JP2004141890A - Continuous casting method of steel - Google Patents

Continuous casting method of steel Download PDF

Info

Publication number
JP2004141890A
JP2004141890A JP2002306626A JP2002306626A JP2004141890A JP 2004141890 A JP2004141890 A JP 2004141890A JP 2002306626 A JP2002306626 A JP 2002306626A JP 2002306626 A JP2002306626 A JP 2002306626A JP 2004141890 A JP2004141890 A JP 2004141890A
Authority
JP
Japan
Prior art keywords
slab
bulging
thickness
continuous casting
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002306626A
Other languages
Japanese (ja)
Other versions
JP3994848B2 (en
Inventor
Seiji Kumakura
熊倉 誠治
Isao Nozaki
野崎 勇雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002306626A priority Critical patent/JP3994848B2/en
Publication of JP2004141890A publication Critical patent/JP2004141890A/en
Application granted granted Critical
Publication of JP3994848B2 publication Critical patent/JP3994848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To cause no occurrence of inner crack in a cast piece, to uniformly disperse main segregation in a width direction and to reduce its occurrence. <P>SOLUTION: Space of a support roll is gradually reduced so that the cast piece in whole width comes into contact with the roll until thickness of a solidified shell becomes ≥70 mm. Then while bulging is applied till a position where a solidus line crater end appears, rolling reduction below bulging amount is applied. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、内部割れが少なく、中心偏析の減少、特に幅方向両端部の中心偏析の発生を低減することができる鋼の連続鋳造方法に関する。
【0002】
【従来の技術】
鋼の連続鋳造方法において、鋳片の中心偏析の発生を低減することは、鋼材の特性を改善する上で重要な課題である。鋳片の中心偏析は、溶鋼の凝固末期における凝固界面でC、Mn、Si、PおよびSなどの成分元素が濃化した溶鋼がバルジングおよび凝固収縮することによるサクション流動によって鋳片の中心部(正確には、鋳片の厚さ方向の中心部であり、以下、本明細書ではこれを「鋳片の中心部」と記載する)に移動して凝固し、正偏析となって発生する。
【0003】
鋳片の中心偏析の発生を低減するには、中心部の組織を等軸晶化することによって濃化した溶鋼を分散させる方法、および凝固収縮体積を外力によって補償する方法がある。
【0004】
等軸晶化する方法には、低温で鋳造する方法、または電磁撹拌を行う方法がある。
【0005】
低温で鋳造する方法では、ノズル詰まりなどが起こり、操業の安定性を欠くことがある。また、電磁撹拌を行う方法では、凝固末期の溶鋼を強制的に流動させることができないこともあり、粗大な等軸晶が生成することがある。粗大な等軸晶では、濃化溶鋼が等軸晶間の空隙に偏在する粒状偏析を悪化させてしまうという問題やブリッジングの発生により著しい正偏析が生じることがある。なお、ブリッジングとは、等軸晶が凝固収縮分の体積補償のための未凝固溶鋼の流れ込みを妨げる現象のことである。
【0006】
凝固収縮体積を外力によって補償する方法については、最近、種々の発明が下記に示すとおり提案されている。
【0007】
(1) 鋳片中心部の固相率が0.2となる位置から0.8〜0.9となる位置に至る領域では、この領域内での全凝固収縮量を保証するように鋳片を圧下し、それ以降凝固が完了するまでの領域では、鋳片の引き抜き方向長さ当たりの鋳片厚みに対する圧下量の割合を示す圧下勾配が、0.08〜1.50(%/m)となるように圧下する方法(特許文献1、参照)。これは、いわゆる「軽圧下連続鋳造方法」である。
【0008】
(2) 鋳型から引き抜かれた鋳片に積極的にバルジングを起こさせ、鋳片内部の溶鋼厚さを増大させた状態から圧下を行う方法(特許文献2、特許文献3、特許文献4、特許文献5、特許文献6、特許文献7および特許文献8、参照)。これは、いわゆる「バルジング後圧下連続鋳造方法」である。
【特許文献1】
特許第2809186号公報
【特許文献2】
特開昭60−6254号公報
【特許文献3】
特開昭60−21150号公報
【特許文献4】
特開平1−178355号公報
【特許文献5】
特開平9−57410号公報
【特許文献6】
特開平9−206903号公報
【特許文献7】
特開平9−314298号公報
【特許文献8】
特開平10−225752号公報
【0009】
【発明が解決しようとする課題】
上記(1) の単なる軽圧下連続鋳造方法は、ブリッジングによる偏析が防止できない。
【0010】
上記(2) のバルジング後圧下連続鋳造方法は、ブリッジングによる偏析を防止するのには有効であるが、幅方向に不均一な中心偏析の改善効果が十分でない。これは、次の理由による。
【0011】
