JP2005103604A - Continuous casting method, continuous casting cast slab, and steel plate - Google Patents
Continuous casting method, continuous casting cast slab, and steel plate Download PDFInfo
- Publication number
- JP2005103604A JP2005103604A JP2003340375A JP2003340375A JP2005103604A JP 2005103604 A JP2005103604 A JP 2005103604A JP 2003340375 A JP2003340375 A JP 2003340375A JP 2003340375 A JP2003340375 A JP 2003340375A JP 2005103604 A JP2005103604 A JP 2005103604A
- Authority
- JP
- Japan
- Prior art keywords
- slab
- continuous casting
- segregation
- thickness
- unsolidified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Continuous Casting (AREA)
Abstract
Description
本発明は、鋼スラブの連続鋳造方法、その連続鋳造方法により鋳造されたスラブ鋳片および板厚断面における曲げ変形能に優れた鋼板に関し、さらに詳しくは、鋳片をバルジングさせた後に圧下する連続鋳造方法、前記鋳造方法により鋳造された成分偏析の低減された鋳片、および板厚方向に引張または圧縮応力が作用する板厚断面における曲げ変形に対する変形能に優れた鋼板に関する。 The present invention relates to a continuous casting method of a steel slab, a slab cast cast by the continuous casting method, and a steel plate excellent in bending deformability in a plate thickness section, and more specifically, a continuous slab reduction after bulging the cast slab. The present invention relates to a casting method, a slab with reduced component segregation cast by the casting method, and a steel plate having excellent deformability against bending deformation in a plate thickness section in which a tensile or compressive stress acts in the plate thickness direction.
鋼の連続鋳造鋳片において、鋳片厚さの中心部に、C、S、PおよびMnといった合金成分および不純物成分の濃縮した偏析帯である中心偏析や塊状の偏析が連なってV字状を呈するV偏析は、厚板製品における機械特性の低下の原因となる重大な鋳造欠陥の一つである。これらの欠陥は、鋳造末期の未凝固状態の残溶鋼が凝固する際に、収縮により発生する負圧により、デンドライト樹間に微細に濃化したミクロ偏析を有する溶鋼が樹間から吸い出されて、局所的に凝固組織が凝着した閉空間内に集積して凝固することにより、マクロ的な偏析を形成することに起因するものである。
従来より、鋳片の凝固組織の制御、あるいは凝固末期に鋳片の表面から厚さ方向に機械的な圧下を加えることにより、前記のマクロ偏析欠陥を低減する方法が開示されている。
例えば、特許文献1には、鋳片の軸心部を含む20%以上の領域の鋳造組織を、電磁攪拌によって等軸晶化し、V偏析開始位置から凝固完了までの範囲において、鋳片を圧下する方法が開示されている。ここで開示された方法により等軸晶化する理由は、凝固組織をできる限り球状に近い形に制御することにより、結晶が互いに凝着合体するのを抑制し、流動性を高めることができるからである。この方法は、圧下を加えることにより、鋳片内部の熱収縮および凝固収縮を外部から補償し、マクロ偏析の根本的な原因を除去しようとするものである。上記の特許文献1のように鋳片内部の凝固収縮を補償する程度の鋳片の未凝固圧下法は、軽圧下法と称され、連続鋳造方法において広く適用されている。
In a continuous cast slab of steel, a central segregation or a bulk segregation, which is a segregation band enriched with alloy components such as C, S, P and Mn and impurity components, is formed in a V shape at the center of the slab thickness. V segregation presenting is one of the serious casting defects that causes the deterioration of mechanical properties in thick plate products. These defects are due to the fact that when the unmelted residual molten steel at the end of casting is solidified, the molten steel with microsegregation finely concentrated between the dendritic trees is sucked out between the trees due to the negative pressure generated by shrinkage. This is because macroscopic segregation is formed by accumulating and solidifying in a closed space where the solidified tissue is locally adhered.
Conventionally, there has been disclosed a method for reducing the macro segregation defect by controlling the solidification structure of the slab or by applying mechanical reduction in the thickness direction from the surface of the slab at the end of solidification.
For example, Patent Document 1 discloses that a cast structure in a region of 20% or more including the axial center portion of a slab is made equiaxed by electromagnetic stirring, and the slab is reduced in a range from the V segregation start position to the completion of solidification. A method is disclosed. The reason for equiaxed crystallization by the method disclosed here is that by controlling the solidified structure to be as close to a spherical shape as possible, it is possible to suppress crystals from adhering to each other and improve fluidity. It is. This method attempts to compensate for heat shrinkage and solidification shrinkage inside the slab from the outside by applying reduction, and to remove the root cause of macrosegregation. The slab unsolidified reduction method that compensates for solidification shrinkage inside the slab as in Patent Document 1 is called a light reduction method, and is widely applied in continuous casting methods.
従来の軽圧下法を用いることにより、マクロ偏析による欠陥の低減には少なからぬ効果が得られたが、この軽圧下法も、昨今のさらなる高度な製品品質の要求に対しては、未だ不十分と言わざるを得ない。すなわち、軽圧下法の基本的思想は、凝固収縮量に相当する圧下量を加えることにより鋳片内の負圧の発生を防止するものであるが、実際の連続鋳造においては、凝固シェルの成長が必ずしも鋳片の幅方向に均一ではなく、また、浮遊等軸晶の分布も不均一であり、これらは圧下時における鋳片の変形抵抗の不均一の原因となっている。軽圧下法のように鋳片の外表面から一律に圧下する方法では、凝固収縮に対して、鋳片の幅方向に均等な収縮補償が与えられず、マクロ偏析の低減も幅方向に不均一とならざるを得ない。また、連続鋳造機の長手方向の位置によって、凝固シェルの成長度合いや収縮量が異なり、軽圧下法においてこれらに完全に適合できる圧下テーパを設けることは、事実上不可能である。
一方、本発明者らは、上記の軽圧下法における圧下量を単に大きくする場合に発生する鋳片の内部割れの問題を解決し、未凝固部が存在する鋳片を鋳片厚さの5〜25%バルジングさせた後、等軸晶の生成開始前に、バルジング相当量の厚さを一対のロールにより圧下する方法ならびにその方法により得られる鋳片および厚鋼板を、特許文献2として提案した。
By using the conventional light reduction method, a considerable effect was obtained in reducing defects due to macrosegregation. However, this light reduction method is still insufficient for the recent demand for higher product quality. I must say. In other words, the basic idea of the light reduction method is to prevent the generation of negative pressure in the slab by adding a reduction amount corresponding to the solidification shrinkage amount. However, it is not necessarily uniform in the width direction of the slab, and the distribution of floating equiaxed crystals is also non-uniform, which causes non-uniform deformation resistance of the slab during rolling. In the method of uniform reduction from the outer surface of the slab, such as the light reduction method, uniform shrinkage compensation is not provided in the width direction of the slab for solidification shrinkage, and macro segregation is also reduced in the width direction. It must be. Further, the degree of growth and shrinkage of the solidified shell differs depending on the position in the longitudinal direction of the continuous casting machine, and it is practically impossible to provide a reduction taper that can be completely adapted to these in the light reduction method.
On the other hand, the present inventors solved the problem of internal cracking of a slab that occurs when the amount of reduction in the above-described light reduction method is simply increased.
しかし、特許文献2に提案したバルジング後に圧下する鋳造方法においても、中心部の偏析の低減に加えて、未凝固圧下する時の鋳片中心部の凝固組織の性状次第では、鋳片を圧延して鋼板を製造し、例えば建材用の鋼板のように板厚方向に引張りまたは圧縮応力の作用する曲げ加工を施した場合、板厚の中心近傍で割れが発生する場合があることが判明した。すなわち、鋳片から圧延などの加工を経て得られた鋼板が、曲げ加工などに対する良好な変形能を有するためには、鋳片段階において、偏析度および組織を所定の条件内に制御しておく必要がある。
However, in the casting method that is reduced after bulging proposed in
本発明は、上記の問題に鑑みてなされたものであり、中心偏析やV偏析などのマクロ偏析の制御された鋳片を製造する方法、ならびにその鋳片および鋳片から加工された板厚断面における曲げ変形能に優れた鋼板を提供することを目的とする。
ここで、「板厚断面における曲げ変形能」とは、板厚方向に引張応力または圧縮応力が作用する曲げ変形を生じさせたときの変形能を意味する。
The present invention has been made in view of the above problems, and a method for producing a slab with controlled macrosegregation such as center segregation and V segregation, and a slab and a thickness section processed from the slab. It aims at providing the steel plate excellent in the bending deformability in.
