JP2011098388A - Continuous casting method for steel and extra-thick steep plate - Google Patents

Continuous casting method for steel and extra-thick steep plate Download PDF

Info

Publication number
JP2011098388A
JP2011098388A JP2009256460A JP2009256460A JP2011098388A JP 2011098388 A JP2011098388 A JP 2011098388A JP 2009256460 A JP2009256460 A JP 2009256460A JP 2009256460 A JP2009256460 A JP 2009256460A JP 2011098388 A JP2011098388 A JP 2011098388A
Authority
JP
Japan
Prior art keywords
slab
continuous casting
less
thickness
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009256460A
Other languages
Japanese (ja)
Other versions
JP5327006B2 (en
Inventor
Tadashi Hirashiro
正 平城
Akihiro Yamanaka
章裕 山中
Naoki Tajima
直樹 田島
Kozo Ota
晃三 太田
Yuichi Yano
祐一 谷野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2009256460A priority Critical patent/JP5327006B2/en
Publication of JP2011098388A publication Critical patent/JP2011098388A/en
Application granted granted Critical
Publication of JP5327006B2 publication Critical patent/JP5327006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method capable of producing a slab having stable inside quality by suppressing the occurrence of fine cracks caused by rolling reduction in the boundary between a negatively-segregated part and a bulk part. <P>SOLUTION: Regarding the continuous casting method in which a slab including an un-solidified part is subjected to rolling reduction using at least a pair of rolling reduction rolls arranged in a continuous casting machine or at the edges of the machine, and, solidified shells on both the sides in the thickness direction of the slab are press-stuck to form a negatively-segregated part in the vicinity of the central part in the thickness direction of the slab after solidification, a product between the thickness D(mm) of the negatively-segregated part in the thickness direction of the slab and the content of an S component [S](ppm) in the steel is allowed to satisfy 0<[S]×D≤60. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、未凝固部を含む鋳片を、連続鋳造機内または機端において圧下ロールを用いて圧下する連続鋳造において、成品の中心偏析を抑制するとともに、成品圧延材厚さ中心の負偏析部とバルク(母材)部との境界での微細割れの発生を防止する方法、ならびに中心偏析が抑制され、かつこのような微細割れのない極厚鋼板に関する。   The present invention suppresses the center segregation of the product and the negative segregation part at the center of the product rolling material thickness in continuous casting in which the slab including the unsolidified part is reduced using a reduction roll in the continuous casting machine or at the machine end. The present invention relates to a method for preventing the occurrence of fine cracks at the boundary between the surface and the bulk (base material) part, and an extremely thick steel sheet in which central segregation is suppressed and no such fine cracks are present.

従来、連続鋳造鋳片の内部品質の改善を目的として、湾曲型または垂直曲げ型の連続鋳造機内に配置された圧下ロールを用いて、未凝固部を含む鋳片を圧下する技術(以下、「未凝固圧下」ともいう)が多数提案されてきた。   Conventionally, for the purpose of improving the internal quality of a continuous cast slab, a technology (hereinafter referred to as "" Many have also been proposed.

本発明者らも、特許文献1において、未凝固部を含む鋳片をバルジングさせた後に、連続鋳造機内において、圧下ロール対の下部ロールを鋳片の下側パスラインよりも突出させて鋳片を圧下する鋼の連続鋳造方法を提案した。鋳片の未凝固圧下においては、C、Mn、P、Sなどの偏析しやすい成分の濃化した溶鋼が圧下により液相側に排出され、鋳片の厚さ方向中心部の成分偏析が改善される。   In the patent document 1, the present inventors have also bulged a slab including an unsolidified portion, and then, in a continuous casting machine, the lower roll of the pair of reduction rolls is projected beyond the lower pass line of the slab. A continuous casting method of steel for rolling down was proposed. Under unsolidified pressure of the slab, molten steel enriched with easily segregated components such as C, Mn, P, and S is discharged to the liquid phase side by reduction, and component segregation at the center in the thickness direction of the slab is improved. Is done.

さらに、本発明者らは鋳片の未凝固圧下について、特許文献2において、厚さ方向中心部の幅方向における偏析を改善することによる内部品質の改善と安定化を提案した。   Furthermore, the present inventors proposed improvement and stabilization of internal quality by improving segregation in the width direction of the central portion in the thickness direction in Patent Document 2 regarding unsolidification reduction of the slab.

特許文献2に記載の技術は、タンディッシュ内の溶鋼の過熱度(ΔT)に応じて、鋳片の圧下量を調整するとともに、鋳片幅方向両端部に存在する成分偏析比が1.00以上、1.20以下である偏析帯の鋳片幅方向の各長さ(W)を、下記(A)式により表される関係を満足する範囲内とすることを特徴とする鋼の連続鋳造方法である。ここで、Woは鋳片幅、dは鋳片の圧下位置における鋳片短辺側の凝固シェル厚さをそれぞれ表す。
0≦W≦0.2×(Wo−2×d) …(A)
The technique described in Patent Document 2 adjusts the reduction amount of the slab according to the degree of superheat (ΔT) of the molten steel in the tundish, and the component segregation ratio existing at both ends of the slab width direction is 1.00. The continuous casting of steel, wherein each length (W) in the slab width direction of the segregation zone of 1.20 or less is within a range satisfying the relationship represented by the following formula (A) Is the method. Here, Wo represents the slab width, and d represents the thickness of the solidified shell on the short side of the slab at the slab reduction position.
0 ≦ W ≦ 0.2 × (Wo−2 × d) (A)

特許文献2には、電磁力を付与することにより、未凝固部の溶鋼を鋳片幅方向に攪拌する連続鋳造方法であって、電磁力を付与するための電磁攪拌装置を、鋳片圧下位置から、鋳造方向上流側に向かって9m以内の位置に配置する技術も記載されている。   Patent Document 2 discloses a continuous casting method in which molten steel in an unsolidified portion is stirred in the slab width direction by applying electromagnetic force, and an electromagnetic stirring device for applying electromagnetic force is provided at a slab pressure reduction position. The technique of arrange | positioning in the position within 9 m toward the casting direction upstream is also described.

一方、Crを5〜20質量%、Cを0.05〜0.3質量%含有する合金鋼、またはフェライト系ステンレスの溶鋼を鋳造し、未凝固部を含む鋼塊または鋳片を圧下する際に発生する負偏析部の形成された鋼塊または鋳片を、高温状態のまま、または、一旦室温近傍まで冷却後に加熱した後、熱間加工して、ビレット等の中間素材を製造する際に、これら熱間加工したビレットに負偏析部が残存し、その残存した負偏析部に粗大なフェライト組織が生成し、そのフェライト組織に沿って微細な割れが発生することがある。本発明者らは、特許文献3において、このフェライト組織に沿って微細な割れを防止する方法として、溶鋼の低水素化を提案した。   On the other hand, when casting an alloy steel containing 5 to 20% by mass of Cr and 0.05 to 0.3% by mass of C or a molten steel of ferritic stainless steel, and rolling down a steel ingot or slab containing an unsolidified part When producing an intermediate material such as a billet by heating a steel ingot or slab formed with a negative segregation part in a high temperature state or after being cooled to near room temperature and then hot working In some cases, a negative segregation portion remains in these hot-worked billets, a coarse ferrite structure is generated in the remaining negative segregation portion, and fine cracks are generated along the ferrite structure. In the patent document 3, the present inventors have proposed low hydrogenation of molten steel as a method for preventing fine cracks along this ferrite structure.

特許文献3に記載の技術は、フェライト系ステンレス鋼の溶鋼を鋳造し、鋼塊または鋳片の内部に未凝固部が存在する間に鋼塊または鋳片の外表面をその厚さ方向に圧下して鋼塊または鋳片の内部の厚さ方向両側の凝固殻を圧着させることにより、凝固後の鋼塊または鋳片の内部の厚さ方向中心部近傍に負偏析部を形成させる鋳造方法であって、上記溶鋼の水素含有率を4ppm以下とすることを特徴とする高Cr含有鋼の鋳造方法である。   The technique described in Patent Document 3 casts molten steel of ferritic stainless steel and reduces the outer surface of the steel ingot or slab in the thickness direction while an unsolidified portion exists in the steel ingot or slab. In the casting method, a negative segregation part is formed near the center in the thickness direction inside the steel ingot or cast slab after solidification by pressing the solidified shells on both sides in the thickness direction inside the steel ingot or cast slab. And it is a casting method of the high Cr content steel characterized by making the hydrogen content rate of the said molten steel into 4 ppm or less.