図1は、従来のバルジング後圧下連続鋳造法におけるバルジング時の鋳片1とサポートロール6の接触状態と圧下後の鋳片を示す模式断面図である。図1の(a)に示すように、バルジング時には鋳片1の両端部がサポートロール6と接触しなくなり、鋳片1の両端部に凝固遅れが生じる。従来のバルジング後圧下連続鋳造法は、バルジングさせるのが早すぎるために両端部の凝固遅れが著しい。このため、多量の溶鋼2、2が両端部に存在するようになり、この状態で凝固が進行した鋳片1には、図1の(b)に示すように、両端部の中心部分に未凝固の溶鋼2、2が閉じ込められる。従って、この状態で圧下して得られた鋳片1には、図1の(c)に示すように、両端部に必ず中心偏析9、9が発生する。
【0012】
本発明の目的は、バルジング時に未凝固の溶鋼が両端部の中心部分に閉じ込めらることがなく、中心偏析が少なく、かつこれが幅方向に均一に分散した鋳片を製造することができる鋼の連続鋳造法を提供することにある。
【0013】
【課題を解決するための手段】
本発明の要旨は、下記の鋼の連続鋳造方法にある。
【0014】
凝固シェルの厚さが70mm以上になるまでの間においては、鋳片の全幅がロールと接触するようにサポートロールの間隔を段階的に減じ、その後、鋳片の中心部に固相線クレータエンドが現れるまでの間においてバルジングさせる一方、バルジング量以下の圧下を加える鋼の連続鋳造方法。
【0015】
上記本発明の鋼の連続鋳造方法においては、段階的なサポートロール間隔の総減少量を鋳型の出口厚みの1%以上、バルジング量を鋳型の出口厚みの2〜5%とすることが望ましい。
【0016】
ここで、鋳型の出口厚みとは、鋳型短辺方向の出口の内壁間寸法、即ち内法(うちのり)寸法のことである。
【0017】
本発明者らは、上記の課題を達成するために次に述べる実験を行い、以下のことを知見し、上記の本発明を完成させた。
【0018】
図2に示すようなサポートロールの設定間隔とメニスカスからの距離との関係で示すパターンAとBとで実験を行い、鋳片の中心偏析の発生程度を調査した。
【0019】
その結果、図2に示すパターンA、即ち、従来のバルジング後圧下連続鋳造方法では、前述した理由により、幅方向の不均一な中心偏析は改善されないことが確認された。
【0020】
これに対し、パターンB、即ち、凝固シェルの厚さが70mm以上になるまでの間においてはバルジングを行わずに鋳片の全幅がロールと接触するようにサポートロールの間隔を段階的に減じ、その後、鋳片の中心部に固相線クレータエンドが現れるまでの間においてバルジングと圧下を行えば、幅方向の中心偏析が均一になることを確認した。
【0021】
即ち、パターンBによれば、図3の(a)に示すように、鋳片1の両端部はサポートロール6により十分に冷却されて凝固遅れが生じることがなく、両端部の凝固シェル厚さが十分に厚くなる。その結果、液相線クレータエンド以降でバルジングさせた鋳片1の両端部には、図3の(b)に示すように、過剰な溶鋼2は存在せず、凝固進行後の鋳片1は図3の(c)に示すようになり、これを圧下すると、図3の(d)に示すような鋳片1となり、中心偏析9が幅方向に均一に分散するのである。
【0022】
【発明の実施の形態】
中心偏析が幅方向に均一に分散した鋳片を得るためには、凝固シェルを幅方向に均一に成長させることと、幅方向に均一な圧下を加えることである。
【0023】
1.凝固シェルの厚さが70mm以上になるまでの間においては鋳片の全幅がロールと接触するようにサポートロールの間隔を段階的に減じ、バルジングを起こさせないことについて
鋳片の連続鋳造においては、鋳型での凝固開始から凝固収縮と降温による熱収縮により厚み方向の収縮が始まり、この収縮と同時に凝固シェルも成長する。
【0024】
凝固シェルの成長挙動は、シェルが薄いときには冷却律速成長であり、シェルが厚くなるとシェルは熱抵抗が高いので内部の熱移動律速成長となる。これらは、サポートロールとシェル間の熱伝達係数をhr(W/m・℃)、シェルの厚さをd(m)、シェルの熱抵抗をλ(W/m・℃)、シェルと溶鋼の界面温度をTs(℃)、サポートロールの温度をTr(℃)とした場合、下記の(1) 式で求められる熱流束Q(W/m)として定量的に表すことができる。
【0025】
Q={1/((1/hr)+(d/λ))}×(Ts−Tr)・・・・・(1)
ここで、鋼の連続鋳造における上記の各因子のうち、一般に、λは25W/m・℃、Tsは1500℃、Trは100℃であり、本発明者らの調査によれば、hrは1500W/m・℃であった。そこで、dを変数にしてこれらの値を上記の(1) 式に代入し、熱流束Qとシェル厚さdとの関係を調べた。
【0026】
図4は、その調査結果を示す図で、図からわかるように、シェルの成長はシェル厚さが70mm未満の領域では冷却律速成長であり、サポートロールによる冷却の影響を大きく受けることが判明した。そして、この領域において鋳片の両端部がサポートロールに接触していない場合には、両端部の凝固遅れが著しく、その後にバルジングさせて圧下しても幅方向の中心偏析が解消されないることがわかった。
【0027】
このため、本発明では、シェル厚さが70mm以上になるまでの間においては鋳片の全幅にロールが接触するようにサポートロールの間隔を段階的に減じることとした。
【0028】
一方、上記の収縮量は、例えば、凝固体積収縮率αを3.8×10−2、降温線収縮率βを2.0×10−5(1/℃)とし、凝固シェルの温度を仮定することで見積もることができる。即ち、凝固収縮による厚み方向の収縮量は、近似的に「鋳型厚み×(α/3)」で求めることができ、鋳型厚みの約1.3%の収縮が凝固開始とともに発生する。また、降温による厚み方向の熱収縮量は、「鋳型厚み×β×△T」で求めることができ、1500℃から1000℃まで△T=500℃の温度低下がある場合、鋳型厚みの1%の収縮が温度の低下とともに発生する。
【0029】
図5は、その一例を示す図で、鋳型厚みが254mmの場合における炭素鋼からなる鋳片厚さ、具体的には幅方向の両端における短辺の鋳片厚さと凝固シェルの温度の経時的な変化を示している。
【0030】
図5からわかるように、収縮量(凝固収縮量+熱収縮量)は約5mmで、メニスカスからおよそ2mの位置までの間に生じ、その後はほとんど変化しない。そして、この収縮量により鋳片の両端部がサポートロールと非接触となって両端部に凝固遅れが生じることに注目し、両端部に凝固遅れを生じさせることがないサポートロール間隔の減少量と好ましい減少位置に関する調査を、下記の鋲打ち法によりおこなった。
【0031】
即ち、鋲打ち法とは、表面をNiでコーティングした鋲を鋳片の幅方向の複数箇所に打ち込み、幅方向の凝固の均一性を調べる方法であり、Niの融点約1450℃は鋼の固相線温度に近いため、鋲を打ち込んだ位置での凝固完了後の鋳片厚さ方向のNi含有量から凝固シェルの厚さを知ることができる。
【0032】
その結果、凝固が最も遅れるのは、鋳片の幅の大小にかかわらず、幅方向の端面、言い換えれば短辺の端面からの距離が150〜200mmの位置である。また、この凝固が最も遅れる部分の凝固シェル厚さをD2、幅方向の中央位置における凝固シェル厚さをD1とした場合、D2とD1の差、即ち凝固遅れ量δ(=D1−D2)が2mm以下であれば、幅方向の両端部に凝固遅れがより一層生じにくいことがは判明した。
【0033】
そこで、短辺の端面からの距離が200mmの位置における凝固シェル厚さD2と幅方向の中央位置における凝固シェル厚さD1を測定し、2mm以下の凝固遅れ量δが確保できるサポートロール間隔の減少量とメニスカスからの距離との関係を調べた。
【0034】
図6は、鋳造速度Vを1.2m/分としたときの上記の調査結果を示す図である。なお、縦軸のロール間隔減少率は鋳型の出口厚みに対する割合である。また、図中の液相線クレータエンドと固相線クレータエンドは、前記鋲打ち法から、一次元熱伝導解析により推定した位置である。
【0035】
図6からわかるように、幅方向の両端部における凝固遅れをなくするには、メニスカスから5mまでの範囲、言い換えれば凝固シェルの厚さが70mmになるまでの間において、総減少率で、サポートロールの間隔を鋳型の出口厚みの1%以上絞り込むのが好ましいことがわかる。これは、サポートロールの接触による冷却改善効果は、凝固シェルが薄いほど小さな絞り込みで大きな効果が得られるということであり、これは図4の調査結果と一致する。
【0036】
なお、幅方向の両端部における凝固遅れは、図6からわかるように、鋳型の出口厚みに対するロール間隔の総減少率を大きくすれば、液相線クレータエンド以降でも防止できる。従って、鋳片の全幅がロールに接触するようにサポートロールの間隔を狭める区間は、凝固シェルの厚さが70mmを超える位置にまで延長してもよい。しかし、あまり下流側にまで延長しすぎると、シェルの厚さが厚くなってバルジングしにくくなるだけでなく、少ないバルジング量でも両端部の凝固シェル内面に作用する曲げモーメントが大きくなって内部割れを発生させる恐れがある。このため、その下流側の限界位置は鋳片の中心部に液相線クレータエンドが現れる位置の近傍までとするのがよい。
【0037】
なお、上記の総減少率の上限は規定しない。これは、総減少率が大きいほど、鋳片の全幅をより確実にサポートロールに接触させることができ、両端部の凝固遅れ防止効果がより確実になるからである。しかし、あまり大きくしすぎると、内部割れを発生させる恐れがあるので、その上限は3%程度とするのがよい。
【0038】
(2) 凝固シェルの厚さが70mm以上になる位置から固相線クレータエンドが現れる位置までの間においてバルジングを起こさせ、バルジング量以下の圧下を加えることについて
前述したように、凝固シェルの厚さが70mm以上になるまでの間においてはバルジングを起こさせることなくサポートロール間隔を鋳片の全幅がロールと接触するように段階的に減じれば、鋳片の両端部に凝固遅れが生じなくなって幅方向の凝固シェル厚さがほぼ均一になる。その結果、この後にバルジングさせても、鋳片の両端部は短辺の凝固シェルに拘束されてバルジングが抑制されるため、バルジング状態の鋳片の両端部の中心部に存在する未凝固の溶鋼量が従来のバルジング後圧下連続鋳造法に比べて大きく減少し、その後に圧下を加えても、鋳片の両端部の中心部に未凝固の溶鋼が取り残されることはない。
【0039】
しかし、バルジング後に加える圧下は、バルジング量以下の圧下量で圧下する必要がある。これは、バルジング量を超える圧下量で圧下しても短辺の凝固シェルに拘束されて端部が塑性変形しないために圧下が端部の凝固界面には十分に伝わらず、中心偏析の改善効果がないからである。
【0040】
バルジング量は鋳型の出口厚みの2〜5%とするのがよい。これは、バルジング量が鋳型の出口厚みの2%未満では、短辺の凝固シェルを塑性変形させない圧下範囲における幅方向の中心偏析の均一化効果が不十分であり、逆に5%を超えると内部割れが発生しやすくなるからである。このことは、後述する実施例の結果からも明らかである。
【0041】
以下、本発明の効果を実施例に基づいて説明する。
【0042】
【実施例】
使用した連続鋳造設備は、鋳型が短辺方向の出口の内壁間寸法(厚さ)が254mm、長辺方向の内壁間寸法(幅)が2000mm、長さが900mm、テーパが1/450のテーパ鋳型であり、垂直部の長さが3m、機長が30mの垂直曲げ型である。
【0043】
図7は、上記の連続鋳造設備を模式的に示した図である。この図は、鋳片1の内部の凝固の状況を説明するため、垂直型連続鋳造装置とした。
【0044】
溶鋼2は、タンデイッシュ3から浸漬ノズル4を介して鋳型5内に注入される。鋳型5は、内部が水冷されており、注入された溶鋼2は鋳型5の内面に接して凝固が開始し、凝固シェルが生成する。凝固シェルが厚くなり引き抜きが可能となった鋳片1は、サポートロール6で支持されつつ、それらのロール間に設けた冷却水ノズル7によって冷却されながら、ピンチロール8によってほぼ一定の引き抜き速度V(鋳造速度ともいう)で連続的に引き抜かれる。サポートロール6は、垂直部には左右一対、湾曲部のほぼ水平部では上下一対に配置され、それぞれのロール間隔(鋳片の厚さ方向の距離)を任意に変えられるような移動装置6−1(図には液相線クレータエンド以降のサポートロールについてのみ示してある)が設けられている。
【0045】
図に示すように、本発明においては、凝固シェルの厚さが70mm以上になるまでの間にはバルジングを生じさせない。このため、凝固シェルの厚さが70mm未満の間のサポートロール6の間隔は、鋳片の全幅がロールと接触するように段階的に狭められている。
【0046】
一方、凝固シェルの厚さが70mm以上になる位置から固相線クレータエンドが現れる位置までの間においてバルジングを生じさせ、次いで圧下を加える。このため、凝固シェルの厚さが70mm以上になる位置以降のサポートロール6のうち、上流側のサポートロール6の間隔は所定量のバルジングを生じさせのに必要なロール間隔に設定され、下流側のサポートロール6の間隔は、所定量の圧下を加えるに必要なロール間隔に設定されている。
【0047】
得られた鋳片は、横断面を研磨した後、硝酸濃度が25体積%の硝酸水溶液を用いてエッチングし、正偏析の残存長さ率を求めて評価した。具体的には、図8に示すように、幅方向の正偏析の残存長さW、W、…を測定し、下記の(1) 式により残存長さ率を求めた。なお、正偏析の判定は、鋳片厚みの中心部に周囲よりも黒色濃く腐食された部分で、その厚みが0.5mm以上ある部分とした。
【0048】
残存長さ率(%)={(W+W+…)/W}×100・・・・(1)
表1に、具体的な鋳造条件および鋳片の性能(幅方向の中心偏析の均一程度と内部割れの有無)を示す。
【0049】
【表1】

Figure 2004141890
【0050】
表1に示すように、本発明の方法(試験番号1〜5)によった場合は、偏析残存長さ率は5%以下であり、良好な中心偏析レベルが達成された。ただし、試験番号4は、バルジング量が6%と大きすぎるためにバルジングによる内部割れが発生した。
【0051】
これに対し、何らの対策も講じない、即ち、通常の方法によった場合(試験番号6)は、幅の80%以上に偏析が残存した。また、凝固シェルの厚さが70mm以上になるまでの間のサポートロールの間隔を通常の方法による熱収縮量のみを補償する間隔に設定し、その後にバルジングと圧下のみをおこなった場合(試験番号7)は、両端部に長い正偏析が生じ、幅の20%に偏析が残存した。これは、鋳片の全幅がロールに接触する、即ち、熱収縮量と凝固収縮量の合計収縮量を補償するように最初にサポートロール間隔を段階的に減じないことで、端部に凝固遅れが発生したためである。これとは逆に、鋳片の全幅がロールに接触するように最初にサポートロール間隔を段階的に減じても、その後にバルジングと圧下をおこなわない場合(試験番号8)は、幅の50%に偏析が残存した。
【0052】
一方、本発明例の試験番号3に対して、圧下量をバルジング量よりも大きくした場合(試験番号9)は、試験番号7と同様に幅の20%に偏析が残存した。これは、短辺の凝固シェルを塑性変形させる圧下で、端部が均一に圧下されなかったためである。
【0053】
【発明の効果】
本発明の鋼の連続鋳造方法によれば、凝固シェルの厚さが70mm以上になるまでは鋳片の全幅をサポートロールに接触させて両端部の凝固遅れを防ぎ、その後固相線クレータエンドに至るまでの間にバルジングさせ、バルジング量以下の圧下を加えるので、内部に割れが少なく、中心部の偏析が改善された鋳片を得ることができる。
【図面の簡単な説明】
【図1】従来のバルジング後圧下連続鋳造方法の問題点を説明するための図である。
【図2】従来のバルジング後圧下連続鋳造方法における処理パターンと本発明のバルジング後圧下連続鋳造方法における処理パターンを示す図である。
【図3】本発明のバルジング後圧下連続鋳造方法を説明するための図である。
【図4】凝固シェルの厚さと熱流束との関係を示す図である。
【図5】実験結果を示す図で、サポートロールの設定間隔、鋳型厚み、鋳片の収縮量、鋳片の短辺厚さおよび凝固シェルの温度とメニスカスからの距離との関係を示す線図である。
【図6】実験結果を示す図で、サポートロールの鋳型厚みに対するロール間隔減少率と鋳片の幅方向の中央部と端部の凝固シェルの厚さ差δとの関係を示す図である。
【図7】実施例で使用した垂直曲げ型連続鋳造設備の模式図である。
【図8】実施例における中心偏析の残存長さ率の求め方を説明するための図である。
【符号の説明】
1:鋳片、
2:溶鋼、
3:タンディシュ、
4:浸漬のズル、
5:鋳型、
6:サポートロール、
6−1:移動装置、
7:冷却水ノズル、
8:ピンチロール、
9:中心偏析。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a continuous casting method for steel capable of reducing internal segregation and reducing center segregation, in particular, center segregation at both ends in the width direction.
[0002]
[Prior art]
In the continuous casting method of steel, reducing the occurrence of center segregation of a slab is an important issue in improving the properties of a steel material. The center segregation of the slab is caused by suction flow caused by bulging and solidification shrinkage of the molten steel in which component elements such as C, Mn, Si, P and S are concentrated at the solidification interface in the final stage of solidification of the molten steel. More precisely, it is the central part in the thickness direction of the slab, which is hereinafter referred to as “the central part of the slab”), solidifies, and occurs as positive segregation.
[0003]
In order to reduce the occurrence of center segregation in the slab, there are a method of dispersing the molten steel concentrated by making the structure of the center part equiaxed, and a method of compensating the solidification shrinkage volume by an external force.
[0004]
Methods for equiaxed crystallization include a method of casting at a low temperature and a method of performing electromagnetic stirring.
[0005]
In the method of casting at a low temperature, nozzle clogging and the like may occur, and operation stability may be lacking. Further, in the method of performing electromagnetic stirring, the molten steel at the end of solidification may not be forced to flow, and coarse equiaxed crystals may be generated. In the case of coarse equiaxed crystals, there is a problem that the concentrated molten steel worsens the granular segregation that is unevenly distributed in the voids between the equiaxed crystals, or remarkable positive segregation occurs due to bridging. Note that bridging is a phenomenon in which equiaxed crystals hinder the flow of unsolidified molten steel for compensating for the volume of solidification shrinkage.
[0006]
Regarding a method of compensating the solidification shrinkage volume by an external force, various inventions have recently been proposed as shown below.
[0007]
(1) In a region from the position where the solid fraction of the slab central portion becomes 0.2 to the position where the solid phase ratio becomes 0.8 to 0.9, the slab is made so as to guarantee the total solidification shrinkage in this region. In the region from the time when the solidification is completed until the solidification is completed, the reduction gradient indicating the ratio of the reduction amount to the thickness of the slab per the length of the slab in the drawing direction is 0.08 to 1.50 (% / m). (See Patent Document 1). This is a so-called "light pressure continuous casting method".
[0008]
(2) A method in which bulging is positively caused in a slab drawn from a mold and rolling is performed from a state in which the thickness of molten steel inside the slab is increased (Patent Document 2, Patent Document 3, Patent Document 4, Patent Document 2) Reference 5, Patent Literature 6, Patent Literature 7, and Patent Literature 8). This is a so-called “post-bulging continuous reduction casting method”.
[Patent Document 1]
Japanese Patent No. 2809186 [Patent Document 2]
JP-A-60-6254 [Patent Document 3]
JP-A-60-21150 [Patent Document 4]
JP-A-1-178355 [Patent Document 5]
Japanese Patent Application Laid-Open No. 9-57410 [Patent Document 6]
Japanese Patent Application Laid-Open No. 9-206903 [Patent Document 7]
Japanese Patent Application Laid-Open No. 9-314298 [Patent Document 8]
JP-A-10-225752
[Problems to be solved by the invention]
The mere light pressure continuous casting method (1) cannot prevent segregation due to bridging.
[0010]
The above-mentioned continuous casting method after bulging (2) is effective for preventing segregation due to bridging, but the effect of improving the center segregation uneven in the width direction is not sufficient. This is for the following reason.
[0011]
FIG. 1 is a schematic cross-sectional view showing a contact state between a slab 1 and a support roll 6 during bulging in a conventional post-bulging reduction continuous casting method and a slab after reduction. As shown in FIG. 1A, both ends of the slab 1 do not contact the support roll 6 during bulging, and a solidification delay occurs at both ends of the slab 1. According to the conventional post-bulging rolling continuous casting method, the bulging is performed too early, so that the solidification delay at both ends is remarkable. For this reason, a large amount of molten steel 2 and 2 is present at both ends, and in the slab 1 that has solidified in this state, as shown in FIG. The solidified molten steel 2, 2 is confined. Accordingly, in the slab 1 obtained by rolling down in this state, as shown in FIG. 1C, center segregation 9 always occurs at both ends.
[0012]
An object of the present invention is to prevent the unsolidified molten steel from being confined in the central portions of both ends during bulging, to reduce the center segregation, and to produce a slab in which this is uniformly dispersed in the width direction. It is to provide a continuous casting method.
[0013]
[Means for Solving the Problems]
The gist of the present invention resides in the following steel continuous casting method.
[0014]
Until the thickness of the solidified shell becomes 70 mm or more, the interval between the support rolls is gradually reduced so that the entire width of the slab contacts the roll, and then the solid-phase crater end is added to the center of the slab. A continuous casting method of steel in which a bulging is performed until a bulge appears, while a reduction of not more than the bulging amount is applied.
[0015]
In the above continuous casting method for steel of the present invention, it is desirable that the total reduction amount of the stepwise support roll interval is 1% or more of the exit thickness of the mold and the bulging amount is 2 to 5% of the exit thickness of the mold.
[0016]
Here, the exit thickness of the mold refers to the dimension between the inner walls of the exit in the direction of the shorter side of the mold, that is, the inner dimension (outside diameter).
[0017]
The present inventors conducted the following experiment to achieve the above object, found the following, and completed the present invention.
[0018]
Experiments were conducted with patterns A and B, which were shown by the relationship between the set interval of the support roll and the distance from the meniscus as shown in FIG. 2 , and the degree of center segregation of the slab was investigated.
[0019]
As a result, it was confirmed that the pattern A shown in FIG. 2, that is, the conventional post-bulging continuous continuous casting method does not improve the uneven center segregation in the width direction for the above-described reason.
[0020]
On the other hand, pattern B, that is, until the thickness of the solidified shell becomes 70 mm or more, gradually reduce the interval between the support rolls so that the entire width of the slab contacts the roll without performing bulging, Thereafter, it was confirmed that the center segregation in the width direction was uniform if bulging and reduction were performed until the solidus crater end appeared at the center of the slab.
[0021]
That is, according to the pattern B, as shown in FIG. 3 (a), both ends of the slab 1 are sufficiently cooled by the support rolls 6 and no solidification delay occurs, and the solidified shell thickness at both ends is obtained. Is thick enough. As a result, as shown in FIG. 3B, no excess molten steel 2 exists at both ends of the slab 1 bulged after the liquidus crater end, and the slab 1 after solidification progresses As shown in FIG. 3 (c), when this is reduced, it becomes a slab 1 as shown in FIG. 3 (d), and the center segregation 9 is uniformly dispersed in the width direction.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to obtain a cast piece in which center segregation is uniformly dispersed in the width direction, it is necessary to grow the solidified shell uniformly in the width direction and to apply a uniform reduction in the width direction.
[0023]
1. Until the thickness of the solidified shell becomes 70 mm or more, the gap between the support rolls is gradually reduced so that the entire width of the slab is in contact with the roll, and in order to prevent bulging, in continuous casting of the slab, From the start of solidification in the mold, shrinkage in the thickness direction starts due to solidification shrinkage and thermal shrinkage due to temperature decrease, and at the same time as this shrinkage, a solidified shell also grows.
[0024]
The growth behavior of the solidified shell is controlled by cooling when the shell is thin, and is controlled by internal heat transfer when the shell is thick because the shell has high thermal resistance. The heat transfer coefficient between the support roll and the shell is hr (W / m 2 · ° C.), the shell thickness is d (m), the thermal resistance of the shell is λ (W / m · ° C.), When the interface temperature is Ts (° C.) and the temperature of the support roll is Tr (° C.), it can be quantitatively expressed as a heat flux Q (W / m 2 ) obtained by the following equation (1).
[0025]
Q = {1 / ((1 / hr) + (d / λ))} × (Ts−Tr) (1)
Here, among the above factors in continuous casting of steel, generally, λ is 25 W / m · ° C., Ts is 1500 ° C., Tr is 100 ° C. According to the investigation by the present inventors, hr is 1500 W / M 2 ° C. Then, these values were substituted into the above equation (1) with d as a variable, and the relationship between the heat flux Q and the shell thickness d was examined.
[0026]
FIG. 4 is a diagram showing the results of the investigation. As can be seen from the figure, it was found that the growth of the shell was controlled by cooling in a region where the shell thickness was less than 70 mm, and was greatly affected by cooling by the support roll. . And, when both ends of the slab are not in contact with the support roll in this region, the solidification delay of both ends is remarkable, and the center segregation in the width direction may not be eliminated even if the bulging is performed afterwards by bulging. all right.
[0027]
For this reason, in the present invention, the interval between the support rolls is reduced stepwise so that the roll contacts the entire width of the slab until the shell thickness becomes 70 mm or more.
[0028]
On the other hand, the above-mentioned shrinkage amount is, for example, assumed that the solidification volume shrinkage rate α is 3.8 × 10 −2 , the temperature drop linear shrinkage rate β is 2.0 × 10 −5 (1 / ° C.), and the temperature of the solidification shell is assumed. Can be estimated. That is, the amount of shrinkage in the thickness direction due to solidification shrinkage can be approximately determined by “mold thickness × (α / 3)”, and shrinkage of about 1.3% of the mold thickness occurs at the start of solidification. The amount of heat shrinkage in the thickness direction due to the temperature drop can be obtained by “mold thickness × β × ΔT”, and when there is a temperature decrease from 1500 ° C. to 1000 ° C. ΔT = 500 ° C., 1% of the mold thickness Shrinkage occurs with decreasing temperature.
[0029]
FIG. 5 is a view showing one example of the thickness of the slab made of carbon steel when the mold thickness is 254 mm, specifically, the chronological change of the slab thickness of the short side at both ends in the width direction and the temperature of the solidified shell. Changes.
[0030]
As can be seen from FIG. 5, the shrinkage amount (solidification shrinkage amount + heat shrinkage amount) is about 5 mm, occurs between the meniscus and a position about 2 m, and hardly changes thereafter. Then, paying attention to the fact that both ends of the slab are not in contact with the support roll due to the amount of shrinkage and solidification delay occurs at both ends, the amount of reduction of the support roll interval that does not cause solidification delay at both ends is considered. Investigations regarding the preferred reduced position were performed by the following tacking method.
[0031]
That is, the rivet driving method is a method in which rivets whose surface is coated with Ni are driven into a plurality of locations in the width direction of the slab to check the uniformity of solidification in the width direction. Since the temperature is close to the phase line temperature, the thickness of the solidified shell can be known from the Ni content in the thickness direction of the slab after solidification is completed at the position where the tack is driven.
[0032]
As a result, the solidification is most delayed at the end face in the width direction, that is, at a position at a distance of 150 to 200 mm from the end face of the short side regardless of the width of the slab. When the thickness of the solidified shell at the portion where the solidification is most delayed is D2 and the thickness of the solidified shell at the center in the width direction is D1, the difference between D2 and D1, that is, the solidification delay amount δ (= D1-D2) is obtained. It has been found that when the thickness is 2 mm or less, the solidification delay is less likely to occur at both ends in the width direction.
[0033]
Therefore, the thickness D2 of the solidified shell at a position at a distance of 200 mm from the end face of the short side and the thickness D1 of the solidified shell at a center position in the width direction are measured, and a decrease in the support roll interval at which a solidification delay amount δ of 2 mm or less can be ensured. The relationship between the amount and the distance from the meniscus was investigated.
[0034]
FIG. 6 is a diagram showing the results of the above investigation when the casting speed V was 1.2 m / min. The roll interval reduction rate on the vertical axis is a ratio to the thickness of the exit of the mold. Further, the liquidus crater end and the solidus crater end in the figure are positions estimated by one-dimensional heat conduction analysis from the tacking method.
[0035]
As can be seen from FIG. 6, in order to eliminate the solidification delay at both ends in the width direction, the total reduction rate in the range from the meniscus to 5 m, in other words, until the thickness of the solidified shell becomes 70 mm, is reduced. It is understood that it is preferable to narrow the gap between the rolls by 1% or more of the exit thickness of the mold. This means that the smaller the solidified shell, the greater the effect of improving the cooling by the contact of the support roll with a smaller drawing, which is consistent with the investigation result of FIG.
[0036]
As can be seen from FIG. 6, the solidification delay at both ends in the width direction can be prevented even after the liquidus crater end by increasing the total reduction ratio of the roll interval with respect to the exit thickness of the mold. Therefore, the section in which the interval between the support rolls is reduced so that the entire width of the slab contacts the rolls may be extended to a position where the thickness of the solidified shell exceeds 70 mm. However, if it extends too far downstream, not only does the shell thickness increase, making bulging difficult, and even with a small amount of bulging, the bending moment acting on the inner surfaces of the solidified shells at both ends increases, causing internal cracking. May cause it. For this reason, it is preferable that the limit position on the downstream side is set near the position where the liquidus crater end appears at the center of the slab.
[0037]
The upper limit of the above-mentioned total reduction rate is not specified. This is because the greater the total reduction rate, the more reliably the entire width of the slab can be brought into contact with the support roll, and the more effective the solidification delay prevention effect at both ends. However, if it is too large, internal cracks may occur, so the upper limit is preferably about 3%.
[0038]
(2) Bulging is caused between the position where the thickness of the solidified shell is 70 mm or more and the position where the solid phase crater end appears, and as described above, the reduction of the solidified shell thickness is applied as described above. If the distance between the support rolls is reduced stepwise so that the entire width of the slab is in contact with the roll without causing bulging, the solidification delay does not occur at both ends of the slab. The thickness of the solidified shell in the width direction becomes substantially uniform. As a result, even if bulging is performed thereafter, both ends of the slab are restrained by the solidified shell on the short side and bulging is suppressed, so that unsolidified molten steel existing at the center of both ends of the slab in the bulging state. The amount is significantly reduced as compared with the conventional post-bulging rolling continuous casting method, and even after the rolling is applied, unsolidified molten steel is not left at the center of both ends of the slab.
[0039]
However, the reduction to be applied after bulging must be reduced by a reduction amount equal to or less than the bulging amount. This is because even if the reduction is performed with a reduction amount exceeding the bulging amount, the edge is not plastically deformed due to the restraint by the solidified shell on the short side, so the reduction is not sufficiently transmitted to the solidification interface at the end, and the effect of improving center segregation is improved. Because there is no.
[0040]
The bulging amount is preferably 2 to 5% of the thickness of the exit of the mold. This is because if the bulging amount is less than 2% of the thickness of the outlet of the mold, the effect of uniformizing the center segregation in the width direction in the rolling range where the solidified shell on the short side is not plastically deformed is insufficient. This is because internal cracks are likely to occur. This is clear from the results of the examples described later.
[0041]
Hereinafter, effects of the present invention will be described based on examples.
[0042]
【Example】
The continuous casting equipment used is such that the mold has a taper whose inner wall dimension (thickness) at the outlet in the short side direction is 254 mm, the inner wall dimension (width) in the long side direction is 2000 mm, the length is 900 mm, and the taper is 1/450. This is a vertical bending mold having a vertical length of 3 m and a length of 30 m.
[0043]
FIG. 7 is a diagram schematically showing the above-mentioned continuous casting facility. In this figure, a vertical continuous casting apparatus is used to explain the state of solidification inside the slab 1.
[0044]
Molten steel 2 is injected from a tundish 3 into a mold 5 via an immersion nozzle 4. The inside of the mold 5 is water-cooled, and the injected molten steel 2 comes into contact with the inner surface of the mold 5 to start solidification, and a solidified shell is generated. The cast slab 1 having a thick solidified shell and capable of being drawn out is supported by the support rolls 6 and is cooled by the cooling water nozzles 7 provided between the rolls, while the pinch rolls 8 make the drawing speed V substantially constant. (Also referred to as casting speed). The support rolls 6 are arranged in a pair on the left and right in the vertical portion, and in a pair on the top and bottom in the substantially horizontal portion of the curved portion, and the moving device 6-6 can change the roll interval (distance in the thickness direction of the slab) as desired. 1 (only the support rolls after the liquidus crater end are shown in the figure) are provided.
[0045]
As shown in the figure, in the present invention, bulging does not occur until the thickness of the solidified shell becomes 70 mm or more. For this reason, the interval between the support rolls 6 when the thickness of the solidified shell is less than 70 mm is gradually reduced so that the entire width of the slab contacts the rolls.
[0046]
On the other hand, bulging is caused between the position where the thickness of the solidified shell becomes 70 mm or more and the position where the solid phase crater end appears, and then the rolling is applied. For this reason, among the support rolls 6 after the position where the thickness of the solidified shell becomes 70 mm or more, the interval between the support rolls 6 on the upstream side is set to the roll interval necessary to cause a predetermined amount of bulging, and Is set to a roll interval necessary for applying a predetermined amount of reduction.
[0047]
After polishing the cross section of the obtained slab, the slab was etched using a nitric acid aqueous solution having a nitric acid concentration of 25% by volume, and the residual length ratio of positive segregation was evaluated. Specifically, as shown in FIG. 8, the residual lengths W 1 , W 2 ,... Of the positive segregation in the width direction were measured, and the residual length ratio was determined by the following equation (1). The determination of the positive segregation was made in a portion where the center of the slab thickness was darker and corroded than the periphery, and where the thickness was 0.5 mm or more.
[0048]
Residual length ratio (%) = {(W 1 + W 2 +...) / W} × 100 (1)
Table 1 shows specific casting conditions and slab performance (uniformity of center segregation in the width direction and presence or absence of internal cracks).
[0049]
[Table 1]
Figure 2004141890
[0050]
As shown in Table 1, when the method of the present invention (Test Nos. 1 to 5) was used, the segregation residual length ratio was 5% or less, and a good center segregation level was achieved. However, in Test No. 4, an internal crack due to bulging occurred because the bulging amount was too large at 6%.
[0051]
On the other hand, when no measures were taken, that is, when the usual method was used (Test No. 6), segregation remained in 80% or more of the width. When the interval between the support rolls until the thickness of the solidified shell becomes 70 mm or more is set to an interval that compensates for only the amount of heat shrinkage by a normal method, and then only bulging and reduction are performed (test number). In 7), long positive segregation occurred at both ends, and segregation remained at 20% of the width. This is because the full width of the slab contacts the rolls, i.e., the solidification delay at the ends by not gradually reducing the support roll spacing first to compensate for the total shrinkage of heat shrinkage and solidification shrinkage. Is caused. Conversely, if the gap between the support rolls is first reduced stepwise so that the entire width of the slab contacts the roll, but no subsequent bulging and reduction (test number 8), 50% of the width is used. Segregation remained.
[0052]
On the other hand, when the rolling amount was set to be larger than the bulging amount (Test No. 9) with respect to Test No. 3 of the present invention, segregation remained at 20% of the width similarly to Test No. 7. This is because the ends were not uniformly reduced under the pressure for plastically deforming the solidified shell on the short side.
[0053]
【The invention's effect】
According to the continuous casting method of steel of the present invention, until the thickness of the solidified shell becomes 70 mm or more, the entire width of the slab is brought into contact with the support roll to prevent solidification delay at both ends, and then to the solidus wire crater end. Since bulging is performed before the bulging is performed and a reduction equal to or less than the bulging amount is applied, it is possible to obtain a slab with few cracks inside and improved segregation at the center.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a problem of a conventional post-bulging reduction continuous casting method.
FIG. 2 is a view showing a processing pattern in a conventional post-bulging reduction continuous casting method and a processing pattern in a post-bulging reduction continuous casting method of the present invention.
FIG. 3 is a view for explaining a continuous casting method after post-bulging reduction according to the present invention.
FIG. 4 is a diagram showing a relationship between a thickness of a solidified shell and a heat flux.
FIG. 5 is a diagram showing experimental results, and is a diagram showing a relationship between a set interval of a support roll, a mold thickness, a shrinkage amount of a slab, a short side thickness of a slab, a temperature of a solidified shell, and a distance from a meniscus. It is.
FIG. 6 is a view showing an experimental result, and is a view showing a relationship between a roll interval reduction ratio with respect to a mold thickness of a support roll and a thickness difference δ of a solidified shell at a center portion and an end portion in a width direction of a slab.
FIG. 7 is a schematic diagram of a vertical bending type continuous casting facility used in an example.
FIG. 8 is a diagram for explaining how to determine a residual length ratio of center segregation in an example.
[Explanation of symbols]
1: cast slab,
2: molten steel,
3: Tundish,
4: immersion chisel,
5: mold,
6: Support roll,
6-1: mobile device,
7: cooling water nozzle,
8: Pinch roll,
9: Central segregation.

