってビレット又
はブルームを連続鋳造する方法に関し、詳細には鋳片の
中心偏析を改善することのできる連続鋳造方法に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a method for continuously casting a billet or bloom by a mold equipped with an electromagnetic stirrer, and more particularly to a continuous method capable of improving center segregation of a slab. The present invention relates to a casting method.

[従来の技術] 連続鋳造において、鋳片の内部品質を改善する目的で鋳
型内に電磁撹拌装置を内装せしめ、鋳型内の溶鋼を撹拌
することによって、鋳型内において鋳片の凝固前面にお
けるデンドライトを切断して等軸晶率を高め中心偏析を
改善することが知られ、かつ実施されている。この電磁
撹拌による中心偏析を改善するためには、後述する通り
鋳型内の溶鋼を強撹拌すること、及び鋳型内に供給され
る溶鋼の過熱度を精密にコントロールすることが有効で
あるとされている。
[Prior Art] In continuous casting, an electromagnetic stirrer is installed in the mold for the purpose of improving the internal quality of the slab, and the molten steel in the mold is agitated so that the dendrite on the solidification front of the slab in the mold is removed. It is known and practiced to cut to increase the equiaxed crystal ratio and improve center segregation. In order to improve the center segregation due to this electromagnetic stirring, it is said that it is effective to strongly stir the molten steel in the mold as described below and to precisely control the superheat degree of the molten steel supplied into the mold. There is.

ところで、従来の電磁撹拌装置は、設備設計の段階にお
いて最適生産条件を設定した上で固定的に設置されるた
め、鋳造条件に制約を受けることがある。そのため本出
願人は連続鋳造装置における操業条件を調節することを
目的とし、実願平1−110682号において次の様な装置を
提案している。
By the way, the conventional electromagnetic stirrer may be constrained by casting conditions because it is fixedly installed after setting the optimum production conditions at the stage of equipment design. Therefore, the present applicant proposes the following device in Japanese Patent Application No. 1-110682 for the purpose of adjusting the operating conditions in the continuous casting device.

第2図は電磁撹拌装置を備えた連続鋳造装置の例を示す
断面説明図である。連続鋳造装置2はタンディッシュ1
の下方に設けられ、浸漬ノズル4を介して該タンディッ
シュ1内の溶鋼A0を鋳型2内へ連続供給する様に構成さ
れる。該鋳型21の外周部には矢印Y1Y2方向に昇降自在
な電磁撹拌装置22が配設され、減速機23を介して駆動モ
ータ24によって上下移動される。
FIG. 2 is a cross-sectional explanatory view showing an example of a continuous casting device equipped with an electromagnetic stirring device. Continuous casting machine 2 is tundish 1
And is configured to continuously supply the molten steel A 0 in the tundish 1 into the mold 2 through the immersion nozzle 4. An electromagnetic stirrer 22 which is movable up and down in the directions of the arrows Y 1 Y 2 is arranged on the outer peripheral portion of the mold 21, and is vertically moved by a drive motor 24 via a speed reducer 23.

この装置によってタンディッシュ1内の溶鋼A0は浸漬ノ
ズル4の吐出口4aを通して鋳型21内へ流し込まれ、該鋳
型21において凝固シェルA1を形成しつつ鋳片が成形され
る。
With this apparatus, the molten steel A 0 in the tundish 1 is poured into the mold 21 through the discharge port 4a of the dipping nozzle 4, and the slab is formed while forming the solidified shell A 1 in the mold 21.

[発明が解決しようとする課題] 前述の構成を有する鋳型を用いて連続鋳造を実施するに
際し、問題となるのは如何に最適な鋳造条件を付与せし
めるかにあり、これによって中心偏析の改善効果に差を
生じることになる。従来から鋳片における中心偏析を改
善するためには、鋳片の等軸晶率を高める必要があり、
この等軸晶率を高めるには次の,の条件を満たすこ
とが必須であると考えられていた。
[Problems to be Solved by the Invention] When carrying out continuous casting using the mold having the above-mentioned structure, the problem is how to impart the optimum casting conditions, and thereby the effect of improving center segregation Will make a difference. Conventionally, in order to improve the center segregation in the slab, it is necessary to increase the equiaxed crystal ratio of the slab,
It was considered necessary to satisfy the following conditions in order to increase the equiaxed crystal ratio.

タンディッシュ内の溶鋼過熱温度を低くする。Lower the temperature of molten steel overheating in the tundish.

鋳型内の溶鋼を強撹拌する。Strongly stir the molten steel in the mold.

しかるに上記の条件を満たそうとすると、低温によっ
て浸漬ノズル詰まりを生じることがあり、操業の大幅な
悪化を引き起こす恐れがある。また第3図に示す様に過
熱温度が低いときには等軸晶率は高くなるものの、鋳型
内湯面(以下メニスカスともいう)上に浮上する介在物
(脱酸生成物)Bが少なくなり、介在物がそのまま鋳片
中に巻込まれて介在物系の表面皮下介在物欠陥を生じ易
いという不都合がある。
However, if the above conditions are attempted to be satisfied, the immersion nozzle may be clogged due to the low temperature, which may cause a significant deterioration in operation. Further, as shown in FIG. 3, when the superheating temperature is low, the equiaxed crystal ratio is high, but the inclusions (deoxidation products) B floating on the molten metal surface (hereinafter also referred to as meniscus) in the mold are reduced, and the inclusions are reduced. However, there is a problem in that it is easily rolled into the slab and a defect of the surface subcutaneous inclusion of the inclusion system is likely to occur.

一方上記に示される強撹拌を行なうと、第4図に示す
様に等軸晶率は高くなるが、メニスカスに浮上した介在
物は溶融せずに鋳片中にそのまま巻込まれ易くなり、パ
ウダー巻込欠陥を多発することになる。
On the other hand, when the strong agitation shown above is performed, the equiaxed crystal ratio increases as shown in FIG. 4, but the inclusions floating on the meniscus are not melted and are easily rolled into the slab as they are. It will result in many defects.

そこで本発明者らは、高い等軸晶率を確保でき、しかも
パウダー巻込欠陥等を引き起こすことなく溶鋼を強撹拌
することのできる連続鋳造方法を提供する目的で研究を
重ね、本発明を完成した。
Therefore, the inventors of the present invention have carried out research for the purpose of providing a continuous casting method capable of ensuring a high equiaxed crystal ratio and capable of strongly agitating molten steel without causing powder entrapment defects, etc., and completed the present invention. did.

[課題を解決するための手段] 上記目的を達成し得た本発明は、浸漬ノズルを介して溶
鋼を鋳型内へ供給し、前記浸漬ノズルの吐出口と溶鋼撹
拌中心までの垂直距離L1は、 α・Vc・S/d2<L1<α・Vc・S/d2 を満足する様に設定して溶鋼撹拌することを要旨とする
ものである。
[Means for Solving the Problems] The present invention which has been able to achieve the above object is to supply molten steel into a mold through an immersion nozzle, and the vertical distance L 1 from the outlet of the immersion nozzle to the molten steel stirring center is The purpose is to stir the molten steel while setting so that α 1 · Vc · S / d 2 <L 12 · Vc · S / d 2 is satisfied.

[作用] 等軸晶の核は、凝固シェルの内面より生じるデンドライ
トを撹拌流で寸断するとによって増大し、さらにこの寸
断はデンドライト組織の細かい状態にあるメニスカス近
傍で行なわれ易い。従って高い等軸晶率を保持するため
には撹拌位置をメニスカス近傍とすることが望ましい。
ところが第5図に示すように、鋳型内の撹拌強度と等軸
晶率との間には限界が存在し、該図に示される様に、あ
る撹拌強度以上では等軸晶率の増大効果が飽和すること
になる。また撹拌強度を高くすると前述の第4図にも示
す様に、鋳型内メニスカスにおける溶鋼流速が増大する
ことから、鋳型の溶鋼表面に供給されるモールドパウダ
ーを巻き込むことによるノロカミ疵の発生原因ともな
り、この両者の関係において最適化条件の存在が知見さ
れる。
[Operation] The equiaxed crystal nuclei increase by breaking the dendrites generated from the inner surface of the solidified shell with a stirring flow, and this breaking is easily performed near the meniscus in the fine state of the dendrite structure. Therefore, in order to maintain a high equiaxed crystal ratio, it is desirable to set the stirring position near the meniscus.
However, as shown in FIG. 5, there is a limit between the stirring strength in the mold and the equiaxed crystal ratio, and as shown in the figure, the effect of increasing the equiaxed crystal ratio is above a certain stirring strength. It will be saturated. Further, as the stirring strength is increased, as shown in Fig. 4 mentioned above, the molten steel flow velocity in the meniscus in the mold increases, which may cause the occurrence of norokami defects due to the inclusion of the mold powder supplied on the molten steel surface of the mold. The existence of optimization conditions is found in the relationship between the two.

また鋳片における等軸晶率は、生成した等軸晶の量と浸
漬ノズルからの溶鋼吐出流によって再溶解してしまう等
軸晶の核量との差で決定される。一方鋳型内に収納され
た上方が自由表面である溶鋼に水平方向の旋回撹拌力を
作用させると、この旋回流によって鋳型内に上向きの反
転流が形成されることとなり、浸漬ノズルよりの吐出流
に該反転流を適正に組み合わせれば、吐出流の流速を弱
め、上述した等軸晶の核の再溶解を最小限に抑制できる
こととなる。すなわち上記吐出流の流速によって決まる
吐出流の広がり部位を電磁撹拌すれば、等軸晶生成量が
多く、しかも核の再溶解を最小に抑え、鋳片の等軸晶率
を高いものとすることができる。従って、上記知見に基
づいて鋳型内メニスカスにおける溶鋼流速と撹拌強度と
の関係について、鋳型内における電磁撹拌装置の設置位
置との関係を調べた結果、第6図に示すような結果を得
ることができた。縦軸に撹拌強度をとり、横軸にメニス
カスから撹拌中心までの垂直距離Lを取って、鋳型内メ
ニスカスにおける溶鋼流速を求めたもので、第7図にお
ける適正領域に対する撹拌位置(溶鋼供給点から電磁撹
拌コイルセンターまでの距離)を求めることができる。
換言すれば撹拌装置はメニスカス/溶鋼供給点から相当
の距離を有するとともに、撹拌位置において強撹拌する
ことが肝要であり、撹拌強度を一定として撹拌コイルセ
ンターを種々変更し、等軸晶率の変化を調べたところ第
8図に示される結果を得た。この結果から、特に本願発
明の好ましい過熱温度30〜40℃では、L1が170〜700mm、
より好ましくは170〜500mmであることがわかる。
The equiaxed crystal ratio in the cast slab is determined by the difference between the amount of produced equiaxed crystals and the amount of equiaxed nuclei that are remelted by the molten steel discharge flow from the immersion nozzle. On the other hand, when a horizontal swirling stirring force is applied to the molten steel that is stored in the mold and has an upper free surface, this swirling flow forms an upward reversal flow in the mold, and the discharge flow from the immersion nozzle If the reverse flow is properly combined with the above, the flow velocity of the discharge flow can be weakened, and the above-mentioned re-dissolution of the nucleus of the equiaxed crystal can be suppressed to the minimum. That is, if the spread portion of the discharge flow, which is determined by the flow velocity of the discharge flow, is electromagnetically stirred, a large amount of equiaxed crystal is produced, and the remelting of nuclei is minimized to increase the equiaxed crystal ratio of the cast slab. You can Therefore, as a result of examining the relationship between the molten steel flow rate and the stirring strength in the meniscus in the mold with the installation position of the electromagnetic stirring device in the mold based on the above findings, the result as shown in FIG. 6 can be obtained. did it. The vertical axis is the stirring strength, and the horizontal axis is the vertical distance L from the meniscus to the center of stirring to determine the molten steel flow velocity in the meniscus in the mold. The stirring position for the proper region in FIG. 7 (from the molten steel supply point The distance to the electromagnetic stirring coil center) can be obtained.
In other words, it is essential that the stirring device has a considerable distance from the meniscus / molten steel feed point and that strong stirring is performed at the stirring position. Was examined and the results shown in FIG. 8 were obtained. From this result, particularly at the preferred superheating temperature of the present invention of 30 to 40 ° C., L 1 is 170 to 700 mm,
It can be seen that it is more preferably 170 to 500 mm.

さらに前記鋳型に対する溶鋼の供給速度、換言すれば前
記吐出流の流速と比例的に関連する鋳造速度Vc(m/mi
n)に着目したところ、電磁撹拌位置を設定するに当た
っては、L1を次の関係式で決定すればよいことがわかっ
た。すなわち浸漬ノズルの吐出口と電磁撹拌中心までの
垂直距離L1(単位:m)を第2図に示す様に[L−l]の
設定すると、α・Vc・S/d2<L1<α・Vc・S/d2で設
定される。
Further, the casting speed Vc (m / mi) that is proportionally related to the supply rate of molten steel to the mold, in other words, the flow rate of the discharge flow.
Focusing on n), it was found that L 1 can be determined by the following relational expression when setting the electromagnetic stirring position. That is, when the vertical distance L 1 (unit: m) from the discharge port of the immersion nozzle to the center of electromagnetic stirring is set to [L-1] as shown in Fig. 2, α 1 · Vc · S / d 2 <L 1 <Set by α 2 · Vc · S / d 2 .

ただしSは鋳型の断面積(m2)、dは浸漬ノズルの内径
(m)、α1は浸漬ノズル形状、寸法等に基づく係
数であり、第8図に示す例の様な実験結果によって求め
られ、この場合αは0.0037,αは0.011〜0.0155とな
る。
However, S is the cross-sectional area of the mold (m 2 ), d is the inner diameter of the immersion nozzle (m), α 1 and α 2 are coefficients based on the shape of the immersion nozzle, dimensions, etc., and the experiment like the example shown in FIG. The result is obtained. In this case, α 1 is 0.0037 and α 2 is 0.011 to 0.0155.

他方タンディッシュ内の溶鋼の過熱温度は、介在物の浮
上効果と大きな関連性をもつものであり、高温になれば
なるほどその効果は大きくなるが、一般的に等軸晶率は
悪化するために、従来では30℃程度までと考えられてい
るのであるが、前述する鋳型内における上昇反転流によ
る溶鋼の冷却効果の増大が期待できることから、30℃以
上で一定とすることが好ましく、これによりメニスカス
温度を高く保って介在物の浮上及び溶出を促進し、介在
物成績及び表面品質に優れ、且つ等軸晶率の高いビレッ
ト又はブルームを鋳造できることとなる。さらに好まし
くは35〜45℃範囲内の一定過熱温度とすることが推奨さ
れる。
On the other hand, the superheated temperature of molten steel in the tundish is closely related to the levitation effect of inclusions.The higher the temperature, the greater the effect, but generally the equiaxed crystal ratio deteriorates. Although it is conventionally considered to be up to about 30 ° C., it is preferable to keep it constant at 30 ° C. or higher because it can be expected to increase the cooling effect of molten steel due to the above-mentioned upward reversal flow in the mold described above. By keeping the temperature high, the floating and elution of inclusions can be promoted, and the billet or bloom having excellent inclusion results and surface quality and high equiaxed crystal ratio can be cast. More preferably, it is recommended to keep the constant superheating temperature within the range of 35 to 45 ° C.

[実施例] 第2図において浸漬ノズル4の下向き吐出口4aと、電磁
撹拌装置22におえる撹拌中心C1の間の垂直距離L1を0.02
0,0.220,0.310mに変化させたときの各過熱温度における
等軸晶率を第1図のグラフに示す。尚上記距離L1はメニ
スカス5と撹拌中心C1間の距離Lより浸漬ノズル4の浸
漬深さlを引いた(減算した)値であり、lは0.18m、
該浸漬ノズル4の内径dは0.03m、鋳型21の断面積Sは
0.0256m2、鋳造速度Vcは1.6m/min、電磁撹拌強度は200A
とする。なお係数α1は第8図に示す実験データを
基礎にして夫々α=3.7×10-3=1.55×10-2に設
定する。
And down the discharge port 4a of EXAMPLES immersion nozzle 4 in Figure 2, the vertical distance L 1 between the stirring center C 1 to finish the magnetic stirring device 22 0.02
The equiaxed crystal ratio at each superheating temperature when changing to 0, 0.220, 0.310 m is shown in the graph of FIG. The distance L 1 is a value obtained by subtracting (subtracting) the immersion depth 1 of the immersion nozzle 4 from the distance L between the meniscus 5 and the stirring center C 1 , where l is 0.18 m,
The inner diameter d of the immersion nozzle 4 is 0.03 m, and the cross-sectional area S of the mold 21 is
0.0256m 2 , casting speed Vc is 1.6m / min, electromagnetic stirring strength is 200A
And The coefficients α 1 and α 2 are set to α 1 = 3.7 × 10 −3 and α 2 = 1.55 × 10 −2 , respectively, based on the experimental data shown in FIG.

α・Vc・S/d2<L1<α・Vc・S/d2に上記値を代入す
ると、 0.186<L1<0.705(m) となり、上記したL1=0.220及び0.310(m)に設定した
ものが本発明の要件を満足する実施例となることが分か
る。
Substituting the above values for α 1 · Vc · S / d 2 <L 12 · Vc · S / d 2 yields 0.186 <L 1 <0.705 (m), and L 1 = 0.220 and 0.310 (m It is understood that the one set to () is an example that satisfies the requirements of the present invention.

この結果第1図のグラフにより明らかな様に該実施例で
あれば、過熱温度が30℃以上となっても等軸晶率は著し
く低下することなく、中心偏析を安定して改善すること
ができた。このときの鋳片の介在物成績及び表面品質は
良好であった。上記タンディッシュ内の溶鋼を35〜45℃
の最適範囲内に制御する手段としては、加熱装置3(第
2図参照)としてプラズマ加熱装置、誘導加熱装置又は
抵抗加熱装置を用いる。
As a result, as is clear from the graph of FIG. 1, in this Example, even if the heating temperature was 30 ° C. or higher, the equiaxed crystal ratio did not significantly decrease, and the central segregation could be stably improved. did it. At this time, the inclusions and the surface quality of the slab were good. Molten steel in the tundish above 35-45 ℃
As a means for controlling within the optimum range, a plasma heating device, an induction heating device or a resistance heating device is used as the heating device 3 (see FIG. 2).

他方断面の一辺が300mm以下のビレット又はブルームを
製造するに際しては、長さ900mm以上のロングモールド
を用いることが推奨され、これによって電磁撹拌装置で
強撹拌を行なってもメニスカス表面への影響を低減で
き、パウダー巻込欠陥の発生を抑制することができる。
On the other hand, when manufacturing a billet or bloom with a side of 300 mm or less on one side, it is recommended to use a long mold with a length of 900 mm or more, which reduces the influence on the meniscus surface even if strong stirring is performed with an electromagnetic stirrer. It is possible to suppress the occurrence of powder entrapment defects.

他方第7図に示す如くメニスカス表面を乱さずにメニス
カス表面流速を最適な範囲(介在物を適正量浮上させる
と共に、適正量溶融させる流速範囲)とするため、ノズ
ル吐出口から電磁撹拌装置中心C1までの距離L1は、前述
の式によって決定される適正位置範囲内とすることが好
ましい。
On the other hand, as shown in FIG. 7, in order to set the meniscus surface flow velocity to the optimum range (the flow velocity range in which inclusions are levitated by an appropriate amount and melted by an appropriate amount) without disturbing the meniscus surface, the electromagnetic stirring device center C from the nozzle outlet. distance L 1 to 1, is preferably in the proper position range determined by the above equations.

[発明の効果] 本発明は以上の様に構成されているので、高い等軸晶率
を保ちつつ、第9図に示す様に鋳片の介在物成績を高く
維持でき、中心偏析を改善して優れた品質の鋳片を連続
鋳造できる様になった。すなわち30℃以上の過熱温度の
溶鋼をパウダー巻込みを引き起こすことなく電磁撹拌装
置によって強撹拌し、高品質の鋳片を効率的に製造でき
る様になった。
[Effects of the Invention] Since the present invention is configured as described above, while maintaining a high equiaxed crystal ratio, it is possible to maintain high inclusion inclusions in the slab as shown in Fig. 9 and improve center segregation. It is now possible to continuously cast ingots of excellent quality. That is, molten steel having a superheating temperature of 30 ° C. or higher is strongly stirred by an electromagnetic stirrer without causing powder entrainment, and high quality slabs can be efficiently manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明実施例と比較例の等軸晶率の相違を例示
するグラフ、第2図は連続鋳造装置の例を示す断面説明
図、第3図は従来における過熱温度と等軸晶率及び介在
物生成の関係を示すグラフ、第4図は従来における撹拌
温度と等軸晶率とパウダー巻込欠陥の関係を示すグラ
フ、第5図は撹拌強度と等軸晶率の関係を示すグラフ、
第6図は撹拌強度とメニスカス−撹拌中心距離との関係
を示すグラフ、第7図はメニスカス流速と鋳片品質の関
係を示すグラフ、第8図は垂直距離L1と鋳片等軸晶率の
関係を例示するグラフ、第9図は溶鋼加熱温度と介在物
不良率の関係を示すグラフである。 1……タンディッシュ、2……連続鋳造装置 4……浸漬ノズル、4a……吐出口 21……鋳型、2a……電磁撹拌装置 C1……撹拌中心、A0……溶鋼 A1……凝固シェル
FIG. 1 is a graph illustrating the difference in the equiaxed crystal ratio between the inventive example and the comparative example, FIG. 2 is a cross-sectional explanatory view showing an example of a continuous casting apparatus, and FIG. 3 is a conventional superheating temperature and equiaxed crystal. Ratio and the formation of inclusions, FIG. 4 is a graph showing the relationship between the stirring temperature, the equiaxed crystal ratio and the powder entrainment defect in the prior art, and FIG. 5 is the relationship between the stirring strength and the equiaxed crystal ratio. Graph,
FIG. 6 is a graph showing the relationship between the stirring strength and the meniscus-centering distance of the stirring, FIG. 7 is a graph showing the relationship between the meniscus flow velocity and the quality of the slab, and FIG. 8 is the vertical distance L 1 and the equiaxed crystal ratio of the slab. 9 is a graph showing the relationship between the molten steel heating temperature and the inclusion defect rate. 1 ...... tundish, 2 ...... continuous casting apparatus 4 ...... immersion nozzle, 4a ...... discharge port 21 ...... template, 2a ...... electromagnetic stirring apparatus C 1 ...... stirring center, A 0 ...... molten steel A 1 ...... Solidification shell

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 正道 兵庫県神戸市灘区灘浜東町2 株式会社神 戸製鋼所神戸製鉄所内 (72)発明者 尾上 善則 兵庫県神戸市灘区灘浜東町2 株式会社神 戸製鋼所神戸製鉄所内 (72)発明者 佐藤 孝彦 兵庫県神戸市灘区灘浜東町2 株式会社神 戸製鋼所神戸製鉄所内 (72)発明者 綾田 研三 兵庫県神戸市灘区灘浜東町2 株式会社神 戸製鋼所神戸製鉄所内 (56)参考文献 特公 昭64−10305(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masamichi Takeuchi Inventor 2 Nadahama Higashi-cho, Nada-ku, Kobe-shi, Hyogo Prefecture Kondo Steel Works, Ltd. Kobe Steel Works (72) Yoshinori Onoue 2 Nada-hama Higashi-cho, Nada-ku, Kobe, Hyogo Kido Steel Works Kobe Steel Works (72) Inventor Takahiko Sato 2 Nadahama Higashi-cho, Nada-ku, Kobe-shi, Hyogo Prefecture Kado Works Steel Works Kobe Steel Works (72) Inventor Kenzo Ayada 2 Nada-hama-higashi, Nada-ku, Kobe City Hyogo Prefecture Company Kado Steel Works Kobe Steel Works (56) References Japanese Patent Publication Sho 64-10305 (JP, B2)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電磁撹拌装置を備えた鋳型を用い、該鋳型
内の溶鋼に水平方向の旋回撹拌力を作用させてこれを撹
拌しつつ連続鋳造する方法において、浸漬ノズルを介し
て溶鋼を前記鋳型内へ供給すると共に、前記浸漬ノズル
の吐出口と溶鋼撹拌中心までの垂直距離L1が α・Vc・S/d2<L1<α・Vc・S/d2 を満足する範囲とすることを特徴とする連続鋳造方法。 ただしVcは鋳造速度;m/min、Sは鋳型の断面積;m2、d
は浸漬ノズル内径;m、α1は係数である。
1. A method of continuously casting while stirring a molten steel in the mold using a mold equipped with an electromagnetic stirrer in which a horizontal swirling stirring force is applied to the molten steel, wherein A range in which the vertical distance L 1 from the outlet of the immersion nozzle to the center of molten steel stirring satisfies α 1 · Vc · S / d 2 <L 12 · Vc · S / d 2 while being supplied into the mold The continuous casting method is characterized by the following. Where Vc is the casting speed; m / min, S is the cross-sectional area of the mold; m 2 , d
Is the inner diameter of the immersion nozzle; m, α 1 and α 2 are coefficients.
【請求項2】前記浸漬ノズルが接続されたタンディッシ
ュ内の溶鋼過熱温度を30℃以上の一定過熱度で鋳造する
請求項(1)に記載の連続鋳造方法。
2. The continuous casting method according to claim 1, wherein the molten steel superheated in the tundish to which the immersion nozzle is connected is cast at a constant superheat of 30 ° C. or higher.
【請求項3】前記浸漬ノズルが接続されたタンディッシ
ュ内の溶鋼過熱温度を35〜45℃の一定過熱度で鋳造する
請求項(1)に記載の連続鋳造方法。
3. The continuous casting method according to claim 1, wherein the molten steel superheat temperature in the tundish to which the immersion nozzle is connected is cast at a constant superheat degree of 35 to 45 ° C.
JP2050118A 1990-02-28 1990-02-28 Continuous casting method Expired - Lifetime JPH0673727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2050118A JPH0673727B2 (en) 1990-02-28 1990-02-28 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2050118A JPH0673727B2 (en) 1990-02-28 1990-02-28 Continuous casting method

Publications (2)

Publication Number Publication Date
JPH03254338A JPH03254338A (en) 1991-11-13
JPH0673727B2 true JPH0673727B2 (en) 1994-09-21

Family

ID=12850201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2050118A Expired - Lifetime JPH0673727B2 (en) 1990-02-28 1990-02-28 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH0673727B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5428780B2 (en) * 2009-11-11 2014-02-26 新日鐵住金株式会社 Steel continuous casting method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247102A (en) * 1985-08-26 1987-02-28 Showa Electric Wire & Cable Co Ltd Chip coil and manufacture thereof
JPS6410305A (en) * 1987-07-03 1989-01-13 Mitsubishi Electric Corp Decentralized control system for programmable controller

Also Published As

Publication number Publication date
JPH03254338A (en) 1991-11-13

Similar Documents

Publication Publication Date Title
RU2296034C2 (en) Method for treating melt metals by means of moving electric arc
US4637453A (en) Method for the continuous production of cast steel strands
JPH0673727B2 (en) Continuous casting method
US4671335A (en) Method for the continuous production of cast steel strands
JPH0375256B2 (en)
US4298050A (en) Process for continuous casting of a slightly deoxidized steel slab
JP2937707B2 (en) Steel continuous casting method
JP3208941B2 (en) Continuous casting method of high purity aluminum alloy
JP7389335B2 (en) Method for producing thin slabs
TWI805110B (en) Steel continuous casting method
US4355680A (en) Method and apparatus for continuous casting of hollow articles
JP3570224B2 (en) Continuous casting method for large section slabs for thick steel plates
JPH0314541B2 (en)
JP3249870B2 (en) Continuous casting method of semi-solid Al alloy
JPH09168845A (en) Method for continuously casting molten metal free of inclusion and blow hole and apparatus therefor
JPH06234050A (en) Method for continuously casting half-solidified metal and apparatus therefor
RU2080206C1 (en) Method of production of ingots
JP4163817B2 (en) Method for continuous casting of molten steel, electromagnetic vibration applying device and continuous cast slab
JP4501223B2 (en) Continuous casting method
JP3409743B2 (en) Continuous casting method of round billet slab
JP3262936B2 (en) Operating method for high clean steel casting.
JP2000334559A (en) Method for continuously casting steel excellent in quality
CN118106469A (en) Device and method for regulating bronze solidification process between large liquid-solid regions by intermittent traveling wave magnetic field
JPH0218180B2 (en)
JP4469092B2 (en) Slab with fine solidification structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 16