Here, the “bending deformability in the plate thickness section” means the deformability when bending deformation in which tensile stress or compressive stress acts in the plate thickness direction is generated.
本発明者は、上述の課題を解決するために、前記した従来の問題点を踏まえて、成分偏析を低減できるスラブ鋳片の連続鋳造方法およびスラブを圧延して得られる、板厚断面における曲げ変形能に優れた鋼板について検討を加え、下記の(a)〜(c)の知見を得て、本発明を完成させた。
(a)スラブ鋳片の厚さ中心部の等軸晶の充填度を高く保ち、かつ、鋳片の厚さ中心部におけるC、Mn、PおよびSのそれぞれの成分含有率と鋳込み時の溶鋼の上記それぞれの成分の平均含有率との比(以下、「偏析比」という)が1以下となるように鋳造した場合には、そのスラブを圧延して得られる鋼板は、板厚断面における優れた曲げ変形特性を有する。
(b)上記(a)に示される鋳片は、湾曲型または垂直曲げ型の連続鋳造機を用いて、未凝固部を含む鋳片をバルジングさせた後に、未凝固溶鋼を電磁攪拌し、さらに電磁攪拌位置よりも下流側で圧下ロールを用いて未凝固部を含む鋳片を圧下する連続鋳造方法により製造することができる。
In order to solve the above-mentioned problems, the present inventor, in view of the above-described conventional problems, is a method for continuously casting a slab slab capable of reducing component segregation, and bending in a plate thickness section obtained by rolling a slab. The present invention was completed by examining the steel sheets excellent in deformability and obtaining the following knowledge (a) to (c).
(A) Maintaining a high degree of equiaxed crystal filling in the central part of the slab slab thickness, and containing each component of C, Mn, P and S in the central part of the slab thickness and molten steel at the time of casting When the steel is cast so that the ratio to the average content of each of the above components (hereinafter referred to as “segregation ratio”) is 1 or less, the steel sheet obtained by rolling the slab is excellent in the plate thickness section. Bending deformation characteristics.
(B) The slab shown in the above (a) is obtained by electromagnetically stirring the unsolidified molten steel after bulging the slab including the unsolidified portion using a curved or vertical bending type continuous casting machine, It can manufacture by the continuous casting method which rolls down the slab containing an unsolidified part using a reduction roll downstream from an electromagnetic stirring position.
(c)上記(b)の連続鋳造方法において、電磁攪拌は、前記連続鋳造機の湾曲部または曲げ部を形成する円弧の接線と水平面とのなす角度が30度以上となる湾曲部または曲げ部の位置において行い、未凝固部を含む鋳片の圧下は、鋳片の中心部固相率が0.1〜0.6の範囲において、圧下量D1(mm)と圧下時の未凝固部厚さD2(mm)との比である圧下比(D1/D2)の値を0.2〜0.6の範囲に調整して行う必要がある。 (C) In the continuous casting method of (b) above, the electromagnetic stirring is performed at a curved portion or a bent portion where an angle formed between a tangent line of a circular arc forming the curved portion or the bent portion of the continuous casting machine and a horizontal plane is 30 degrees or more. The reduction of the slab including the unsolidified part is performed at the position of the slab in the range where the solid part ratio of the center part of the slab is 0.1 to 0.6 and the reduction amount D1 (mm) and the unsolidified part thickness at the time of reduction. It is necessary to adjust the value of the rolling reduction ratio (D1 / D2), which is the ratio to the thickness D2 (mm), in the range of 0.2 to 0.6.
本発明は、上記の知見に基いて完成されたものであり、その要旨は、下記の(1)に示す連続鋳造方法、(2)に示す連続鋳造鋳片および(3)に示す鋼板にある。 The present invention has been completed based on the above findings, and the gist of the present invention is the continuous casting method shown in (1) below, the continuous cast slab shown in (2), and the steel plate shown in (3). .
(1)湾曲型または垂直曲げ型の連続鋳造機を用いて横断面形状が矩形の鋳片を鋳造する際に、鋳片内部の未凝固溶鋼を電磁攪拌するとともに、未凝固部を含む鋳片をバルジングさせた後に、圧下ロールを用いて未凝固部を含む鋳片を圧下する連続鋳造方法であって、前記連続鋳造機の湾曲部または曲げ部を形成する円弧の接線と水平面とのなす角度が30度以上となる湾曲部または曲げ部の位置において、鋳片内部の未凝固溶鋼を電磁攪拌するとともに、電磁攪拌する位置よりも下流側で前記連続鋳造機の水平部に圧下ロールを配置し、鋳片の中心部固相率が0.1〜0.6の領域において、圧下量D1(mm)と圧下時の未凝固部厚さD2(mm)との比である圧下比(D1/D2)の値を0.2〜0.6の範囲に調整して未凝固部を含む鋳片を圧下する連続鋳造方法。
(2)前記(1)に記載の連続鋳造方法により鋳造された鋳片であって、上面等軸晶率が10%以上で、かつ、鋳片の厚さ中心部を挟む上面側および下面側の合計で、少なくとも10mmの範囲内におけるC、Mn、PおよびSの偏析比がいずれも1以下である連続鋳造鋳片。
(1) When casting a slab having a rectangular cross-sectional shape using a curved or vertical bending type continuous casting machine, the slab including the unsolidified part is electromagnetically agitated into the unsolidified molten steel inside the slab Is a continuous casting method in which a slab including an unsolidified portion is reduced using a reduction roll after bulging, and an angle formed between a tangent to an arc forming a curved portion or a bent portion of the continuous casting machine and a horizontal plane Electromagnetically stir the unsolidified molten steel inside the slab at the position of the bending part or bending part where the angle is 30 degrees or more, and arrange a reduction roll in the horizontal part of the continuous casting machine downstream from the position of electromagnetic stirring. In the region where the solid fraction at the center of the slab is 0.1 to 0.6, the reduction ratio (D1 / D1), which is the ratio between the reduction amount D1 (mm) and the unsolidified portion thickness D2 (mm) at the time of reduction. The value of D2) is adjusted to the range of 0.2 to 0.6 and the unsolidified part is included Continuous casting method to pressure the slab.
(2) A slab cast by the continuous casting method described in (1) above, wherein the upper surface equiaxed crystal ratio is 10% or more, and the upper surface side and the lower surface side sandwiching the thickness center portion of the slab A continuous cast slab in which the segregation ratio of C, Mn, P, and S in the range of at least 10 mm is 1 or less.
(3)前記(2)に記載の連続鋳造鋳片を熱間圧延することにより得られる鋼板であって、板厚中心部におけるC、Mn、PおよびSの偏析比がいずれも1以下である鋼板。 (3) A steel plate obtained by hot rolling the continuous cast slab described in (2), wherein the segregation ratios of C, Mn, P, and S in the central portion of the plate thickness are all 1 or less. steel sheet.
本発明において、「中心部固相率」とは、鋳片中心部の固・液相共存相において、固相の占める分率をいう。
「未凝固部厚さ」とは、鋳片内の未凝固部(固相率が0.8未満)の領域の鋳片厚さ方向の寸法をいう。
「上面等軸晶率」とは、鋳片の厚さ方向断面において、厚さ中心より上面側における等軸晶部分の占める面積率を百分率により表した値をいう。
In the present invention, the “center part solid phase ratio” means a fraction occupied by the solid phase in the solid / liquid phase coexisting phase at the center part of the slab.
“Unsolidified part thickness” refers to the dimension in the slab thickness direction of an unsolidified part (solid fraction is less than 0.8) in the slab.
The “upper surface equiaxed crystal ratio” refers to a value representing, as a percentage, the area ratio occupied by the equiaxed crystal portion on the upper surface side from the thickness center in the cross section in the thickness direction of the slab.
本発明の連続鋳造方法によれば、鋳片内部の未凝固溶鋼を電磁攪拌するとともに、未凝固部を含む鋳片をバルジングさせた後に圧下ロールを用いて圧下するに際し、電磁攪拌を行う位置、電磁攪拌時の鋳片の中心部固相率の範囲、および鋳片の圧下比を適正化することにより、マクロ偏析およびセミマクロ偏析が安定して低減された厚板用スラブ鋳片の製造が可能となる。上記の鋳片を圧延して得られる厚板は、板厚断面における優れた曲げ変形能を有し、加工割れなどの欠陥の発生を防止できる。 According to the continuous casting method of the present invention, the electromagnetic stirring of the unsolidified molten steel inside the slab, and the position at which electromagnetic stirring is performed when the slab including the unsolidified portion is bulged after being squeezed using a reduction roll, It is possible to produce slab slabs for thick plates with stable reduction of macro-segregation and semi-macro segregation by optimizing the range of solid fraction in the center of the slab during electromagnetic stirring and the reduction ratio of the slab. It becomes. The thick plate obtained by rolling the above slab has excellent bending deformability in the plate thickness cross section, and can prevent the occurrence of defects such as work cracks.
本発明は、 前述のとおり、鋳片の未凝固部を電磁攪拌するとともにバルジングさせた後に圧下するに際し、電磁攪拌を行う位置、電磁攪拌時の中心部固相率の範囲、および圧下比を適正化した厚板用スラブ鋳片の連続鋳造方法、連続鋳造鋳片ならびにそれを圧延して得られる、加工割れなどの欠陥の生じることのない厚板である。以下に本発明を前記の範囲に限定した理由、好ましい範囲などについて詳細に説明する。
1)対象とする連続鋳造機の型式
本発明の連続鋳造方法が湾曲型または垂直曲げ型連続鋳造機を対象とする理由について説明する。いわゆるスラブと称される横断面形状が矩形の鋳片を鋳造する連続鋳造機は、大別して、垂直型、湾曲型および垂直曲げ型の3種類が知られている。このうち、垂直型は鋳造機の機高が高く、工場建家を含めた設備費が過大となり、現在では一般的ではない。また、本発明の方法は、鋳片上面側の等軸晶の生成を促進することをも狙っている。この観点では、鋳片に上面側および下面側が存在し、また、それらの領域において等軸晶の生成度合いに相違が発生するのは、湾曲型または垂直曲げ型連続鋳造機を用いて矩形断面の鋳片を鋳造する場合である。一方、垂直型連続鋳造機による鋳造の場合には、鋳片には上面側も下面側も存在せず、また、等軸晶の生成度合いも鋳片横断面内で、ほぼ均一である。
As described above, in the present invention, when the unsolidified portion of the slab is subjected to electromagnetic stirring and bulging and then rolled down, the position where the electromagnetic stirring is performed, the range of the solid phase ratio at the center during electromagnetic stirring, and the rolling ratio are set appropriately. This is a continuous casting method of a slab slab for a thick plate, a continuous casting slab and a thick plate obtained by rolling the slab slab without defects such as work cracks. The reason why the present invention is limited to the above range, the preferable range, etc. will be described in detail below.
1) Model of target continuous casting machine The reason why the continuous casting method of the present invention targets a curved or vertical bending type continuous casting machine will be described. A continuous casting machine called a so-called slab for casting a slab having a rectangular cross-sectional shape is roughly classified into three types: a vertical type, a curved type, and a vertical bending type. Of these, the vertical type has a high casting machine height, and the equipment cost including the factory building is excessive, which is not common at present. The method of the present invention is also aimed at promoting the formation of equiaxed crystals on the upper surface side of the slab. From this point of view, the slab has an upper surface side and a lower surface side, and the difference in the degree of equiaxed crystal formation in these regions is that of a rectangular cross section using a curved or vertical bending type continuous casting machine. This is a case of casting a slab. On the other hand, in the case of casting by the vertical continuous casting machine, the slab has neither the upper surface side nor the lower surface side, and the generation degree of equiaxed crystals is almost uniform within the cross section of the slab.
以上の理由から、本発明では、連続鋳造機の型式が湾曲型または垂直曲げ型の場合を対象とする。 For the above reasons, the present invention is directed to the case where the type of the continuous casting machine is a curved type or a vertical bending type.
2)電磁攪拌を行う位置
「電磁攪拌を、圧下ロールよりも上流の連続鋳造機の湾曲部または曲げ部で、かつ、前記湾曲部または曲げ部を形成する円弧の接線と水平面とのなす角度が30度以上となる位置において実施する理由」について以下に述べる。
本発明では、スラブ鋳片厚さの中心部に等軸晶を十分に形成させ、これを充填させることが重要である。その理由は下記のとおりである。すなわち、溶鋼は鋳型内に注入されて冷却され、鋳型に接する部分は凝固シェルを形成するが、凝固シェル間の溶鋼は、冷却によりスーパヒート(溶鋼温度から液相線温度を減じた温度差)が減じられるので、その溶鋼内には等軸晶の核または初晶が形成され、これらが浮遊している。この等軸晶の核または初晶は、溶鋼よりもわずかに密度が大きいため、時間の経過とともに溶鋼内を沈降して行く。
このときに電磁攪拌を実施しなければ、等軸晶は鋳片の下面側に沈降し、鋳片上面での等軸晶の充填度は低くなる。また、電磁攪拌のタイミングが遅い場合には、鋳片の下面側に沈降した等軸晶が下面側の凝固シェルに固着するので、等軸晶を残溶鋼内に分散させることはできなくなる。種々の試験を繰り返した結果、本発明において上面側の等軸晶の充填度を効果的に向上させるためには、連続鋳造機の湾曲部または曲げ部を形成する円弧の接線と水平面とのなす角度が30度以上となる位置で電磁攪拌を実施すべきであることが判明した。
上記円弧の接線と水平面とのなす角度が30度未満では、鋳片は水平に近くなり、等軸晶の充填度を十分に確保できなくなる。上記角度の上限は、垂直曲げ型連続鋳造機においては、垂直部における90度であり、湾曲型連続鋳造機では、それに近い値となる。しかしながら、その場合には、いずれも鋳型に近い位置における攪拌となり、鋳造後の攪拌のタイミングが早期過ぎることから、電磁攪拌により一旦は鋳片内に分散された等軸晶が再度沈降する可能性がある。したがって、上記角度は60度程度以内とするのが好ましい。
なお、後述するとおり、上記角度が30度以上の場合には、鋳片の鋳片の上面等軸晶率は10%以上になることが判明した。
3)鋳片のバルジング後の圧下および水平部への圧下ロールの配置
「鋳片を鋳造中に一旦バルジングさせた後に圧下する理由」は、鋳片を一旦バルジングさせることにより、圧下ロールが短辺の凝固シェルを潰すことなく圧下が可能となり、比較的小さな圧下力により大きな圧下効果を得ることができるからである。
圧下ロールを連続鋳造機内の水平部に配置する理由は、下記のとおりである。すなわち、第1の理由は、中心部固相率が0.1〜0.6となる凝固末期において圧下を実施するためには、連続鋳造機の下流側に配置する必要があるからである。また、第2の理由は、大きな力を必要とする鋳片圧下の反力をセグメントを通して設備の基礎部により支持するためには、圧下ロールを水平部に配置する方が、湾曲部や垂直部に配置するよりも安価で、かつ、設備構造的にも無理を生じないからである。
なお、水平部に配置する圧下ロールは、上下一対の圧下ロール対とするのが好ましい。偏析の集積を効果的に回避できるからである。複数の圧下ロール対を用いてもよいが、その場合には、圧下ロール対で圧下する毎に、本発明の連続鋳造方法で規定する圧下条件を満たすこととする。
2) Position at which electromagnetic stirring is performed “An electromagnetic stirring is performed at a curved portion or a bent portion of a continuous casting machine upstream of a reduction roll, and an angle formed between a tangent line of a circular arc forming the curved portion or the bent portion and a horizontal plane. The reason for “execution at a position of 30 degrees or more” will be described below.
In the present invention, it is important that sufficient equiaxed crystals are formed at the center of the slab slab thickness and filled. The reason is as follows. That is, the molten steel is poured into the mold and cooled, and the portion in contact with the mold forms a solidified shell, but the molten steel between the solidified shells has a superheat (temperature difference obtained by subtracting the liquidus temperature from the molten steel temperature) due to cooling. Since it is reduced, equiaxed nuclei or primary crystals are formed in the molten steel, which are floating. The equiaxed crystal nucleus or primary crystal has a slightly higher density than the molten steel, and therefore settles in the molten steel as time passes.
If electromagnetic stirring is not performed at this time, the equiaxed crystals will settle to the lower surface side of the slab, and the degree of filling of equiaxed crystals on the upper surface of the slab will be low. Further, when the timing of electromagnetic stirring is late, the equiaxed crystal that has settled on the lower surface side of the slab is fixed to the solidified shell on the lower surface side, so that the equiaxed crystal cannot be dispersed in the residual molten steel. As a result of repeating various tests, in order to effectively improve the filling degree of the equiaxed crystal on the upper surface side in the present invention, the tangent line of the arc forming the curved portion or the bent portion of the continuous casting machine and the horizontal plane are formed. It has been found that electromagnetic stirring should be carried out at a position where the angle is 30 degrees or more.