Claims (2)

凝固シェルの厚さが70mm以上になるまでの間においては、鋳片の全幅がロールと接触するようにサポートロールの間隔を段階的に減じ、その後、鋳片の中心部に固相線クレータエンドが現れるまでの間においてバルジングさせる一方、バルジング量以下の圧下を加えることを特徴とする鋼の連続鋳造方法。Until the thickness of the solidified shell reaches 70 mm or more, the interval between the support rolls is gradually reduced so that the entire width of the slab contacts the roll, and then the solid line crater end is added to the center of the slab. A continuous casting method for steel, characterized in that bulging is performed until the appearance of bulging, while a reduction of not more than the bulging amount is applied. 段階的なサポートロール間隔の総減少量を鋳型の出口厚みの1%以上、バルジング量を鋳型の出口厚みの2〜5%とすることを特徴とする請求項1に記載の鋼の連続鋳造方法。The continuous casting method for steel according to claim 1, wherein the total reduction amount of the stepwise support roll interval is 1% or more of the exit thickness of the mold, and the bulging amount is 2 to 5% of the exit thickness of the mold. .
JP2002306626A 2002-10-22 2002-10-22 Continuous casting method of steel Expired - Fee Related JP3994848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002306626A JP3994848B2 (en) 2002-10-22 2002-10-22 Continuous casting method of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306626A JP3994848B2 (en) 2002-10-22 2002-10-22 Continuous casting method of steel

Publications (2)

Publication Number Publication Date
JP2004141890A true JP2004141890A (en) 2004-05-20
JP3994848B2 JP3994848B2 (en) 2007-10-24

Family

ID=32453328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306626A Expired - Fee Related JP3994848B2 (en) 2002-10-22 2002-10-22 Continuous casting method of steel

Country Status (1)

Country Link
JP (1) JP3994848B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006051511A (en) * 2004-08-10 2006-02-23 Jfe Steel Kk Method for continuously casting h-section cast piece
JP2008183601A (en) * 2007-01-31 2008-08-14 Jfe Steel Kk Continuous casting method of steel, and method for manufacturing hot-dipping galvanized steel sheet
KR101049844B1 (en) * 2003-12-17 2011-07-15 주식회사 포스코 Reduction of center segregation in width direction of cast steel
WO2014020860A1 (en) * 2012-07-31 2014-02-06 Jfeスチール株式会社 Method for continuously casting steel
CN107350446A (en) * 2017-07-24 2017-11-17 中冶赛迪工程技术股份有限公司 A kind of process for improving continuous casting slab trigon crack defect

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101049844B1 (en) * 2003-12-17 2011-07-15 주식회사 포스코 Reduction of center segregation in width direction of cast steel
JP2006051511A (en) * 2004-08-10 2006-02-23 Jfe Steel Kk Method for continuously casting h-section cast piece
JP2008183601A (en) * 2007-01-31 2008-08-14 Jfe Steel Kk Continuous casting method of steel, and method for manufacturing hot-dipping galvanized steel sheet
WO2014020860A1 (en) * 2012-07-31 2014-02-06 Jfeスチール株式会社 Method for continuously casting steel
JP5522324B1 (en) * 2012-07-31 2014-06-18 Jfeスチール株式会社 Steel continuous casting method
CN104507598A (en) * 2012-07-31 2015-04-08 杰富意钢铁株式会社 Method for continuously casting steel
CN107350446A (en) * 2017-07-24 2017-11-17 中冶赛迪工程技术股份有限公司 A kind of process for improving continuous casting slab trigon crack defect
CN107350446B (en) * 2017-07-24 2019-01-18 中冶赛迪工程技术股份有限公司 A kind of process improving continuous casting slab trigon crack defect

Also Published As

Publication number Publication date
JP3994848B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
US6905558B2 (en) Billet by continuous casting and manufacturing method for the same
JP3994848B2 (en) Continuous casting method of steel
WO2018055799A1 (en) Continuous steel casting method
JP2980006B2 (en) Continuous casting method
JP2017024079A (en) Continuous casting method for steel
JP3671872B2 (en) Continuous casting method of steel
WO2018056322A1 (en) Continuous steel casting method
JP3214374B2 (en) Continuous casting of steel
JP3149834B2 (en) Steel slab continuous casting method
JP3275835B2 (en) Continuous casting method and continuous casting machine
JP3402251B2 (en) Continuous casting method
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP4026792B2 (en) Billet continuous casting method
JP3259270B2 (en) Continuous casting method
JP4132653B2 (en) Steel
JP3114671B2 (en) Steel continuous casting method
JP3283746B2 (en) Continuous casting mold
JP4872723B2 (en) Steel continuous casting method
JP2000218350A (en) Continuous casting method
JPH08132204A (en) Continuous casting method
JP2000061602A (en) Continuously cast slab and continuous casting method
JP2024004032A (en) Continuous casting method
JPH09314298A (en) Continuous casting method
JP3395717B2 (en) Continuous casting method
JP2640399B2 (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees