JPH1043848A - Cast slab internal crack prevention method in continuous casting - Google Patents

Cast slab internal crack prevention method in continuous casting

Info

Publication number
JPH1043848A
JPH1043848A JP20198596A JP20198596A JPH1043848A JP H1043848 A JPH1043848 A JP H1043848A JP 20198596 A JP20198596 A JP 20198596A JP 20198596 A JP20198596 A JP 20198596A JP H1043848 A JPH1043848 A JP H1043848A
Authority
JP
Japan
Prior art keywords
mold
molten steel
continuous casting
alloy
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20198596A
Other languages
Japanese (ja)
Inventor
Yoichi Ito
陽一 伊藤
Seiji Nabeshima
誠司 鍋島
Koichi Tozawa
宏一 戸澤
Kenichi Tanmachi
健一 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20198596A priority Critical patent/JPH1043848A/en
Publication of JPH1043848A publication Critical patent/JPH1043848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent internal crack in high speed casting by adding Ca from an immersion nozzle in a mold and stabilizing Ca concentration near the center of cast slab thickness to high degree and fixing/reducing molten S with Ca. SOLUTION: In an immersion nozzle 3 to pour a molten steel 2 in a mold 6, supply holes 3c, which are pierced in a nozzle tip face from an introducing hole 3a arranged at the upper side wall of immersion nozzle through a supply route 3b extending up to the inner side of side wall, are formed in series, Ca or Ca alloy 12 is supplied from the supply holes 3c in the molten steel 2 in mold 6, Ca concentration near the center of cast slab thickness is locally increased. Here, a quantity to add Ca or Ca alloy 12 in the molten steel 2 in mold 6 is supplied so that a sampling analysis value of molten steel in mold satisfies the formula. Thus, generation of internal crack is suppressed without increasing a secondary cooling capacity, in particular the high speed casting of >=2.0m/min is made possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造における
鋳片内部割れ防止方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing slab internal cracks in continuous casting.

【0002】[0002]

【従来の技術】鋼の連続鋳造は、図1に示すように、取
鍋1内の溶鋼2をロングノズル3からタンディッシュ4
内に一旦注入し、次いで溶鋼2を浸漬ノズル5からモー
ルド6内に連続的に注入して行う。そして、モールド6
内に注入された溶鋼2は、ここで急冷されることによ
り、凝固シェル7がモールド6内壁に形成され、凝固シ
ェル7はガイドロール8に支持されながら、ここで供給
される二次冷却水により冷却されて完全に凝固を完了
し、鋳片9としてピンチロール10により連続的に引き
抜かれる。なお、符号11は、モールドパウダーであ
る。
2. Description of the Related Art As shown in FIG. 1, molten steel 2 in a ladle 1 is passed through a long nozzle 3 through a tundish 4 to continuously cast steel.
And then continuously inject the molten steel 2 from the immersion nozzle 5 into the mold 6. And mold 6
The molten steel 2 injected into the inside is quenched here to form a solidified shell 7 on the inner wall of the mold 6. It is cooled and completely solidified, and is continuously drawn out as a slab 9 by a pinch roll 10. Reference numeral 11 denotes a mold powder.

【0003】ところで、近年、生産性の向上を目的に、
高温鋳片の製造と直送圧延プロセスの安定化を達成する
ため、連続鋳造の高速化が進められている。この高速鋳
造技術を確立するに当たり、品質上の問題の1つに鋳片
内部における割れ(以下、「内部割れ」と略記)があ
る。この内部割れの発生は、凝固界面における歪み増大
に伴い発生するものである。そして凝固界面に作用する
歪みには、バルジング歪み、曲げ歪み、矯正歪み、ロー
ルミスアライメント歪み、熱応力による歪みなどが挙げ
られるが、中でもバルジング歪みが主であるとされてい
る。従って、凝固界面に作用する歪みを低減するには、
冷却強化によるバルジングの低減が有効であり、例えば
特開昭57−187150号公報では、内部割れ発生の防止を目
的に、二次冷却水による冷却の強化を図ることが、提案
されている。
[0003] In recent years, for the purpose of improving productivity,
In order to achieve the production of high-temperature slabs and the stabilization of the direct-feed rolling process, continuous casting has been accelerated. In establishing this high-speed casting technique, one of quality problems is cracking inside the slab (hereinafter abbreviated as "internal cracking"). The occurrence of this internal crack is caused by an increase in strain at the solidification interface. The distortion acting on the solidification interface includes bulging distortion, bending distortion, correction distortion, roll misalignment distortion, distortion due to thermal stress, and the like. Among them, bulging distortion is considered to be the main. Therefore, to reduce the strain acting on the solidification interface,
It is effective to reduce bulging by strengthening the cooling. For example, Japanese Patent Application Laid-Open No. 57-187150 proposes strengthening the cooling with secondary cooling water for the purpose of preventing the occurrence of internal cracks.