If the angle formed by the tangent line of the arc and the horizontal plane is less than 30 degrees, the slab becomes nearly horizontal, and it is impossible to secure a sufficient degree of equiaxed crystal filling. The upper limit of the angle is 90 degrees in the vertical portion in the vertical bending type continuous casting machine, and is close to that in the curved type continuous casting machine. However, in that case, stirring is performed at a position close to the mold, and the timing of stirring after casting is too early, so that equiaxed crystals once dispersed in the slab may settle again due to electromagnetic stirring. There is. Therefore, the angle is preferably within about 60 degrees.
As will be described later, it was found that when the angle is 30 degrees or more, the equiaxed crystal ratio of the upper surface of the slab of the slab becomes 10% or more.
3) Rolling after bulging of the slab and placement of the rolling roll on the horizontal part “Reason to squeeze the slab after bulging once during casting” This is because the reduction can be performed without crushing the solidified shell, and a large reduction effect can be obtained with a relatively small reduction force.
The reason why the rolling roll is arranged in the horizontal portion in the continuous casting machine is as follows. That is, the first reason is that it is necessary to dispose at the downstream side of the continuous casting machine in order to perform the reduction at the end of solidification where the solid fraction of the central portion is 0.1 to 0.6. The second reason is that in order to support the reaction force under the slab reduction that requires a large force by the base part of the equipment through the segment, it is better to arrange the reduction roll in the horizontal part than in the curved part or the vertical part. This is because it is cheaper than the arrangement in the above-described configuration and does not cause unreasonableness in the equipment structure.
In addition, it is preferable that the rolling rolls arranged in the horizontal portion are a pair of upper and lower rolling rolls. This is because accumulation of segregation can be effectively avoided. A plurality of reduction roll pairs may be used. In that case, the reduction condition defined by the continuous casting method of the present invention is satisfied every time the reduction roll pairs are reduced.
4)未凝固圧下時の中心部固相率および圧下比
「鋳片の中心部固相率が0.1〜0.6の領域において、圧下量D1と未凝固部厚さD2との比である圧下比(D1/D2)の値を0.2〜0.6の範囲に調整して圧下する理由」について下記に説明する。なお、未凝固部厚さは、鋳片内の固相率が0.8未満の領域の鋳片厚さ方向の寸法をいう。
4) Central solid phase ratio and reduction ratio at the time of unsolidified reduction "In the region where the central solid phase ratio of the slab is 0.1 to 0.6, the ratio between the reduction amount D1 and the unsolidified portion thickness D2 The reason for adjusting the value of a certain reduction ratio (D1 / D2) to the range of 0.2 to 0.6 will be described below. In addition, unsolidified part thickness says the dimension of the slab thickness direction of the area | region where the solid-phase rate in a slab is less than 0.8.
本発明の鋳片の品質の特徴は、好ましい品質の鋼板を得るために、鋳片の厚さ中心部を挟む上面側および下面側の合計で少なくとも10mmの範囲内におけるC、Mn、PおよびSの偏析比が1以下であることである。これらの偏析比の値を得るためには、鋳片中心部の最終凝固部における等軸晶間に存在する成分の濃化した溶鋼を未凝固圧下によって絞り出さなければならない。
中心部固相率が0.6を超えて高くなると完全凝固に近い状態となるので、中心部の残溶鋼を絞り出すには過大な力が必要となり、前記の絞り出しは事実上困難となる。一方、中心部固相率が0.1未満では、中心部の流動性は良好で圧下は容易であるが、圧下後に再度、厚さ中心部に成分偏析が生成する。
また、圧下比(D1/D2)が0.2未満では、圧下量が不十分であり、成分偏析が残存する。他方、圧下比が0.6を超えて大きくなると、負偏析の程度が大きくなり過ぎ、後述するとおり、鋼板の曲げ加工性などがかえって悪化する。
ここで、圧下比が0.2〜0.6の範囲は、凝固界面(固相率が0.8となる面)が圧着する条件ではないが、併せて圧下時の中心部固相率を0.1〜0.6とすることにより、未凝固液相中に分散する等軸晶が、上下の凝固界面が近づくにつれて、あたかもクッション材のように応力伝達の媒体的役割を演じ、両凝固界面内が圧縮されて適度に残溶鋼が絞り出される状態となる。この適度な状態が、圧延後に得られる鋼板に良好な加工性を与える。そこで、鋳片圧下時の中心部固相率の適正範囲を0.1〜0.6とし、かつ、圧下比の適正範囲を0.2〜0.6とした。
5)鋳片および鋼板の厚さ中心部のC、Mn、PおよびSの偏析比
前記の鋳片を圧延することにより得られた「鋼板の板厚中心部におけるC、Mn、PおよびSの偏析比が1以下である鋼板」の意義について述べる。
The quality of the slab of the present invention is characterized by C, Mn, P and S within a total range of at least 10 mm on the upper surface side and the lower surface side sandwiching the thickness center of the slab in order to obtain a steel plate of desirable quality. The segregation ratio is 1 or less. In order to obtain these segregation ratio values, it is necessary to squeeze out the molten steel enriched with components existing between equiaxed crystals in the final solidified portion at the center of the slab by unsolidification pressure.
When the solid fraction at the center is higher than 0.6, it becomes a state close to complete solidification, so that excessive force is required to squeeze out the remaining molten steel in the center, and the squeezing becomes practically difficult. On the other hand, when the solid fraction of the central part is less than 0.1, the fluidity of the central part is good and the reduction is easy, but component segregation occurs again in the central part of the thickness after the reduction.
On the other hand, if the reduction ratio (D1 / D2) is less than 0.2, the reduction amount is insufficient and component segregation remains. On the other hand, when the reduction ratio exceeds 0.6, the degree of negative segregation becomes too large, and as described later, the bending workability of the steel sheet is deteriorated.
Here, the range where the reduction ratio is 0.2 to 0.6 is not a condition where the solidification interface (the surface where the solid phase ratio becomes 0.8) is pressure-bonded. By setting it to 0.1 to 0.6, the equiaxed crystals dispersed in the unsolidified liquid phase play the role of a medium for stress transmission as if the upper and lower solidification interfaces approached, and both solidifications The inside of the interface is compressed and the remaining molten steel is appropriately squeezed out. This appropriate state gives good workability to the steel sheet obtained after rolling. Therefore, the appropriate range of the solid fraction at the center when the slab is reduced is set to 0.1 to 0.6, and the appropriate range of the reduction ratio is set to 0.2 to 0.6.
5) Segregation ratio of C, Mn, P, and S in the thickness center of the slab and steel plate “C, Mn, P, and S in the thickness center of the steel plate obtained by rolling the slab. The significance of the “steel plate having a segregation ratio of 1 or less” will be described.
上面等軸晶率が10%以上で、かつ、鋳片の厚さ中心部を挟む上面側および下面側の合計で、少なくとも10mmの範囲内におけるC、Mn、PおよびSの偏析比が1以下であるスラブ鋳片を圧延して鋼板とする過程においては、厚さ中心部における成分濃度に変化は生じず、圧延後の鋼板においてもスラブ鋳片の成分濃度が維持される。
従来の通常の鋼板では、鋳片中心部にもともと存在した中心偏析やV偏析が圧延方向に延伸した帯状の偏析となって存在している。このような鋼板に例えば、建築材料用途として曲げ加工を加えた場合には、偏析部分と他の部分の強度差から偏析境界に応力集中が発生し、割れが発生する場合がある。また、鋼中のMnとSとによって鋳片段階で生成した粗大なMnSの介在物が残存して割れの起点となり易い。
一方、中心部の成分が本発明で規定する範囲内に調整されている場合には、鋼板中心部は軽い負偏析となり、通常の鋼板のような帯状の偏析は無く、曲げ加工性は良好である。これらの成分元素の偏析比が1以下であることは、成分の濃化溶鋼がデンドライト樹間から排出された結果、顕著なマクロ偏析が存在しないことを示している。
「鋳片の厚さ中心部を挟む上面側および下面側の合計で、少なくとも10mmの範囲内とする理由」は、上記の上面側および下面側の合計値が10mm未満では、厚さ中心部を挟むその範囲内の成分元素の偏析比が1以下であっても、鋳片の段階で大きな偏析が発生した場合には、鋼板におよぼす負偏析の効果が小さくなるからである。厚さ中心部を挟む上面側および下面側の合計値の上限は特に規定しないが、未凝固圧下は凝固末期に実施される必要があることから受ける制約があるので、好ましくは、30mm以内である。
The segregation ratio of C, Mn, P, and S in the range of at least 10 mm in the total of the upper surface side and the lower surface side sandwiching the thickness center portion of the slab is 1 or less. In the process of rolling the slab cast slab into a steel plate, the component concentration in the central portion of the thickness does not change, and the component concentration of the slab cast is maintained even in the steel plate after rolling.