特許第4218383号公報Japanese Patent No. 4218383 特願2008−116548号Japanese Patent Application No. 2008-116548 特許第3671868号公報Japanese Patent No. 3671868

上述のように、本発明者らは、特許文献1および特許文献2において、鋳片の未凝固圧下によって中心偏析を改善する連続鋳造方法を提案した。本発明者らは、その後、これらのプロセスによる鋳造を安定化させるための試験を重ねた結果、厚さ方向中心部分に形成される負偏析部とバルク(母材)部との境界において、圧下によって微細な割れ(以下、単に「微細割れ」ともいう)が発生する傾向があることを見出した。また、この微細割れを抑制するため種々の条件について試験した結果、特許文献3に記載のように溶鋼の水素含有率を低い値とするだけでは不十分であることを見出した。   As described above, the present inventors have proposed a continuous casting method in Patent Document 1 and Patent Document 2 in which center segregation is improved by unsolidification reduction of a slab. As a result of repeated tests for stabilizing the casting by these processes, the present inventors subsequently reduced the rolling at the boundary between the negative segregation portion and the bulk (base material) portion formed in the central portion in the thickness direction. It has been found that there is a tendency for fine cracks (hereinafter, also simply referred to as “fine cracks”) to occur. Moreover, as a result of testing about various conditions in order to suppress this fine crack, it discovered that it was insufficient only to make the hydrogen content rate of molten steel into a low value as described in patent document 3. FIG.

本発明は、この問題に鑑みてなされたものであり、その課題は、連続鋳造鋳片の未凝固圧下によって中心偏析を改善するとともに、負偏析部とバルク部との境界における、圧下による微細な割れの発生を抑制し、安定した内部品質を有する鋳片を製造できる連続鋳造方法、および安定した内部品質を有する極厚鋼板を提供することにある。   The present invention has been made in view of this problem, and the problem is that the center segregation is improved by the unsolidification reduction of the continuous cast slab, and the fineness due to the reduction at the boundary between the negative segregation portion and the bulk portion. An object of the present invention is to provide a continuous casting method capable of producing a slab having a stable internal quality while suppressing the occurrence of cracks, and a very thick steel plate having a stable internal quality.

本発明者らは、微細割れを抑制するため試験を重ねた結果、負偏析部の厚さおよび鋼中のS成分の含有率を適切な値とすることが必要であることを知見した。   As a result of repeated tests to suppress fine cracks, the present inventors have found that it is necessary to set the thickness of the negative segregation part and the content of the S component in the steel to appropriate values.

本発明は、上記の知見に基づいて完成されたものであり、下記(1)の鋼の連続鋳造方法および下記(2)の極厚鋼板を要旨としている。   The present invention has been completed on the basis of the above-mentioned findings, and has the gist of the following (1) steel continuous casting method and the following (2) extra-thick steel plate.

(1)未凝固部を含む鋳片を、連続鋳造機内または機端に配置した少なくとも1対の圧下ロール対を用いて圧下して、鋳片の厚さ方向両側の凝固殻を圧着させることにより、凝固後の鋳片の厚さ方向中心部近傍に負偏析部を形成させる連続鋳造方法であって、鋳片厚さ方向の負偏析部の厚さD(mm)と鋼中S成分含有率[S](ppm)の積[S]・Dを、下記(1)式を満足するようにすることを特徴とする連続鋳造方法。
0<[S]・D≦60 …(1)
(1) By squeezing a slab including an unsolidified portion using at least one pair of squeezing rolls arranged in a continuous casting machine or at the end of the slab, and pressing the solidified shells on both sides in the thickness direction of the slab , A continuous casting method in which a negative segregation part is formed in the vicinity of the central part in the thickness direction of the cast slab after solidification, and the thickness D (mm) of the negative segregation part in the thickness direction of the slab and the S component content in the steel A continuous casting method characterized in that the product [S] · D of [S] (ppm) satisfies the following formula (1).
0 <[S] · D ≦ 60 (1)

(2)未凝固部を含む鋳片を、連続鋳造機内または機端に配置した少なくとも1対の圧下ロール対を用いて圧下して、鋳片の厚さ方向両側の凝固殻を圧着させることにより、凝固後の鋳片の厚さ方向中心部近傍に負偏析部を形成させる連続鋳造方法で製造された鋳片を、圧下して得られる極厚鋼板であって、極厚鋼板厚さ方向の負偏析部の厚さDp(mm)と鋼中S成分含有率[S](ppm)の積[S]・Dpが、下記(2)式を満足することを特徴とする極厚鋼板。
0<[S]・Dp≦60/α …(2)
ここで、αは鋳片を極厚鋼板に圧下する際の全圧下比(無次元数)(≡鋳片の厚さ/極厚鋼板の厚さ)を表す。
(2) By squeezing the slab including the unsolidified portion using at least one pair of squeezing rolls arranged in the continuous casting machine or at the end of the slab, and pressing the solidified shells on both sides in the thickness direction of the slab The slab manufactured by a continuous casting method in which a negative segregation part is formed in the vicinity of the central part in the thickness direction of the slab after solidification is a very thick steel plate obtained by rolling down, and An extra-thick steel plate, wherein the product [S] · Dp of the thickness Dp (mm) of the negative segregation part and the S component content [S] (ppm) in the steel satisfies the following formula (2).
0 <[S] · Dp ≦ 60 / α (2)
Here, α represents the total reduction ratio (dimensionless number) (≡ slab thickness / thickness of extra heavy steel plate) when the slab is reduced to extra heavy steel plate.

前記(2)の極厚鋼板において、負偏析部以外の部分における最大長さが1μm以上のMnSの個数が2個/mm2以下であることが好ましい。 In the extra-thick steel plate (2), the number of MnS having a maximum length of 1 μm or more in a portion other than the negative segregation portion is preferably 2 / mm 2 or less.

前記(1)および(2)の連続鋳造方法および極厚鋼板において、鋳片が、質量%で、C:0.05〜0.3%、Si:0.05〜0.4%、Mn:0.2〜2%、P:0.020%以下、S:0.003%以下およびsol.Al:0.1%以下を含有し、さらに、Mo:1.5%以下、Ni:1.5〜3.0%、Cr:5%以下、Cu:1.5%以下、Ti:0.1%以下、Nb:0.1%以下およびV:0.1%以下のうちの1種または2種以上を含有し、残部がFeおよび不純物からなる合金鋼であることが好ましい。   In the continuous casting method and extra-thick steel plate of (1) and (2), the slab is mass%, C: 0.05 to 0.3%, Si: 0.05 to 0.4%, Mn: 0.2-2%, P: 0.020% or less, S: 0.003% or less, and sol. Al: 0.1% or less, Mo: 1.5% or less, Ni: 1.5-3.0%, Cr: 5% or less, Cu: 1.5% or less, Ti: 0.00%. It is preferably an alloy steel containing one or more of 1% or less, Nb: 0.1% or less, and V: 0.1% or less, with the balance being Fe and impurities.

本発明において、「負偏析」とは、鋳片または極厚鋼板の任意位置におけるC、Mn、P、Sなどの成分の含有率C(質量%)を、鋳込み時の各成分の平均含有率(以下、「母材平均含有率」ともいう)Co(質量%)により除した値である偏析比(C/Co)が1より小さい状態をいい、その位置における含有率Cが母材平均含有率Coよりも低いことを意味する。また、本明細書の記載において、「正偏析」とは、偏析比が1より大きい状態をいい、その位置における成分含有率Cが母材平均含有率Coよりも高いことを意味する。   In the present invention, “negative segregation” means the content C (mass%) of components such as C, Mn, P, and S at an arbitrary position of a slab or extra-thick steel plate, and the average content of each component during casting. (Hereinafter also referred to as “base material average content”) A state where the segregation ratio (C / Co), which is a value divided by Co (mass%), is smaller than 1, and the content C at that position is the average base material content. It means lower than the rate Co. In the description of the present specification, “positive segregation” means a state where the segregation ratio is larger than 1, and means that the component content C at that position is higher than the base material average content Co.

本明細書の記載において、「固相率」とは、鋳片の中心部における固相と液相の全体量に対する固相の割合を意味する。また、「介在物の個数」は、特に規定しない限り、鋳片または極厚鋼板の断面における1mm2当たりの最大長さが1μm以上の介在物の個数を意味する。 In the description of the present specification, the “solid phase ratio” means the ratio of the solid phase to the total amount of the solid phase and the liquid phase at the center of the slab. Further, the “number of inclusions” means the number of inclusions having a maximum length of 1 μm or more per 1 mm 2 in a cross section of a cast slab or extra-thick steel plate unless otherwise specified.

以下の記述において、鋼の成分組成を表す「質量%」を、単に「%」とも表記する。   In the following description, “mass%” representing the component composition of steel is also simply expressed as “%”.

本発明の連続鋳造方法によれば、未凝固圧下を行った、負偏析部を有する鋳片の厚さ方向中心部近傍における微細割れの発生を防止できるため、安定した内部品質を有する定常圧下鋳片を、高い歩留まりおよび生産性で製造することができる。また、本発明の極厚鋼板は、高い内部品質を有する。   According to the continuous casting method of the present invention, since it is possible to prevent the occurrence of microcracking in the vicinity of the center portion in the thickness direction of a slab having a negative segregation portion that has undergone unsolidification reduction, steady reduction casting with stable internal quality is possible. Pieces can be manufactured with high yield and productivity. Moreover, the extra-thick steel plate of the present invention has high internal quality.

垂直曲げ型連続鋳造機の縦断面の概略を示す図である。It is a figure which shows the outline of the longitudinal cross-section of a vertical bending type continuous casting machine. マッピング分析用試料の切り出し位置を示す鋳片の横断面図である。It is a cross-sectional view of the slab which shows the cutting position of the sample for mapping analysis. ミクロサンプルの切り出し位置を示す圧延サンプルの横断面図であり、同図(a)は鋳片の横断面全体を示し、同図(b)は試料の観察面を示す。It is a cross-sectional view of the rolling sample showing the cut-out position of the micro sample, the figure (a) shows the entire cross-section of the slab, and the figure (b) shows the observation surface of the sample. 微細割れが発生した圧延サンプルにおけるMnS介在物の個数を示す図である。It is a figure which shows the number of the MnS inclusion in the rolling sample which the micro crack generate | occur | produced. 微細割れが発生しなかった圧延サンプルにおけるMnS介在物の個数を示す図である。It is a figure which shows the number of the MnS inclusion in the rolling sample in which the fine crack did not generate | occur | produce. 鋼中のS成分含有率[S]と鋳片の負偏析部の厚さDとの積[S]・Dと、微細割れ発生不良率との関係を示す図である。It is a figure which shows the relationship between product [S] * D of S component content rate [S] in steel, and thickness D of the negative segregation part of a slab, and the fine crack generation defect rate. 脱水素処理プロセス対策実施後のバルク部のMnS介在物の個数と、微細割れ欠陥発生指数との関係を示す図である。It is a figure which shows the relationship between the number of the MnS inclusion of the bulk part after implementation of a dehydrogenation process countermeasure, and a fine crack defect generation index.

本発明の連続鋳造方法は、未凝固部を含む鋳片を、連続鋳造機内または機端に配置した少なくとも1対の圧下ロール対を用いて圧下して、鋳片の厚さ方向両側の凝固殻を圧着させることにより、凝固後の鋳片の厚さ方向中心部近傍に負偏析部を形成させる連続鋳造方法であって、鋳片厚さ方向の負偏析部の厚さD(mm)と鋼中S成分含有率[S](ppm)の積[S]・Dを、下記(1)式を満足するようにすることを特徴とする連続鋳造方法である。
0<[S]・D≦60 …(1)
In the continuous casting method of the present invention, a slab including an unsolidified portion is reduced by using at least one pair of reduction rolls disposed in the continuous casting machine or at the end of the slab, and solidified shells on both sides in the thickness direction of the slab. Is a continuous casting method in which a negative segregation part is formed in the vicinity of the central part in the thickness direction of the cast slab after solidification, and the thickness D (mm) of the negative segregation part in the slab thickness direction and steel A product [S] · D of medium S component content [S] (ppm) satisfies the following formula (1).
0 <[S] · D ≦ 60 (1)

1.連続鋳造方法の基本構成
図1は、本発明を実施するための垂直曲げ型連続鋳造機の縦断面の概略を示す図である。
1. Basic Configuration of Continuous Casting Method FIG. 1 is a diagram schematically showing a longitudinal section of a vertical bending type continuous casting machine for carrying out the present invention.

タンディッシュ1aには、取鍋(図示せず)から溶鋼4が供給される。タンディッシュ1aから浸漬ノズル1bを経て、鋳型3内に溶鋼湯面(メニスカス)2を形成するように注入された溶鋼4は、鋳型3およびその下方の図示しない二次冷却スプレーノズル群から噴射されるスプレー水により冷却され、凝固シェル5を形成して鋳片8となる。鋳片8は、その内部に未凝固部10を保持したまま、従動ロール6aおよび駆動ロール6bからなるガイドロール群6によって支持されながら引き抜かれ、圧下ロール対7により圧下される。圧下ロール対7を設置する位置は、連続鋳造機の内部または鋳造方向下流側の端部のいずれでもよい。   Molten steel 4 is supplied to the tundish 1a from a ladle (not shown). Molten steel 4 injected from the tundish 1a through the immersion nozzle 1b to form a molten steel surface (meniscus) 2 in the mold 3 is sprayed from the mold 3 and a group of secondary cooling spray nozzles (not shown) below the mold 3. The slab 8 is formed by forming a solidified shell 5 by cooling with spray water. The slab 8 is pulled out while being supported by the guide roll group 6 including the driven roll 6 a and the driving roll 6 b while holding the unsolidified portion 10 therein, and is squeezed by the roll pair 7. The position where the reduction roll pair 7 is installed may be either the inside of the continuous casting machine or the end on the downstream side in the casting direction.

ガイドロール6群は、鋳片8の厚さ方向の間隔を所定値に制御できるように配置されている。そのため、図1に示すように鋳片8の内部に未凝固部10が存在するときにバルジングさせて、鋳片8の短辺長さt0よりも幅方向中央部の厚さtを大きくした後、圧下ロール7によって幅方向中央部を圧下することも可能である。   The guide roll 6 group is arranged so that the interval in the thickness direction of the slab 8 can be controlled to a predetermined value. Therefore, as shown in FIG. 1, after bulging when the unsolidified portion 10 exists inside the slab 8, the thickness t of the central portion in the width direction is made larger than the short side length t0 of the slab 8. It is also possible to reduce the central portion in the width direction by the reduction roll 7.

連続鋳造の開始時には、無底の鋳型3の下部にダミーバー(図示せず)のヘッドを挿入して仮の底部とした後、鋳型3内に浸漬ノズル1から溶鋼4を注入する。そして、鋳型3内の溶鋼湯面2があらかじめ設定された位置に達し、かつ所定厚さの凝固シェル5が形成されると、ダミーバーの引き抜きを開始し、引き抜き速度を高めて、所定の鋳造速度(定常状態)に移行させる。   At the start of continuous casting, a head of a dummy bar (not shown) is inserted into the bottom of the bottomless mold 3 to form a temporary bottom, and then molten steel 4 is poured into the mold 3 from the immersion nozzle 1. Then, when the molten steel surface 2 in the mold 3 reaches a preset position and the solidified shell 5 having a predetermined thickness is formed, the dummy bar starts to be extracted, and the extraction speed is increased to increase the predetermined casting speed. Transition to (steady state).