【0004】しかしながら、二次冷却を強化すると、鋳
片温度が低下するため、表面割れの発生を引き起こす
上、連続鋳造−圧延工程の直送化に要求される、鋳片の
高温保持が困難になることから、二次冷却を強化する場
合は、鋳造速度を2.0 m/min以下程度に制限する必要
がある。
However, when the secondary cooling is strengthened, the temperature of the slab is lowered, so that the surface slab is generated. In addition, it is difficult to maintain the slab at a high temperature, which is required for direct feeding in the continuous casting-rolling process. Therefore, when strengthening the secondary cooling, it is necessary to limit the casting speed to about 2.0 m / min or less.

【0005】一方、内部割れの感受性は、S濃度に大き
く影響されることが知られており、内部割れ防止のため
に、Sの低減が有効であることが、数多く報告されてい
る。また、このS低減に関連して、特開昭56−144051号
および特公昭56−51859 号公報には、溶鋼中にCa合金お
よび REM合金を添加することにより、内部割れの発生が
抑制できることが報告されているが、特に高速鋳造にお
ける有効性に乏しいところに問題が残る。
On the other hand, it is known that the susceptibility of internal cracks is greatly affected by the S concentration, and it has been reported that the reduction of S is effective for preventing internal cracks. In connection with this S reduction, Japanese Patent Application Laid-Open Nos. 56-144051 and 56-51859 show that the addition of a Ca alloy and a REM alloy in molten steel can suppress the occurrence of internal cracks. Although reported, the problem remains where the effectiveness is particularly poor in high speed casting.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明は、連
続鋳造において、鋳片温度を過度に冷却することなしに
内部割れを防止し得る手法を与えることによって、特に
2.0 m/min 以上の高速鋳造時の内部割れの抑制ならび
に高温度に保持された鋳片が要求される連続鋳造−圧延
直送化プロセスを実現しようとするものである。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made by providing a method of preventing internal cracks in continuous casting without excessively cooling the slab temperature.
An object of the present invention is to realize a continuous casting-rolling direct feed process in which internal cracks are suppressed during high-speed casting at 2.0 m / min or more and a slab kept at a high temperature is required.

【0007】[0007]

【課題を解決するための手段】本発明は、鋼の連続鋳造
において、溶鋼をモールド内に注湯する際、浸漬ノズル
からCaまたはCa含有合金をモールド内の溶鋼中に添加す
ることにより、鋳片厚み中心近傍のCa濃度を高位に安定
させ、Caにより溶存Sを硫化物として固定し低減するこ
とを特徴とする連続鋳造における鋳片内部割れ防止方法
である。
Means for Solving the Problems The present invention relates to a continuous casting of steel, in which molten steel is poured into a mold by adding Ca or a Ca-containing alloy into the molten steel in the mold from a dipping nozzle. This is a method for preventing internal slab cracking in continuous casting, characterized by stabilizing the Ca concentration near the center of the slab thickness to a high level, and fixing and reducing dissolved S as sulfide by Ca.

【0008】ここで、CaまたはCa含有合金を、モールド
内溶鋼サンプル分析値が下式 0.008 ≧[%S]−[%Ca]/1.25 を満足するように添加することが好ましい。また、Ca含
有合金としては、Ca−Si合金、Ca−Al合金、Ca−Si−RE
M 合金などが適合する。
Here, Ca or a Ca-containing alloy is preferably added so that the analysis value of the molten steel sample in the mold satisfies the following formula: 0.008 ≧ [% S] − [% Ca] /1.25. As the Ca-containing alloy, Ca-Si alloy, Ca-Al alloy, Ca-Si-RE
Suitable for M alloy.

【0009】[0009]

【発明の実施の形態】前述したように、連続鋳造におけ
る内部割れの発生は、二次冷却水の強化ならびに成分中
のS値を低減することにより防止できる。しかしなが
ら、冷却水量を増強するには設備上の限界があり、しか
も連続鋳造−圧延工程の直送化を推進するには、高温度
の鋳片が要求されるため、二次冷却水の増大に対する制
約を避けることは難しい。さらに、Sを低減するには、
一般に脱硫プロセスが必要となるため、製鋼コストの増
大につながるばかりでなく、製造プロセスに要する時間
が延長されるため、生産性の観点からも、その実現が困
難である。
As described above, the occurrence of internal cracks in continuous casting can be prevented by strengthening the secondary cooling water and reducing the S value in the components. However, there is a limit in terms of equipment to increase the amount of cooling water, and a high temperature slab is required to promote the direct feed of the continuous casting-rolling process. It is difficult to avoid. Further, to reduce S,
In general, a desulfurization process is required, which not only leads to an increase in steelmaking cost, but also prolongs the time required for the production process, which makes it difficult to realize the process from the viewpoint of productivity.

【0010】なお、Sは界面張力が小さいため、内部割
れ発生起点に濃化しやすいだけでなく、高温延性が零の
領域である脆化域を増大させることも報告されており、
S値を鋳造速度、二次冷却水量に応じた内部割れ発生限
界以内に収めることも必要である。
Since S has a low interfacial tension, it has been reported that S is not only easily concentrated at the starting point of internal cracking, but also increases the embrittlement zone where hot ductility is zero.
It is also necessary to keep the S value within the limit of internal crack generation corresponding to the casting speed and the amount of secondary cooling water.

【0011】また、現状の主流の方式となっている、垂
直曲げ型の連続鋳造機における内部割れの発生は、バル
ジング歪みならびに脆化域幅が大きくなる凝固末期に顕
著となる。従って、鋳片厚みの1/4〜1/2深さ(片
側での深さ、両側では1/4〜3/4深さに相当)位置
における内部割れの防止が特に重要となる。
In addition, the occurrence of internal cracks in the vertical bending type continuous casting machine, which is the current mainstream system, becomes remarkable at the end of solidification when the bulging strain and the width of the embrittlement zone become large. Therefore, it is particularly important to prevent internal cracks at a depth of 1/4 to 1/2 of the thickness of the slab (corresponding to a depth on one side and a depth of 1/4 to 3/4 on both sides).

【0012】以上の技術的背景に対して、従来のCa合金
やREM合金添加による内部割れ低減の手法では、Caや
REMの濃度が鋳片厚み方向にほぼ均一となるため、高
速鋳造時の内部割れ防止に要求される低水準のS量とな
るまで、SをCaにより固定することは困難であったの
である。
In contrast to the above technical background, in the conventional method of reducing internal cracking by adding a Ca alloy or a REM alloy, the concentration of Ca or REM becomes almost uniform in the thickness direction of the slab, so that the internal It was difficult to fix S with Ca until the low level of S required for crack prevention was reached.

【0013】しかるに、本発明では、モールド内の溶鋼
中に浸漬ノズルから、Ca又はCa含有合金を、好まし
くは微粒状で、吹き込むことにより、鋳片厚み方向の中
心近傍のCa濃度を局所的に高濃度にすることが可能と
なり、内部割れの発生に必要なS量を高速鋳造において
も達成可能とした。
In the present invention, however, Ca or a Ca-containing alloy, preferably in the form of fine particles, is blown into molten steel in a mold from a dipping nozzle to locally reduce the Ca concentration near the center in the slab thickness direction. The high concentration can be achieved, and the S amount required for the occurrence of internal cracks can be achieved even in high-speed casting.

【0014】すなわち、図2および図3に示すように、
モールド6内に溶鋼2を注入する浸漬ノズル3に、その
上部側壁に設けた導入孔3aから側壁内側で延びる供給
路3bを介してノズル先端面に開口する供給口3cを一
連に形成し、この供給口3cからCaまたはCa合金12
をモールド6内の溶鋼2中に供給することによって、鋳
片厚み中心近傍のCa濃度を局所的に高くすることがで
きる。
That is, as shown in FIGS. 2 and 3,
A supply port 3c is formed in a series on the immersion nozzle 3 for injecting the molten steel 2 into the mold 6 through a supply passage 3b extending from the introduction hole 3a provided in the upper side wall to the nozzle tip surface through a supply path 3b extending inside the side wall. Ca or Ca alloy 12 from supply port 3c
Is supplied into the molten steel 2 in the mold 6, the Ca concentration near the center of the slab thickness can be locally increased.