In conventional ordinary steel plates, center segregation and V segregation originally present in the center of the slab are present as strip-like segregation extending in the rolling direction. For example, when bending is applied to such a steel sheet as a building material application, stress concentration may occur at the segregation boundary due to the difference in strength between the segregated portion and other portions, and cracks may occur. In addition, coarse MnS inclusions generated in the slab stage due to Mn and S in the steel remain and are likely to become the starting point of cracking.
On the other hand, when the central component is adjusted within the range specified in the present invention, the steel plate center portion is lightly negative segregation, there is no band-like segregation like ordinary steel plates, and bending workability is good. is there. The segregation ratio of these component elements being 1 or less indicates that there is no significant macrosegregation as a result of the component concentrated molten steel being discharged from between dendritic trees.
“The reason why the total of the upper surface side and the lower surface side across the thickness center portion of the slab is within a range of at least 10 mm” is that if the total value of the upper surface side and the lower surface side is less than 10 mm, the thickness center portion is This is because even if the segregation ratio of the component elements within the range sandwiched is 1 or less, the effect of negative segregation on the steel sheet is reduced when large segregation occurs at the stage of the slab. The upper limit of the total value of the upper surface side and the lower surface side sandwiching the thickness center portion is not particularly specified, but it is preferably within 30 mm because there is a restriction that uncoagulation reduction needs to be performed at the end of coagulation. .
6)鋳片の上面等軸晶率
「鋳片の上面等軸晶率を10%以上とする理由」は下記のとおりである。すなわち、残溶鋼中に分散された等軸晶は、鋳片厚さ中央部の中心偏析やV偏析を、連結したものでなく厚さ方向に分散させ不明瞭化させるのに効果的であり、かつ、前記4)の条件で未凝固圧下された時に分散した偏析が排出される効果も加わって、鋳片における偏析の集積を回避するのに効果を発揮する。鋳片の上面等軸晶率が10%未満では、中心偏析やV偏析を形成する濃化溶鋼が充分に分散されずに部分的に集積することにより、偏析粒であるセミマクロ偏析を形成しやすくなり、上記の効果が得られない。そこで、上面等軸晶率の適正範囲を10%以上とした。このように鋳片における偏析の集積を回避することにより、鋼板の曲げ加工時の偏析部への歪みの集中およびそれに基く割れを回避することが可能となる。
6) The equiaxed crystal ratio of the upper surface of the slab “The reason why the upper surface equiaxed crystal ratio of the slab is 10% or more” is as follows. That is, the equiaxed crystal dispersed in the residual molten steel is effective in obscuring the center segregation and V segregation in the center part of the slab thickness in the thickness direction instead of being connected. In addition, the effect of preventing segregation of segregation in the slab is exerted by adding the effect of discharging segregation dispersed when unsolidified under the condition 4). If the equiaxed crystal ratio of the upper surface of the slab is less than 10%, the concentrated molten steel that forms center segregation and V segregation is not sufficiently dispersed and is partially accumulated, so that it is easy to form semi-macrosegregation that is segregated grains. Therefore, the above effect cannot be obtained. Therefore, the appropriate range of the equiaxed crystal ratio on the upper surface is set to 10% or more. Thus, by avoiding the accumulation of segregation in the slab, it becomes possible to avoid the concentration of strain on the segregation part during the bending of the steel sheet and the cracks based on it.
また、前述したように、圧下比(D1/D2)が0.6を超える過度な絞り出しは、むしろ鋼板の曲げ加工性を悪化させる。鋳片における中心偏析およびV偏析は低減し、マクロ的な見栄えはさらに向上するが、未凝固圧下の結果、中心に形成される負偏析の程度が大きくなり、圧延後の鋼板において、板厚中心部の負偏析とその両外面側の正偏析との機械的強度差から、その境界部に歪みが集中するという新たな問題が発生することが判明した。このような鋼板を曲げ加工した場合には、厚さ中心部ではなく、曲げ円弧に沿って、厚さ中心よりもやや外側において割れが発生するという現象が観察された。 Further, as described above, excessive squeezing in which the rolling ratio (D1 / D2) exceeds 0.6 rather deteriorates the bending workability of the steel sheet. Although the center segregation and V segregation in the slab are reduced and the macro appearance is further improved, the degree of negative segregation formed at the center increases as a result of unsolidification reduction, and the steel sheet after rolling has a thickness center. From the difference in mechanical strength between the negative segregation of the part and the positive segregation on the both outer surfaces, it has been found that a new problem of concentration of strain at the boundary occurs. When such a steel sheet was bent, a phenomenon was observed in which cracking occurred not only at the center of the thickness but along the bending arc slightly outside the thickness center.
本発明の連続鋳造方法の効果を確認するため、以下に示す本発明例および比較例についての試験を行い、その結果を評価した。
(試験方法)
1)鋳造方法
図1に、本試験に用いた連続鋳造装置の縦断面を模式的に示す。鋳造試験には垂直曲げ型の連続鋳造機を用い、鋳片厚さが235mmで、成分組成が質量%で、C:0.15%、Mn:0.5%、P:0.018%およびS:0.004%の500N/mm2級鋼を鋳造した。鋳片幅は一律に1800mmとし、鋳造速度は0.75〜0.95m/minとし、二次冷却の比水量は1.5リットル/kg−steelとした。
浸漬ノズル1を経て鋳型3に注入された溶鋼4は、鋳型3および、その下方の図示しない二次冷却スプレーノズル群から噴射されるスプレー水により冷却されて凝固シェル5を形成し鋳片8となる。このとき、鋳片8は、その内部に未凝固部10を保持したまま、ガイドロール群6により支持され、圧下ロール7により圧下されて、ピンチロール群11により引き抜かれる。圧下口一ル7はメニスカスから21mの位置に配置され、圧下ロールの直径は450mm、圧下力はロール当たり最大3.43×106Nである。図1には、本発明の連続鋳造方法を垂直曲げ型連続鋳造機に適用する場合を示したが、本発明の方法は、同様に湾曲型連続鋳造機などにも適用できる。
ガイドロール群6は、同図中のB1−B2間の矢印で示す範囲において、その鋳片厚さ方向の間隔を引抜方向に段階的に増加できるように配置されており(以下、「バルジングゾーン」と称する)、この区間において、内部に未凝固部10が存在する鋳片をバルジングさせる。さらに、その下流側に配置された圧下ロール7により、鋳片の前記バルジング相当分を圧下する。なお、バルジング量は、ガイドロール群6の厚さ方向の間隔を制御することにより調整可能である。本試験においては、バルジングの開始位置は一律にメニスカスから約9mの位置とし、バルジング量は25mmに設定した。
In order to confirm the effect of the continuous casting method of the present invention, the following examples of the present invention and comparative examples were tested and the results were evaluated.
(Test method)
1) Casting method FIG. 1 schematically shows a longitudinal section of a continuous casting apparatus used in this test. For the casting test, a vertical bending type continuous casting machine was used, the slab thickness was 235 mm, the component composition was mass%, C: 0.15%, Mn: 0.5%, P: 0.018% and S: 0.004% of 500 N / mm grade 2 steel was cast. The slab width was uniformly 1800 mm, the casting speed was 0.75 to 0.95 m / min, and the specific water amount for secondary cooling was 1.5 liter / kg-steel.
