JPH0631418A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH0631418A
JPH0631418A JP21350392A JP21350392A JPH0631418A JP H0631418 A JPH0631418 A JP H0631418A JP 21350392 A JP21350392 A JP 21350392A JP 21350392 A JP21350392 A JP 21350392A JP H0631418 A JPH0631418 A JP H0631418A
Authority
JP
Japan
Prior art keywords
mold
casting
heat flux
casting direction
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21350392A
Other languages
Japanese (ja)
Inventor
Tadashi Hirashiro
正 平城
Shigeru Saito
滋 齋藤
Takaharu Nakajima
敬治 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21350392A priority Critical patent/JPH0631418A/en
Publication of JPH0631418A publication Critical patent/JPH0631418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide a continuous casting method preventing the development of longitudinal crack near the corner part of a continuously cast slab. CONSTITUTION:Temps. in a mold are measured at plural positions in the casting direction. Tapered amt. of short sides in the mold is adjusted by controlling cooling in the casting direction or according to the casting velocity so as to almost equalize the reducing rate in the casting direction of the heat flux at the long sides of the mold with the reducing rate in the casting direction of the heat flux at the short sides of the mold obtd. with the measured values. By this method, the cast slab having no longitudinal crack near the corner part can be produced at high casting velocity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鋳型内における凝固
シェルの不均衡を防ぎ、鋳片コーナー部近傍における縦
割れの発生を防止する連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for preventing imbalance of a solidified shell in a mold and for preventing vertical cracks in the vicinity of a corner of a slab.

【0002】[0002]

【従来の技術】鋼の連続鋳造方法において、鋳片の縦割
れを防止する方法としては、例えば鋳型銅板の温度変動
量を測定し、該温度変動量が最小となるように鋳型のオ
ッシレーション条件を制御してパウダー流入量を適正化
する方法(特開昭56−47245号公報参照)、複数
の熱流束センサーにより鋳型の幅方向における熱流束分
布を測定し、該測定値に応じて抜熱量が鋳型幅方向で均
一になるように鋳片幅方向各部位の投入パウダーの種類
を変化させる方法(特公昭62−43783号公報参
照)、鋳片幅方向の抜熱量分布を測定し、その抜熱量分
布を標準状態の分布と比較して偏差を求め、その偏差を
なくすように鋳型幅方向における高周波振動の振動条件
を変化させる方法(特開平1−241355号公報参
照)等が提案されている。
2. Description of the Related Art In a continuous casting method for steel, as a method for preventing vertical cracking of a slab, for example, a temperature fluctuation amount of a mold copper plate is measured, and an oscillation condition of a mold is minimized so that the temperature fluctuation amount is minimized. To optimize the powder inflow amount (see Japanese Patent Laid-Open No. 56-47245), the heat flux distribution in the width direction of the mold is measured by a plurality of heat flux sensors, and the heat removal amount is determined according to the measured values. The method of changing the type of powder to be charged in each part of the slab width direction so that the temperature becomes uniform in the slab width direction (see Japanese Patent Publication No. 62-43783), the heat removal amount distribution in the slab width direction is measured, and the removal is performed. A method has been proposed in which the heat quantity distribution is compared with the distribution in the standard state to find a deviation, and the vibration condition of high-frequency vibration in the mold width direction is changed so as to eliminate the deviation (see Japanese Patent Application Laid-Open No. 1-241355). .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来の方法は鋳片のコーナー部近傍における縦割れの防止
手段としては、有効性に欠ける。すなわち、矩形断面の
鋳片のコーナー部近傍に発生する縦割れについては、単
一面の鋳型冷却条件の制御ではなく、コーナー部を形成
する2面の鋳造方向における鋳型冷却条件を考慮する必
要がある。しかるに、前記特開昭56−47245号公
報に記載されている方法は、鋳型の長辺部に埋設した熱
電対により当該位置における温度変動量を測定し、この
鋳型長辺部の温度変動量に基づいて鋳型のオッシレーシ
ョンの条件を制御する方法であるため、鋳片の幅方向中
央部における縦割れの防止には効果があっても、鋳片コ
ーナー部近傍に発生する縦割れの防止効果はほとんど得
られない。
However, the above-mentioned conventional method is not effective as a means for preventing vertical cracks in the vicinity of the corner portion of the cast slab. That is, for vertical cracks that occur in the vicinity of the corners of a rectangular cross-section slab, it is necessary to consider the mold cooling conditions in the casting direction of the two surfaces forming the corners, rather than controlling the mold cooling conditions of the single surface. . However, in the method described in JP-A-56-47245, the temperature fluctuation amount at the position is measured by a thermocouple embedded in the long side of the mold, and the temperature fluctuation amount of the long side of the mold is measured. Since it is a method of controlling the conditions of the oscillation of the mold based on, it is effective in preventing vertical cracking in the widthwise central portion of the slab, the effect of preventing vertical cracking that occurs near the slab corners I hardly get it.

【0004】また、前記特公昭62−43783号公報
に記載の抜熱量制御方法は、鋳型幅方向に埋設した複数
個のセンサーにより測定された鋳型温度により換算され
た熱流束分布に基づいて抜熱量を制御するため、前記と
同様、鋳片コーナー部近傍に発生する縦割れを防止する
ことができないばかりでなく、この方法は物性の異なる
パウダーの混合が生じることにより、実際に実施して鋳
片縦割れ等表面欠陥の防止効果を得ることは不可能に近
い。
Further, the heat removal amount control method described in the above Japanese Patent Publication No. 62-43783 discloses a heat removal amount based on a heat flux distribution converted by the mold temperature measured by a plurality of sensors embedded in the mold width direction. As described above, not only can vertical cracks that occur in the vicinity of the slab corners be prevented, but this method also causes the mixing of powders with different physical properties, It is almost impossible to obtain the effect of preventing surface defects such as vertical cracks.

【0005】さらに、前記特開平1−241355号公
報に記載の抜熱量制御方法においても、鋳型幅方向の抜
熱量分布に基づいて鋳型幅方向における高周波振動の振
動条件を変化させる方法であるから、鋳型幅方向におけ
るパウダー流入量を適正化して抜熱量分布を最適に制御
することはできても、鋳片コーナー部近傍に発生する縦
割れを防止することはできない。
Further, the heat removal amount control method described in the above-mentioned Japanese Patent Laid-Open No. 1-241355 is a method of changing the vibration condition of high frequency vibration in the mold width direction based on the heat removal amount distribution in the mold width direction. Although it is possible to optimize the powder inflow amount in the mold width direction and optimally control the heat removal amount distribution, it is not possible to prevent vertical cracking that occurs in the vicinity of the slab corner portion.

【0006】このように、従来の技術はいずれも単一面
における鋳型幅方向の鋳型温度あるいは鋳型熱流束分布
を制御する方法を採用し、コーナーを構成する2面の鋳
型冷却条件と鋳造方向を全く考慮していないため、鋳片
コーナー部近傍に発生する縦割れを防止することはでき
ないという欠点がある。
As described above, all the conventional techniques adopt the method of controlling the mold temperature or the mold heat flux distribution in the mold width direction on a single surface, and the mold cooling conditions and the casting direction of the two surfaces forming the corner are completely controlled. Since this is not taken into consideration, there is a drawback that vertical cracks that occur in the vicinity of the corners of the cast slab cannot be prevented.

【0007】この発明は、従来のこのような欠点にかん
がみて、矩形断面の鋳片の製造において、鋳片のコーナ
ー部を形成する2面の鋳造方向の鋳型冷却条件を考慮す
ることにより、鋳片コーナー部における縦割れの発生を
防止し得る連続鋳造方法を提案しようとするものであ
る。
In view of such drawbacks of the prior art, the present invention considers the cooling conditions of the molds in the casting direction of the two faces forming the corners of the slab in the production of the slab with a rectangular cross section. It is intended to propose a continuous casting method capable of preventing the occurrence of vertical cracks at one corner.

【0008】[0008]

【課題を解決するための手段】この発明の要旨は、矩形
断面の鋳片のコーナー部における縦割れの発生を防止す
る方法として、鋳型内の温度を鋳造方向の複数箇所にて
測定し、該測定値により求められる鋳型熱流束の鋳造方
向減少率を調整することを特徴とし、また、鋳型の長辺
側における熱流束の鋳造方向減少率と、鋳型の短辺側に
おける熱流束の鋳造方向減少率とがほぼ等しくなるよう
に鋳込方向の冷却を制御することを特徴とし、さらに、
鋳型の長辺側における熱流束の鋳造方向減少率と、鋳型
の短辺側における熱流束の鋳造方向減少率とがほぼ等し
くなるように鋳造速度に応じて鋳型短辺のテーパー量を
調整することを特徴とするものである。
Means for Solving the Problems The gist of the present invention is to measure the temperature in a mold at a plurality of points in the casting direction as a method for preventing the occurrence of vertical cracks at the corners of a slab having a rectangular cross section. It is characterized by adjusting the casting direction reduction rate of the mold heat flux obtained by the measured value, and also the casting direction reduction rate of the heat flux on the long side of the mold and the casting direction reduction of the heat flux on the short side of the mold. It is characterized by controlling the cooling in the pouring direction so that the rate becomes almost equal,
Adjusting the taper amount of the mold short side according to the casting speed so that the casting direction reduction rate of the heat flux on the long side of the mold and the casting direction reduction rate of the heat flux on the short side of the mold are almost equal. It is characterized by.

【0009】[0009]

【作用】この発明において、鋳片コーナー部を形成する
2面において、鋳造方向における鋳型の温度より求めら
れる鋳型熱流束の鋳造方向の減少率(勾配)を制御する
方法をとったのは、以下に示す理由による。すなわち、
鋳造が進むにつれて鋳造方向における抜熱量の降下勾配
の大小の存在は、初期凝固シェルの不均一をきたし熱歪
発生の原因となる。したがって、鋳型内における凝固起
点において、コーナーを形成する2面の抜熱量が均等で
あっても、鋳造方向に凝固が進展するに伴い2面の抜熱
量の降下勾配が異なれば、コーナー部をはさんで熱歪の
発生が起こり、コーナー部における引張応力の要因とな
る。こうした2面間の鋳造方向に沿った鋳型熱流束の降
下勾配を2面共同様なパターンで制御することにより、
コーナー部への過大な引張応力が防止され、コーナー近
傍における縦割れを防止できるのである。
In the present invention, the method of controlling the decreasing rate (gradient) of the mold heat flux in the casting direction, which is obtained from the temperature of the mold in the casting direction on the two surfaces forming the corners of the cast slab, is as follows. For the reason shown in. That is,
As the casting progresses, the existence of large and small gradients of the heat removal amount drop in the casting direction causes non-uniformity of the initial solidified shell and causes thermal strain. Therefore, even if the heat removal amounts of the two surfaces forming the corner are equal at the solidification starting point in the mold, if the descending gradient of the heat removal amount of the two surfaces is different as the solidification progresses in the casting direction, the corner portion is removed. Thermal strain occurs in the corner, which causes tensile stress in the corners. By controlling the descending gradient of the mold heat flux along the casting direction between these two surfaces in the same pattern on both surfaces,
Excessive tensile stress on the corner can be prevented, and vertical cracks near the corner can be prevented.

【0010】ここで、熱流束を求める方法としては、例
えば下記の方法がある。 鋳型の厚さ方向の複数箇所に熱電対を設置し、該熱
電対により測定される温度勾配より熱流束を求める方
法。 数学的手法により、鋳型内温度分布および各位置で
の熱流束を算出し、温度測定値との対応から熱流束を求
める方法。
Here, as a method for obtaining the heat flux, there are the following methods, for example. A method in which thermocouples are installed at a plurality of positions in the thickness direction of the mold, and the heat flux is obtained from the temperature gradient measured by the thermocouples. A method that calculates the temperature distribution in the mold and the heat flux at each position using a mathematical method, and calculates the heat flux from the correspondence with the measured temperature value.

【0011】[0011]

【実施例】図1はこの発明の実施例における連続鋳造ス
ラブと、該スラブのコーナー近傍における縦割れの発生
状況を併せて示したもので、1は長辺面、2は短辺面、
3はコーナー縦割れを示す。コーナー近傍に発生する縦
割れ3は、通常コーナーから約50mmの範囲内で、長
辺面1側あるいは短辺面2側に発生するが、コーナー自
体が割れる場合もある。
FIG. 1 shows a continuous cast slab according to an embodiment of the present invention together with the state of occurrence of vertical cracks in the vicinity of the corners of the slab, where 1 is the long side surface, 2 is the short side surface,
3 shows a vertical crack in the corner. The vertical cracks 3 that occur near the corner usually occur on the long-side surface 1 side or the short-side surface 2 side within a range of about 50 mm from the corner, but the corner itself may break.

【0012】本実施例では、鋳型サイズ90.100m
m厚×1000mm幅の試験連続鋳造機により、0.0
5wt%の炭素鋼を表1に示す鋳造条件で鋳造した。
In this embodiment, the mold size is 90.100 m.
With a test continuous casting machine of m thickness x 1000 mm width, 0.0
5 wt% carbon steel was cast under the casting conditions shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】本実施例における鋳片のコーナー近傍の縦
割れ発生長さは単位スラブ長さ当りの縦割れ長さで評価
し、コーナー縦割れ発生強度と鋳造速度の関係を図2に
示す。図2より明らかなように、鋳造速度を上げていっ
た時、鋳造速度が3m/minを境にしてコーナー縦割
れ発生が急激に大きくなる傾向がみられた。
The length of vertical cracking in the vicinity of the corner of the cast piece in this example was evaluated by the length of vertical cracking per unit slab length, and the relationship between the strength of corner vertical cracking and the casting speed is shown in FIG. As is clear from FIG. 2, when the casting speed was increased, the occurrence of vertical corner cracks at the casting speed tended to increase rapidly at the boundary of 3 m / min.

【0015】そこで、鋳型の長辺側銅板および短辺側銅
板に鋳造方向に設置した熱電対による測温値から熱流束
を求め、縦割れの有無と短辺抜熱量勾配および長辺抜熱
量勾配の関係を調べた。図3はその時の鋳型熱流束測定
概略図、図4は同じくメニスカスから下方h(45m
m)の位置とh(250mm)の位置の熱流束差を初
期熱流束(メニスカス下h)で無次元化した熱流束減
少率とコーナー縦割れ発生有無の関係を調べた結果を示
す図である。なお、熱流束は前記の方法により求め
た。
Therefore, the heat flux is determined from the temperature measurement values by thermocouples installed in the casting direction on the long-side copper plate and the short-side copper plate of the mold, and the presence or absence of vertical cracks and the short-side heat removal gradient and the long-side heat removal gradient I investigated the relationship. FIG. 3 is a schematic view of the mold heat flux measurement at that time, and FIG. 4 is the same as the downward h 1 (45 m) from the meniscus.
shows the results of examining the initial heat flux (meniscus under h 1) to dimensionless in heat flux reduction rate and the corner vertical cracks occurrence or non-occurrence relationship heat flux differential position location and h 2 (250 mm) of m) Is. The heat flux was determined by the above method.

【0016】図4の結果より、熱流束減少率が長辺およ
び短辺でほぼ1:1の領域(図中の斜線部)でコーナー
縦割れは発生せず、この範囲から外れる条件ではコーナ
ー縦割れが発生する傾向がみられた。
From the results shown in FIG. 4, vertical vertical cracks do not occur in the region where the heat flux reduction rate is approximately 1: 1 on the long side and the short side (hatched portion in the figure). There was a tendency for cracks to occur.

【0017】さらに、各鋳造速度での実測熱流束をもと
に凝固計算を行い、長辺の幅方向の凝固収縮量の平均値
を求めたところ、図5に示す鋳造速度と熱収縮量の関係
より明らかなごとく、短辺側テーパーが現行の1.1%
/mでは押込み過ぎ強冷却傾向がみられた。そこで、鋳
型短辺のテーパー量を僅かに緩めたところ、表2に示す
結果となった。すなわち、鋳型短辺のテーパー量を僅か
に緩めると、コーナー縦割れが発生しない領域が高速鋳
造側にずれる傾向がみられ、短辺テーパー量が0.90
%/mでは鋳造速度5m/minでもコーナー縦割れが
防止できた。しかし、逆に低鋳造速度側では緩いテーパ
ーとなることによる鋳片と鋳型とのエアーギャップ形成
により短辺側の熱流束減少量が大きく、コーナー縦割れ
が発生した。したがって、鋳造速度に応じて適正な短辺
テーパー量が存在することがわかる。
Further, solidification calculation was performed based on the measured heat flux at each casting speed, and the average value of the solidification shrinkage amount in the width direction of the long side was obtained. As is clear from the relationship, the short side taper is 1.1% of the current
At / m, there was a tendency for excessive indentation and strong cooling. Therefore, when the taper amount on the short side of the mold was slightly loosened, the results shown in Table 2 were obtained. That is, when the taper amount on the short side of the mold is slightly loosened, the region where vertical corner cracks do not occur tends to shift toward the high speed casting side, and the taper amount on the short side is 0.90.
% / M, vertical corner cracks could be prevented even at a casting speed of 5 m / min. On the contrary, on the low casting speed side, since the taper becomes loose and the air gap is formed between the slab and the mold, the heat flux reduction amount on the short side is large, and vertical cracks occur in the corners. Therefore, it is understood that there is an appropriate short side taper amount according to the casting speed.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】以上説明したごとく、この発明方法によ
れば、鋳片のコーナー部を形成する2面の熱流束の減少
率を制御することにより、コーナー部近傍に縦割れのな
い高品質の鋳片を安定して製造することができるととも
に、高速鋳造においてもコーナー部近傍に縦割れのない
鋳片を製造できるので、高品質の鋳片を高能率、高生産
性で製造することができるという、優れた効果を奏する
ものである。
As described above, according to the method of the present invention, by controlling the reduction rate of the heat flux of the two surfaces forming the corner portion of the cast slab, there is no vertical crack in the vicinity of the corner portion and high quality is obtained. The slab can be stably manufactured, and since a slab without vertical cracks in the vicinity of the corner portion can be manufactured even in high speed casting, a high quality slab can be manufactured with high efficiency and high productivity. That is, it has an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例における連続鋳造スラブと、
該スラブのコーナー近傍における縦割れの発生状況を併
せて示した斜視図である。
FIG. 1 is a continuously cast slab according to an embodiment of the present invention,
It is a perspective view which also showed the generation condition of the vertical crack in the corner vicinity of this slab.

【図2】同上実施例におけるコーナー縦割れ発生強度と
鋳造速度の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a vertical corner cracking occurrence strength and a casting speed in the same example.

【図3】同上実施例における鋳型熱流束測定概略図であ
る。
FIG. 3 is a schematic view of mold heat flux measurement in the above-mentioned embodiment.

【図4】同上実施例におけるメニスカスから下方h
(45mm)の位置とh(250mm)の位置の熱
流束差を初期熱流束(メニスカス下h)で無次元化し
た熱流束減少率とコーナー縦割れ発生有無の関係を調べ
た結果を示す図である。
FIG. 4 is a downward direction h from the meniscus in the above embodiment.
The heat flux difference between the position of 1 (45 mm) and the position of h 2 (250 mm) is made dimensionless by the initial heat flux (h 1 under the meniscus), and the result of the investigation of the relationship between the decrease rate of heat flux and the presence or absence of vertical corner cracks FIG.

【図5】同上実施例における鋳造速度と熱収縮量の関係
を示す図である。
FIG. 5 is a diagram showing a relationship between a casting speed and a heat shrinkage amount in the same example.

【符号の説明】[Explanation of symbols]

1 長辺面 2 短辺面 3 縦割れ 1 Long side face 2 Short side face 3 Vertical crack

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋳型内の温度を鋳造方向の複数箇所にて
測定し、該測定値により求められる鋳型熱流束の鋳造方
向減少率を調整することを特徴とする連続鋳造方法。
1. A continuous casting method, wherein the temperature in the mold is measured at a plurality of points in the casting direction, and the reduction rate of the mold heat flux in the casting direction is adjusted by the measured values.
【請求項2】 鋳型内の温度を鋳造方向の複数箇所にて
測定し、該測定値により求められる鋳型の長辺側におけ
る熱流束の鋳造方向減少率と、鋳型の短辺側における熱
流束の鋳造方向減少率とがほぼ等しくなるように鋳込方
向の冷却を制御し、鋳片コーナー部近傍における縦割れ
の発生を防止することを特徴とする連続鋳造方法。
2. The temperature in the mold is measured at a plurality of points in the casting direction, and the decrease rate of the heat flux in the casting direction on the long side of the mold and the heat flux on the short side of the mold, which are obtained from the measured values. A continuous casting method characterized in that cooling in the casting direction is controlled so that the rate of decrease in the casting direction is almost equal to prevent the occurrence of vertical cracks near the corners of the slab.
【請求項3】 鋳型内の温度を鋳造方向の複数箇所にて
測定し、該測定値により求められる鋳型の長辺側におけ
る熱流束の鋳造方向減少率と、鋳型の短辺側における熱
流束の鋳造方向減少率とがほぼ等しくなるように鋳造速
度に応じて鋳型短辺のテーパー量を調整し、鋳片コーナ
ー部近傍における縦割れの発生を防止することを特徴と
する連続鋳造方法。
3. The temperature in the mold is measured at a plurality of points in the casting direction, and the decrease rate of the heat flux in the casting direction on the long side of the mold and the heat flux on the short side of the mold, which are obtained from the measured values. A continuous casting method, characterized in that the taper amount of the short side of the mold is adjusted according to the casting speed so that the reduction rate in the casting direction is almost equal to prevent the occurrence of vertical cracks in the vicinity of the corners of the slab.
JP21350392A 1992-07-17 1992-07-17 Continuous casting method Pending JPH0631418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21350392A JPH0631418A (en) 1992-07-17 1992-07-17 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21350392A JPH0631418A (en) 1992-07-17 1992-07-17 Continuous casting method

Publications (1)

Publication Number Publication Date
JPH0631418A true JPH0631418A (en) 1994-02-08

Family

ID=16640281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21350392A Pending JPH0631418A (en) 1992-07-17 1992-07-17 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH0631418A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6412543B1 (en) * 2001-03-07 2002-07-02 Nnorthrop Grumman Corporation Method for controlling solidification rate of a mold-cast structure
JP2007125575A (en) * 2005-11-02 2007-05-24 Jfe Steel Kk Method for continuously producing cast slab
JP2009160645A (en) * 2008-01-10 2009-07-23 Nippon Steel Corp Continuous casting method and continuous casting mold
JP2009220181A (en) * 2009-07-07 2009-10-01 Nippon Steel Corp Continuous casting method for steel
JP2010234443A (en) * 2009-03-11 2010-10-21 Nippon Steel Corp Continuous casting method and continuous casting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6412543B1 (en) * 2001-03-07 2002-07-02 Nnorthrop Grumman Corporation Method for controlling solidification rate of a mold-cast structure
JP2007125575A (en) * 2005-11-02 2007-05-24 Jfe Steel Kk Method for continuously producing cast slab
JP2009160645A (en) * 2008-01-10 2009-07-23 Nippon Steel Corp Continuous casting method and continuous casting mold
JP4608558B2 (en) * 2008-01-10 2011-01-12 新日本製鐵株式会社 Continuous casting method and continuous casting mold
JP2010234443A (en) * 2009-03-11 2010-10-21 Nippon Steel Corp Continuous casting method and continuous casting device
JP2009220181A (en) * 2009-07-07 2009-10-01 Nippon Steel Corp Continuous casting method for steel

Similar Documents

Publication Publication Date Title
CN113543907B (en) Continuous casting method for slab casting blank
CN110494235B (en) Method for continuously casting steel
JPH0631418A (en) Continuous casting method
JP6947737B2 (en) Continuous steel casting method
JPH09276994A (en) Mold for continuous casting
JPH026037A (en) Method for continuously casting steel
JP3380412B2 (en) Mold for continuous casting of molten steel
JP2950152B2 (en) Continuous casting mold for slab
JP3389449B2 (en) Continuous casting method of square billet
JPH0819842A (en) Method and device for continuous casting
JP2020121329A (en) Mold and method for steel continuous casting
JP3237177B2 (en) Continuous casting method
JPH0679411A (en) Continuous casting method
JPH1058093A (en) Method for continuously casting steel
JPH0857584A (en) Production of stainless steel cast slab having good surface quality and workability
JPH0337819B2 (en)
JP2825988B2 (en) Method of preventing longitudinal cracks in continuous casting of thin cast slab
JP3470537B2 (en) Inclusion removal method in tundish for continuous casting
RU2048960C1 (en) Method of continuous casting of metals
JP3643460B2 (en) Continuous casting mold and continuous casting method
JP2024035081A (en) Mold for continuous casting
JP2024004032A (en) Continuous casting method
RU2048964C1 (en) Method of continuous casting of metals
RU2048962C1 (en) Method of continuous casting of metals
JP3398608B2 (en) Continuous casting method and mold for continuous casting