ダミーバーは、単位ブロックをピン結合により連結した治具である。ダミーバーの鋳型3への挿入方法には、上部から挿入する方法(トップ挿入方式)と、圧下ロール対7よりも鋳造方向下流側に配置されたピンチロール(図示せず)の後段側から挿入する方法(ボトム挿入方式)があり、ダミーバーの上端に位置するダミーバーヘッドが鋳型3内に配置される。そして、鋳造を開始し、定常状態に移行したのち、ピンチロールの後段側で斜め上方に取り出される。   The dummy bar is a jig that connects the unit blocks by pin connection. The method of inserting the dummy bar into the mold 3 includes a method of inserting from the top (top insertion method) and a rear side of a pinch roll (not shown) arranged on the downstream side in the casting direction with respect to the rolling roll pair 7. There is a method (bottom insertion method), and a dummy bar head located at the upper end of the dummy bar is arranged in the mold 3. And after casting starts and it transfers to a steady state, it is taken out diagonally upward on the back | latter stage side of a pinch roll.

2.微細割れと、鋳片の負偏析部の厚さおよび鋼中S成分含有率との関係
本発明の連続鋳造方法では、鋳片の厚さ方向両側の凝固殻を圧着させることにより、凝固後の鋳片の厚さ方向中心部近傍に負偏析部を形成させ、鋳片厚さ方向の負偏析部の厚さD(mm)と鋼中S成分含有率(ppm)の積[S]・D(ppm・mm)を、下記(1)式を満足するようにする。これにより、鋳片の厚さ方向中心部近傍に形成される負偏析部と、バルク部との境界部分での微細な割れの発生を防止することができる。
0<[S]・D≦60 …(1)
2. Relationship between the fine crack, the thickness of the negative segregation part of the slab and the S component content in the steel In the continuous casting method of the present invention, the solidified shells on both sides in the thickness direction of the slab are pressure-bonded. A negative segregation part is formed near the center of the slab in the thickness direction, and the product of the thickness D (mm) of the negative segregation part in the slab thickness direction and the S component content (ppm) in the steel [S] · D (Ppm · mm) is set so as to satisfy the following expression (1). Thereby, generation | occurrence | production of the fine crack in the boundary part of the negative segregation part formed in the thickness direction center part vicinity of a slab and a bulk part can be prevented.
0 <[S] · D ≦ 60 (1)

また、本発明の極厚鋼板は、極厚鋼板厚さ方向の負偏析部の厚さDp(mm)と鋼中S成分含有率[S](ppm)の積[S]・Dp(ppm・mm)が、上記(2)式を満足し、かつ厚さが100mm以上の鋼板である。これにより、バルク部との境界部分での微細な割れのない、内部品質の優れた極厚鋼板を得ることができる。
0<[S]・Dp≦60/α …(2)
Further, the extra-thick steel plate of the present invention has a product [S] · Dp (ppm · ppm) of the thickness Dp (mm) of the negative segregation portion in the thickness direction of the extra-thick steel plate and the S component content [S] (ppm) in the steel. mm) is a steel plate that satisfies the above-mentioned formula (2) and has a thickness of 100 mm or more. As a result, it is possible to obtain a very thick steel plate having excellent internal quality without a fine crack at the boundary with the bulk portion.
0 <[S] · Dp ≦ 60 / α (2)

ここで、αは全圧下比(無次元数)を表す。具体的には、αは圧延前の鋳片の厚さを圧延後の極厚鋼板の厚さで除した値であり、α≧1を満たす。α=D/Dpの関係を有しているため、(1)式の各辺をαで除することによって、(2)式を得ることができる。   Here, α represents the total reduction ratio (dimensionless number). Specifically, α is a value obtained by dividing the thickness of the slab before rolling by the thickness of the extra-thick steel plate after rolling, and satisfies α ≧ 1. Since there is a relationship of α = D / Dp, the equation (2) can be obtained by dividing each side of the equation (1) by α.

3.本発明に好適な鋳片の鋼種
本発明では、鋳片の対象鋼種として、C:0.05〜0.3%、Si:0.05〜0.4%、Mn:0.2〜2%、P:0.020%以下、S:0.003%以下およびsol.Al:0.1%以下を含有し、さらに、Mo:1.5%以下、Ni:1.5〜3.0%、Cr:5%以下、Cu:1.5%以下、Ti:0.1%以下、Nb:0.1%以下およびV:0.1%以下のうちの1種または2種以上を含有し、残部がFeおよび不純物からなる合金鋼が好ましい。鋳片の微細割れを防止する本発明の効果は、この合金鋼において特に有効に発揮される。
3. Steel type of slab suitable for the present invention In the present invention, C: 0.05-0.3%, Si: 0.05-0.4%, Mn: 0.2-2% , P: 0.020% or less, S: 0.003% or less, and sol. Al: 0.1% or less, Mo: 1.5% or less, Ni: 1.5-3.0%, Cr: 5% or less, Cu: 1.5% or less, Ti: 0.00%. An alloy steel containing one or more of 1% or less, Nb: 0.1% or less, and V: 0.1% or less, with the balance being Fe and impurities is preferable. The effect of the present invention for preventing fine cracks in the slab is particularly effective in this alloy steel.

以下に、本発明を完成させるために行った試験および本発明の効果を確認するために行った試験について説明する。   Below, the test conducted in order to complete this invention and the test conducted in order to confirm the effect of this invention are demonstrated.

1.試験方法
1−1.鋳造試験方法
前記図1に示した垂直曲げ型の連続鋳造機を用いて鋳造試験を行った。連続鋳造機の圧下ロール対7は、鋳型3内の溶鋼湯面2から鋳造方向に21.5m下流側の位置に一対設置した。各圧下ロールの直径は470mmとし、最大圧下力は5.88×106N(600tf)とした。
1. Test method 1-1. Casting Test Method A casting test was conducted using the vertical bending type continuous casting machine shown in FIG. A pair of reduction rolls 7 of the continuous casting machine was installed at a position 21.5 m downstream from the molten steel surface 2 in the mold 3 in the casting direction. The diameter of each rolling roll was 470 mm, and the maximum rolling force was 5.88 × 10 6 N (600 tf).

鋳造試験に用いた鋼種は、C:0.05〜0.3%、Si:0.05〜0.4%、Mn:0.2〜2%、P:0.020%以下、S:0.003%以下、sol.Al:0.1%以下を含有し、さらに、Mo:1.5%以下、Ni:1.5〜3.0%、Cr:5%以下、Cu:1.5%以下、Ti:0.1%以下、Nb:0.1%以下およびV:0.1%以下のうちの1種または2種以上を含有し、残部がFeおよび不純物からなる合金鋼とした。この合金鋼を用い、厚さが300mm、幅が2250mmの鋳片を製造した。鋳造速度は0.70m/minで一定とし、二次冷却比水量は0.40〜0.58L/kg−steelとした。また、タンディッシュ内の溶鋼過熱度(ΔT;溶鋼の温度からこの合金鋼の液相線温度を減じた値)は30〜40℃とした。   The steel types used in the casting test are: C: 0.05 to 0.3%, Si: 0.05 to 0.4%, Mn: 0.2 to 2%, P: 0.020% or less, S: 0 0.003% or less, sol. Al: 0.1% or less, Mo: 1.5% or less, Ni: 1.5-3.0%, Cr: 5% or less, Cu: 1.5% or less, Ti: 0.00%. An alloy steel containing one or more of 1% or less, Nb: 0.1% or less, and V: 0.1% or less, with the balance being Fe and impurities. Using this alloy steel, a slab having a thickness of 300 mm and a width of 2250 mm was produced. The casting speed was constant at 0.70 m / min, and the secondary cooling specific water amount was 0.40 to 0.58 L / kg-steel. Moreover, the molten steel superheat degree ((DELTA) T; the value which reduced the liquidus temperature of this alloy steel from the temperature of molten steel) in the tundish was 30-40 degreeC.

本発明を実施するにあたり、溶鋼の水素含有率は極力小さいことが好ましいことは言うまでもない。本発明者らは、一連の試験を行うにあたって、溶鋼の水素含有率は1.3ppm以下とした。   In practicing the present invention, it goes without saying that the hydrogen content of the molten steel is preferably as small as possible. The present inventors set the hydrogen content of molten steel to 1.3 ppm or less when performing a series of tests.

