JPH0810905A - Continuous casting mold for slab - Google Patents

Continuous casting mold for slab

Info

Publication number
JPH0810905A
JPH0810905A JP14613094A JP14613094A JPH0810905A JP H0810905 A JPH0810905 A JP H0810905A JP 14613094 A JP14613094 A JP 14613094A JP 14613094 A JP14613094 A JP 14613094A JP H0810905 A JPH0810905 A JP H0810905A
Authority
JP
Japan
Prior art keywords
mold
width direction
slit
continuous casting
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14613094A
Other languages
Japanese (ja)
Other versions
JP2950152B2 (en
Inventor
Seiji Kumakura
誠治 熊倉
Tadashi Hirashiro
正 平城
Takashi Kanazawa
敬 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14613094A priority Critical patent/JP2950152B2/en
Publication of JPH0810905A publication Critical patent/JPH0810905A/en
Application granted granted Critical
Publication of JP2950152B2 publication Critical patent/JP2950152B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the center segregation and to reduce the surface cracking by forming the whole length or the meniscus part of a mold at the center part in the width direction having shallower depth, narrower width and larger interval than those at both end parts in slit grooves in the mold wall in the width direction. CONSTITUTION:In the continuous casting mold for slab having plural slit grooves for cooling at the outer surface side of the mold wall, the depth (y) of the slit grooves 6 at the center part of the outer surface side of the mold wall 2 in the width direction of the mold 1 is shallower than the depth (x) of the slit grooves 5 at both end parts. Further, the width of the slit grooves arranged in the whole length or the meniscus part of the mold wall at the center part in the width direction is narrower than that at both end parts. Further, the interval between the slit grooves arranged in the whole length or the meniscus part of the mold wall at the center part in the width direction is larger than that at both end parts. By this method, the center segregation is improved and the surface cracking can be reduced by slow cooling effect at the center part in the width direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スラブの幅方向中央部
の表面割れを防止するための連続鋳造鋳型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting mold for preventing surface cracks in the widthwise central portion of a slab.

【0002】[0002]

【従来の技術】連続鋳造鋳型では、鋳型壁内部の外面側
(溶鋼と接しない面側)に水冷用のスリット溝を設けた
ものが用いられることが多い。スラブ用連続鋳造鋳型の
長辺側、すなわち幅方向の鋳型壁においては、このスリ
ット溝は、深さ、幅が同一で、しかも幅方向に等間隔で
並列に設けられている。このようなスリット溝中に冷却
水を等流速で流通させることにより、幅方向の均一冷却
性が確保されている。通常、この種の鋳型壁の材質に
は、高い熱伝導性を有する銅または銅合金が用いられ
る。
2. Description of the Related Art A continuous casting mold is often used in which a water-cooling slit groove is provided on the outer surface side (the surface side not in contact with molten steel) inside the mold wall. On the long side of the continuous casting mold for slabs, that is, on the mold wall in the width direction, the slit grooves have the same depth and width, and are provided in parallel at equal intervals in the width direction. The uniform cooling property in the width direction is ensured by causing the cooling water to flow through such slit grooves at a constant flow rate. Usually, copper or copper alloy having high thermal conductivity is used for the material of this type of mold wall.

【0003】しかし、上記のような水冷構造の鋳型によ
る連続鋳造において、鋳型内における凝固初期では鋳型
抜熱量が大きいために、鋳片の幅方向中央部に表面割れ
が発生することがある〔例えば「連鋳鋳型内不均一凝固
に及ぼす抜熱速度の影響」鉄と鋼、第67年(1981) 第9
号、P.1508〜1514参照〕。この表面割れ対策として、従
来から鋳片の緩冷却が指向され、種々の冷却構造または
冷却手段を有する鋳型が提案されてきた。これらは次の
(1)〜(3) のように分類される。
However, in continuous casting using a water-cooled mold as described above, surface heat cracking may occur at the widthwise center of the slab due to the large amount of heat removed from the mold at the initial stage of solidification in the mold [eg, "Effect of heat removal rate on non-uniform solidification in continuous casting mold" Iron and Steel, 67th (1981) No. 9
No., P. 1508-1514]. As a measure against this surface cracking, a mold having various cooling structures or cooling means has been conventionally proposed for gentle cooling of a cast piece. These are the following
It is classified as (1) to (3).

【0004】(1)鋳型内表面に凹凸を設け、鋳型内表面
と鋳片との間にエアーギャップを生じさせて、鋳型抜熱
量を小さくする(特開昭57−11735 号公報、特開昭61−
18049号公報、特開平2−70358 号公報等参照) 。
(1) Providing irregularities on the inner surface of the mold to create an air gap between the inner surface of the mold and the slab to reduce the amount of heat removed from the mold (JP-A-57-11735, JP-A-57-11735). 61-
18049, JP-A-2-70358, etc.).

【0005】(2)鋳型内表面にセラミックチップを内張
りし、またはセラミック材料を塗布し、鋳型抜熱量を小
さくする(特開昭63−160751号公報、特開平4-59153号
公報等参照) 。 (3)スリット溝深さなどのスリット形状またはスリット
内の冷却水流速の変更により、鋳型抜熱量を小さくす
る。
(2) A ceramic chip is lined on the inner surface of the mold or a ceramic material is applied to reduce the heat removal amount from the mold (see Japanese Patent Laid-Open Nos. 63-160751 and 4-59153). (3) The amount of heat removed from the mold is reduced by changing the slit shape such as the slit groove depth or the cooling water flow velocity in the slit.

【0006】上記(1) の方法では、連続鋳造を行ってい
るうちに鋳型内表面の凹凸が摩耗してしまい、鋳型抜熱
量を小さくする効果を持続させることが困難である。
(2)の方法でも同様に、鋳型内表面のセラミック材料が
摩耗してしまう。(3) の方法は鋳型全体の抜熱量を低下
させてしまうような手段であるため、高速鋳造を行う場
合に、鋳型下端部の凝固シェル厚の不足によってブレー
クアウトなどのトラブルが発生しやすくなる。
In the method (1), the irregularities on the inner surface of the mold are worn during continuous casting, and it is difficult to maintain the effect of reducing the heat removal amount of the mold.
Similarly, in the method (2), the ceramic material on the inner surface of the mold is worn. Since the method of (3) is a means to reduce the heat removal amount of the entire mold, when performing high speed casting, troubles such as breakout are likely to occur due to insufficient solidification shell thickness at the lower end of the mold. .

【0007】そこで、(3) の方法では部分的に緩冷却を
行うことが指向されている。例えば特開平3−47654 号
公報には、メニスカス部に相当する鋳型上部の冷却水路
幅を下部の幅よりも大きくし、冷却水流速が遅くなるよ
うな冷却構造にすることによって、メニスカス部の緩冷
却を幅方向にわたって均一にすることができる鋳型が示
されている。また、鋳型全体を緩冷却せずに幅方向の一
部を緩冷却するものとして、特開平3− 453号公報にコ
ーナー部すなわち幅方向の両端部分を緩冷却することが
できる鋳型が示されている。
Therefore, in the method (3), it is aimed to carry out gentle cooling partially. For example, in Japanese Unexamined Patent Publication No. 3-47654, the cooling water passage width in the upper part of the mold, which corresponds to the meniscus portion, is made larger than that in the lower portion, and the cooling water flow velocity is slowed down, whereby A mold is shown that allows for uniform cooling across the width. Further, JP-A-3-453 discloses a mold capable of gently cooling a corner portion, that is, both end portions in the width direction, as a part of the mold in which the width direction is gradually cooled without slowly cooling the entire mold. There is.

【0008】上記のような従来の冷却構造の鋳型の場合
にスラブに発生する品質上の問題点の例を次に説明す
る。
An example of the quality problem that occurs in the slab in the case of the conventional cooling structure mold will be described below.

【0009】本発明者らは、図7に示す従来の冷却スリ
ット溝を備えたスラブ用連続鋳造鋳型を用いて、中炭素
鋼(〔C〕=0.16%)を鋳造速度2.0m/分で連続鋳造
し、幅1600mm、厚さ200mm のスラブを製造する際に、鋳
型内S(硫黄)添加試験を実施し、鋳型内の凝固シェル
厚分布と鋳片割れ発生との関係についての調査を実施し
た。
The present inventors used a continuous casting mold for slabs having a conventional cooling slit groove shown in FIG. 7 to continuously produce medium carbon steel ([C] = 0.16%) at a casting speed of 2.0 m / min. When casting and manufacturing a slab having a width of 1600 mm and a thickness of 200 mm, an S (sulfur) addition test in a mold was conducted, and an investigation was conducted on the relationship between the solidified shell thickness distribution in the mold and the occurrence of slab cracks.

【0010】図7は、従来の鋳型の長辺側、すなわち幅
方向の鋳型壁の一部の水平断面図である。この鋳型は、
鋳型1の幅方向の鋳型壁2の幅全長にわたり、深さ20m
m、幅5mmのスリット溝3が8mmの等間隔で設けられて
いるものである。鋳型の短辺側、すなわち厚さ方向と鋳
造方向(鋳型の長さ方向)の全長とにおけるスリット構
造も基本的に同じである。この鋳型を用いて連続鋳造を
行った結果を図8および図9に示す。
FIG. 7 is a horizontal cross-sectional view of a part of the mold wall in the long side of the conventional mold, that is, in the width direction. This mold is
20m deep over the entire width of the mold wall 2 in the width direction of the mold 1
The slit grooves 3 having a width of m and a width of 5 mm are provided at equal intervals of 8 mm. The slit structure on the short side of the mold, that is, on the thickness direction and the entire length in the casting direction (the length direction of the mold) is basically the same. The results of continuous casting using this mold are shown in FIGS. 8 and 9.

【0011】図8は、スラブ4の水平断面において幅方
向の初期凝固シェル厚と表面割れの発生部位の例を示す
図である。図8に示すように、Aの近傍すなわち幅方向
中央部のシェル厚は、幅方向両端部のシェル厚に対して
厚いこと、表面割れが発生している幅方向中央部の一部
では局所的にシェル厚が薄いことが確認された。
FIG. 8 is a view showing an example of the initial solidified shell thickness in the width direction and the site where surface cracks occur in the horizontal cross section of the slab 4. As shown in FIG. 8, the shell thickness in the vicinity of A, that is, the center portion in the width direction is thicker than the shell thickness at both ends in the width direction, and the shell thickness at the center portion in the width direction where surface cracks occur is locally It was confirmed that the shell thickness was thin.

【0012】この現象をさらに調査するために、図8に
示すスラブのA、B、Cの3箇所の位置の表皮下5mm
で、デンドライト二次アーム間隔L(μm )を測定し
た。
In order to investigate this phenomenon further, 5 mm under the epidermis at three positions A, B and C of the slab shown in FIG.
Then, the dendrite secondary arm interval L (μm) was measured.

【0013】図9は、デンドライト二次アーム間隔と幅
方向との関係を冷却速度の要因を加えて示す図である。
ここで、冷却速度R(℃/秒)の算出は次式によった。
FIG. 9 is a diagram showing the relationship between the secondary dendrite arm spacing and the width direction, with the factor of the cooling rate added.
Here, the cooling rate R (° C./sec) was calculated by the following formula.

【0014】L= 710R-0.39 図9に示すように、鋳片の幅方向中央部では、両端部に
比較して冷却速度が大きくなっていることがわかった。
L = 710R -0.39 As shown in FIG. 9, it was found that the cooling rate was higher in the widthwise central portion of the cast slab than in both end portions.

【0015】従来から、C含有量が0.10〜0.16Wt%の中
炭素鋼を連続鋳造する場合、幅方向中央部に縦割れが集
中することが知られているが、この発生位置の特異性は
上記の調査結果により説明できる。
It has been conventionally known that when continuously casting a medium carbon steel having a C content of 0.10 to 0.16 Wt%, vertical cracks are concentrated in the center portion in the width direction. This can be explained by the above survey results.

【0016】すなわち、冷却速度の大きいスラブの幅方
向中央部では、凝固収縮およびδからγへの変態に伴う
収縮が大きいために、凝固シェル表面が鋳型壁面から剥
離しエアーギャップを生じる。発生したエアーギャップ
内には局所的に溶融パウダーが流入する。このエアーギ
ャップでは、溶鋼静圧によって凝固シェル表面が再度鋳
型内表面に押し戻されるバルジング現象によりギャップ
が減少するが、一度エアーギャップが生成した部分や局
所的に溶融パウダーが流入した部分は、エアーギャップ
やパウダーの介在により凝固シェルと鋳型内表面との間
の伝熱抵抗が増大し、凝固シェル表面からの抜熱量が大
きく低下するため凝固遅れとなって局所的にシェル厚が
薄くなり、この結果、凝固シェルの強度と溶鋼静圧や収
縮圧とのバランスが崩れ、表面割れが生じるのである。
That is, in the center portion in the width direction of the slab having a high cooling rate, the solidification shell surface is exfoliated from the wall surface of the mold because the solidification shrinkage and the shrinkage accompanying the transformation from δ to γ are large, and an air gap is generated. The molten powder locally flows into the generated air gap. In this air gap, the gap decreases due to the bulging phenomenon in which the solidified shell surface is pushed back to the inner surface of the mold by the static pressure of molten steel. Heat transfer resistance between the solidified shell and the inner surface of the mold increases due to the inclusion of powder and powder, and the amount of heat removed from the surface of the solidified shell is greatly reduced, resulting in a delay in solidification and a local decrease in shell thickness. However, the balance between the strength of the solidified shell and the static pressure of molten steel or the contraction pressure is lost, causing surface cracks.

【0017】スラブの幅方向中央部で冷却速度が大きく
なる原因としては、鋳型上部では浸漬ノズルから供給
される高温溶鋼流が、通常、幅方向両端部に存在するた
め、この両端部では冷却速度が小さくなる、幅方向中
央部では、バルジングにより凝固シェルと鋳型壁表面と
の接触状態が良好となるため冷却速度が大きくなる、等
が考えられる。
The reason why the cooling rate becomes large in the widthwise central portion of the slab is that the high-temperature molten steel flow supplied from the dipping nozzle at the upper part of the mold is usually present at the widthwise both ends, so that the cooling rate at both ends is high. It is conceivable that, in the widthwise central part, the cooling rate increases because the contact state between the solidified shell and the mold wall surface is improved due to bulging.

【0018】最近の調査では、鋳型内で生じた幅方向で
不均一厚さの初期凝固シェルが凝固末期まで持ち越さ
れ、スラブの中心偏析に悪影響を及ぼすこともわかって
きた。
Recent research has also revealed that the initially solidified shell having a non-uniform thickness in the width direction generated in the mold is carried over to the end of solidification, which adversely affects the center segregation of the slab.

【0019】これは、鋳型内で幅方向中央部の凝固進行
が両端部に比較して大きいために、中央部ではシェル厚
大、両端部ではシェル厚小という幅方向シェル厚の不均
一分布が生じ、鋳型出側からの二次冷却帯ではシェル厚
が十分厚く、凝固の進行がシェルの伝熱抵抗によって律
速されるため、この不均一凝固シェル厚が解消されない
ことに起因する。すなわち、凝固完了時期は幅方向中央
部で早くなり、凝固末期の濃化溶鋼が凝固完了時期の遅
れる両端部に移動して、中心偏析を悪化させることにな
る。
This is because the solidification progress in the widthwise central portion in the mold is larger than that at both ends, so that there is a non-uniform distribution of the widthwise shell thickness such that the shell thickness is large at the central portion and the shell thickness is small at both ends. This is because the shell thickness is sufficiently thick in the secondary cooling zone from the mold outlet side, and the progress of solidification is rate-controlled by the heat transfer resistance of the shell. That is, the completion time of solidification becomes earlier in the central portion in the width direction, and the concentrated molten steel at the final stage of solidification moves to both ends where the completion time of solidification is delayed, thereby deteriorating the center segregation.

【0020】[0020]

【発明が解決しようとする課題】本発明の目的は、スラ
ブの幅方向中央部の冷却速度を幅方向両端部よりも小さ
くすることで、表面割れを低減するとともに、中心偏析
を改善することができる連続鋳造鋳型を提供することに
ある。
An object of the present invention is to reduce the surface cracks and improve the center segregation by making the cooling rate of the widthwise central portion of the slab smaller than that at the widthwise both ends. The object is to provide a continuous casting mold that can be used.

【0021】[0021]

【課題を解決するための手段】本発明の要旨は、次の
(1)〜(3) の連続鋳造鋳型にある。
The summary of the present invention is as follows.
It is in the continuous casting mold of (1) to (3).

【0022】(1)鋳型壁の外面側に冷却のための複数の
スリット溝を有するスラブ用連続鋳造鋳型であって、幅
方向の鋳型壁内に設けられるスリット溝の深さが、幅方
向の中央部の鋳型全長またはメニスカス部で両端部より
も浅いことを特徴とする連続鋳造鋳型。
(1) A continuous casting mold for slabs having a plurality of slit grooves for cooling on the outer surface side of the mold wall, wherein the depth of the slit grooves provided in the mold wall in the width direction is A continuous casting mold characterized in that the entire length of the center part or the meniscus part is shallower than both ends.

【0023】(2)上記(1) のスラブ用連続鋳造用鋳型で
あって、幅方向の鋳型壁内に設けられるスリット溝の幅
が、幅方向の中央部の鋳型全長またはメニスカス部で両
端部よりも狭いことを特徴とする連続鋳造鋳型。
(2) In the continuous casting mold for slabs according to (1) above, the width of the slit groove provided in the widthwise mold wall is such that the center of the widthwise direction is the entire length of the mold or both ends of the meniscus. Continuous casting mold characterized by being narrower than.

【0024】(3)上記(1) のスラブ用連続鋳造用鋳型で
あって、幅方向の鋳型壁内に設けられるスリット溝間の
間隔が、幅方向の中央部の鋳型全長またはメニスカス部
で両端部よりも大きいことを特徴とする連続鋳造鋳型。
(3) In the continuous casting mold for a slab according to (1) above, the gap between the slit grooves provided in the widthwise mold wall is such that the center of the widthwise direction is the entire length of the mold or both ends of the meniscus. Continuous casting mold characterized by being larger than the part.

【0025】ここで、「中央部」は、鋳型内面の長辺側
幅、すなわち幅方向の内面長さのうちの(1/5)以
上、(1/3)以下の範囲とし、「両端部」は、その残
りとするのが望ましい。
Here, the "central portion" is the width of the long side of the inner surface of the mold, that is, a range of (1/5) or more and (1/3) or less of the inner surface length in the width direction, and "both ends" Is preferably the rest.

【0026】[0026]

【作用】本発明の連続鋳造鋳型は、前述の図8および図
9に示すような、幅方向中央部の冷却速度が大きいこと
に起因するスラブ品質の悪化を防止するためのものであ
る。このためには、鋳型内のメニスカス部を幅方向で全
体的に緩冷却するのではなく、鋳型全長またはメニスカ
ス部において、鋳型幅方向中央部では、両端部に比較し
て冷却能が低くなるようなスリット構造を有する鋳型が
必要になる。図1に本発明の第1の連続鋳造鋳型の例を
示す。
The continuous casting mold of the present invention is for preventing the deterioration of the slab quality due to the large cooling rate of the central portion in the width direction as shown in FIGS. 8 and 9. For this purpose, the meniscus portion in the mold is not entirely cooled in the width direction, but in the mold length or the meniscus portion, in the center portion of the mold width direction, the cooling ability is lower than both ends. A mold having a different slit structure is required. FIG. 1 shows an example of the first continuous casting mold of the present invention.

【0027】図1は、鋳型の長辺側、すなわち幅方向中
央部の鋳型壁内のスリット溝の深さが、鋳型全長にわた
ってその両端部よりも浅い連続鋳造鋳型の要部を示す水
平断面図である。なお、スリット溝の一部の図示は省略
されている。鋳型1の幅方向の鋳型壁2の外面側の中央
部のスリット溝6の深さyは両端部のスリット溝5の深
さxよりも浅い。
FIG. 1 is a horizontal cross-sectional view showing the main part of a continuous casting mold in which the depth of the slit groove in the mold wall at the long side of the mold, that is, in the center in the width direction, is shallower over the entire length of the mold than at both ends thereof. Is. In addition, a part of the slit groove is not shown. The depth y of the slit groove 6 at the center on the outer surface side of the mold wall 2 in the width direction of the mold 1 is shallower than the depth x of the slit grooves 5 at both ends.

【0028】スリット深さxに対するyの比率は30〜80
%とすること、さらに、鋳型内表面と深いスリット溝5
の突き当たり(溝底)との距離d1 は10〜15mmとするこ
とが望ましく、鋳型内表面と浅いスリット溝6の突き当
たりとの距離d2 は、スリット深さを浅くした量(x−
y)によって決定される。
The ratio of y to the slit depth x is 30 to 80.
%, And the inner surface of the mold and the deep slit groove 5
The amount impinges distance d 1 between the (groove bottom) of the preferably set to 10-15 mm, the distance d 2 between the abutment of the mold inner surface and a shallow slit grooves 6, which shallow slit depth (x-
y).

【0029】中央部のスリット溝幅bは両端部のスリッ
ト溝幅aに、かつ中央部のスリット溝間の間隔c2 は両
端部のスリット溝間の間隔c1 に、それぞれ等しい。望
ましいスリット溝幅とスリット溝間の間隔は、それぞれ
5〜10mm、5〜20mmの範囲である。
The slit groove width b at the center is equal to the slit groove width a at both ends, and the interval c 2 between the slit grooves at the center is equal to the interval c 1 between the slit grooves at both ends. Desirable slit groove widths and intervals between the slit grooves are in the ranges of 5 to 10 mm and 5 to 20 mm, respectively.

【0030】鋳造方向(鋳型の長さ方向)におけるスリ
ット深さでは、2種類の構造が選択できる。一つは、上
記のように鋳型上端から下端までの鋳造方向の全長にお
いて、スリット深さxおよびyがそれぞれ一定のもので
ある。他の一つは、鋳造方向において、中央部のスリッ
ト溝6の深さyを、両端部のスリット溝5の深さxより
も浅くする範囲を、鋳型内の溶鋼メニスカス部のみに止
め、メニスカス部から離れた鋳型下部では両端部のスリ
ット溝5の深さxと同じにするものである。メニスカス
部は、鋳込み中または鋳込み条件により多少変動する
が、鋳型内の予想溶鋼面から約100mm の範囲である。
Two types of structures can be selected for the slit depth in the casting direction (the length direction of the mold). One is that the slit depths x and y are constant over the entire length in the casting direction from the upper end to the lower end of the mold as described above. The other one is that, in the casting direction, the depth y of the central slit groove 6 is made shallower than the depth x of the slit grooves 5 at both ends only at the molten steel meniscus portion in the mold, The depth x of the slit grooves 5 at both ends is set to be the same as the depth x in the lower part of the mold apart from the part. The meniscus portion varies somewhat depending on the casting conditions and casting conditions, but it is within a range of about 100 mm from the expected molten steel surface in the mold.

【0031】スリット溝深さを浅くする幅方向中央部の
長さw1 は、鋳型内面の長辺側幅、すなわち幅方向の内
面長さWの(1/5)以上、このw1 の上限はWの(1
/3)とすることが望ましい。
The width w 1 of the central portion in the width direction for reducing the depth of the slit groove is not less than (1/5) the width of the long side of the inner surface of the mold, that is, the inner surface length W in the width direction, and the upper limit of this w 1 Is W (1
/ 3) is desirable.

【0032】鋳型の短辺側、すなわち厚さ方向における
スリット溝は、従来の鋳型と同様にスリット溝深さとス
リット溝間の間隔をいずれも一定とすることでよい。
As for the slit grooves on the short side of the mold, that is, in the thickness direction, the slit groove depth and the interval between the slit grooves may be constant as in the conventional mold.

【0033】図1に示す本発明の鋳型では、幅方向中央
部と幅方向両端部との境界にあたる部分でスリット溝深
さが極端に異なり、これは望ましい緩冷却を達成する上
では好ましくないため、この境界部では幅方向中央部に
向かって段階的にスリット溝の深さを浅くしていく構造
を採用してもよい。
In the mold of the present invention shown in FIG. 1, the slit groove depths are extremely different at the portions corresponding to the boundaries between the widthwise central portion and the widthwise both ends, which is not preferable for achieving the desired slow cooling. At this boundary portion, a structure may be adopted in which the depth of the slit groove is gradually reduced toward the central portion in the width direction.

【0034】このような構造で中央部のスリット溝の深
さを浅くすることによって幅方向中央部の冷却能が低下
し、この部分の緩冷却が達成される。中央部のスリット
溝深さを適正に浅くすれば、図9に示す幅方向の冷却速
度差が解消されるので、幅方向の不均一凝固が防止さ
れ、鋳型幅方向の中央部に相当するスラブ表面に発生す
る割れが減少する。さらに、凝固末期における中心偏析
の悪化も解消される。
With such a structure, by making the depth of the slit groove at the central portion shallow, the cooling capacity at the central portion in the width direction is lowered, and the slow cooling of this portion is achieved. By appropriately reducing the depth of the slit groove in the central portion, the difference in cooling rate in the width direction shown in FIG. 9 is eliminated, so that the uneven solidification in the width direction is prevented and the slab corresponding to the central portion in the mold width direction is prevented. The number of cracks on the surface is reduced. Furthermore, the deterioration of central segregation at the end of solidification is also eliminated.

【0035】図2は、本発明の第2の連続鋳造鋳型の要
部を示す水平断面図である。この図2でもスリット溝の
一部の図示は省略されている。この連続鋳造鋳型は、幅
方向の鋳型壁内に設けられるスリット溝の幅が、鋳型全
長にわたって幅方向の中央部で両端部よりも狭い構造を
有するものである。すなわち、図2に示す中央部のスリ
ット溝幅bおよび両端部のスリット溝幅aの関係におい
て、a>bの条件を満たすものである。望ましいスリッ
ト溝幅aとbは、それぞれ5〜10mm、3〜6mmの範囲で
ある。この場合、aに対するbの比率は30〜60%とする
のが望ましい。
FIG. 2 is a horizontal sectional view showing an essential part of the second continuous casting mold of the present invention. Also in FIG. 2, a part of the slit groove is not shown. This continuous casting mold has a structure in which the width of the slit groove provided in the mold wall in the width direction is narrower over the entire length of the mold at the center portion in the width direction than at both ends. That is, in the relationship between the slit groove width b at the center and the slit groove width a at both ends shown in FIG. 2, the condition of a> b is satisfied. Desirable slit groove widths a and b are in the range of 5 to 10 mm and 3 to 6 mm, respectively. In this case, it is desirable that the ratio of b to a be 30 to 60%.

【0036】スリット溝幅を狭くする幅方向中央部の長
さの望ましい範囲は、図1の場合と同様に、鋳型内面の
長辺側幅、すなわち幅方向の内面長さの(1/5)〜
(1/3)である。
As in the case of FIG. 1, the desirable range of the length of the widthwise central portion for narrowing the slit groove width is the width on the long side of the inner surface of the mold, that is, (1/5) of the inner surface length in the width direction. ~
(1/3).

【0037】図2の場合、スリット溝間の間隔は等間隔
であり、かつスリット溝の深さも中央部と両端部とで等
しいが、後述する本発明の第3の鋳型(図3)のように
幅方向中央部のスリット溝間の間隔を両端部のそれより
大きくしてもよい。スリット溝の深さは、図1と同様に
中央部で浅くしてもよい。また、この浅くする部分が前
述のようにメニスカス部のみに止まるものであってもよ
い。さらに、スリット溝幅を狭くするのは、メニスカス
部のみとしてもよい。
In the case of FIG. 2, the intervals between the slit grooves are equal, and the depths of the slit grooves are the same in the central portion and both end portions, but like the third mold of the present invention (FIG. 3) described later. In addition, the gap between the slit grooves at the center in the width direction may be made larger than that at both ends. The depth of the slit groove may be shallow in the central portion as in FIG. Further, the shallowed portion may be the one that stops only in the meniscus portion as described above. Further, the slit groove width may be narrowed only in the meniscus portion.

【0038】図3は、本発明の第3の連続鋳造鋳型の要
部を示す水平断面図である。同様にスリット溝の一部の
図示は省略されている。この連続鋳造鋳型は、幅方向の
鋳型壁内に設けられるスリット溝間の間隔が、鋳型全長
にわたって幅方向中央部で両端部よりも大きい構造を有
するものである。すなわち、図1に示す本発明の第1の
鋳型のように、スリット溝間の間隔が一定ではなく、両
端部のスリット溝間の間隔c1 および中央部のスリット
溝間の間隔c2 との関係において、c2 >c1の条件を
満たすものである。望ましいスリット溝間の間隔c1
2 は、それぞれ5〜20mm、10〜25mmの範囲である。こ
の場合、c1 に対するc2 の比率は 120〜200
%とするのが望ましい。
FIG. 3 is a horizontal sectional view showing an essential part of the third continuous casting mold of the present invention. Similarly, illustration of a part of the slit groove is omitted. This continuous casting mold has a structure in which the interval between the slit grooves provided in the mold wall in the width direction is larger than the both ends at the widthwise central part over the entire length of the mold. That is, unlike the first mold of the present invention shown in FIG. 1, the distance between the slit grooves is not constant, and the distance between the slit grooves at both ends c 1 and the distance between the central slit grooves c 2 are In the relationship, the condition of c 2 > c 1 is satisfied. Desirable gaps c 1 and c 2 between the slit grooves are 5 to 20 mm and 10 to 25 mm, respectively. In this case, the ratio of c 2 to c 1 is 120 to 200
It is desirable to set it as%.

【0039】スリット溝間の間隔を大きくする幅方向中
央部の長さの望ましい範囲は、図1および図2の場合と
同様に、鋳型内面の長辺側幅、すなわち幅方向の内面長
さの(1/5)〜(1/3)である。
As in the case of FIGS. 1 and 2, the desirable range of the length of the central portion in the width direction for increasing the spacing between the slit grooves is the width of the inner side of the mold on the long side, that is, the length of the inner surface in the width direction. (1/5) to (1/3).

【0040】図3の場合、スリット溝の深さと幅は、中
央部と両端部とで等しいが、図1に示す本発明の第1の
鋳型のように中央部のスリット溝の深さを浅くしてもよ
い。
In the case of FIG. 3, the depth and width of the slit groove are equal in the central portion and both ends, but the depth of the slit groove in the central portion is made smaller as in the first mold of the present invention shown in FIG. You may.

【0041】スリット溝幅は、図2に示す本発明の第2
の鋳型のように中央部で狭くしてもよい。さらに、スリ
ット溝間の間隔を大きくするのは、メニスカス部のみと
してもよい。
The slit groove width is the second width of the present invention shown in FIG.
It may be narrowed in the central part like the mold of. Further, the gap between the slit grooves may be increased only in the meniscus portion.

【0042】本発明の第2及び第3の連続鋳造鋳型の場
合でも、鋳型の短辺側、すなわち厚さ方向におけるスリ
ット溝は、従来の鋳型と同様のものとすることでよい。
Also in the case of the second and third continuous casting molds of the present invention, the slit groove on the short side of the mold, that is, in the thickness direction may be the same as that of the conventional mold.

【0043】本発明の第2及び第3の連続鋳造鋳型で
は、上記の構造とすることで幅方向中央部の冷却能を低
下させ、スラブの幅方向中央部に緩冷却を施すことがで
きる。
In the second and third continuous casting molds of the present invention, by adopting the above-mentioned structure, the cooling ability in the widthwise central portion can be lowered and the slab can be gently cooled in the widthwise central portion.

【0044】したがって、それぞれ前述の第1の発明の
連続鋳造鋳型の場合と同じ効果を得ることができる。
Therefore, the same effects as in the case of the continuous casting mold of the first invention described above can be obtained.

【0045】前述のように本発明の連続鋳造鋳型では、
第1、第2および第3の鋳型のスリット構造を任意に組
み合わせたものとすることもできる。
As described above, in the continuous casting mold of the present invention,
It is also possible to arbitrarily combine the slit structures of the first, second and third molds.

【0046】本発明の連続鋳造鋳型は、割れ感受性の高
い中炭素鋼を連続鋳造する場合に限らず、低炭素鋼や高
炭素鋼を鋳造する場合にも十分適用可能である。
The continuous casting mold of the present invention can be applied not only to continuous casting of medium carbon steel having a high crack susceptibility but also to casting of low carbon steel or high carbon steel.

【0047】[0047]

【実施例】表1に示す化学組成の中炭素鋼および低炭素
鋼を対象として、湾曲半径が10mの垂直型スラブ連続鋳
造機(ストランド数2)を用いて、幅1200mm、厚さ 200
mmのスラブの鋳造速度を 1.0〜2.4m/minの範囲で変化さ
せて鋳造した。ただし、本発明例では鋳造速度は2.4m/m
inのみである。
[Example] For medium carbon steel and low carbon steel having the chemical compositions shown in Table 1, a vertical slab continuous casting machine (the number of strands 2) having a bending radius of 10 m was used, and the width was 1200 mm and the thickness was 200.
The casting speed of the mm slab was changed in the range of 1.0 to 2.4 m / min. However, in the present invention example the casting speed is 2.4 m / m
Only in.

【0048】[0048]

【表1】 [Table 1]

【0049】用いた鋳型は、図7に示す従来構造の鋳型
と図4に示す構造の本発明の鋳型である。図4は、本発
明の鋳型の長辺側、すなわち幅方向の鋳型壁の一部の水
平断面図である。なお、スリット溝の一部の図示は省略
されている。
The molds used are the mold of the conventional structure shown in FIG. 7 and the mold of the present invention having the structure shown in FIG. FIG. 4 is a horizontal sectional view of a part of the mold wall in the long side of the mold of the present invention, that is, in the width direction. In addition, a part of the slit groove is not shown.

【0050】図4の鋳型は基本的には図1のものと同じ
構造である。幅方向両端部のスリット溝幅は5mm、その
深さは20mm、幅方向中央部のスリット溝幅は5mm、その
深さは8mmである。スリット溝間隔は全て8mmの一定と
し、溝深さを変更する中央部分の幅方向長さは300mm と
した。これは鋳型長辺の内面側の全体幅1200mmの 1/4の
長さに相当している。本発明鋳型の鋳型壁厚は35mm、鋳
型内表面とスリット溝の突き当たりとの距離は中央部で
20mm、両端部で15mmである。
The mold of FIG. 4 has basically the same structure as that of FIG. The slit groove width at both widthwise end portions is 5 mm, the depth thereof is 20 mm, and the slit groove width at the widthwise center portion is 5 mm, and the depth thereof is 8 mm. The slit groove intervals were all fixed at 8 mm, and the widthwise length of the central portion where the groove depth was changed was 300 mm. This corresponds to 1/4 of the total width of 1200 mm on the inner side of the long side of the mold. The mold wall thickness of the mold of the present invention is 35 mm, the distance between the inner surface of the mold and the abutment of the slit groove is at the central portion.
20mm, 15mm at both ends.

【0051】図7の従来構造の鋳型では、鋳型壁厚は同
じく35mm、鋳型内表面とスリット溝の突き当たりとの距
離は中央部と両端部で15mmの同一である。
In the conventional mold shown in FIG. 7, the mold wall thickness is 35 mm, and the distance between the inner surface of the mold and the abutment of the slit groove is 15 mm at the center and at both ends.

【0052】鋳型の全長、ずなわち鋳込み方向長さはい
ずれも800 mm、スリット溝の構造はいずれも鋳型上端か
ら下端まで同一である。
The total length of the mold, that is, the length in the casting direction is 800 mm, and the structure of the slit grooves is the same from the upper end to the lower end of the mold.

【0053】鋳型短辺側のスリット溝では、いずれも溝
間隔が13mm、鋳型内表面と溝の突き当たりとの距離が15
mm、溝幅が5mmで同一とした。その他の鋳込み条件は次
のとおりである。
In each of the slit grooves on the short side of the mold, the groove interval is 13 mm, and the distance between the inner surface of the mold and the abutment of the groove is 15 mm.
mm and the groove width is 5 mm, which are the same. The other casting conditions are as follows.

【0054】鋳込温度:タンディッシュ内の溶鋼過熱度
20〜25℃ 鋳型の冷却水条件:幅方向両端部における鋳型の総括熱
伝達係数が1.2 ×104 W/m2・Kとなるように通水 二次冷却条件:従来鋳型、本発明鋳型ともに、比水量1.
8 リットル/kg・鋼 以上の条件で鋳込んだスラブについて、表面割れ発生率
と中心偏析度を比較調査した。その結果を図5および図
6に示す。
Casting temperature: degree of superheating of molten steel in the tundish
20 to 25 ° C Mold cooling water condition: Water is passed so that the overall heat transfer coefficient of the mold at both ends in the width direction is 1.2 × 10 4 W / m 2 · K. Secondary cooling condition: Both conventional mold and mold of the present invention , Specific water volume 1.
For slabs cast under the conditions of 8 liters / kg of steel or more, surface crack occurrence rate and center segregation degree were compared and investigated. The results are shown in FIGS. 5 and 6.

【0055】図5は、中炭素鋼の場合の表面割れ発生率
に及ぼす鋳造速度の影響を示す図である。表面割れ発生
率とは、スラブ(片側1面のみ)に発生した割れ長さの
総和を鋳込み長さで除した値である。図5から明らかな
ように、本発明の鋳型では表面割れ発生率が大きく低減
している。
FIG. 5 is a diagram showing the influence of the casting speed on the surface crack occurrence rate in the case of medium carbon steel. The surface crack occurrence rate is a value obtained by dividing the total crack length generated in the slab (only one surface on one side) by the cast length. As is clear from FIG. 5, the surface crack occurrence rate is greatly reduced in the mold of the present invention.

【0056】図6は、低炭素鋼の場合の、スラブの片幅
方向に対する中心偏析の状況を示す図である。縦軸の中
心偏析度は、中心偏析部の炭素濃度をスラブの代表成分
(表1)で除した値である。図6から、従来鋳型で偏析
度が高い両端部も、本発明の鋳型では改善方向にあるこ
とがわかる。
FIG. 6 is a diagram showing the state of center segregation in the one-width direction of the slab in the case of low carbon steel. The degree of central segregation on the vertical axis is the value obtained by dividing the carbon concentration in the central segregated portion by the representative component of the slab (Table 1). From FIG. 6, it can be seen that both ends having a high degree of segregation in the conventional mold are also improved in the mold of the present invention.

【0057】これらの結果は、本発明の鋳型による幅方
向中央部の緩冷却効果により、鋳型幅方向の不均一冷却
速度分布を解消し、不均一凝固を低減したことによって
もたらされたものである。
These results were brought about by eliminating the non-uniform cooling rate distribution in the mold width direction and reducing the non-uniform solidification due to the slow cooling effect of the center part in the width direction by the mold of the present invention. is there.

【0058】[0058]

【発明の効果】本発明の連続鋳造鋳型によれば、幅方向
中央部の緩冷却により、不均一凝固を防止することがで
きるため、炭素鋼全般において品質上問題となる中心偏
析を改善するとともに、中炭素鋼などの割れ感受性の高
い鋼種において発生する表面割れを低減することができ
る。
EFFECTS OF THE INVENTION According to the continuous casting mold of the present invention, it is possible to prevent uneven solidification by slow cooling of the central portion in the width direction, and thus to improve central segregation which is a quality problem in carbon steel in general. It is possible to reduce surface cracks that occur in steel types with high cracking sensitivity such as medium carbon steel.

【図面の簡単な説明】[Brief description of drawings]

【図1】幅方向中央部の鋳型壁内のスリット溝の深さ
が、その両端部よりも浅い本発明連続鋳造鋳型の要部を
示す水平断面図である。
FIG. 1 is a horizontal cross-sectional view showing a main part of a continuous casting mold of the present invention in which a depth of a slit groove in a mold wall at a central portion in a width direction is shallower than both ends thereof.

【図2】幅方向中央部の鋳型壁内のスリット溝の幅が、
その両端部よりも狭い本発明連続鋳造鋳型の要部を示す
水平断面図である。
FIG. 2 shows that the width of the slit groove in the mold wall at the center in the width direction is
It is a horizontal sectional view showing the important section of the present invention continuous casting mold narrower than the both ends.

【図3】幅方向中央部の鋳型壁内のスリット溝間の間隔
が、その両端部よりも大きい本発明連続鋳造鋳型の要部
を示す水平断面図である。
FIG. 3 is a horizontal cross-sectional view showing a main part of the continuous casting mold of the present invention in which the interval between slit grooves in the mold wall at the center in the width direction is larger than both ends thereof.

【図4】実施例で用いた本発明鋳型の幅方向の鋳型壁の
一部の水平断面図である。
FIG. 4 is a horizontal cross-sectional view of a part of the mold wall in the width direction of the mold of the present invention used in Examples.

【図5】中炭素鋼の場合の表面割れ発生率に及ぼす鋳造
速度の影響を示す図である。
FIG. 5 is a diagram showing the influence of the casting speed on the surface crack occurrence rate in the case of medium carbon steel.

【図6】低炭素鋼の場合のスラブの片幅方向での中心偏
析の状況を示す図である。
FIG. 6 is a diagram showing a situation of center segregation in a width direction of a slab in the case of low carbon steel.

【図7】従来鋳型の幅方向の鋳型壁の一部の水平断面図
である。
FIG. 7 is a horizontal cross-sectional view of a part of the mold wall in the width direction of the conventional mold.

【図8】従来鋳型の場合の、スラブ幅方向の初期凝固シ
ェル厚と表面割れの発生部位の例を示す図である。
FIG. 8 is a diagram showing an example of an initial solidified shell thickness in a slab width direction and a site where surface cracks occur in the case of a conventional mold.

【図9】従来の鋳型の場合の、デンドライト二次アーム
間隔とスラブの幅方向との関係を示す図である。
FIG. 9 is a diagram showing a relationship between a dendrite secondary arm interval and a slab width direction in the case of a conventional mold.

【符号の説明】[Explanation of symbols]

1:鋳型、2:幅方向の鋳型壁、 3:従来鋳型のスリ
ット溝、4:スラブ、5:両端部のスリット溝、
6:中央部のスリット溝、a:両端部のスリット溝
幅、 b:中央部のスリット溝幅、c1:両端部のス
リット溝間の間隔、c2:中央部のスリット溝間の間隔、
1:鋳型内表面と両端部のスリット溝の突き当たりとの
距離、d2:鋳型内表面と中央部のスリット溝の突き当た
りとの距離、x:両端部のスリット溝深さ、 y:中
央部のスリット溝深さ、W:鋳型幅(内面側の長さ)、
1:幅方向中央部の長さ
1: Mold, 2: Mold wall in width direction, 3: Slit groove of conventional mold, 4: Slab, 5: Slit groove at both ends,
6: central slit groove, a: slit groove width at both ends, b: central slit groove width, c 1 : interval between slit grooves at both ends, c 2 : interval between central slit grooves,
d 1 : Distance between inner surface of mold and end of slit groove at both ends, d 2 : Distance between inner surface of mold and end of slit groove at center, x: Depth of slit groove at both ends, y: Central part Slit groove depth of, W: mold width (length on the inner surface side),
w 1 : length in the widthwise central part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鋳型壁の外面側に冷却のための複数のスリ
ット溝を有するスラブ用連続鋳造鋳型であって、幅方向
の鋳型壁内に設けられるスリット溝の深さが、幅方向の
中央部の鋳型全長またはメニスカス部で両端部よりも浅
いことを特徴とする連続鋳造鋳型。
1. A continuous casting mold for a slab having a plurality of slit grooves for cooling on the outer surface side of the mold wall, wherein the depth of the slit groove provided in the mold wall in the width direction is the center in the width direction. Continuous casting mold characterized in that it is shallower than both ends at the entire length of the mold or at the meniscus.
【請求項2】鋳型壁の外面側に冷却のための複数のスリ
ット溝を有するスラブ用連続鋳造鋳型であって、幅方向
の鋳型壁内に設けられるスリット溝の幅が、幅方向の中
央部の鋳型全長またはメニスカス部で両端部よりも狭い
ことを特徴とする連続鋳造鋳型。
2. A continuous casting mold for a slab having a plurality of slit grooves for cooling on the outer surface side of the mold wall, wherein the width of the slit groove provided in the mold wall in the width direction is the central portion in the width direction. Continuous casting mold characterized in that the entire length of the mold or the meniscus is narrower than both ends.
【請求項3】鋳型壁の外面側に冷却のための複数のスリ
ット溝を有するスラブ用連続鋳造鋳型であって、幅方向
の鋳型壁内に設けられるスリット溝間の間隔が、幅方向
の中央部の鋳型全長またはメニスカス部で両端部よりも
大きいことを特徴とする連続鋳造鋳型。
3. A continuous casting mold for a slab having a plurality of slit grooves for cooling on the outer surface side of the mold wall, wherein the slit grooves provided in the mold wall in the width direction have a center in the width direction. A continuous casting mold characterized in that the entire length of the mold is larger or the meniscus is larger than both ends.
JP14613094A 1994-06-28 1994-06-28 Continuous casting mold for slab Expired - Lifetime JP2950152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14613094A JP2950152B2 (en) 1994-06-28 1994-06-28 Continuous casting mold for slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14613094A JP2950152B2 (en) 1994-06-28 1994-06-28 Continuous casting mold for slab

Publications (2)

Publication Number Publication Date
JPH0810905A true JPH0810905A (en) 1996-01-16
JP2950152B2 JP2950152B2 (en) 1999-09-20

Family

ID=15400827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14613094A Expired - Lifetime JP2950152B2 (en) 1994-06-28 1994-06-28 Continuous casting mold for slab

Country Status (1)

Country Link
JP (1) JP2950152B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267794A (en) * 1998-01-27 1999-10-05 Km Europ Metal Ag Casting mold cooled by liquid
CN1318164C (en) * 2002-04-27 2007-05-30 Sms迪马格股份公司 Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
JP2007152432A (en) * 2005-12-05 2007-06-21 Km Europ Metal Ag Metallic mold for continuous casting of metal
WO2011093563A1 (en) * 2010-01-29 2011-08-04 주식회사 풍산 Casting mold plate, casting mold plate assembly, and casting mold including same
KR20160057169A (en) 2014-11-13 2016-05-23 주식회사 포스코 Mold for casting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267794A (en) * 1998-01-27 1999-10-05 Km Europ Metal Ag Casting mold cooled by liquid
CN1318164C (en) * 2002-04-27 2007-05-30 Sms迪马格股份公司 Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
JP2007152432A (en) * 2005-12-05 2007-06-21 Km Europ Metal Ag Metallic mold for continuous casting of metal
WO2011093563A1 (en) * 2010-01-29 2011-08-04 주식회사 풍산 Casting mold plate, casting mold plate assembly, and casting mold including same
KR20160057169A (en) 2014-11-13 2016-05-23 주식회사 포스코 Mold for casting

Also Published As

Publication number Publication date
JP2950152B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
JP6358178B2 (en) Continuous casting method and mold cooling water control device
US6905558B2 (en) Billet by continuous casting and manufacturing method for the same
CA1220606A (en) Refractory coating of edge-dam blocks for the purpose of preventing longitudinal bands of sinkage in the product of a continuous casting machine
JPH0810905A (en) Continuous casting mold for slab
JPH09276994A (en) Mold for continuous casting
JPH026037A (en) Method for continuously casting steel
JPH01289542A (en) Casting mold for continuous casting of steel
JP3380412B2 (en) Mold for continuous casting of molten steel
KR102033639B1 (en) Mold for casting
JP3170944B2 (en) Continuous slab casting method
JP2020121329A (en) Mold and method for steel continuous casting
JPH1058093A (en) Method for continuously casting steel
JPH0220645A (en) Mold for continuously casting steel
JPH0631418A (en) Continuous casting method
JP3380413B2 (en) Mold for continuous casting of molten steel
JPH08132184A (en) Mold for continuous casting round cast billet and continuous casting method using same
JPS5970442A (en) Mold for continuous casting
JP2024004032A (en) Continuous casting method
JPH03453A (en) Continuous casting mold for restraining corner crack in casting billet
JP2024035081A (en) Continuous casting mold
JPS6167543A (en) Casting method of steel
JPH07116783A (en) Mold for continuous casting and cooling method of cast slab using it
JPH10296399A (en) Mold for continuously casting molten steel
JP2845706B2 (en) Molding equipment for continuous casting equipment
JPH04224050A (en) Method for preventing solidification of end parts in strip casting