JP2024004032A - Continuous casting method - Google Patents

Continuous casting method Download PDF

Info

Publication number
JP2024004032A
JP2024004032A JP2022103467A JP2022103467A JP2024004032A JP 2024004032 A JP2024004032 A JP 2024004032A JP 2022103467 A JP2022103467 A JP 2022103467A JP 2022103467 A JP2022103467 A JP 2022103467A JP 2024004032 A JP2024004032 A JP 2024004032A
Authority
JP
Japan
Prior art keywords
mold
heat flux
corner
continuous casting
local heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022103467A
Other languages
Japanese (ja)
Inventor
孝平 古米
Kohei Furumai
則親 荒牧
Norichika Aramaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2022103467A priority Critical patent/JP2024004032A/en
Publication of JP2024004032A publication Critical patent/JP2024004032A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuous casting method which can suppress longitudinal cracks, bleeds and breakouts in the vicinity of corners.
SOLUTION: Provided is a continuous casting method in which, while molten steel is poured into a mold for continuous casting, a solidified shell obtained by solidifying the molten steel is pulled out to produce a slab with a local heat flux ratio between a local heat flux qn on a short side mold side at positions in which casting direction distances from a meniscus in the mold are the same and which are separated by a prescribed distance from one corner and a local heat flux qw on a long side mold side at positions separated by a prescribed distance from the one corner R=qn/qw being controlled to a range of 0.7 or more to 1.4 or less.
SELECTED DRAWING: Figure 2
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、鋳型銅板の局所熱流束を規定することで鋳片割れや割れ起因のブレークアウトを防止する連続鋳造方法に係り、特に中炭素鋼の連続鋳造方法に関するものである。 The present invention relates to a continuous casting method that prevents slab cracking and breakout caused by cracking by regulating the local heat flux of a mold copper plate, and particularly relates to a continuous casting method for medium carbon steel.

鋼の連続鋳造においては、鋳型内に注入された溶鋼は水冷式鋳型によって冷却され、鋳型との接触面で溶鋼が凝固して凝固層(「凝固シェル」という)を生成する。この凝固シェルが、鋳型下流側に設置した水スプレーや気水スプレーによって冷却されながら内部の未凝固層とともに鋳型下方に連続的に引き抜かれる。そして、水スプレーや気水スプレーによる冷却によって中心部まで凝固して鋳片が製造されている。 In continuous steel casting, molten steel injected into a mold is cooled by a water-cooled mold, and the molten steel solidifies at the contact surface with the mold to form a solidified layer (referred to as a "solidified shell"). This solidified shell is continuously pulled out below the mold together with the unsolidified layer inside while being cooled by a water spray or air water spray installed downstream of the mold. The slab is then solidified to the center by cooling with water spray or air/water spray to produce a slab.

鋳型内における冷却が不均一になると、凝固シェルの厚みが鋳造方向および鋳片幅方向や鋳片厚み方向で不均一となる。凝固シェルには、凝固シェルの収縮や変形に起因する応力が作用し、凝固初期においては、この応力が凝固シェルの薄肉部に集中する。この応力によって凝固シェルの表面に割れが発生する。この割れは、その後の熱応力や連続鋳造機のロールによる曲げ応力および矯正応力などの外力により拡大し、大きな表面割れとなる。凝固シェル厚みの不均一度が大きい場合には、鋳型内での縦割れとなり、この縦割れから溶鋼が流出するブレークアウトが発生する場合もある。また、この縦割れは鋳型コーナー近傍にも発生することがあり、その場合、スラブ品質悪化だけでなく、ブリードやブレークアウトなどの操業トラブルを引き起こす可能性がさらに高くなることが分かっている。 If the cooling within the mold becomes uneven, the thickness of the solidified shell will become uneven in the casting direction, the width direction of the slab, and the thickness direction of the slab. Stress due to contraction and deformation of the solidified shell acts on the solidified shell, and in the early stage of solidification, this stress is concentrated in the thin wall portion of the solidified shell. This stress causes cracks to occur on the surface of the solidified shell. This crack expands due to external forces such as subsequent thermal stress and bending stress and straightening stress caused by the rolls of the continuous casting machine, resulting in a large surface crack. When the non-uniformity of the solidified shell thickness is large, vertical cracks occur within the mold, and breakouts may occur in which molten steel flows out from the vertical cracks. Additionally, vertical cracks can also occur near the corners of the mold, and in this case, it has been found that not only does the quality of the slab deteriorate, but there is also a greater possibility of causing operational problems such as bleed and breakouts.