図1に示す連続鋳造装置において、鋳片8をバルジングさせる場合であっても、バルジングさせない場合と同様に鋳造することができる。鋳片8をバルジングさせることにより鋳片厚さが変化する場合であっても、鋳片8の幅方向中央部の厚さに合わせて、鋳造速度を種々変化させた条件で伝熱および凝固計算を行い、圧下ロール対7の位置において固相率が所定の値となる鋳造速度条件を算出し、この鋳造速度条件で鋳造を行えばよい。   In the continuous casting apparatus shown in FIG. 1, even when the slab 8 is bulged, it can be cast in the same manner as when bulging is not performed. Even when the slab thickness is changed by bulging the slab 8, heat transfer and solidification calculations are performed under various conditions of changing the casting speed according to the thickness of the central portion of the slab 8 in the width direction. The casting speed condition where the solid phase ratio becomes a predetermined value at the position of the rolling roll pair 7 is calculated, and casting is performed under this casting speed condition.

鋳造試験では、圧下ロール対7の位置に、所定の固相率となる未凝固部10を含む鋳片8の定常凝固部分が到達した時点で、上側圧下ロールによる圧下を開始した。圧下開始後は、鋳片8の下側パスライン11から上方への下側圧下ロールの突出量が、下側圧下ロールによる鋳片の圧下量となる。   In the casting test, when the steady solidified portion of the slab 8 including the unsolidified portion 10 having a predetermined solid phase ratio reached the position of the reduction roll pair 7, the reduction by the upper reduction roll was started. After the start of reduction, the amount of protrusion of the lower reduction roll upward from the lower pass line 11 of the slab 8 becomes the reduction amount of the slab by the lower reduction roll.

1−2.鋳片成分偏析の評価方法
図2は、マッピング分析用試料の切り出し位置を示す鋳片の横断面図である。上述の鋳造試験により得られた鋳片から、鋳造方向に長さ150mmの鋳片サンプルを切り出した。そして、鋳片の横断面のマクロ組織を観察した後、図2に示す位置から、EPMAによるマッピング分析(以下、「MA分析」ともいう)用のMAサンプルを切り出した。
1-2. 2. Evaluation method of slab component segregation FIG. 2 is a cross-sectional view of a slab showing the cut-out position of the sample for mapping analysis. A slab sample having a length of 150 mm in the casting direction was cut out from the slab obtained by the above casting test. And after observing the macro structure of the cross section of a slab, the MA sample for mapping analysis by EPMA (henceforth "MA analysis") was cut out from the position shown in FIG.

MAサンプルは、鋳片厚さ方向の長さ100mm、鋳造方向の長さ40mm、厚さ(鋳片幅方向の長さ)9mmの直方体とし、鋳片の一方の短辺から鋳片幅方向に鋳片幅Wの1/4、1/2、および3/4の位置(図5において、それぞれ「1/4W」、「1/2W」および「3/4W」と記す)、ならびに両短辺側の鋳片厚さ方向の中心において偏析成分が濃化しやすい部分(図2において、いずれも「端部」と記す)の合計5箇所から切り出した。   The MA sample is a rectangular parallelepiped having a length of 100 mm in the slab thickness direction, a length of 40 mm in the casting direction, and a thickness (length in the slab width direction) of 9 mm, and from one short side of the slab to the slab width direction. 1/4, 1/2, and 3/4 positions of the slab width W (referred to as “1 / 4W”, “1 / 2W”, and “3 / 4W” in FIG. 5, respectively), and both short sides It was cut out from a total of five locations where segregation components tend to concentrate at the center in the slab thickness direction on the side (both are denoted as “end portions” in FIG. 2).

MA分析を行う視野は、MAサンプルの鋳片厚さ方向中心部を含む鋳片厚さ方向に50mm、鋳片幅方向に20mmの長方形の範囲とした。ビーム径を50μmとしてMA分析を行って上記面域のMnの成分分布を求めた後、鋳片厚さ方向に2mm幅で線分析を行い、鋳片厚さ方向中心部におけるMn含有率Cを求め、このCの値を鋳込時のMnの平均含有率Coにより除して成分偏析比(C/Co)を算出した。以下、本実施例では、単に「負偏析部」といった場合、Mnの負偏析部を指す。   The field of view for performing the MA analysis was a rectangular range of 50 mm in the slab thickness direction including the center of the slab thickness direction of the MA sample and 20 mm in the slab width direction. After MA analysis was performed with a beam diameter of 50 μm to obtain the Mn component distribution in the above-mentioned area, line analysis was performed with a width of 2 mm in the slab thickness direction, and the Mn content C at the center of the slab thickness direction was determined. The component segregation ratio (C / Co) was calculated by dividing the value of C by the average content ratio Co of Mn at the time of casting. Hereinafter, in this example, when simply referred to as “negative segregation part”, it refers to a negative segregation part of Mn.

1−3.MnS介在物量の評価方法 1-3. Method for evaluating the amount of MnS inclusions

図3は、走査型電子顕微鏡観察用試料の切り出し位置を示す極厚鋼板の横断面図であり、同図(a)は極厚鋼板の横断面全体を示し、同図(b)は試料の観察面を示す。   FIG. 3 is a cross-sectional view of the extra-thick steel plate showing the cut-out position of the sample for scanning electron microscope observation. FIG. 3 (a) shows the entire cross-section of the extra-thick steel plate, and FIG. An observation surface is shown.

本発明者らは、鋳片を圧延して得られた成品としての極厚鋼板(以下、「圧延サンプル」ともいう)についてもMA分析を行った。その結果、負偏析部の周辺において、最大長さが約10μmのMnSの介在物が観察された。また、負偏析部の周辺において微細割れが発生する鋼板と、発生しない鋼板とがあった。   The present inventors also performed MA analysis on a very thick steel plate (hereinafter also referred to as “rolled sample”) as a product obtained by rolling a slab. As a result, MnS inclusions having a maximum length of about 10 μm were observed around the negative segregation part. Moreover, there were a steel plate in which fine cracks occurred around the negative segregation part and a steel plate in which fine cracks did not occur.

そこで、SEM(走査型顕微鏡;Scanning Electron Microscope)を用いた詳細な介在物の調査を以下のように行った。図3(a)に示す極厚鋼板12の中央部から図3(b)に示すミクロサンプル13(鋼板厚さ方向の長さ35mm、鋼板幅方向の長さ10mm)を、バルク部(母材)12aおよび負偏析部12bを含むように採取した。ミクロサンプル13は、研磨した後、表面に金を蒸着し、バルク部、天側のバルク−負偏析境界、および負偏析部の鋼板厚さ方向中央の3箇所についてSEMを用いて介在物の観察および調査を行った。図6(b)には、SEMを用いて観察した3箇所のラインを示す。   Therefore, detailed investigation of inclusions using SEM (Scanning Electron Microscope) was performed as follows. A micro sample 13 (length in the steel plate thickness direction: 35 mm, length in the steel plate width direction: 10 mm) shown in FIG. ) 12a and negative segregation part 12b were collected. After the micro sample 13 was polished, gold was vapor-deposited on the surface, and the inclusions were observed using SEM at the bulk part, the bulk-negative segregation boundary on the top side, and the center of the negative segregation part in the thickness direction of the steel sheet. And conducted a survey. FIG. 6B shows three lines observed using the SEM.

ミクロサンプルの観察は、倍率250倍とし、鋼板厚さ方向は約350μm(0.35mm)、鋼板幅方向はサンプル幅である10mmの視野でスキャンして行った。観察により検出された全ての介在物は、1000倍から最大で3000倍に視野を拡大して観察し、定量分析を行った。定量分析の結果に基づいて介在物の種類を確定した後、MnSの介在物の個数を求め、この個数を0.35mm×10mmの観察視野面積で除して、単位面積当たりの個数に換算した。   Observation of the micro sample was performed at a magnification of 250 times, scanning with a steel plate thickness direction of about 350 μm (0.35 mm), and a steel plate width direction with a sample width of 10 mm. All the inclusions detected by observation were observed with magnification of the field of view from 1000 times to a maximum of 3000 times, and quantitative analysis was performed. After determining the type of inclusions based on the result of quantitative analysis, the number of inclusions of MnS was obtained, and this number was divided by the observation visual field area of 0.35 mm × 10 mm and converted to the number per unit area. .

このような手順で、負偏析部に微細割れが発生した圧延サンプル、および発生しなかった圧延サンプルのバルク部、バルク−負偏析境界部および負偏析部のMnS介在物の個数を調査した。   With such a procedure, the number of MnS inclusions in the rolled sample in which fine cracks occurred in the negative segregation part and the bulk part, bulk-negative segregation boundary part, and negative segregation part of the rolled sample that did not occur was investigated.

図4は微細割れが発生した圧延サンプルにおけるMnS介在物の個数を示す図であり、図5は微細割れが発生しなかった圧延サンプルにおけるMnS介在物の個数を示す図である。図4および図5から、微細割れが発生した圧延サンプル、および発生しなかった圧延サンプルのいずれも、バルク部および境界部の方が、負偏析部よりもMnSの介在物が多い傾向が見られた。ただし、図4および図5からわかるように、いずれの調査部位においても、微細割れが発生した圧延サンプルでは、発生しなかった圧延サンプルよりもMnSの介在物の絶対量は多かった。   FIG. 4 is a diagram showing the number of MnS inclusions in a rolled sample in which fine cracks occurred, and FIG. 5 is a diagram showing the number of MnS inclusions in a rolled sample in which fine cracks did not occur. From FIG. 4 and FIG. 5, there is a tendency that both the bulk sample and the boundary portion have more MnS inclusions than the negative segregation portion in the rolled sample in which fine cracks occurred and the rolled sample in which fine cracks did not occur. It was. However, as can be seen from FIG. 4 and FIG. 5, the absolute amount of inclusions of MnS was larger in the rolled sample in which the microcrack was generated than in the rolled sample in which no microcrack occurred.

2.MnSの介在物と鋼中のS成分含有率[S]との関係
2−1.MnSの介在物に関する知見
本発明者らは、前記特許文献3において得た高Cr含有鋼の鋳造方法についての知見をもとに検討したところ、以下の知見を得た。
2. 2. Relationship between inclusions of MnS and S component content [S] in steel 2-1. Knowledge Regarding Inclusions of MnS The present inventors have studied based on the knowledge about the casting method of high Cr-containing steel obtained in Patent Document 3, and obtained the following knowledge.

Cは、オーステナイト(以下、「γ」という)安定化元素である。また、圧下された鋳片は、負偏析部ではC含有率が低下し、フェライト(以下、「α」という)リッチとなる。そのため、圧下された鋳片は、負偏析部を構成するαリッチの組織が、バルク部を構成するγ組織に挟み込まれた状態を呈する。   C is an austenite (hereinafter referred to as “γ”) stabilizing element. In addition, the slab that has been squeezed has a reduced C content in the negative segregation portion, and becomes rich in ferrite (hereinafter referred to as “α”). Therefore, the slab that has been reduced exhibits a state where the α-rich structure constituting the negative segregation part is sandwiched between the γ structures constituting the bulk part.

高温の鋳片では、γ中でもα中でも、水素が固溶している。しかし、その後の冷却過程において温度が低下するにつれて、γおよびαにおける水素溶解度は低下し、最終的に固溶している水素が固溶限界に達することがある。水素溶解度が低く、水素の拡散速度の大きい負偏析部において固溶限界に達した水素原子は、負偏析部よりも水素溶解度の高いバルク−負偏析境界を経てバルク部へ拡散する。しかし、バルク部における水素の拡散速度は負偏析部と比較して小さいため、負偏析部からバルク部方向へ移動する水素原子のうちバルク部内に拡散できなかったものは、バルク−負偏析境界に存在する微細なMnS中に水素ガスとして残留する。そして、この鋳片に熱間加工を施すと、MnS中の水素ガスの圧力が高くなり、鋳片に割れが発生する。   In high-temperature slabs, hydrogen is dissolved in both γ and α. However, as the temperature decreases in the subsequent cooling process, the hydrogen solubility in γ and α decreases, and hydrogen that is finally in solid solution may reach the solid solution limit. Hydrogen atoms that have reached the solid solution limit in the negative segregation part having a low hydrogen solubility and a high hydrogen diffusion rate diffuse to the bulk part through a bulk-negative segregation boundary having a higher hydrogen solubility than the negative segregation part. However, since the diffusion rate of hydrogen in the bulk part is smaller than that in the negative segregation part, hydrogen atoms that move from the negative segregation part toward the bulk part cannot be diffused into the bulk part at the bulk-negative segregation boundary. It remains as hydrogen gas in the fine MnS present. And when this slab is hot-worked, the pressure of the hydrogen gas in MnS will become high and a crack will generate | occur | produce in a slab.

この知見に対して、本発明者らは、「MnSの生成量は鋼中のS成分の平均含有率[S]に比例し、負偏析部からバルク部へ拡散する水素量は負偏析部の厚さに比例する」との仮説を立て、負偏析部の厚さに着目した。   In response to this finding, the inventors have stated that “the amount of MnS produced is proportional to the average content [S] of the S component in the steel, and the amount of hydrogen diffusing from the negative segregation part to the bulk part is that of the negative segregation part. We hypothesized that it is proportional to the thickness, and focused on the thickness of the negative segregation part.

2−2.負偏析部の厚さが鋳片の割れに及ぼす影響の調査
負偏析部の厚さが鋳片の割れに及ぼす影響について調査するため、表1に示す圧下量および比水量が異なる2水準の条件で鋳造し、鋳片の負偏析部の厚さを変化させる試験を行った。得られた鋳片についてMA分析を行い、負偏析部の厚さを測定したところ、ケース1では平均6.01mm、ケース2では10.9mmであり、負偏析部の厚さを制御することができた。また、各鋳片を圧延し、切断して複数の圧延切断材を採取し、各圧延切断材について微細割れの発生の有無について調査したところ、微細割れ発生不良率(≡(微細割れの発生した圧延切断材数)/(圧延切断材数)×100(%))は、ケース1では0.0%、ケース2では54.7%であった。
2-2. Investigation of the effect of negative segregation thickness on slab cracking In order to investigate the effect of negative segregation thickness on slab cracking, two levels of conditions shown in Table 1 differing in the amount of reduction and specific water The test was performed by changing the thickness of the negative segregation part of the slab. The obtained slab was subjected to MA analysis and the thickness of the negative segregation part was measured. As a result, the average in case 1 was 6.01 mm and in case 2 was 10.9 mm, and the thickness of the negative segregation part can be controlled. did it. Also, each slab was rolled and cut to obtain a plurality of rolled cutting materials, and each rolled cutting material was examined for occurrence of fine cracks. The number of rolled cut materials) / (number of rolled cut materials) × 100 (%)) was 0.0% in case 1 and 54.7% in case 2.

Figure 2011098388
Figure 2011098388

図6は、鋼中のS成分含有率[S]と鋳片の負偏析部の厚さDとの積[S]・Dと、微細割れ発生不良率との関係を示す図である。表1に示す鋳造条件で、さらに鋼中のS成分含有率[S](ppm)を振り、[S]と鋳片の負偏析部の厚さD(mm)との積[S]・D(ppm・mm)と微細割れ不良発生率との関係を調査した。その結果、図6に示すように、[S]・Dが60ppm・mm以下では微細な割れの発生が抑制され、60を超えると微細な割れが顕著に増加することを知見した。これが、上述の(1)に係る発明に含まれる下記(1)式の根拠である。
0<[S]・D≦60 …(1)
FIG. 6 is a diagram showing the relationship between the product [S] · D of the S component content [S] in steel and the thickness D of the negative segregation portion of the slab, and the fine crack occurrence defect rate. Under the casting conditions shown in Table 1, the S component content [S] (ppm) in the steel is further varied, and the product [S] · D of [S] and the thickness D (mm) of the negative segregation portion of the slab. The relationship between (ppm · mm) and the incidence of fine crack defects was investigated. As a result, as shown in FIG. 6, it was found that the occurrence of fine cracks was suppressed when [S] · D was 60 ppm · mm or less, and the fine cracks markedly increased when it exceeded 60. This is the basis of the following formula (1) included in the invention according to the above (1).
0 <[S] · D ≦ 60 (1)

また、全圧下比αで鋳片を圧下した後の極厚鋼板における負偏析部の厚さをDpとすると、DとDpとの関係は、下記(a)式で表される。
D=α・Dp …(a)
Moreover, when the thickness of the negative segregation part in the extra-thick steel plate after the slab is reduced at the total reduction ratio α is Dp, the relationship between D and Dp is expressed by the following equation (a).
D = α · Dp (a)

(1)式に(a)式を代入することにより、下記(b)式が得られ、(b)式の各辺をαで除することにより下記(2)式が得られる。これが、極厚鋼板についての上述の(2)に係る発明に含まれる下記(2)式の根拠である。
0<[S]・α・Dp≦60 …(b)
∴ 0<[S]・Dp≦60/α …(2)
By substituting the expression (a) into the expression (1), the following expression (b) is obtained, and by dividing each side of the expression (b) by α, the following expression (2) is obtained. This is the basis of the following formula (2) included in the invention according to the above (2) for the extra-thick steel plate.
0 <[S] · α · Dp ≦ 60 (b)
< 0 <[S] · Dp ≦ 60 / α (2)

3.MnS介在物の個数と微細割れ発生との関係
本発明者らは、さらなる微細割れの発生の抑制を図るべく、鋼中の水素を拡散により減少させる脱水素処理、およびMnSとなるSをCaSとして固定してMnSを低減するCaSi処理を施す鋳造、圧延試験を行った。このようにして得られた厚さ100mm以上の極厚鋼板から、サンプルを採取して、バルク−負偏析境界部分の最大長さが1μm以上のMnS介在物の個数を上述のSEMを用いた観察法によってカウントした。
3. The relationship between the number of MnS inclusions and the occurrence of fine cracks In order to further suppress the occurrence of fine cracks, the present inventors have performed dehydrogenation treatment that reduces hydrogen in steel by diffusion, and S that becomes MnS as CaS. A casting and rolling test was performed in which CaSi treatment for fixing and reducing MnS was performed. A sample was taken from the ultra-thick steel plate having a thickness of 100 mm or more thus obtained, and the number of MnS inclusions having a maximum bulk-negative segregation boundary portion of 1 μm or more was observed using the SEM described above. Counted by law.

図7は、脱水素処理プロセス対策実施後のバルク部のMnS介在物の個数と、微細割れ欠陥発生指数との関係を示す図である。微細割れ欠陥の発生は、微細割れ欠陥指数によって評価した。微細割れ欠陥指数(無次元数)は、極厚鋼板成品の切断面の染色浸透探傷検査によって評価した微細割れの結果を評価する、3段階の指標(2:手入れで疵(微細割れ)の除去不可、1:手入れで疵の除去可能、0:疵なし)である。   FIG. 7 is a diagram showing the relationship between the number of MnS inclusions in the bulk part after the implementation of the dehydrogenation process countermeasure and the microcrack defect occurrence index. The occurrence of fine crack defects was evaluated by the fine crack defect index. The microcrack defect index (dimensionless number) is a three-stage index (2: removal of wrinkles (fine cracks) by maintenance) that evaluates the result of microcracking evaluated by dye penetration inspection on the cut surface of an extremely thick steel plate product. Impossible, 1: removal of wrinkles by care, 0: no wrinkles).

本発明者らは、図7から、MnS介在物の個数が少ないほど微細割れ欠陥指数が小さいこと、すなわち、バルク−負偏析境界部分を代表としたMnS介在物の個数と微細割れ欠陥の発生との間には相関があることを見出した。さらに、この結果ならびに図2および図3に示された結果から、最大長さが1μm以上のMnS介在物の個数を2個/mm2以下とすることにより、微細割れの発生を防止できることを見出した。これらの知見に基づき、上述の(3)に記載の発明を提案するに至った。 From FIG. 7, the present inventors show that the smaller the number of MnS inclusions, the smaller the fine crack defect index, that is, the number of MnS inclusions represented by the bulk-negative segregation boundary portion and the occurrence of fine crack defects. We found that there is a correlation between Furthermore, from these results and the results shown in FIGS. 2 and 3, it was found that the occurrence of fine cracks can be prevented by setting the number of MnS inclusions having a maximum length of 1 μm or more to 2 pieces / mm 2 or less. It was. Based on these findings, the inventors have proposed the invention described in (3) above.

本発明の連続鋳造方法によれば、定常圧下時において、未凝固圧下を行った、負偏析部を有する鋳片の厚さ方向中心部近傍における微細割れの発生を防止できるため、安定した内部品質を有する鋳片を、高い歩留まりおよび生産性で製造することができる。   According to the continuous casting method of the present invention, it is possible to prevent the occurrence of microcracking near the center in the thickness direction of a slab having a negative segregation portion, which has been subjected to unsolidified reduction during steady state reduction, and thus stable internal quality. It is possible to manufacture a slab having a high yield and productivity.

したがって、本発明の方法は、板厚が100mm以上の極厚の成品用の鋼種を対象とした鋳片の製造に対して優れた効果を発揮できる連続鋳造方法として、鋼板に適用できる技術である。   Therefore, the method of the present invention is a technique that can be applied to a steel sheet as a continuous casting method that can exert an excellent effect on the production of a slab for a steel product for an extremely thick product having a thickness of 100 mm or more. .

また、本発明の極厚鋼板は、高い内部品質を有する。   Moreover, the extra-thick steel plate of the present invention has high internal quality.

1a:タンディッシュ、1b:浸漬ノズル、 2:溶鋼湯面(メニスカス)、
3:鋳型、 4:溶鋼、 5:凝固シェル、 6:ガイドロール群、
6a:ガイドロール(従動ロール)、 6b:ガイドロール(駆動ロール)、
7:圧下ロール対、 8:鋳片、 10:未凝固部、 11:下側パスライン、
12:極厚鋼板、 13:ミクロサンプル
1a: tundish, 1b: immersion nozzle, 2: molten steel surface (meniscus),
3: mold, 4: molten steel, 5: solidified shell, 6: guide roll group,
6a: guide roll (driven roll), 6b: guide roll (drive roll),
7: Pair of rolling rolls, 8: Slab, 10: Unsolidified part, 11: Lower pass line,
12: Extra-thick steel plate, 13: Micro sample

Claims (4)

未凝固部を含む鋳片を、連続鋳造機内または機端に配置した少なくとも1対の圧下ロール対を用いて圧下して、鋳片の厚さ方向両側の凝固殻を圧着させることにより、凝固後の鋳片の厚さ方向中心部近傍に負偏析部を形成させる連続鋳造方法であって、
鋳片厚さ方向の負偏析部の厚さD(mm)と鋼中S成分含有率[S](ppm)の積[S]・Dを、下記(1)式を満足するようにすることを特徴とする連続鋳造方法。
0<[S]・D≦60 …(1)
After solidification, the slab containing the unsolidified part is reduced using at least one pair of reduction rolls arranged in the continuous casting machine or at the end of the slab, and the solidified shells on both sides in the thickness direction of the slab are pressed. A continuous casting method in which a negative segregation portion is formed in the vicinity of the center portion in the thickness direction of the slab,
The product [S] · D of the thickness D (mm) of the negative segregation part in the slab thickness direction and the S component content [S] (ppm) in the steel satisfies the following formula (1). A continuous casting method characterized by the above.
0 <[S] · D ≦ 60 (1)
未凝固部を含む鋳片を、連続鋳造機内または機端に配置した少なくとも1対の圧下ロール対を用いて圧下して、鋳片の厚さ方向両側の凝固殻を圧着させることにより、凝固後の鋳片の厚さ方向中心部近傍に負偏析部を形成させる連続鋳造方法で製造された鋳片を、圧下して得られる極厚鋼板であって、
極厚鋼板厚さ方向の負偏析部の厚さDp(mm)と鋼中S成分含有率[S](ppm)の積[S]・Dpが、下記(2)式を満足することを特徴とする極厚鋼板。
0<[S]・Dp≦60/α …(2)
ここで、αは鋳片を極厚鋼板に圧下する際の全圧下比(無次元数)(≡鋳片の厚さ/極厚鋼板の厚さ)を表す。
After solidification, the slab containing the unsolidified part is reduced using at least one pair of reduction rolls arranged in the continuous casting machine or at the end of the slab, and the solidified shells on both sides in the thickness direction of the slab are pressed. A slab manufactured by a continuous casting method in which a negative segregation part is formed in the vicinity of the center of the slab in the thickness direction.
The product [S] · Dp of the thickness Dp (mm) of the negative segregation part in the thickness direction of the extra-thick steel plate and the S component content [S] (ppm) in the steel satisfies the following formula (2): Extra heavy steel sheet.
0 <[S] · Dp ≦ 60 / α (2)
Here, α represents the total reduction ratio (dimensionless number) (≡ slab thickness / thickness of extra heavy steel plate) when the slab is reduced to extra heavy steel plate.
負偏析部以外の部分における最大長さが1μm以上のMnSの個数が2個/mm2以下であることを特徴とする請求項2に記載の極厚鋼板。 The extra-thick steel plate according to claim 2, wherein the number of MnS having a maximum length of 1 µm or more in a portion other than the negative segregation portion is 2 pieces / mm 2 or less. 鋳片が、質量%で、C:0.05〜0.3%、Si:0.05〜0.4%、Mn:0.2〜2%、P:0.020%以下、S:0.003%以下およびsol.Al:0.1%以下を含有し、さらに、Mo:1.5%以下、Ni:1.5〜3.0%、Cr:5%以下、Cu:1.5%以下、Ti:0.1%以下、Nb:0.1%以下およびV:0.1%以下のうちの1種または2種以上を含有し、残部がFeおよび不純物からなる合金鋼である、請求項1に記載の連続鋳造方法、または請求項2もしくは3に記載の極厚鋼板。   The slab is in mass%, C: 0.05 to 0.3%, Si: 0.05 to 0.4%, Mn: 0.2 to 2%, P: 0.020% or less, S: 0 0.003% or less and sol. Al: 0.1% or less, Mo: 1.5% or less, Ni: 1.5-3.0%, Cr: 5% or less, Cu: 1.5% or less, Ti: 0.00%. 2. The alloy steel according to claim 1, comprising one or more of 1% or less, Nb: 0.1% or less, and V: 0.1% or less, with the balance being Fe and impurities. The extra-thick steel plate according to claim 2 or 3, or a continuous casting method.
JP2009256460A 2009-11-09 2009-11-09 Steel continuous casting method and extra-thick steel plate Active JP5327006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256460A JP5327006B2 (en) 2009-11-09 2009-11-09 Steel continuous casting method and extra-thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256460A JP5327006B2 (en) 2009-11-09 2009-11-09 Steel continuous casting method and extra-thick steel plate

Publications (2)

Publication Number Publication Date
JP2011098388A true JP2011098388A (en) 2011-05-19
JP5327006B2 JP5327006B2 (en) 2013-10-30

Family

ID=44190003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256460A Active JP5327006B2 (en) 2009-11-09 2009-11-09 Steel continuous casting method and extra-thick steel plate

Country Status (1)

Country Link
JP (1) JP5327006B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087249A (en) * 2015-11-09 2017-05-25 新日鐵住金株式会社 Continuous casting method of steel slab casting piece
JP2020505235A (en) * 2017-11-15 2020-02-20 ノベリス・インコーポレイテッドNovelis Inc. Reduction of metal level overshoot or undershoot during transition of flow demand
WO2020130354A1 (en) * 2018-12-19 2020-06-25 주식회사 포스코 Method for manufacturing ultra-thick steel sheet and cast piece for ultra-thick steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043848A (en) * 1996-07-31 1998-02-17 Kawasaki Steel Corp Cast slab internal crack prevention method in continuous casting
JP2001162353A (en) * 1999-12-07 2001-06-19 Sumitomo Metal Ind Ltd Continuously cast slab and its continuous casting method, and method of manufacturing thick steel plate
JP2005103604A (en) * 2003-09-30 2005-04-21 Sumitomo Metal Ind Ltd Continuous casting method, continuous casting cast slab, and steel plate
JP3671868B2 (en) * 2001-06-07 2005-07-13 住友金属工業株式会社 Method for casting high Cr steel
JP2008149379A (en) * 2008-03-12 2008-07-03 Nippon Steel Corp Cast slab with excellent solidification structure
JP4218383B2 (en) * 2002-04-08 2009-02-04 住友金属工業株式会社 Continuous casting method, continuous casting apparatus and continuous cast slab

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043848A (en) * 1996-07-31 1998-02-17 Kawasaki Steel Corp Cast slab internal crack prevention method in continuous casting
JP2001162353A (en) * 1999-12-07 2001-06-19 Sumitomo Metal Ind Ltd Continuously cast slab and its continuous casting method, and method of manufacturing thick steel plate
JP3671868B2 (en) * 2001-06-07 2005-07-13 住友金属工業株式会社 Method for casting high Cr steel
JP4218383B2 (en) * 2002-04-08 2009-02-04 住友金属工業株式会社 Continuous casting method, continuous casting apparatus and continuous cast slab
JP2005103604A (en) * 2003-09-30 2005-04-21 Sumitomo Metal Ind Ltd Continuous casting method, continuous casting cast slab, and steel plate
JP2008149379A (en) * 2008-03-12 2008-07-03 Nippon Steel Corp Cast slab with excellent solidification structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017087249A (en) * 2015-11-09 2017-05-25 新日鐵住金株式会社 Continuous casting method of steel slab casting piece
JP2020505235A (en) * 2017-11-15 2020-02-20 ノベリス・インコーポレイテッドNovelis Inc. Reduction of metal level overshoot or undershoot during transition of flow demand
WO2020130354A1 (en) * 2018-12-19 2020-06-25 주식회사 포스코 Method for manufacturing ultra-thick steel sheet and cast piece for ultra-thick steel sheet
KR20200076829A (en) * 2018-12-19 2020-06-30 주식회사 포스코 Manufacturing method for very thick steel plate and casting slab for very thick steel plate
KR102223119B1 (en) * 2018-12-19 2021-03-04 주식회사 포스코 Manufacturing method for very thick steel plate and casting slab for very thick steel plate

Also Published As

Publication number Publication date
JP5327006B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JPWO2018051483A1 (en) Continuous casting method
WO2018173888A1 (en) Method for producing austenite stainless steel slab
JP5327006B2 (en) Steel continuous casting method and extra-thick steel plate
JP4508087B2 (en) Continuous casting method and continuous cast slab
JP2002273554A (en) Method for continuously casting steel
JP6111892B2 (en) Continuous casting method and continuous casting slab
JP2005103604A (en) Continuous casting method, continuous casting cast slab, and steel plate
JP2010029936A (en) Casting mold for continuous casting, and continuous casting method for steel
JP5754417B2 (en) Continuous casting method for slabs
JP5648300B2 (en) Steel continuous casting method
JP2014231086A (en) Method for continuously casting steel
JP7226043B2 (en) Continuous casting method
JP2018099706A (en) Continuously cast slab of steel and continuous casting method
JP3275835B2 (en) Continuous casting method and continuous casting machine
JP3671868B2 (en) Method for casting high Cr steel
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP2004307931A (en) Continuously cast piece, and casting method therefor
JP2005305517A (en) Continuous casting method and continuously cast slab
JP5195636B2 (en) Manufacturing method of continuous cast slab
JP2011140044A (en) Continuous casting method for steel
JP2010247160A (en) Method for continuously casting steel and cast slab produced by the method
JP4330518B2 (en) Continuous casting method
JP3356100B2 (en) Continuous casting method
JP2001225156A (en) Continuously cast slab of steel, continuous casting method and method for manufacturing steel products
JP3494136B2 (en) Continuous cast slab, casting method thereof, and method of manufacturing thick steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R151 Written notification of patent or utility model registration

Ref document number: 5327006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350