【0015】ここで、CaまたはCa合金をモールド6
内の溶鋼2中に添加する際の量は、モールド内溶鋼サン
プル分析値が下式; 0.008 ≧[%S]−[%Ca]/1.25 を満足するように供給することが好ましい。なぜなら、
上述したCa量を溶鋼中に存在させることで、内部割れ
発生防止に必要となる溶存S量Sr が鋳片1/4〜1/
2深さ位置で達成可能となるからである。
Here, Ca or a Ca alloy is molded
It is preferable to supply the amount to be added to the molten steel 2 so that the analysis value of the molten steel sample in the mold satisfies the following formula: 0.008 ≧ [% S] − [% Ca] /1.25. Because
By causing the above-mentioned Ca amount to exist in the molten steel, the dissolved S amount Sr required to prevent the occurrence of internal cracks can be reduced to 1/4 to 1 /
This is because it can be achieved at two depth positions.

【0016】また、浸漬ノズルの浸漬深さは、250mm
以上とするのが好ましい。さらに、CaまたはCa合金
の添加条件としては、例えば、高歩留りを達成するため
に、1mm以下の粒状で70%Ca−30%Siからなる
Ca−Si合金を、搬送ガスとして5.0リットル/mi
n のArを用い、速度0.8kg/min で供給する条件が
挙げられる。
The immersion depth of the immersion nozzle is 250 mm
It is preferable to make the above. Further, as an addition condition of Ca or a Ca alloy, for example, in order to achieve a high yield, a Ca-Si alloy composed of 70% Ca-30% Si in a granular shape of 1 mm or less is used as a carrier gas at 5.0 liter / liter. mi
The conditions are as follows: n is used, and the feed rate is 0.8 kg / min.

【0017】[0017]

【実施例】220mm厚の鋳片を製造する実機連続鋳造設
備において、C:0.16wt%,P:0.02wt%およ
びS:0.010wt%の組成の溶鋼による連続鋳造を、
鋳造速度:2.0m/min および比水量:2.0リットル/
kgで行うに当たり、70%Ca−30%SiからなるC
a−Si合金(粒径1mm以下の粒状)を、搬送Arガス
量5.0リットル/min により、0.8kg/min の速度
で、浸漬ノズルを介して図2に示した要領で添加した。
また、比較のために、Ca合金を添加しない場合(比較
例A)およびCa合金をレードルからCa:25ppm 相
当添加する場合(比較例B)についても、同様に連続鋳
造を行った。
EXAMPLE In a continuous casting facility for actual production of a 220 mm thick slab, continuous casting of molten steel having a composition of C: 0.16 wt%, P: 0.02 wt% and S: 0.010 wt% was performed.
Casting speed: 2.0 m / min and specific water volume: 2.0 liter /
kg, 70% Ca-30% Si
An a-Si alloy (granules having a particle diameter of 1 mm or less) was added at a rate of 0.8 kg / min at a rate of 0.8 kg / min with an Ar gas flow rate of 5.0 liter / min in the manner shown in FIG.
For comparison, continuous casting was also performed in a case where the Ca alloy was not added (Comparative Example A) and a case where the Ca alloy was added in an amount equivalent to 25 ppm of Ca from the ladle (Comparative Example B).

【0018】以上の方法で連続鋳造した鋳片について、
厚み方向のSを分析し溶存S量を求めるとともに、内部
割れ発生の程度を調査した。まず、図4に、鋳片厚み方
向における溶存S量の分布を示す。なお、溶存S量Sr
は、以下の式にて定義した。 但し、MS:S含有量 MCa:Ca原子量
For the slab continuously cast by the above method,
S in the thickness direction was analyzed to determine the amount of dissolved S, and the degree of internal cracking was investigated. First, FIG. 4 shows the distribution of the dissolved S amount in the slab thickness direction. Note that the dissolved S amount Sr
Is defined by the following equation. Where MS: S content MCa: Ca atomic weight

【0019】図4より、本発明法では、鋳片厚1/4 〜1/
2 (中心)位置のCa濃度が高い値となり、Sr 値が低
位になることがわかる。図中には、参考として、歪み解
析から推定した内部割れ発生限界のSr 値を二点鎖線で
示しているが、本発明法を採用することにより、ほぼ近
い分布を達成できていることがわかる。
FIG. 4 shows that in the method of the present invention, the slab thickness is 1/4 to 1/1.
2 It can be seen that the Ca concentration at the (center) position has a high value and the Sr value has a low value. In the figure, the Sr value of the internal crack generation limit estimated from the strain analysis is indicated by a two-dot chain line as a reference, but it can be seen that the distribution almost close can be achieved by employing the method of the present invention. .