この凝固不均一によって発生する縦割れは、炭素含有量が0.08~0.17質量%の範囲内の、包晶反応を伴う鋼のうち亜包晶域において発生しやすいことが分かっている。従来、上記の包晶反応を伴う鋼種(「中炭素鋼」という)の表面割れを防止するために、例えば特許文献1、特許文献2、特許文献3に提案されるように、結晶化しやすい組成のモールドパウダーや緩冷却を促進させる鋳型を使用し、モールドパウダー層もしくは鋳型の熱抵抗を増大させて凝固シェルを緩冷却することが試みられている。 It is known that vertical cracks caused by this non-uniform solidification are more likely to occur in the subperitectic region of steels with a peritectic reaction in which the carbon content is in the range of 0.08 to 0.17 mass%. . Conventionally, in order to prevent surface cracking of steel types that involve the above-mentioned peritectic reaction (referred to as "medium carbon steel"), for example, as proposed in Patent Document 1, Patent Document 2, and Patent Document 3, a composition that is easy to crystallize has been proposed. Attempts have been made to slowly cool the solidified shell by increasing the thermal resistance of the mold powder layer or the mold by using mold powder and a mold that promotes slow cooling.

また、特許文献4には、鋳型銅板の熱流束を監視することで鋳片割れや割れ起因のブレークアウトを防止する中炭素鋼の連続鋳造方法が開示されている。短辺熱流束と長辺熱流束との熱流束比の時間変化を用いて、短辺側の鋳型銅板のテーパー率を増減して、熱流束比が適正になるようにしている。 Further, Patent Document 4 discloses a continuous casting method for medium carbon steel that prevents slab cracking and breakout caused by cracking by monitoring the heat flux of a mold copper plate. Using the time change in the heat flux ratio between the short side heat flux and the long side heat flux, the taper ratio of the mold copper plate on the short side is increased or decreased so that the heat flux ratio becomes appropriate.

特開2005-297001号公報Japanese Patent Application Publication No. 2005-297001 特開平06-304719号公報Japanese Patent Application Publication No. 06-304719 特開平09-276994号公報Japanese Patent Application Publication No. 09-276994 特開2009-090309号公報Japanese Patent Application Publication No. 2009-090309

しかしながら、上記従来技術には、以下のような課題があった。
すなわち、特許文献1~3に開示の技術では、凝固シェルの緩冷却化によって、コーナー近傍以外での縦割れ抑制には効果があるものの、コーナー近傍の縦割れには、その効果が小さい。そのため、縦割れ、ブリード、ブレークアウトを十分に抑制できないことが課題である。
However, the above conventional technology has the following problems.
That is, in the techniques disclosed in Patent Documents 1 to 3, although slow cooling of the solidified shell is effective in suppressing vertical cracks in areas other than the vicinity of corners, the effect is small on vertical cracks in the vicinity of corners. Therefore, the problem is that vertical cracking, bleeding, and breakout cannot be sufficiently suppressed.

また、特許文献4に開示の技術では、測定している熱流束は冷却水の抜熱から求めた面平均的熱流束であるので、コーナー近傍の局所的熱流束を直接には測定しておらず、コーナー近傍の縦割れ抑制に精度良く対応できない課題がある。 In addition, in the technology disclosed in Patent Document 4, the measured heat flux is the surface average heat flux obtained from the heat removal of the cooling water, so the local heat flux near the corner cannot be directly measured. First, there is the problem that it is not possible to accurately suppress vertical cracks near corners.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、連続鋳造時において、コーナー近傍での縦割れ、ブリード、ブレークアウトを抑制することのできる連続鋳造方法を提案することにある。 The present invention has been made in view of the above circumstances, and its purpose is to propose a continuous casting method that can suppress vertical cracks, bleeds, and breakouts near corners during continuous casting. It is in.