The
The guide roll group 6 is arranged so that the interval in the slab thickness direction can be increased stepwise in the drawing direction within the range indicated by the arrow between B1 and B2 in the figure (hereinafter referred to as “bulging zone”). In this section, the slab in which the
圧下時の未凝固厚さは鋳造速度とバルジング量によって定まる。すなわち、未凝固厚さは、圧下開始位置までの鋳片の冷却による凝固シェルの成長厚さとバルジングした鋳片の厚さにより定まる。固相率が0.8となる凝固シェルの厚さと中心部固相率は、それぞれ鋳造速度、鋳片の表面冷却条件および鋳造鋼種の物性を考慮した鋳片厚さ方向の非定常伝熱解析計算などによって求めることができる。このようにして求められた計算結果と、圧下前の鋳片厚さ(すなわち、鋳片の鋳型内厚さとバルジング量との和)とから、未凝固圧下前の固相率が0.8である界面を基準とした未凝固厚さ(すなわちD2)が求められる。 The unsolidified thickness at the time of rolling is determined by the casting speed and the bulging amount. That is, the unsolidified thickness is determined by the growth thickness of the solidified shell due to cooling of the slab up to the reduction start position and the thickness of the bulged slab. Unsteady heat transfer analysis in the slab thickness direction considering the casting speed, slab surface cooling conditions, and physical properties of the cast steel, respectively It can be obtained by calculation. From the calculation result thus obtained and the slab thickness before reduction (that is, the sum of the thickness of the slab in the mold and the bulging amount), the solid phase ratio before unsolidification reduction is 0.8. An unsolidified thickness (ie, D2) based on a certain interface is obtained.
また、試験に用いた連続鋳造機には、電磁攪拌装置9が設けられており、その配置位置は、同図中のE1−E2間の矢印で示すように鋳片の引き抜き方向に変更可能である。上記のような設備とすることにより、電磁攪拌を付与するタイミングにおける鋳片と水平面とのなす角度を調整することが可能であり、本発明の連続鋳造方法の効果を確認することができる。このように電磁攪拌の位置を変化させることにより等軸晶の充填度を制御した。電磁攪拌装置9は移動磁場方式であり、磁束密度は300ガウス、溶鋼の攪拌速度は最大300rpmである。
また、タンディッシュ内の溶鋼の過熱度(△T)は、40〜50℃の範囲で、ほぼ一定とし、圧下時の中心固相率および末凝固厚さは、鋳造速度を変えることにより調整した。
Further, the continuous casting machine used in the test is provided with an
Moreover, the superheat degree (ΔT) of the molten steel in the tundish was substantially constant in the range of 40 to 50 ° C., and the central solid fraction and the final solidification thickness during the reduction were adjusted by changing the casting speed. .
2)マクロ組織および偏析比の調査方法
図2は鋳片のマクロ組織および成分偏析状況の調査用サンプルの採取方法を示す図である。各鋳造試験により得られた鋳片から鋳造方向に長さ1mのサンプルを切り出し、長さ方向の両端部および中央部から3枚の横断面マクロ観察用の板サンプル12を切り出して調査に供した。それぞれの板サンプル12について鋳片幅方向の端部からの凝固部約250mmを除去し、鋳片上面側の等軸晶部分の占める面積率を調査し、その面積率の平均値を求めて上面等軸晶率とした。
2) Investigation Method of Macro Structure and Segregation Ratio FIG. 2 is a diagram showing a method of collecting a sample for investigation of the macro structure and component segregation status of a slab. A sample having a length of 1 m was cut out in the casting direction from the slab obtained by each casting test, and three
また、各横断面の板サンプル12から、EPMAによるマッピング分析(以下、「MA分析」と称する)用のサンプル13を、鋳片の幅方向中央(同図中において「C」で示す)、幅方向の1/4の位置(同図中において「1/4W」で示す)および幅方向の3/4の位置(同図中において「3/4W」で示す)の3箇所から切り出し、合計9個のMA分析用サンプル13について、MA分析を実施した。各々のMA分析は、鋳片の厚さ中心部の厚さ方向10mm×幅方向40mmの範囲について行い、C、Mn、PおよびSの平均含有率を求めた。これらの各成分の平均含有率を溶鋼鋳込み時の各成分の平均含有率で除して各成分の偏析比を求め、さらに、9個のサンプルについての偏析比の値を算術平均して偏析比の代表値とした。
Further, from the
3)板厚断面における曲げ試験方法
長さ8mの鋳片を採取し、通常の加熱炉で1200℃に加熱した後、圧延温度1200〜700℃の間で熱間圧延を行って厚さ30mmの厚鋼板とした。その鋼板横断面の板幅中央(以下、「C」と記す)、板幅の1/4の位置(以下、「1/4W」と記す)および板幅の3/4の位置(以下、「3/4W」と記す)から、それぞれ鋼板の全板厚を含む板厚方向(サンプル長さ)30mm×板幅方向(サンプル幅)32mm×板の圧延方向(サンプル厚さ)9mmの板厚断面のスライスサンプルを合計3個切り出した。
また、鋼板の長手方向の板厚断面についても、同様にして、鋼板の長手方向を4等分した中央側の3箇所の位置(以下、「1/4L」、「1/2L」および「3/4L」と記す)で、板幅方向中央部から板厚断面のスライスサンプルを合計3個切り出した。
図3は、板厚断面からの採取サンプルの曲げ試験方法を示す図である。前記の板厚断面スライスサンプル14の板厚方向(サンプル長さ)の両端に幅32mm、長さ60mmおよび厚さ9mmのC含有率が0.2質量%の均質化処理を行った鋼板15を溶接した。この両端を固定して、サンプルの板厚中心部に曲率半径が1.5mmの円弧を有する幅32mmの金具を押し当て、サンプルが金具の円弧形状に沿うまで、紙面に垂直な方向にサンプル全体を曲げ、このときの割れの発生の有無を調査した。
なお、割れ発生の有無については、割れの発生がない場合を「割れの発生なし」として○印により、割れ長さの合計が5mm未満の場合を「軽微な割れ発生」として△印により、そして、割れ長さの合計が5mm以上の場合を「割れ発生」として×印により区分した。
(試験結果)
上述の試験条件および試験結果をまとめて表1に示した。ここで、中心部固相率は、圧下開始時の中心固相率を示した。
3) Bending test method in plate thickness section A slab having a length of 8 m is collected, heated to 1200 ° C. in a normal heating furnace, and then hot-rolled at a rolling temperature of 1200 to 700 ° C. to have a thickness of 30 mm. A thick steel plate was used. The center of the plate width (hereinafter referred to as “C”), the position of 1/4 of the plate width (hereinafter referred to as “1 / 4W”), and the position of 3/4 of the plate width (hereinafter referred to as “C”). 3 / 4W "), each including a total thickness of the steel sheet in the plate thickness direction (sample length) 30 mm x plate width direction (sample width) 32 mm x plate rolling direction (sample thickness) 9 mm A total of three slice samples were cut out.
Similarly, with respect to the thickness cross section in the longitudinal direction of the steel plate, similarly, three positions on the center side (hereinafter referred to as “1 / 4L”, “1 / 2L”, and “3”) obtained by dividing the longitudinal direction of the steel plate into four equal parts. / 4L "), a total of three slice samples having a plate thickness cross section were cut out from the central portion in the plate width direction.
FIG. 3 is a diagram showing a bending test method of a sample collected from a plate thickness cross section. A
As for the presence or absence of cracks, the case where no cracks occurred was marked as “No cracks” by ○, the case where the total crack length was less than 5 mm was marked as “Minor cracks” by Δ, and The case where the total crack length was 5 mm or more was classified as “crack generation” by x mark.
(Test results)
The test conditions and test results described above are summarized in Table 1. Here, the central solid phase ratio indicates the central solid phase ratio at the start of the reduction.
同表中の本発明例1〜5は、本発明の鋳造方法で規定する条件を全て満たす本発明例についての試験であり、また、比較例1〜13は、本発明の方法で規定する条件の少なくとも1つを満たさない比較例についての試験である。 Examples 1 to 5 of the present invention in the table are tests on examples of the present invention that satisfy all the conditions specified by the casting method of the present invention, and Comparative Examples 1 to 13 are conditions specified by the method of the present invention. It is the test about the comparative example which does not satisfy | fill at least 1 of these.
比較例1、2および3の試験は、それぞれ本発明例1、2および4の試験に比較して、電磁攪拌位置における鋳片曲げ部の円弧の接線と水平面とのなす角度(以下、単に「電磁攪拌位置の角度」ともいう)のみを変更し、本発明の方法で規定する30度未満とした。その結果、未凝固圧下によって均等に濃化溶鋼を排出することができず、等軸晶率の不足している鋳片上面側で偏析の粒が観察された。また、鋼板の板厚断面曲げ試験においては割れが発生し、割れ部ではMnとSの偏析に起因するMnS介在物が割れの起点になっていることが確認された。これより、電磁攪拌位置の角度を30度以上にすることが有効であることが判明した。 The tests of Comparative Examples 1, 2, and 3 were compared with the tests of Invention Examples 1, 2, and 4, respectively, and the angle formed by the tangent line of the arc of the slab bend at the electromagnetic stirring position and the horizontal plane (hereinafter, simply “ Only the angle of the electromagnetic stirring position ”) was changed to be less than 30 degrees defined by the method of the present invention. As a result, the concentrated molten steel could not be discharged evenly under unsolidified pressure, and segregated grains were observed on the upper surface side of the slab where the equiaxed crystal ratio was insufficient. Moreover, in the plate | board thickness cross-section bending test of the steel plate, the crack generate | occur | produced and it was confirmed in the crack part that the MnS inclusion resulting from the segregation of Mn and S has become the starting point of a crack. From this, it was found that it is effective to set the angle of the electromagnetic stirring position to 30 degrees or more.
比較例4、5、6、7および8の試験は、それぞれ、本発明例実施例1、2,3、4および5の試験に比べて、圧下量のみを変更し、圧下比(D1/D2)の値を本発明の方法で規定する範囲外の値とした。比較例4、7および8では圧下比の値を0.2未満とした結果、鋳片ではマクロ偏析が残存し、鋼板の板厚断面曲げ試験では多数の割れが発生した。割れは、サンプルのほぼ板厚中心部のマクロ偏析部で発生していることが明らかになった。
比較例5および6の試験では圧下量を大きくし、圧下比の値を0.6超えとした。その結果、鋳片ではマクロ偏析の残存は無く、鋼板の板厚断面サンプルにおいても板厚中心部に明瞭な負偏析の帯が観察された。その結果、このサンプルの板厚断面曲げ試験を行ったところ、板厚中心部の負偏析帯では延性が大きいことから割れは発生せずに、負偏析帯とその外側との境界部に割れが集中した。
In the tests of Comparative Examples 4, 5, 6, 7 and 8, compared with the tests of Examples 1, 2, 3, 4 and 5 of the present invention, only the amount of reduction was changed, and the reduction ratio (D1 / D2 ) Was outside the range defined by the method of the present invention. In Comparative Examples 4, 7, and 8, the value of the reduction ratio was less than 0.2. As a result, macrosegregation remained in the slab, and numerous cracks occurred in the plate thickness section bending test of the steel sheet. It was revealed that cracks occurred in the macro segregation part at the center of the thickness of the sample.
In the tests of Comparative Examples 5 and 6, the amount of reduction was increased and the value of the reduction ratio was set to exceed 0.6. As a result, no macrosegregation remained in the slab, and a clear negative segregation band was observed at the center of the plate thickness even in the plate thickness section sample of the steel plate. As a result, when a thickness cross-section bending test was performed on this sample, the negative segregation zone at the center of the thickness had high ductility, so cracking did not occur, and cracking occurred at the boundary between the negative segregation zone and its outside. Concentrated.
比較例9、10、11、および12の試験は、鋳造速度を変更して、未凝固圧下時の中心部固相率を本発明で規定する範囲外の値とした。鋳造速度を変化させると未凝固部厚さも同時に変化するので、圧下量を調整することにより圧下比の値が本発明の方法で規定する範囲内となるようにした。比較例9および11では、中心部固相率が0.6を超えていたため、偏析成分の濃化した溶鋼が十分に排出されないままデンドライト樹枝間に残存した。その結果、鋼板の板厚断面曲げ試験の成績も悪く、サンプル板厚中心部の偏析を起点とする割れが発生した。
比較例10および12の試験では、鋳片圧下時の中心部固相率が0.1未満と小さかったので、成分偏析が残存した。これは、圧下時の鋳片中心部の液相量が多かったために、圧下後も液相部分が残存し、それがさらに凝固するときに成分偏析を発生したためと考えられる。その結果、鋼板の板厚断面曲げ試験においては、サンプルの板厚中心部に割れが発生した。
In the tests of Comparative Examples 9, 10, 11, and 12, the casting rate was changed, and the solid fraction of the central part at the time of unsolidified pressure was set to a value outside the range specified in the present invention. When the casting speed is changed, the thickness of the unsolidified portion is also changed at the same time. Therefore, by adjusting the amount of reduction, the value of the reduction ratio is set within the range defined by the method of the present invention. In Comparative Examples 9 and 11, since the solid fraction in the central part exceeded 0.6, the molten steel enriched with segregation components remained between the dendritic branches without being sufficiently discharged. As a result, the results of the plate thickness section bending test of the steel plate were poor, and cracks were generated starting from segregation at the center of the sample plate thickness.
In the tests of Comparative Examples 10 and 12, the segregation of the components remained because the solid fraction at the center of the slab was as small as less than 0.1. This is presumably because the liquid phase amount remained at the center of the slab at the time of reduction, so that the liquid phase portion remained even after the reduction, and component segregation occurred when it further solidified. As a result, in the plate thickness section bending test of the steel plate, a crack occurred in the center portion of the plate thickness of the sample.
比較例13の試験は、未凝固部の圧下を行わなかった試験である。鋳片では通常の中心偏析が発生し、鋼板の板厚断面曲げ試験では中心偏析の残存に起因してサンプルの板厚中心部で割れが発生した。 The test of Comparative Example 13 is a test in which the unsolidified portion was not reduced. In the slab, normal center segregation occurred, and in the plate thickness section bending test of the steel plate, cracks occurred in the center portion of the plate thickness due to the remaining center segregation.
これらに対して、本発明の方法で規定する条件を全て満足した本発明例1〜5の試験では、鋳造された鋳片の上面等軸晶率は10%以上であり、また、鋳片および鋼板ともにC、Mn、PおよびSの偏析比が1以下であって、しかも、鋼板の板厚断面の曲げ変形能においても優れた結果が得られた。
以上の試験結果により本発明の優れた効果が確認された。
On the other hand, in the tests of Examples 1 to 5 of the present invention that satisfied all the conditions defined by the method of the present invention, the equiaxed crystal ratio of the upper surface of the cast slab was 10% or more. The segregation ratio of C, Mn, P and S was 1 or less for all the steel plates, and excellent results were obtained in the bending deformability of the steel plate cross section.
From the above test results, the excellent effect of the present invention was confirmed.
本発明の連続鋳造方法によれば、未凝固溶鋼を含む鋳片をバルジングさせた後に圧下するに際し、電磁攪拌を行う位置、電磁攪拌時の鋳片の中心部固相率の範囲、および圧下量と鋳片の未凝固部厚さの比である圧下比を適正化することにより、マクロ偏析およびセミマクロ偏析が安定して低減された厚板用スラブ鋳片の製造が可能となる。また、上記の鋳片を圧延して得られる鋼板は、板厚断面における曲げ変形能に優れており、加工割れなどの欠陥の発生を防止できる。よって、本発明の鋳造方法、鋳片およびその鋳片を圧延して得られる鋼板は、例えば建材用鋼板などのように板厚方向に引張りまたは圧縮応力が作用する曲げ加工時の変形能を要求される鋼材製造技術分野に広範に適用できる。 According to the continuous casting method of the present invention, when rolling down a slab containing unsolidified molten steel, the position at which electromagnetic stirring is performed, the range of the solid phase ratio at the center of the slab during electromagnetic stirring, and the amount of reduction By optimizing the reduction ratio, which is the ratio of the thickness of the unsolidified part of the slab and the slab, it is possible to manufacture a slab slab for thick plates in which macro segregation and semi-macro segregation are stably reduced. Moreover, the steel plate obtained by rolling said slab is excellent in the bending deformability in a plate | board thickness cross section, and generation | occurrence | production of defects, such as a work crack, can be prevented. Therefore, the casting method of the present invention, the slab and the steel plate obtained by rolling the slab require a deformability at the time of bending work in which a tensile or compressive stress acts in the plate thickness direction, such as a steel plate for building materials. It can be widely applied to the steel manufacturing technology field.
1:浸漬ノズル、
2:メニスカス、
3:鋳型、
4:溶鋼、
5:凝固シェル、
6:ガイドロール、
7:圧下ロール、
8:スラブ鋳片、
9:電磁攪拌装置、
10:未凝固部、
11:ピンチロール
12:横断面マクロ観察用の板サンプル、
13:マッピング分析(MA)用サンプル、
14:板厚断面スライスサンプル、
15:鋼板
1: immersion nozzle,
2: Meniscus,
3: Mold,
4: Molten steel,
5: solidified shell,
6: Guide roll,
7: Rolling roll,
8: Slab slab,
9: Electromagnetic stirrer,
10: unsolidified part,
11: Pinch roll 12: Plate sample for cross-sectional macro observation,
13: Sample for mapping analysis (MA),
14: Plate thickness section slice sample,
15: Steel plate
Claims (3)
A steel plate obtained by hot rolling the continuous cast slab according to claim 2, wherein the segregation ratios of C, Mn, P and S in the center portion of the plate thickness are all 1 or less. Steel plate to be used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003340375A JP4055689B2 (en) | 2003-09-30 | 2003-09-30 | Continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003340375A JP4055689B2 (en) | 2003-09-30 | 2003-09-30 | Continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005103604A true JP2005103604A (en) | 2005-04-21 |
JP4055689B2 JP4055689B2 (en) | 2008-03-05 |
Family
ID=34535290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003340375A Expired - Fee Related JP4055689B2 (en) | 2003-09-30 | 2003-09-30 | Continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4055689B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006341297A (en) * | 2005-06-10 | 2006-12-21 | Sumitomo Metal Ind Ltd | Continuous casting method, and continuously cast slab |
JP2007136496A (en) * | 2005-11-17 | 2007-06-07 | Sumitomo Metal Ind Ltd | Continuous casting method and continuously cast slab |
JP2007229796A (en) * | 2006-03-03 | 2007-09-13 | Sumitomo Metal Ind Ltd | Continuous casting method |
JP2009006381A (en) * | 2007-06-29 | 2009-01-15 | Sumitomo Metal Ind Ltd | Method for continuously casting steel |
WO2009066929A2 (en) | 2007-11-19 | 2009-05-28 | Posco | Continuous cast slab and method for manufacturing the same |
WO2009133739A1 (en) | 2008-04-28 | 2009-11-05 | 住友金属工業株式会社 | Method for continuous casting of steel and electromagnetic stirrer usable therefor |
JP2011098388A (en) * | 2009-11-09 | 2011-05-19 | Sumitomo Metal Ind Ltd | Continuous casting method for steel and extra-thick steep plate |
KR101036320B1 (en) * | 2011-02-08 | 2011-05-23 | 주식회사 포스코 | Cast slab and manufacturing method for the same |
JP2012101255A (en) * | 2010-11-11 | 2012-05-31 | Sumitomo Metal Ind Ltd | Continuous casting method for steel |
CN103008594A (en) * | 2012-12-30 | 2013-04-03 | 南阳汉冶特钢有限公司 | Method for removing transverse corner cracks of extremely thick continuous casting billet |
CN106141127A (en) * | 2015-04-17 | 2016-11-23 | 宝钢工程技术集团有限公司 | Continuous casting producing method under weight |
CN113134585A (en) * | 2021-04-20 | 2021-07-20 | 东北大学 | Homogenization square billet continuous casting production method under action of outfield cooperative control |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102653835B (en) * | 2012-05-09 | 2013-08-21 | 东北大学 | Method for reducing transverse cracks at corner of continuous casting billet of boron-steel-containing wide-thick plate |
-
2003
- 2003-09-30 JP JP2003340375A patent/JP4055689B2/en not_active Expired - Fee Related
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006341297A (en) * | 2005-06-10 | 2006-12-21 | Sumitomo Metal Ind Ltd | Continuous casting method, and continuously cast slab |
JP4548231B2 (en) * | 2005-06-10 | 2010-09-22 | 住友金属工業株式会社 | Steel continuous casting method and continuous cast slab |
JP4508087B2 (en) * | 2005-11-17 | 2010-07-21 | 住友金属工業株式会社 | Continuous casting method and continuous cast slab |
JP2007136496A (en) * | 2005-11-17 | 2007-06-07 | Sumitomo Metal Ind Ltd | Continuous casting method and continuously cast slab |
JP2007229796A (en) * | 2006-03-03 | 2007-09-13 | Sumitomo Metal Ind Ltd | Continuous casting method |
JP4706507B2 (en) * | 2006-03-03 | 2011-06-22 | 住友金属工業株式会社 | Continuous casting method |
JP2009006381A (en) * | 2007-06-29 | 2009-01-15 | Sumitomo Metal Ind Ltd | Method for continuously casting steel |
JP4636052B2 (en) * | 2007-06-29 | 2011-02-23 | 住友金属工業株式会社 | Steel continuous casting method |
CN101868314B (en) * | 2007-11-19 | 2015-04-22 | Posco公司 | Continuous cast slab and method for manufacturing the same |
EP2209574A2 (en) * | 2007-11-19 | 2010-07-28 | Posco | Continuous cast slab and method for manufacturing the same |
WO2009066929A3 (en) * | 2007-11-19 | 2009-07-09 | Posco | Continuous cast slab and method for manufacturing the same |
US8245760B2 (en) | 2007-11-19 | 2012-08-21 | Posco | Continuous cast slab and method for manufacturing the same |
WO2009066929A2 (en) | 2007-11-19 | 2009-05-28 | Posco | Continuous cast slab and method for manufacturing the same |
KR101038552B1 (en) | 2007-11-19 | 2011-06-03 | 주식회사 포스코 | Cast slab and manufacturing method for the same |
EP2209574A4 (en) * | 2007-11-19 | 2012-02-01 | Posco | Continuous cast slab and method for manufacturing the same |
US8191611B2 (en) | 2008-04-28 | 2012-06-05 | Sumitomo Metal Industries, Ltd. | Method for continuous casting of steel and electromagnetic stirrer to be used therefor |
US8033319B2 (en) | 2008-04-28 | 2011-10-11 | Sumitomo Metal Industries, Ltd. | Method for continuous casting of steel and electromagnetic stirrer to be used therefor |
WO2009133739A1 (en) | 2008-04-28 | 2009-11-05 | 住友金属工業株式会社 | Method for continuous casting of steel and electromagnetic stirrer usable therefor |
JP2011098388A (en) * | 2009-11-09 | 2011-05-19 | Sumitomo Metal Ind Ltd | Continuous casting method for steel and extra-thick steep plate |
JP2012101255A (en) * | 2010-11-11 | 2012-05-31 | Sumitomo Metal Ind Ltd | Continuous casting method for steel |
KR101036320B1 (en) * | 2011-02-08 | 2011-05-23 | 주식회사 포스코 | Cast slab and manufacturing method for the same |
CN103008594A (en) * | 2012-12-30 | 2013-04-03 | 南阳汉冶特钢有限公司 | Method for removing transverse corner cracks of extremely thick continuous casting billet |
CN106141127A (en) * | 2015-04-17 | 2016-11-23 | 宝钢工程技术集团有限公司 | Continuous casting producing method under weight |
CN113134585A (en) * | 2021-04-20 | 2021-07-20 | 东北大学 | Homogenization square billet continuous casting production method under action of outfield cooperative control |
Also Published As
Publication number | Publication date |
---|---|
JP4055689B2 (en) | 2008-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4055689B2 (en) | Continuous casting method | |
JP6115735B2 (en) | Steel continuous casting method | |
JP6384679B2 (en) | Manufacturing method of hot-rolled steel sheet | |
JP4508087B2 (en) | Continuous casting method and continuous cast slab | |
JPH09285856A (en) | Continuous casting method | |
JP4924104B2 (en) | Method for producing high Ni content steel slab | |
WO2018055799A1 (en) | Continuous steel casting method | |
JPH09508070A (en) | Thin slab manufacturing method and continuous casting apparatus | |
JP3119203B2 (en) | Unsolidified rolling method of slab | |
JPH038864B2 (en) | ||
JP4289205B2 (en) | Continuous casting method and continuous cast slab | |
WO2018056322A1 (en) | Continuous steel casting method | |
JP2004216411A (en) | Continuous casting method for special molten steel | |
JP3374761B2 (en) | Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate | |
JPH11156511A (en) | Steel slab continuous casting method | |
JP3104627B2 (en) | Unsolidified rolling production method of round billet | |
JP2003001388A (en) | Continuous casting method for steel | |
JP7031628B2 (en) | Continuous steel casting method | |
JP3283746B2 (en) | Continuous casting mold | |
KR20090066838A (en) | A method of manufacturing a ferrite stainless steel | |
JP5387205B2 (en) | Continuous casting method and continuous casting equipment for round slab | |
JPH0390263A (en) | Continuous casting method | |
JPH0346217B2 (en) | ||
JP3294987B2 (en) | Continuous casting to prevent segregation and internal cracking | |
JP3356092B2 (en) | Continuous casting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051021 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060309 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070821 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071203 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4055689 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121221 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131221 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131221 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131221 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |