JP5428780B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP5428780B2
JP5428780B2 JP2009258313A JP2009258313A JP5428780B2 JP 5428780 B2 JP5428780 B2 JP 5428780B2 JP 2009258313 A JP2009258313 A JP 2009258313A JP 2009258313 A JP2009258313 A JP 2009258313A JP 5428780 B2 JP5428780 B2 JP 5428780B2
Authority
JP
Japan
Prior art keywords
slab
electromagnetic
molten steel
equiaxed
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009258313A
Other languages
Japanese (ja)
Other versions
JP2011101895A (en
Inventor
泰宏 水野
晃三 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009258313A priority Critical patent/JP5428780B2/en
Publication of JP2011101895A publication Critical patent/JP2011101895A/en
Application granted granted Critical
Publication of JP5428780B2 publication Critical patent/JP5428780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳片の未凝固部分を電磁拌しつつ鋼を連続鋳造する方法に関するものである。 The present invention relates to a method for continuous casting of steel the non-solidified portions of the cast piece while electromagnetic 拌.

多量の珪素を含有する溶鋼から電磁鋼板用鋳片を連続鋳造した場合、一般に、図7に示すように、柱状晶が発達した凝固組織となる。柱状晶が発達した凝固組織では、圧延時、柱状晶が破断せずに倒れ込み、圧延組織中に残留する。特に3mm以下の厚さになるまで圧延した場合は、表面に微細な凹凸が発生する。この微細な凹凸をリジングという。   When continuously casting a slab for an electromagnetic steel sheet from a molten steel containing a large amount of silicon, generally, as shown in FIG. In the solidification structure in which the columnar crystal has developed, the columnar crystal falls down without breaking during rolling and remains in the rolled structure. In particular, when rolling to a thickness of 3 mm or less, fine irregularities are generated on the surface. This fine unevenness is called ridging.

複数枚の板を重ねて効果を発揮する電磁鋼板の場合、リジングが発生した板を使用すると、各板の圧着面に隙間が生じ、製品の性能が劣化する。   In the case of an electromagnetic steel sheet that exhibits an effect by overlapping a plurality of sheets, when a plate having ridging is used, a gap is generated on the crimping surface of each plate, and the performance of the product is deteriorated.

そこで、多量の珪素を含有する溶鋼から電磁鋼板用鋳片を連続鋳造する場合、柱状晶の生成を抑制するために、鋳型から引き抜かれた鋳片の内部に残留している未凝固の溶融金属(以下、未凝固部という。)に対して電磁拌力を作用させている。 Therefore, when continuously casting slabs for electrical steel sheets from molten steel containing a large amount of silicon, in order to suppress the formation of columnar crystals, unsolidified molten metal remaining inside the slab drawn from the mold and by the action of electromagnetic 拌力respect (hereinafter, referred to as non-solidified portion.).

上記方法で製造された鋳片は、柱状晶の生成が抑制されて溶融金属から等軸晶が析出する割合が増加する(図8参照)。等軸晶は、柱状晶と異なり加工性に優れているので、圧延した際に残留することが無く、薄板に圧延した場合もリジング等を発生することがない。   In the slab manufactured by the above method, the generation of columnar crystals is suppressed and the ratio of equiaxed crystals precipitated from the molten metal increases (see FIG. 8). Since equiaxed crystals are excellent in workability unlike columnar crystals, they do not remain when rolled, and ridging or the like does not occur when rolled into a thin plate.

例えば特許文献1では、鋳片の厚み中心近傍での等軸晶の厚さが、鋳片の厚みの40%以上になるように、鋳型から引き抜かれた鋳片の内部に残留している未凝固部に対して2基の電磁攪拌装置により電磁拌力を作用させる連続鋳造方法が開示されている。 For example, in Patent Document 1, the thickness of the equiaxed crystal in the vicinity of the center of the thickness of the slab is 40% or more of the thickness of the slab so that it remains in the slab drawn from the mold. continuous casting method of reacting an electromagnetic 拌力by the electromagnetic stirring device of the 2 groups with respect to the coagulation section is disclosed.

しかしながら、操業条件のばらつきにより、製造する鋳片の等軸晶率がばらつくので、特許文献1で開示された方法では、リジングの発生を回避できない場合がある。また、2基の電磁攪拌装置を使用するので、設備投資費が高額になる。   However, because the equiaxed crystal ratio of the slab to be produced varies due to variations in operating conditions, the method disclosed in Patent Document 1 may not avoid the occurrence of ridging. Moreover, since two electromagnetic stirrers are used, the capital investment cost becomes high.

特開平2−192853号公報Japanese Patent Laid-Open No. 2-192853

本発明が解決しようとする問題点は、鋳型から引き抜かれた鋳片の内部に残留する未凝固部に電磁拌力を作用させる場合、操業条件のばらつきにより、製造する鋳片の等軸晶率がばらつき、リジングの発生を回避できない場合があるという点である。 Problems which the invention is to provide, if the action of electromagnetic 拌力the unsolidified portion remaining inside the cast piece is withdrawn from the mold, due to variations in operating conditions, of the slab to produce equiaxed The rate varies and the occurrence of ridging may not be avoided.

本発明の鋼の連続鋳造方法は、
操業条件のばらつきがあっても、製造する鋳片が目標とする等軸晶率となるようにして、リジングの発生を回避できないということが無いようにするために、
成分中のSi含有率が3.5質量%以下、Ti含有率が50ppm以下、N含有率が80ppm以下であり、かつ、下記(b)式を満足する珪素鋼板用の溶鋼を連続鋳造する方法であって、
未凝固部を含む鋳片位置に配置した電磁攪拌装置を用いて未凝固部の溶鋼を攪拌する際に、鋳造速度Vc(m/min)を含む、下記(a)式を満足する電磁攪拌強度G(T:テスラ)で未凝固部の溶鋼を攪拌し、鋳造された鋳片の全厚みD(mm)に対する等軸晶厚みe(mm)の比である等軸晶生成比率(e/D)を0.3以上とすることを最も主要な特徴としている。
G≧(1.08×Vc+0.14)×0.05…(a)
Ti×N≧350…(b)
ここで、Ti:成分Ti含有率(ppm)、N:成分N含有率(ppm)である。
The steel continuous casting method of the present invention is
In order to prevent the occurrence of ridging by avoiding the occurrence of ridging so that the slab to be produced has the target equiaxed crystal ratio even if there are variations in operating conditions,
3.5 wt% or less Si content in the component, Ti content of 50ppm or less, N content of not more than 80 ppm, and, for continuous casting of molten steel for silicon steel you satisfy the following formula (b) A method,
When stirring the molten steel in the unsolidified part using the electromagnetic stirrer disposed at the slab position including the unsolidified part, the electromagnetic stirring intensity satisfying the following formula (a) including the casting speed Vc (m / min) The molten steel in the unsolidified portion is stirred with G (T: Tesla), and the equiaxed crystal formation ratio (e / D), which is the ratio of the equiaxed crystal thickness e (mm) to the total thickness D (mm) of the cast slab ) Is 0.3 or more.
G ≧ (1.08 × Vc + 0.14) × 0.05 (a)
Ti × N ≧ 350 (b)
Here, Ti: component Ti content (ppm), N: component N content (ppm).

本発明の連続鋳造方法によれば、操業形態によって鋳造速度が種々変化した場合でも、1基の電磁拌装置にて、目標とする等軸晶率を得ることができるので、リジングの発生の無い鋳片を得ることができる。さらに、溶鋼中のTi、Nの濃度積を最適に調整して等軸晶率の減少を防げば、よりリジングの発生を防止することができる。 According to the continuous casting method of the present invention, even when the casting speed is variously changed by the operation mode, in the electromagnetic 拌apparatus 1 groups, it is possible to obtain a equiaxed Akiraritsu a target, the occurrence of ridging No slab can be obtained. Further, if the concentration product of Ti and N in the molten steel is optimally adjusted to prevent the equiaxed crystal ratio from decreasing, the generation of ridging can be further prevented.

鋳片の横断面を示した模式図である。It is the schematic diagram which showed the cross section of slab. 電磁攪拌強度を変化させたときの鋳造速度Vcと等軸晶厚さの関係を示した図である。It is the figure which showed the relationship between the casting speed Vc when changing an electromagnetic stirring intensity | strength, and equiaxed crystal thickness. 鋳造速度Vcと電磁攪拌強度とリジング発生の有無の関係を示した図である。It is the figure which showed the relationship between casting speed Vc, electromagnetic stirring intensity | strength, and the presence or absence of ridging generation | occurrence | production. 本発明の実験に使用した連続鋳造装置の模式図である。It is a schematic diagram of the continuous casting apparatus used for the experiment of this invention. 鋳造速度と等軸晶率、リジング発生の有無の関係を示した図である。It is the figure which showed the relationship between casting speed, equiaxed crystal ratio, and the presence or absence of ridging. TiとNの濃度積と等軸晶の関係を示した図である。It is the figure which showed the relationship between the concentration product of Ti and N, and an equiaxed crystal. 柱状晶組織からなる鋳片の横断面組織を説明する図である。It is a figure explaining the cross-sectional structure of the slab which consists of columnar crystal structure. 電磁攪拌により等軸晶を生成させた鋳片の横断面組織の模式図である。It is a schematic diagram of the cross-sectional structure | tissue of the slab in which the equiaxed crystal was produced | generated by electromagnetic stirring.

本発明では、操業条件のばらつきがあっても、製造する鋳片が目標とする等軸晶率を得るようにするという目的を、(1.08×Vc+0.14)×0.05以上の電磁攪拌強度で未凝固部の溶鋼を攪拌することによって実現した。   In the present invention, even if there are variations in operating conditions, the objective is to obtain the target equiaxed crystal ratio for the cast slab to be manufactured. This was achieved by stirring the molten steel in the unsolidified part with stirring strength.

以下、本発明について説明する。
連続鋳造法では、鋳型より引き抜かれた鋳片は、表面から二次冷却され、凝固シェルが成長する。
The present invention will be described below.
In the continuous casting method, the slab drawn from the mold is secondarily cooled from the surface, and a solidified shell grows.

従って、3.5質量%以下のSiを含有する珪素鋼板用の溶鋼を連続鋳造する際に、未凝固部を含む鋳片位置に配置した電磁攪拌装置によって未凝固溶鋼領域を拌し、等軸晶の生成量を増加させる場合、鋳造速度によって変化する凝固シェルの生成厚さと、未凝固部の厚さの関係を無視することができない。 Therefore, when continuous casting of molten steel for the silicon steel sheet containing 3.5 mass% of Si, the unsolidified molten steel region 拌by an electromagnetic stirrer arranged in the slab position including the unsolidified portion, etc. When increasing the amount of axial crystals generated, the relationship between the thickness of the solidified shell, which varies depending on the casting speed, and the thickness of the unsolidified portion cannot be ignored.

よって、製造した鋳片が、一定以上の等軸晶生成量(等軸晶率)を有することを確保するためには、鋳造速度によって種々変化する因子(凝固シェル厚、拌時間)を定量的に評価し、反映しなければならない。 Therefore, quantitative slab produced is, in order to ensure that it has a certain level of equiaxed generation amount (equal JikuAkiraritsu) a variety varying factors (solidified shell thickness, between 拌時) by casting speed Must be evaluated and reflected.

電磁拌により、未凝固部の溶鋼を拌する場合、(1) 拌する未凝固部の界面積、(2) 拌時間、(3) 拌強度の影響、を考慮しなければならない。以下に、その影響内容について説明する。 The electromagnetic 拌, when 拌molten steel unsolidified portion, (1) the interfacial area unsolidified portion of 拌, (2) 拌時between, to be taken into consideration the effects of (3) 拌強degree Don't be. The contents of the influence will be described below.

(1) 拌する未凝固部の界面積
未凝固部を含む鋳片位置に配置した電磁攪拌装置で未凝固部を拌するときの当該位置における凝固シェルの厚さdは、一般に、下記数式1で定義される。この数式1より、鋳造速度Vcが遅くなると攪拌位置の凝固シェル厚さdは厚くなり、鋳造速度Vcが速くなると攪拌位置の凝固シェル厚さd(図1参照)は薄くなることが分かる。
(1) 拌thickness d of the solidified shell at the position when the unsolidified portion in the electromagnetic stirring device arranged in the slab position including the interfacial area unsolidified portion of the unsolidified portion is 拌that is generally below It is defined by Equation 1. From Equation 1, it can be seen that when the casting speed Vc decreases, the solidified shell thickness d at the stirring position increases, and when the casting speed Vc increases, the solidified shell thickness d (see FIG. 1) at the stirring position decreases.

Figure 0005428780
Figure 0005428780

一方、電磁攪拌装置によって拌される未凝固部の単位長さ当りの界面積Aは、以下の数式2より算出することができる。 On the other hand, the interfacial area A per unit length of the unsolidified portion is 拌by the electromagnetic stirring device can be calculated from Equation 2 below.

Figure 0005428780
Figure 0005428780

つまり、鋳造速度が遅くなり、電磁攪拌装置で拌する位置における凝固シェル厚さが厚くなった場合には、拌する未凝固溶鋼の界面積Aが小さくなるため、小さくなった分だけ等軸晶の生成量が減少することになる。 That is, the casting speed is slower, if the solidified shell thickness at 拌located is thickened by electromagnetic stirring apparatus, since the interfacial area A of the unsolidified molten steel 拌decreases, only smaller amount equal The amount of axial crystals produced will decrease.

(2) 拌時間
攪拌力が作用する範囲は、電磁攪拌装置の電磁コイルが設置された範囲の未凝固部だけである。従って、連続鋳造においては、下記数式3に示すように、拌力が未凝固部に作用する有効距離S部分を対象鋳片が通過する時間tだけ未凝固部が攪拌されて等軸晶が生成される。
(2) range拌時between stirring force acts is only unsolidified portion of the range of the electromagnetic coil of the electromagnetic stirring apparatus is installed. Thus, in the continuous casting, as shown in the following equation 3, the equiaxed 拌力is unsolidified portion by a time t the effective length S portion of the target slab passes to act is stirred unsolidified portion Generated.

Figure 0005428780
Figure 0005428780

つまり、未凝固部の拌時間tは鋳造速度Vcに反比例するため、鋳造速度Vcが遅いと拌時間tは長くなって等軸晶の生成量は多くなるが、鋳造速度Vcが速いと拌時間tは短くなって等軸晶の生成量が少なくなる。 That is, since 拌時between t unsolidified portion is inversely proportional to the casting speed Vc, the casting speed Vc is slow 拌時between t is the amount of equiaxed longer is increased, the casting speed Vc is high 拌時between t is the amount of equiaxed decreases becomes shorter.

(3) 拌強度
等軸晶は未凝固部の溶鋼を拌することで生成される。従って、拌強度が小さいと等軸晶の生成に必要な拌力を得ることができない。つまり、連続鋳造する鋳片の内部に等軸晶を生成するためには、ある値以上の拌力が必要であると言える。
(3) 拌強degree such axed crystal is produced by 拌the molten steel unsolidified portion. Therefore, it is impossible to obtain a 拌力required to generate the 拌強small degree of equiaxed. That is, it can be said that in order to generate an equiaxed inside a slab continuous casting, it is necessary a certain value or more 拌力.

以上を考慮すると、等軸晶率と前記(1)(2)(3)の関係には、下記数式4の関係があると考えられる。   Considering the above, it is considered that the relationship between the equiaxed crystal ratio and the above-mentioned (1), (2), and (3) is expressed by the following mathematical formula 4.

Figure 0005428780
Figure 0005428780

つまり、前記数式4は、等軸晶率が、電磁攪拌装置によって拌される未凝固部の単位長さ当りの界面積Aと、未凝固部の攪拌時間tと、電磁攪拌装置による攪拌力Gの積に比例することを意味している。 That is, Equation 4, equiaxed Akiraritsu is, the interfacial area A per unit length of the unsolidified portion is 拌by the electromagnetic stirring device, a stirring time of unsolidified portion t, stirring force by electromagnetic stirring device It is proportional to the product of G.

このうち、前記界面積Aは、前記数式1、2より鋳造速度Vcに比例し、前記攪拌時間tは、前記数式3より鋳造速度Vcに反比例することが明らかであることから、結局、等軸晶率は、鋳造速度Vcと攪拌強度に関係することになる。   Of these, the interfacial area A is proportional to the casting speed Vc from Equations 1 and 2, and the stirring time t is apparent from the Equation 3 to be inversely proportional to the casting speed Vc. The crystallinity is related to the casting speed Vc and the stirring strength.

そこで、これらの関係を解明すべく、発明者らが、厚さ250mmの鋳片についての鋳造試験とシミュレーション解析を行った結果、等軸晶率と、鋳造速度Vcと、電磁攪拌強度Gの間には、図2に示す関係を有することが判明した。   Accordingly, in order to clarify these relationships, the inventors conducted a casting test and a simulation analysis on a slab having a thickness of 250 mm. As a result, the ratio between the equiaxed crystal ratio, the casting speed Vc, and the electromagnetic stirring strength G was determined. Was found to have the relationship shown in FIG.

この図2の結果から、リジングの発生のない等軸晶厚さ75mm(等軸晶率では75mm/250mm=0.3=30%)以上となるための、鋳造速度Vcと電磁攪拌強度Gの関係を求めると図3に示す結果となり、下記数式5を得ることができた。   From the results shown in FIG. 2, the casting speed Vc and electromagnetic stirring strength G for the equiaxed crystal thickness with no ridging to be 75 mm (the equiaxed crystal ratio is 75 mm / 250 mm = 0.3 = 30%) or more. When the relationship was obtained, the result shown in FIG. 3 was obtained, and the following formula 5 was obtained.

Figure 0005428780
Figure 0005428780

つまり、前記数式5を満足する連続鋳造を行うことで、等軸晶を安定して生成することができ、圧延時においてもリジングの発生の無い鋳片を得ることができる。これが本願の請求項1に係る発明の主要な構成である。 In other words, by performing continuous casting that satisfies Equation 5, it is possible to stably generate equiaxed crystals and to obtain a slab that does not generate ridging even during rolling. This is the main configuration of the invention according to claim 1 of the present application.

また、溶鋼中にTiを添加した場合、溶鋼中に存在するNと結びついて不均質凝固核となり、等軸晶生成の核となるTiNを形成するが、発明者らは、鋼中の成分から算出できるTiとNの濃度積が小さい場合には、製造した鋳片の等軸晶率が減少することを見出した。   In addition, when Ti is added to the molten steel, it combines with N present in the molten steel to form heterogeneous solidification nuclei, forming TiN that forms the nuclei of equiaxed crystals. It was found that when the concentration product of Ti and N that can be calculated is small, the equiaxed crystal ratio of the manufactured slab decreases.

従って、必須の元素ではないが、電磁鋼板の性能を損なわない範囲で含有することができるTiとN(Ti:50ppm以下、N:80ppm以下)の濃度積を一定量以上とすることで、等軸晶生成量の減少を防止できるという知見を得た。   Therefore, although it is not an essential element, the concentration product of Ti and N (Ti: 50 ppm or less, N: 80 ppm or less) that can be contained within a range that does not impair the performance of the electrical steel sheet is set to a certain amount or more, etc. It was found that the reduction of the amount of axial crystals can be prevented.

以下、前記請求項1に係る発明の主要な構成の効果の確認と、溶鋼中に添加されたTiとNの最適濃度積を得るために行った試験について説明する。 Hereinafter, confirmation of the effect of the main configuration of the invention according to claim 1 and a test performed to obtain an optimum concentration product of Ti and N added to the molten steel will be described.

図4に示すような、鋳型1内に注入した溶鋼2のメニスカス3から7mの位置にストランド電磁拌装置4を配置した連続鋳造装置を用いて、厚さDが250mm、幅Wが1100〜1300mmの鋳片5を製造した。連続鋳造に用いた溶鋼2は、C:0.003質量%、Si:2.0質量%を含有し、ΔT(溶鋼温度と液相線温度との差)が20〜40℃の珪素鋼板用溶鋼である。 As shown in FIG. 4, the meniscus 3 of the molten steel 2 injected into the mold 1 by using a continuous casting apparatus which is disposed a strand electromagnetic 拌device 4 to the position of 7m, the thickness D is 250 mm, the width W 1100 to A 1300 mm slab 5 was produced. Molten steel 2 used for continuous casting contains C: 0.003% by mass, Si: 2.0% by mass, and for silicon steel sheets having a ΔT (difference between molten steel temperature and liquidus temperature) of 20 to 40 ° C. Molten steel.

上記条件下において、鋳造速度Vcを0.70m/min〜1.4m/minの間で種々変化させて鋳造し、鋳造速度に応じた電磁拌強度Gを付与した場合(本発明)における鋳片の横断面組織と、その鋳片を圧延してできた板におけるリジング発生状況を調査した。また、比較として、電磁拌強度Gを0.05(T)一定にて付与した場合も同様の調査を行った。 In the above conditions, the casting speed Vc is cast while varying between 0.70m / min~1.4m / min, casting when imparted with electromagnetic 拌強value G corresponding to the casting speed (the present invention) The cross-sectional structure of the piece and the ridging occurrence state in the plate made by rolling the slab were investigated. For comparison, a similar study was conducted even when imparted with electromagnetic 拌強value G at 0.05 (T) constant.

図1に示すような鋳片の横断面組織から、等軸晶の生成厚さを測定し、等軸晶率を算出した。また、板における調査は、リジング発生の有無で分類した。   From the cross-sectional structure of the slab as shown in FIG. 1, the formation thickness of equiaxed crystals was measured, and the equiaxed crystal ratio was calculated. The investigation on the board was classified by the presence or absence of ridging.

鋳造条件及び鋳造結果を下記表1に示す。また、鋳造速度と等軸晶率の関係を図5に示す。   The casting conditions and the casting results are shown in Table 1 below. FIG. 5 shows the relationship between the casting speed and the equiaxed crystal ratio.

Figure 0005428780
Figure 0005428780

未凝固部に付与する電磁拌強度Gを0.05(T)で一定とした条件下(○印)では、鋳造速度Vcの向上に従って等軸晶率Eが減少し、等軸晶率Eが30%未満となる、鋳造速度Vcが1.1m/min以上の場合においてリジングが確認された。 In conditions were constant at the electromagnetic 拌強degree G 0.05 (T) to be applied to the unsolidified portion (○ mark), etc. JikuAkiraritsu E decreases according improve casting speed Vc, etc JikuAkiraritsu E Ridging was confirmed when the casting speed Vc was 1.1 m / min or more.

一方、鋳造速度Vcに応じた電磁拌強度Gを付与した本発明の場合(■印)においては、鋳造速度Vcが上昇した場合も、安定して30%以上の等軸晶率Eを確保することができ、薄板に圧延した後においてもリジングの発生は確認されなかった。 On the other hand, in the case of the present invention imparted with electromagnetic 拌強value G corresponding to the casting speed Vc (■ marks), even if the casting speed Vc is increased, ensuring the stable 30% or more equal JikuAkiraritsu E The generation of ridging was not confirmed even after rolling into a thin plate.

また、発明者らは、上述の連続鋳造において、鋳造速度Vcと電磁拌強度Gを1.0m/min、0.070T一定の条件下において、Tiを添加させてTiとNの濃度積を種々変更した溶鋼を連続鋳造し、その鋳片組織との関係を調査した。その結果を下記表2及び図6に示す。 Further, the inventors found that in the continuous casting described above, the casting speed Vc and the electromagnetic 拌強degree G of 1.0 m / min, in 0.070T certain conditions, the concentration product of by adding Ti Ti and N Various changes of molten steel were continuously cast, and the relationship with the slab structure was investigated. The results are shown in Table 2 below and FIG.

Figure 0005428780
Figure 0005428780

表2及び図6に示すように、NとTiの濃度積を350以上確保することにより、等軸晶率Eを安定して生成することができた。一方、NとTiの濃度積が350未満の領域においては、NとTiの濃度積が小さくなる従い、等軸晶率Eも小さくなることが確認できた。   As shown in Table 2 and FIG. 6, the equiaxed crystal ratio E could be stably generated by securing a concentration product of N and Ti of 350 or more. On the other hand, in the region where the concentration product of N and Ti is less than 350, it has been confirmed that the equiaxed crystal ratio E decreases as the concentration product of N and Ti decreases.

本願の請求項に係る発明は、以上の実験結果に基づいてなされたものであり、前記本願の請求項1に係る発明の主要な構成を実施する際に使用する溶鋼として、質量%で、成分中のTi含有率が50ppm以下、N含有率が80ppm以下で、NとTiの濃度積が350以上のものを使用することを特徴とするものである。 The invention according to claim 1 of the present application was made based on the above experimental results, and as a molten steel used when carrying out the main configuration of the invention according to claim 1 of the present application, in mass%, A component having a Ti content of 50 ppm or less, an N content of 80 ppm or less, and a concentration product of N and Ti of 350 or more is used.

本発明は上記の例に限らず、請求項に記載された技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。 The present invention is not limited to the above example, if the scope of the technical spirit as set forth in Motomeko, it may of course be changed as appropriate embodiment.

例えば、使用する溶鋼は、電磁鋼板の性能を損なうものでなければ、上記実験例に限らず、さらにSi、Mn、Al等を含有させたものでも良い。   For example, the molten steel to be used is not limited to the above experimental example as long as it does not impair the performance of the electromagnetic steel sheet, and may further contain Si, Mn, Al, or the like.

1 鋳型
2 溶鋼
4 電磁攪拌装置
5 鋳片
1 Mold 2 Molten Steel 4 Electromagnetic Stirrer 5 Cast

Claims (1)

成分中のSi含有率が3.5質量%以下、Ti含有率が50ppm以下、N含有率が80ppm以下であり、かつ、下記(b)式を満足する珪素鋼板用の溶鋼を連続鋳造する方法であって、
未凝固部を含む鋳片位置に配置した電磁攪拌装置を用いて未凝固部の溶鋼を攪拌する際に、鋳造速度Vc(m/min)を含む、下記(a)式を満足する電磁攪拌強度G(T:テスラ)で未凝固部の溶鋼を攪拌し、鋳造された鋳片の全厚みD(mm)に対する等軸晶厚みe(mm)の比である等軸晶生成比率(e/D)を0.3以上とすることを特徴とする鋼の連続鋳造方法。
G≧(1.08×Vc+0.14)×0.05…(a)
Ti×N≧350…(b)
ここで、Ti:成分Ti含有率(ppm)、N:成分N含有率(ppm)である。
3.5 wt% or less Si content in the component, Ti content of 50ppm or less, N content of not more than 80 ppm, and, for continuous casting of molten steel for silicon steel you satisfy the following formula (b) A method,
When stirring the molten steel in the unsolidified part using the electromagnetic stirrer disposed at the slab position including the unsolidified part, the electromagnetic stirring intensity satisfying the following formula (a) including the casting speed Vc (m / min) The molten steel in the unsolidified portion is stirred with G (T: Tesla), and the equiaxed crystal formation ratio (e / D), which is the ratio of the equiaxed crystal thickness e (mm) to the total thickness D (mm) of the cast slab ) Is set to 0.3 or more.
G ≧ (1.08 × Vc + 0.14) × 0.05 (a)
Ti × N ≧ 350 (b)
Here, Ti: component Ti content (ppm), N: component N content (ppm).
JP2009258313A 2009-11-11 2009-11-11 Steel continuous casting method Active JP5428780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258313A JP5428780B2 (en) 2009-11-11 2009-11-11 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258313A JP5428780B2 (en) 2009-11-11 2009-11-11 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2011101895A JP2011101895A (en) 2011-05-26
JP5428780B2 true JP5428780B2 (en) 2014-02-26

Family

ID=44192486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258313A Active JP5428780B2 (en) 2009-11-11 2009-11-11 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP5428780B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014105870A1 (en) 2014-04-25 2015-10-29 Thyssenkrupp Ag Process and apparatus for thin slab continuous casting
CN113857449B (en) * 2021-09-14 2023-10-10 湖南华菱涟源钢铁有限公司 Preparation method of oriented silicon steel casting blank and casting blank system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139262A (en) * 1980-03-31 1981-10-30 Kobe Steel Ltd Electromagnetic stirrer in continuous casting plant
JPS6056021A (en) * 1983-09-06 1985-04-01 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
JPH0763819B2 (en) * 1988-12-20 1995-07-12 住友金属工業株式会社 Method for homogenizing solidification structure of continuously cast slab
JPH0620593B2 (en) * 1989-01-20 1994-03-23 新日本製鐵株式会社 Manufacturing method of cast slab for non-oriented electrical steel sheet
JPH0673727B2 (en) * 1990-02-28 1994-09-21 株式会社神戸製鋼所 Continuous casting method
JP2001087846A (en) * 1999-09-22 2001-04-03 Kawasaki Steel Corp Continuous casting method of steel slab and continuous casting device
JP2002035895A (en) * 2000-07-31 2002-02-05 Sumitomo Electric Ind Ltd Continuous casting method of steel
JP2002178114A (en) * 2000-12-20 2002-06-25 Nippon Steel Corp Continuous casting method for molten steel and continuously cast slab
JP2002206114A (en) * 2000-12-28 2002-07-26 Nippon Steel Corp Method for manufacturing nonoriented silicon steel sheet
JP2005095967A (en) * 2003-09-26 2005-04-14 Jfe Steel Kk Continuous casting method for steel
JP4352838B2 (en) * 2003-09-26 2009-10-28 Jfeスチール株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP2011101895A (en) 2011-05-26

Similar Documents

Publication Publication Date Title
JP4681689B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4646849B2 (en) Mold powder for continuous casting of high aluminum steel
JP5208556B2 (en) Titanium copper suitable for precision press working and method for producing the titanium copper
JP2008149379A (en) Cast slab with excellent solidification structure
JP5428780B2 (en) Steel continuous casting method
JP3993623B1 (en) High Al steel continuous casting method
BR112019019503B1 (en) METHOD FOR PRODUCING AUSTENITIC STAINLESS STEEL PLATE
JP2011218403A (en) Continuous casting method of steel
JP4430638B2 (en) Mold powder for continuous casting of high aluminum steel
JP5556886B2 (en) Manufacturing method of hot-rolled steel sheet
JP2005103604A (en) Continuous casting method, continuous casting cast slab, and steel plate
JP5167628B2 (en) Steel slab with fine solidification structure
JP4924104B2 (en) Method for producing high Ni content steel slab
BRPI0210700B1 (en) Low carbon steel sheet and sheet
JPWO2018056322A1 (en) Steel continuous casting method
JP4352838B2 (en) Steel continuous casting method
JP5942712B2 (en) Scum weir, thin slab manufacturing method, thin slab manufacturing equipment
WO2018056322A1 (en) Continuous steel casting method
JP4303578B2 (en) Method for reducing center defects in continuous cast slabs of steel
JP4345457B2 (en) High Al steel high speed casting method
JP2008030062A (en) Continuous casting method of high aluminum steel
JP2006110568A (en) Mold powder for continuously casting high aluminum steel and method for continuously casting high aluminum steel
KR100958029B1 (en) A Method of Manufacturing A Ferrite Stainless Steel
JP2018047480A (en) Continuous steel casting method
JP7031628B2 (en) Continuous steel casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R151 Written notification of patent or utility model registration

Ref document number: 5428780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350