上記課題を有利に解決する本発明にかかる連続鋳造方法は、連続鋳造用の鋳型内に溶鋼を注入しつつ、前記溶鋼が凝固した凝固シェルを引き抜いて、鋳片を製造する際に、前記鋳型内のメニスカスからの鋳造方向距離が同一位置であって、一のコーナーから所定の距離離れた位置の短辺鋳型側の局所熱流束qnと、前記一のコーナーから所定の距離離れた位置の長辺鋳型側の局所熱流束qwと、の局所熱流束比R=qn/qwを0.7以上1.4以下の範囲とすることを特徴とする。 The continuous casting method according to the present invention, which advantageously solves the above-mentioned problems, involves injecting molten steel into a mold for continuous casting, and pulling out a solidified shell in which the molten steel has solidified, to manufacture a slab. The local heat flux qn on the short side mold side at a position where the casting direction distance from the meniscus is the same and a predetermined distance away from one corner, and the length at a position a predetermined distance away from the one corner. It is characterized in that the local heat flux qw on the side mold side and the local heat flux ratio R = qn/qw are in the range of 0.7 or more and 1.4 or less.

なお、本発明にかかる連続鋳造方法は、
(a)前記短辺鋳型側および前記長辺鋳型側の局所熱流束を測定する位置が、5mm以上20mm以下の範囲でコーナーから離れていること、
(b)前記鋳型に注入された溶鋼の表面にモールドパウダーを投入するにあたり、前記モールドパウダーは、CaO、SiO、Al、NaOおよびLiOを含有し、該モールドパウダー中のCaO濃度とSiO濃度との比(質量%CaO/質量%SiO)で表される塩基度を1.0以上2.5以下とすること、
(c)C:0.05~0.22質量%を含有する中炭素鋼を連続鋳造すること、
などがより好ましい解決手段になり得るものと考えられる。
In addition, the continuous casting method according to the present invention is as follows:
(a) the positions at which the local heat fluxes on the short-side mold side and the long-side mold side are measured are separated from the corner by a range of 5 mm or more and 20 mm or less;
(b) When introducing mold powder onto the surface of the molten steel poured into the mold, the mold powder contains CaO, SiO 2 , Al 2 O 3 , Na 2 O and Li 2 O, and the mold powder contains CaO, SiO 2 , Al 2 O 3 , Na 2 O and Li 2 O The basicity expressed by the ratio of the CaO concentration to the SiO 2 concentration (mass% CaO/mass% SiO 2 ) is 1.0 or more and 2.5 or less,
(c) continuous casting of medium carbon steel containing C: 0.05 to 0.22% by mass;
It is thought that this could be a more preferable solution.

本発明にかかる連続鋳造方法によれば、コーナー近傍での縦割れ、ブリード、ブレークアウトを抑制することのできるので、鋳片の品質トラブルや操業トラブルを未然に防ぐことが可能となり産業上有用である。 According to the continuous casting method according to the present invention, vertical cracking, bleed, and breakout near corners can be suppressed, making it possible to prevent slab quality problems and operational problems, which is industrially useful. be.

連続鋳造鋳型のコーナー近傍の短辺側と長辺側との局所熱流束比と対応するスラブコーナーの縦割れ個数との関係に与える、熱流束測定点のメニスカスから鋳造方向における距離の影響を示すグラフである。This figure shows the influence of the distance in the casting direction from the meniscus of the heat flux measurement point on the relationship between the local heat flux ratio between the short side and the long side near the corner of a continuous casting mold and the number of vertical cracks at the corresponding slab corner. It is a graph. 連続鋳造鋳型のコーナー近傍の短辺側と長辺側との局所熱流束比と対応するスラブコーナーの縦割れ個数との関係に与える、熱流束の測定点がコーナーから短辺側およびに長辺側に離れた距離の影響を示すグラフである。The measurement point of heat flux is determined from the corner to the short side and to the long side, which gives the relationship between the local heat flux ratio between the short side and long side near the corner of a continuous casting mold and the number of vertical cracks at the corresponding slab corner. FIG. 7 is a graph showing the effect of lateral distance; FIG. スラブコーナーの縦割れ個数とモールドパウダーの塩基度との関係を示すグラフである。It is a graph showing the relationship between the number of vertical cracks in slab corners and the basicity of mold powder. 実施例の各試験条件でのスラブコーナーの縦割れ個数を示すグラフである。It is a graph showing the number of vertical cracks in slab corners under each test condition in Examples.

以下、本発明の実施の形態について具体的に説明する。また、以下の実施形態は、本発明の技術的思想を具体化するための設備や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Embodiments of the present invention will be specifically described below. Furthermore, the following embodiments are intended to exemplify equipment and methods for embodying the technical idea of the present invention, and the configuration is not limited to the following. That is, the technical idea of the present invention can be modified in various ways within the technical scope described in the claims.

発明者らは、鋳型コーナー部の短辺側と長辺側の局所的な熱流束の比を所定の範囲内に収めることでコーナー近傍の凝固シェルの不均一を解消できると考えて、鋭意検討した。 The inventors conducted extensive research with the belief that by keeping the local heat flux ratio between the short side and long side of the mold corner within a predetermined range, the non-uniformity of the solidified shell near the corners could be resolved. did.

まず、連続鋳造中の鋳型銅板において、メニスカスから鋳造方向に、L=50mm、250mmおよび500mm位置(下方)での、同じコーナー部を有し、コーナー部から長辺側に5mm離れた位置での局所熱流束qw(5)とコーナー部から短辺側に5mm離れた位置での局所熱流束qn(5)を測定した。その局所熱流束比R(5、5)=qn(5)/qw(5)と、そのコーナー部に対応する位置でのスラブコーナー縦割れ個数密度(m-2)との関係をそれぞれ図1(a)~(c)に示す。図1(a)はメニスカスから鋳造方向にL=50mmの場合を示し、図1(b)はメニスカスから鋳造方向にL=250mmの場合を示し、図1(c)はメニスカスから鋳造方向にL=500mmの場合を示す。 First, a molded copper plate during continuous casting has the same corner parts at L = 50 mm, 250 mm, and 500 mm positions (downward) in the casting direction from the meniscus, and a position 5 mm away from the corner part on the long side. The local heat flux qw(5) and the local heat flux qn(5) at a position 5 mm away from the corner on the short side were measured. The relationship between the local heat flux ratio R (5, 5) = qn (5) / qw (5) and the slab corner vertical crack number density (m -2 ) at the position corresponding to the corner is shown in Figure 1. Shown in (a) to (c). Figure 1 (a) shows the case where L = 50 mm from the meniscus in the casting direction, Figure 1 (b) shows the case where L = 250 mm from the meniscus in the casting direction, and Figure 1 (c) shows the case where L = 250 mm from the meniscus in the casting direction. =500mm is shown.

局所熱流速は、銅板中に埋め込んだ熱電対温度測定値を用いて算出した。局所熱流束比R(5、5)が0.7より小さい場合、長辺側に比べ短辺側の局所熱流束が小さくなりすぎ、長辺側でのシェル厚が短辺側に比べ厚くなる。そのため、コーナー近傍の短辺側の凝固シェルが長辺側に引っ張られることになり、コーナー近傍の短辺側での凝固シェル-鋳型間の隙間が大きくなる。その結果、コーナー近傍の短辺側凝固シェルに凝固遅れが発生し、縦割れが生じやすくなると考えられる。一方、局所熱流束比R(5、5)が1.4より大きい場合、短辺側での局所熱流束が長辺側より大きくなりすぎ、短辺側の凝固シェル厚が長辺側に比べ大きくなる。そのため、コーナー近傍の長辺側の凝固シェルが短辺側に、引っ張られることになり、コーナー近傍の長辺側での凝固シェル-鋳型間の隙間が大きくなる。その結果、コーナー近傍の長辺側凝固シェルに凝固遅れが発生し、縦割れが生じやすくなると考えられる。したがって、局所熱流束比R(5、5)を0.7から1.4の範囲にすることで、コーナー近傍の長辺側と短辺側との凝固シェル厚差を増大させることなく連続鋳造でき、縦割れの発生を抑制できる。 Local heat flux was calculated using thermocouple temperature measurements embedded in the copper plate. When the local heat flux ratio R (5, 5) is smaller than 0.7, the local heat flux on the short side becomes too small compared to the long side, and the shell thickness on the long side becomes thicker than on the short side. . Therefore, the solidified shell on the short side near the corner is pulled toward the long side, and the gap between the solidified shell and the mold on the short side near the corner becomes large. As a result, it is thought that a solidification delay occurs in the solidified shell on the short side near the corner, making vertical cracks more likely to occur. On the other hand, when the local heat flux ratio R (5, 5) is larger than 1.4, the local heat flux on the short side becomes too large than on the long side, and the solidified shell thickness on the short side becomes smaller than that on the long side. growing. Therefore, the solidified shell on the long side near the corner is pulled toward the short side, and the gap between the solidified shell and the mold on the long side near the corner becomes large. As a result, it is thought that a solidification delay occurs in the solidified shell on the long side near the corner, making vertical cracks more likely to occur. Therefore, by setting the local heat flux ratio R (5, 5) in the range of 0.7 to 1.4, continuous casting can be performed without increasing the solidified shell thickness difference between the long side and short side near the corner. It is possible to suppress the occurrence of vertical cracks.

次に、メニスカスから鋳造方向にL=50mm離れた位置(下方)での、同じコーナー部を有し、コーナーから短辺側およびに長辺側それぞれn、w=5mm、20mm、50mmおよび100mm離れた位置での熱流束比R(n、w)=qn(n)/qw(w)を測定した。nおよびwは短辺側および長辺側のコーナーからの距離(mm)を表し、qn(n)は短辺側にn離れた位置の局所熱流束を表し、qw(w)は長辺側にw離れた位置の局所熱流束を表す。その局所熱流束比R(n、w)と、そのコーナー部に対応する位置でのスラブコーナーの縦割れ個数密度(m-2)との関係を調査し、結果を図2に示す。 Next, have the same corner part at a position L = 50 mm away from the meniscus in the casting direction (downward), and n, w = 5 mm, 20 mm, 50 mm, and 100 mm away from the corner on the short side and long side, respectively. The heat flux ratio R(n, w)=qn(n)/qw(w) at the position was measured. n and w represent the distance (mm) from the corner of the short side and long side, qn (n) represents the local heat flux at a position n away from the short side, and qw (w) represents the distance from the corner of the long side represents the local heat flux at a position w away from . The relationship between the local heat flux ratio R (n, w) and the vertical crack number density (m −2 ) of the slab corner at the position corresponding to the corner was investigated, and the results are shown in FIG.

コーナーから短辺側およびに長辺側それぞれn、w=50mmおよび100mm離れた位置の局所熱流束比R(n、w)は0.95~1.05の範囲にあり、スラブコーナーの縦割れ個数密度との相関が弱いことがわかった。つまり、スラブコーナー部の縦割れ個数密度が0.2m-2程度の場合もあれば、1.0m-2以上と多発する場合もある。また、コーナーから短辺側およびに長辺側それぞれw、n=5mmおよび20mm離れた位置の局所熱流束比R(n、w)は、スラブコーナーの縦割れ個数密度と強い相関を示すことがわかった。つまり、局所熱流束比R=qn/qwが0.7以上1.4以下の範囲では、スラブコーナー部の縦割れ個数密度が0.2m-2程度以下と良好である。一方、その範囲外では、スラブコーナー部の縦割れ個数密度が0.8m-2超えと多発している。また、コーナーから短辺側およびに長辺側それぞれw、nが5mm未満ではコーナー部近傍での測定となり鋳型銅板への熱電対挿入が不可能であるため測定できない。したがって、局所熱流束比R(n、w)を測定する位置について、鋳型内のメニスカスからの鋳造方向距離が同一位置であって、一のコーナーから所定の距離離れた位置の短辺鋳型側、かつ、そのコーナーから所定の距離離れた位置の長辺鋳型側とし、局所熱流束比R=qn/qwを0.7以上1.4以下の範囲とすることで、スラブコーナー部の縦割れ個数密度を低減できる。好ましくは、局所熱流束を測定する位置が短辺鋳型側および長辺鋳型側に5mm以上20mm以下の範囲でコーナーから離れているものとする。なお、局所熱流束比R(n、w)は、たとえば、鋳型短辺のテーパーの変更、鋳型長辺と短辺との冷却水量バランスの変更など短辺鋳型側と長辺鋳型側との冷却条件の変更により適宜選択できる。さらに、鋳造方向に振動させている鋳型の振動の波形や周波数を変更することによってモールドパウダーの消費量を変更し、鋳型での鋳片の冷却条件を変えることができる。 The local heat flux ratio R (n, w) at positions n, w = 50 mm and 100 mm away from the corner on the short side and long side, respectively, is in the range of 0.95 to 1.05, and vertical cracks at slab corners are observed. It was found that the correlation with number density was weak. In other words, the number density of vertical cracks at the corner of the slab may be about 0.2 m -2 or more than 1.0 m -2 in some cases. In addition, the local heat flux ratio R(n, w) at positions w, n = 5 mm and 20 mm away from the corner on the short side and long side, respectively, shows a strong correlation with the number density of longitudinal cracks at the slab corner. Understood. In other words, when the local heat flux ratio R=qn/qw is in the range of 0.7 or more and 1.4 or less, the number density of longitudinal cracks at the slab corner portion is good at about 0.2 m −2 or less. On the other hand, outside this range, the number density of vertical cracks at slab corners frequently exceeds 0.8 m -2 . Further, if w and n are less than 5 mm from the corner to the short side and the long side, respectively, the measurement will be performed near the corner, and it will be impossible to insert the thermocouple into the mold copper plate, so measurement will not be possible. Therefore, regarding the positions at which the local heat flux ratio R(n, w) is measured, the short side mold side is located at the same casting direction distance from the meniscus in the mold and is a predetermined distance away from one corner; In addition, by setting the long side of the mold at a predetermined distance from the corner and setting the local heat flux ratio R = qn/qw in the range of 0.7 to 1.4, the number of vertical cracks at the slab corner can be reduced. Density can be reduced. Preferably, the position where the local heat flux is measured is located away from the corner on the short side mold side and the long side mold side in a range of 5 mm or more and 20 mm or less. Note that the local heat flux ratio R (n, w) is determined by cooling between the short side mold side and the long side mold side, such as changing the taper of the short side of the mold, changing the cooling water amount balance between the long side and short side of the mold, etc. It can be selected as appropriate by changing the conditions. Furthermore, by changing the vibration waveform and frequency of the mold that is vibrated in the casting direction, the amount of mold powder consumed can be changed, and the conditions for cooling the slab in the mold can be changed.

さらに、鋳型内の初期凝固に影響を与えるモールドパウダーの化学組成について検討した。本実施形態のモールドパウダーは、CaO、SiO、Al、NaOおよびLiOを含有し、モールドパウダー中のCaO濃度とSiO濃度との比(質量%CaO/質量%SiO)で表される塩基度CaO/SiOが0.7~2.9の範囲のものを用いた。メニスカスから鋳造方向にL=50mm離れた位置(下方)での、同じコーナー部を有し、コーナーから短辺側およびに長辺側それぞれw、n=5mm離れた位置の局所熱流束比R(5、5)=0.9におけるモールドパウダーの塩基度CaO/SiOと対応するコーナー位置でのスラブコーナーの縦割れ個数密度(m-2)との関係を調査し、結果を図3に示す。モールドパウダーの塩基度CaO/SiOが1.0以上では、鋳型内での緩冷却化によりコーナー近傍の凝固シェル厚差をより抑制できるため好ましい。なお、モールドパウダーの塩基度CaO/SiOが2.5を超えると、コーナー縦割れ個数密度は低位にあるものの、鋳型内での緩冷却化を助長しすぎて、鋳型出側での凝固シェル厚不足を生じる。そのため、鋳型直下でのブレークアウトの発生率が高くなるおそれがある。したがって、モールドパウダー中のCaO濃度とSiO濃度との比(質量%CaO/質量%SiO)で表される塩基度を1.0以上2.5以下とすることが好ましい。 Furthermore, we investigated the chemical composition of the mold powder, which affects the initial solidification within the mold. The mold powder of this embodiment contains CaO, SiO 2 , Al 2 O 3 , Na 2 O and Li 2 O, and the ratio of the CaO concentration to the SiO 2 concentration in the mold powder (mass%CaO/mass%SiO The basicity CaO/SiO 2 expressed by 2 ) was in the range of 0.7 to 2.9. The local heat flux ratio R( The relationship between the basicity of mold powder CaO/SiO 2 at 5, 5) = 0.9 and the vertical crack number density (m -2 ) of the slab corner at the corresponding corner position was investigated, and the results are shown in Figure 3. . It is preferable that the basicity CaO/SiO 2 of the mold powder is 1.0 or more, since the difference in solidified shell thickness near the corners can be further suppressed by slow cooling within the mold. Note that when the basicity CaO/SiO 2 of the mold powder exceeds 2.5, although the number density of vertical corner cracks is low, slow cooling within the mold is promoted too much, and the solidified shell at the exit side of the mold is This results in insufficient thickness. Therefore, there is a possibility that the incidence of breakout directly under the mold may increase. Therefore, it is preferable that the basicity expressed as the ratio of CaO concentration to SiO 2 concentration (mass% CaO/mass% SiO 2 ) in the mold powder is 1.0 or more and 2.5 or less.

本実施形態の連続鋳造方法は、凝固収縮などにより縦割れの発生しやすいC含有量0.05~0.22質量%の中炭素鋼の連続鋳造に適用してスラブコーナー部縦割れを軽減し、好適に用いられる。特に、C含有量0.08~0.17質量%程度の包晶反応を伴う亜包晶域の中炭素鋼の連続鋳造に好適に用いられる。 The continuous casting method of the present embodiment is applied to the continuous casting of medium carbon steel with a C content of 0.05 to 0.22 mass%, where vertical cracks are likely to occur due to solidification shrinkage, etc., to reduce vertical cracks at slab corners. , is suitably used. In particular, it is suitably used for continuous casting of medium carbon steel in the subperitectic region with a C content of about 0.08 to 0.17 mass % and accompanied by a peritectic reaction.

転炉での酸素吹錬およびRH真空脱ガス処理を施した、取鍋中の300トンの溶鋼を、表1に示す条件で連続鋳造した。局所熱流束R(n、w)は、表1に示すように、同一コーナーから、長辺鋳型側でw(mm)離れた位置および短辺鋳型側でn(mm)離れた位置で、熱電対の測温値から求めた。また、局所熱流束を測定したメニスカスからの鋳造方向位置はL=50mmとした。モールドパウダーの塩基度CaO/SiOを表1に示す条件下において鋳造を行った。溶鋼のC含有量は0.20質量%であった。また、従来例(試験No.1)としては、R(5、5)=0.6およびモールドパウダーの塩基度CaO/SiOが0.90の条件を用い、連続鋳造を実施した。表1に示す発明例(試験No.2~13)、比較例(試験No.14~17)、従来例(試験No.1)の条件で連続鋳造を行い、鋳片の上下表面(長辺面)中の縦割れ個数密度(m-2)を測定した結果を図4に示す。図4から明らかなように、発明例では、スラブ表面割れ個数密度を大幅に低減することができることが分かった。 300 tons of molten steel in a ladle, which had been subjected to oxygen blowing in a converter and RH vacuum degassing treatment, was continuously cast under the conditions shown in Table 1. As shown in Table 1, the local heat flux R (n, w) is the thermoelectric flux at a position w (mm) away from the same corner on the long side mold side and at a position n (mm) away from the short side mold side. It was determined from the pair of temperature measurements. Further, the position in the casting direction from the meniscus where the local heat flux was measured was L=50 mm. The basicity of the mold powder, CaO/SiO 2 , was cast under the conditions shown in Table 1. The C content of the molten steel was 0.20% by mass. Further, as a conventional example (Test No. 1), continuous casting was performed using the conditions that R (5, 5) = 0.6 and the basicity CaO/SiO 2 of the mold powder was 0.90. Continuous casting was carried out under the conditions of the invention examples (Test Nos. 2 to 13), comparative examples (Tests No. 14 to 17), and conventional examples (Test No. 1) shown in Table 1. Figure 4 shows the results of measuring the number density (m -2 ) of vertical cracks in the surface. As is clear from FIG. 4, it was found that the number density of cracks on the slab surface could be significantly reduced in the invention example.

Figure 2024004032000002
Figure 2024004032000002

本発明の連続鋳造方法によれば、コーナー近傍での縦割れ、ブリード、ブレークアウトを抑制することのできるので、鋳片の品質トラブルや操業トラブルを未然に防ぐことが可能となり産業上有用である。

According to the continuous casting method of the present invention, vertical cracking, bleed, and breakout near the corners can be suppressed, making it possible to prevent slab quality problems and operational problems, which is industrially useful. .