【0020】また、表1に、内部割れ発生量の比較を示
す。ここで、内部割れ発生量は、鋳片断面Sプリントを
用いて評価し、評価方法は図5に示す方法に従った。す
なわち、鋳片幅中央位置において鋳造方向に採取したサ
ンプルにおいて、内部割れ長さをai (mm)としたとき
の、内部割れ指数ICRは、次式のとおりである。 ICR={Σai 2 /(L×T)}×10000 但し、L:サンプル長(mm) T:サンプル厚(mm)
Table 1 shows a comparison of the amount of internal cracks generated. Here, the amount of occurrence of internal cracks was evaluated using the S-section of the slab, and the evaluation method followed the method shown in FIG. That is, in a sample taken in the casting direction at the center of the slab width, the internal crack index ICR when the internal crack length is a i (mm) is as follows. ICR = {a i 2 / (L × T)} × 10000, where L: sample length (mm) T: sample thickness (mm)

【0021】[0021]

【表1】 [Table 1]

【0022】表1に示すように、本発明法の採用によ
り、内部割れ発生はほぼ皆無となり、無欠陥鋳片の製造
が可能となった。なお、本発明法による鋳片は表面割れ
の発生も皆無であり、また本発明法では浸漬ノズルを介
してCa合金を添加しているため、添加時のモールド湯
面の乱れに起因するパウダー巻き込み性の欠陥ならびに
ブローホール欠陥の発生も皆無であった。
As shown in Table 1, the adoption of the method of the present invention resulted in almost no occurrence of internal cracks, and made it possible to produce defect-free cast slabs. In the slab according to the method of the present invention, there is no occurrence of surface cracking, and in the method of the present invention, the Ca alloy is added through the immersion nozzle. There were no generation defects and no blowhole defects.

【0023】[0023]

【発明の効果】本発明によれば、2次冷却能力を増強す
ることなしに、高速鋳造における内部割れの発生を抑制
することが可能となる。従って、従来は鋳造が困難であ
った2.0m/min 以上の高速鋳造が安定して可能とな
るため、生産性が飛躍的に向上することになる。また、
高温度に保持された鋳片を得ることが可能となり、連続
鋳造−圧延直送化プロセスの実現に大きく寄与する。
According to the present invention, the occurrence of internal cracks in high-speed casting can be suppressed without increasing the secondary cooling capacity. Therefore, high-speed casting at 2.0 m / min or more, which was conventionally difficult to cast, can be stably performed, so that productivity is dramatically improved. Also,
It is possible to obtain a slab kept at a high temperature, which greatly contributes to the realization of a continuous casting-rolling direct feed process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】連続鋳造の工程を示す模式図である。FIG. 1 is a schematic view showing a continuous casting process.

【図2】本発明のCa添加要領を示す模式図である。FIG. 2 is a schematic view showing a Ca addition procedure of the present invention.

【図3】浸漬ノズルの断面を示す模式図である。FIG. 3 is a schematic view showing a cross section of an immersion nozzle.

【図4】鋳片厚み方向の溶存S濃度の分布を示す図であ
る。
FIG. 4 is a view showing a distribution of a dissolved S concentration in a slab thickness direction.

【図5】内部割れ指数の定義を説明する図である。FIG. 5 is a diagram illustrating the definition of an internal crack index.

【符号の説明】[Explanation of symbols]

1 取鍋 2 溶鋼 3 ロングノズル 4 タンディッシュ 5 浸漬ノズル 6 モールド 7 凝固シェル 8 ガイドロール 9 鋳片 10 ピンチロール 11 モールドパウダー 12 Ca DESCRIPTION OF SYMBOLS 1 Ladle 2 Molten steel 3 Long nozzle 4 Tundish 5 Immersion nozzle 6 Mold 7 Solidification shell 8 Guide roll 9 Cast piece 10 Pinch roll 11 Mold powder 12 Ca

フロントページの続き (72)発明者 戸澤 宏一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 反町 健一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内Continuing from the front page (72) Inventor Koichi Tozawa 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. None) Kawasaki Steel Corporation, Mizushima Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼の連続鋳造において、溶鋼をモールド
内に注湯する際、浸漬ノズルからCaまたはCa含有合金を
モールド内の溶鋼中に添加することにより、鋳片厚み中
心近傍のCa濃度を高位に安定させ、Caにより溶存Sを硫
化物として固定し低減することを特徴とする連続鋳造に
おける鋳片内部割れ防止方法。
In the continuous casting of steel, when pouring molten steel into a mold, Ca or a Ca-containing alloy is added from the immersion nozzle into the molten steel in the mold to reduce the Ca concentration near the center of the slab thickness. A method for preventing internal slab cracking in continuous casting, characterized by stabilizing to a high level and fixing and reducing dissolved S as sulfide by Ca.
【請求項2】 CaまたはCa含有合金を、モールド内溶鋼
サンプル分析値が下式: 0.008 ≧[%S]−[%Ca]/1.25 を満足するように添加する、請求項1に記載の方法。
2. The method according to claim 1, wherein Ca or a Ca-containing alloy is added so that the analysis value of the molten steel sample in the mold satisfies the following formula: 0.008 ≧ [% S] − [% Ca] /1.25. .
JP20198596A 1996-07-31 1996-07-31 Cast slab internal crack prevention method in continuous casting Pending JPH1043848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20198596A JPH1043848A (en) 1996-07-31 1996-07-31 Cast slab internal crack prevention method in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20198596A JPH1043848A (en) 1996-07-31 1996-07-31 Cast slab internal crack prevention method in continuous casting

Publications (1)

Publication Number Publication Date
JPH1043848A true JPH1043848A (en) 1998-02-17

Family

ID=16450035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20198596A Pending JPH1043848A (en) 1996-07-31 1996-07-31 Cast slab internal crack prevention method in continuous casting

Country Status (1)

Country Link
JP (1) JPH1043848A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116591A (en) * 2004-10-25 2006-05-11 Jfe Steel Kk Method for casting steel
JP2007216247A (en) * 2006-02-15 2007-08-30 Jfe Steel Kk Method for producing continuous-cast slab and high-tension hot rolled steel plate, high-tension cold rolled steel sheet, and high-tension galvanized steel sheet
JP2011098388A (en) * 2009-11-09 2011-05-19 Sumitomo Metal Ind Ltd Continuous casting method for steel and extra-thick steep plate
CN114774761A (en) * 2022-04-15 2022-07-22 福建三宝钢铁有限公司 Preparation process for improving surface and internal quality of Q355B slab

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116591A (en) * 2004-10-25 2006-05-11 Jfe Steel Kk Method for casting steel
JP4613579B2 (en) * 2004-10-25 2011-01-19 Jfeスチール株式会社 Steel casting method
JP2007216247A (en) * 2006-02-15 2007-08-30 Jfe Steel Kk Method for producing continuous-cast slab and high-tension hot rolled steel plate, high-tension cold rolled steel sheet, and high-tension galvanized steel sheet
JP2011098388A (en) * 2009-11-09 2011-05-19 Sumitomo Metal Ind Ltd Continuous casting method for steel and extra-thick steep plate
CN114774761A (en) * 2022-04-15 2022-07-22 福建三宝钢铁有限公司 Preparation process for improving surface and internal quality of Q355B slab

Similar Documents

Publication Publication Date Title
CN105821339B (en) A kind of production method of the slabs made of steel continuous casting containing rare earth element
KR102222442B1 (en) Continuous casting method
JP4337565B2 (en) Steel slab continuous casting method
US9643241B2 (en) Continuous casting method
JPH1043848A (en) Cast slab internal crack prevention method in continuous casting
KR102084729B1 (en) Continuous casting method
CN110541056B (en) Process for reducing center segregation of casting blank
JPH06599A (en) Method for continuously casting aluminum-killed steel for cold rolling
JPH1043850A (en) Continuous casting method of steel
JPH0577007A (en) Method for continuously casting steel slab using static magnetic field
CN113351843B (en) Continuous casting method and device for iron-chromium-aluminum alloy
JP3631629B2 (en) Mild steel for strips and its manufacturing method
JP3030596B2 (en) Continuous casting method
JP3283746B2 (en) Continuous casting mold
JP2888312B2 (en) Continuous casting method of steel slab by static magnetic field
JP2024004032A (en) Continuous casting method
JPH0647510A (en) Continuous casting method
KR100825571B1 (en) A continuous casting process of the steel containing high Ni for LNG tanks
JPH02247052A (en) Method for continuously casting cast slab for steel strip
JP3474451B2 (en) Manufacturing method of continuous cast billet of mild steel
CN115889713A (en) Continuous casting process for improving quality of ultrahigh carbon steel casting blank
JPH11217652A (en) Steel for bar, si killed steel, and their production by continuous casting
JP5447234B2 (en) Powder for continuous casting and method for continuous casting of steel using the same
JP2925374B2 (en) Continuous casting method of steel slab by static magnetic field
JP2002239692A (en) Method for continuously casting small cross section aluminum-killed steel cast slab