Claims (4)

連続鋳造用の鋳型内に溶鋼を注入しつつ、前記溶鋼が凝固した凝固シェルを引き抜いて、鋳片を製造する際に、
前記鋳型内のメニスカスからの鋳造方向距離が同一位置であって、一のコーナーから所定の距離離れた位置の短辺鋳型側の局所熱流束qnと、前記一のコーナーから所定の距離離れた位置の長辺鋳型側の局所熱流束qwと、の局所熱流束比R=qn/qwを0.7以上1.4以下の範囲とする、連続鋳造方法。
When producing slabs by injecting molten steel into a mold for continuous casting and pulling out the solidified shell in which the molten steel has solidified,
A local heat flux qn on the short side mold side at a position where the casting direction distance from the meniscus in the mold is the same and a predetermined distance from one corner, and a local heat flux qn at a position a predetermined distance from the one corner. A continuous casting method in which the local heat flux qw on the long side mold side and the local heat flux ratio R=qn/qw of are in the range of 0.7 or more and 1.4 or less.
前記短辺鋳型側および前記長辺鋳型側の局所熱流束を測定する位置が、5mm以上20mm以下の範囲でコーナーから離れている、請求項1に記載の連続鋳造方法。 The continuous casting method according to claim 1, wherein the positions at which the local heat fluxes on the short-side mold side and the long-side mold side are measured are separated from the corner by a range of 5 mm or more and 20 mm or less. 前記鋳型に注入された溶鋼の表面にモールドパウダーを投入するにあたり、前記モールドパウダーは、CaO、SiO、Al、NaOおよびLiOを含有し、該モールドパウダー中のCaO濃度とSiO濃度との比(質量%CaO/質量%SiO)で表される塩基度を1.0以上2.5以下とする、請求項1に記載の連続鋳造方法。 When pouring mold powder onto the surface of the molten steel poured into the mold, the mold powder contains CaO, SiO 2 , Al 2 O 3 , Na 2 O and Li 2 O, and the CaO concentration in the mold powder The continuous casting method according to claim 1, wherein the basicity expressed by the ratio of CaO and SiO 2 concentration (mass% CaO/mass% SiO 2 ) is 1.0 or more and 2.5 or less. C:0.05~0.22質量%を含有する中炭素鋼を連続鋳造する、請求項1に記載の連続鋳造方法。

The continuous casting method according to claim 1, wherein medium carbon steel containing C: 0.05 to 0.22% by mass is continuously cast.

JP2022103467A 2022-06-28 2022-06-28 Continuous casting method Pending JP2024004032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022103467A JP2024004032A (en) 2022-06-28 2022-06-28 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022103467A JP2024004032A (en) 2022-06-28 2022-06-28 Continuous casting method

Publications (1)

Publication Number Publication Date
JP2024004032A true JP2024004032A (en) 2024-01-16

Family

ID=89538136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022103467A Pending JP2024004032A (en) 2022-06-28 2022-06-28 Continuous casting method

Country Status (1)

Country Link
JP (1) JP2024004032A (en)

Similar Documents

Publication Publication Date Title
JP4430638B2 (en) Mold powder for continuous casting of high aluminum steel
JP4337565B2 (en) Steel slab continuous casting method
KR20190029757A (en) Continuous casting method of steel
JP2008212972A (en) METHOD FOR MANUFACTURING CAST SLAB OF HIGH Ni STEEL
JP2024004032A (en) Continuous casting method
JP2007275987A (en) Light rolling method of cast steel slab in continuous casting
JPH09276994A (en) Mold for continuous casting
WO2018056322A1 (en) Continuous steel casting method
JP4527693B2 (en) Continuous casting method of high Al steel slab
US3718173A (en) Method of removing alumina scum from a continuous-casting mold
JPH1058093A (en) Method for continuously casting steel
JP2006231400A (en) Mold powder for continuous casting of medium carbon steel, and continuous casting method
JPH06339754A (en) Method for continuously casting thin sheet
JP4527832B2 (en) Steel continuous casting method
JP3289118B2 (en) Shrinkage hole reduction device in continuous casting
JPH0810905A (en) Continuous casting mold for slab
JP2004141890A (en) Continuous casting method of steel
JPH08132184A (en) Mold for continuous casting round cast billet and continuous casting method using same
JP3546137B2 (en) Steel continuous casting method
JP2010240711A (en) Continuous casting method of medium-carbon steel
JPH1043848A (en) Cast slab internal crack prevention method in continuous casting
JP2024035081A (en) Mold for continuous casting
JP4076155B2 (en) Manufacturing method of iron alloy-based thixocasting material
JP6000198B2 (en) Continuous casting method
JP2024047886A (en) Continuous casting mold and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240126