JP3643460B2 - Continuous casting mold and continuous casting method - Google Patents

Continuous casting mold and continuous casting method Download PDF

Info

Publication number
JP3643460B2
JP3643460B2 JP05855397A JP5855397A JP3643460B2 JP 3643460 B2 JP3643460 B2 JP 3643460B2 JP 05855397 A JP05855397 A JP 05855397A JP 5855397 A JP5855397 A JP 5855397A JP 3643460 B2 JP3643460 B2 JP 3643460B2
Authority
JP
Japan
Prior art keywords
mold
slit
continuous casting
slab
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05855397A
Other languages
Japanese (ja)
Other versions
JPH10235455A (en
Inventor
寛 原田
規之 鈴木
栄尚 安斎
肇 島影
輝夫 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP05855397A priority Critical patent/JP3643460B2/en
Publication of JPH10235455A publication Critical patent/JPH10235455A/en
Application granted granted Critical
Publication of JP3643460B2 publication Critical patent/JP3643460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【従来技術】
溶融金属、特に鋼の連続鋳造を高速引き抜き速度で行う場合には、鋳型内で生成する凝固シェルの不均一成長などに起因した鋳片表面の割れの問題がある。これまでに種々の解決策が提案されているが、残念ながらこうした問題は現在のところ完全には解消していない。
例えば、スラブ鋳造の分野では特開平6−304709号公報や、特開平7−284880号公報のように、鋳片表面割れの原因を鋳型内で生成する凝固シェルのうち鋳片幅方向中央部の凝固シェルへの歪み集中であるとし、これを緩冷却によって歪みを分散する手段として鋳型内壁面に溝状スリットを配する方法が提案されている。
【0002】
また、特開平7−80608号公報や、特開平7−284896号公報には上記方法に類似し、スリットを配する条件を規定して鋳型潤滑フラックスの流れ込みを促進したり、伝熱係数の異なる材料を格子状に配して、鋳型潤滑フラックスの粘性や融点などの条件を規定して緩冷却をはかる方法が提案されている。
【0003】
【発明が解決しようとする課題】
一方、鋳片断面積が比較的小さな鋳片を連続鋳造する際には一体成形された水冷銅鋳型が一般的に用いられる。また、このような小断面の鋳造にあたっては鋳型内に電磁攪拌コイルを設置し、水平旋回流を形成させることで介在物・気泡の捕捉防止や凝固組織の等軸晶化を図ることがしばしばあるが、湯面での攪拌流によりコ−ナ−部では盛り上がり、面部では盛り下がりとなって表れることがよくある。このような湯面レベル形状の状態で中炭素鋼を鋳造すると、面部での盛り下がり部で鋳片表面にへこみが生じやすく、へこみ深さが深いと割れに至る。
【0004】
一般的に、中炭素鋼の鋳造では上記割れを抑制するために、凝固点温度の高いパウダ−が使用される。凝固点温度を高くすることで緩冷却になり、中炭素鋼の割れ発生率を小さくしている。しかしながら、鋳造速度を速くするとパウダ−消費量は少なくなる傾向の中で、凝固点温度の高いパウダ−を用いるとその傾向が特に顕著となり、拘束性ブレ−クアウトが発生しやすくなる。そこで、先に述べたパウダ−の緩冷却機能を何がしかの手段で代替する必要が生じてくる。
そのため、本発明の目的は鋳型から鋳片表面までの熱流束をパウダ−物性に頼らず積極的に制御できる、鋳型条件を提示することである。
【0005】
【課題を解決するための手段】
発明者らの調査解析によれば、このような鋳造条件で中炭素鋼を鋳造するにあたっては、面部とコ−ナ−部の冷却バランスを如何に制御するかが縦割れ防止のため極めて重要となることが判明した。すなわち、コ−ナ−部では凝固開始位置が面部より高いため、コ−ナ−部では剛性の高いシェルが形成されやすく、凝固シェル剛性の低い面部でへこみが生じやすいことがわかった。へこみが発生する原因はδ/γ変態時に発生する引っ張り歪みであり、このような湯面レベル条件でも面部のみを緩冷却することで、へこみ発生を抑制できることがわかった。
【0006】
本発明は、この知見に基いてなされたものであり、その要旨とするところは、鋳型を構成する内壁面のうち互いに隣り合う2つの内壁面で形成されるコーナー部を少なくとも1つ有する鋳型の中に溶融金属を供給しながら連続的に鋳片を得る連続鋳造装置において、該鋳型内溶融金属に電磁力を印加して水平旋回流動を起こさせるための電磁コイルが鋳型内に埋設され、前記鋳型内壁面のうちコーナー部を除いた面部の表面に溝状のスリットが設けられ、さらにスリットを加工する鋳片幅方向範囲長さ(R)と鋳型内壁面の面部の長さ(W)との関係が下記(1)式を満足する連続鋳造用鋳型である
【0007】
R≧0.7W・・・・・・・・・・・(1)式
R: スリットを加工する鋳型内壁面の鋳片幅方向長さ(m)
W: 鋳型内壁面の面部の長さ(m)
さらに好ましくは、前記スリットの幅が0.3mm以上1mm以下であり、鋳型長手方向のスリット加工範囲は上方はパウダー厚み以上でかつ下方は湯面から150mm以内とするのが良い。
さらに、前記の連続鋳造用鋳型を用いて、該鋳型内溶融金属に電磁力を印加して水平旋回流動を起こさせながら連続鋳造を行うとなお良い。
尚、ここで言う「コーナー部」とは、鋳型を構成する内壁面のうち互いに隣り合う2つの内壁面で形成されるコ−ナ−部であって、所定の曲率(鋳型の水平断面における曲率)を有する曲面に加工された鋳片幅方向の範囲を意味する。また、「面部」とは、この「コーナー部」を除いた鋳型内壁面であって、曲率を有さない鋳片幅方向の範囲を意味する。
【0008】
【発明の実施の形態】
面部のみを緩冷却することにより、へこみの発生を抑制するため、面部に溝状の縦スリットを複数均一な間隔で付与し、スリット部に積極的にエアギャップを形成させ、鋳型表面から鋳片表面までの熱流束を小さくする。その小さくする度合いは湯面レベル形状の高低差によって異なるが、図1に示すようにおよそ−20%〜−50%程度が望ましい。この方法により、面部で凝固遅れが発生したとしても緩冷却により、δ/γ変態時に発生する歪を緩和することができ、鋳片表面のへこみ発生を抑制できる。
【0009】
図2にスリット加工範囲とへこみ深さの関係を示す。加工範囲が70%よりも小さい、すなわち面中央のみスリット加工を施すと、面中央でのへこみは抑制されるがへこみ発生位置がコ−ナ−近傍にシフトし、オフコ−ナ−部で割れ発生に至ることがわかった。そのため、スリットを設ける範囲はコ−ナ−部を除いた面部長さの70%以上で広い方が望ましい(図3)ので、下記(1)式が導出される。
【0010】
R≧0.7W・・・・・・・・・・(1)式
R: スリットを加工する鋳型内壁面の鋳片幅方向長さ(m)
W: 鋳型内壁面の面部の長さ(m)
【0011】
次に、長手方向のスリット加工範囲は、湯面をはさんで上方はパウダ−厚み以上でかつ下方は湯面から150mm程度が適当である。その理由は、図4のスリット長さとへこみ発生の関係からである。すなわち、へこみが発生するかどうかはほぼ鋳型上部で決まっており、150mmよりも下方で緩冷却にしても、へこみ発生は変わらないことがわかる。逆に、下方で緩冷却にすると、凝固シェル厚みは薄くなるため、ノズル吐出流による凝固シェルの再溶解が発生する危険が増えるなど、高速鋳造時に十分な凝固シェル厚を確保できない可能性がある。
【0012】
図5にスリット加工の模式図を示す。加工するスリットのサイズとしては、幅は0.3mm以上1mm以下で狭いほど望ましい、ピッチは幅の2倍、深さは幅の半分以下で所望の緩冷却度に応じてスリット条件を決定すればよい。幅を1mm以下としたのは、鋳片断面積が小さい鋳片の鋳造にあたっては、パウダ−の溶融プ−ル厚を十分確保するのが難しく、仮にパウダ−流入がとぎれた時にもスリット部へ湯差しを生じさせないためである。図6にスリット幅を変えた条件での鋳片表面へのスリット転写状況を示す。これより、0.5mmではスリットの転写は極めて軽微となっていることがわかる。
【0013】
【実施例】
サイズが160mm角のビレット鋳片を鋳造速度2.2m/分の条件で鋳造した。鋼種は0.1%C鋼とし、パウダ−は表1に示す成分組成のものを用いた。鋳型内電磁撹拌の条件は湯面レベル形状の凹凸が5mm〜10mmの範囲で一定とした。表2に鋳型表面のスリット加工条件と表面のへこみ発生との関係を示す。これより、面部にスリット加工を施し、かつスリット加工範囲をコーナーを除いた面部長さの70%以上とすることで鋳片表面のへこみ発生が大幅に軽減されることがわかる。これは、先に説明したごとく、面部での盛り下がり、すなわち凝固遅れによって発生する引っ張り歪みを緩冷却の効果で小さくできたことによるものと考えられる。一方、湯面から150mmよりも下方で緩冷却効果を高めると、へこみ発生は低減されるものの逆に凝固シェル厚が薄くなり、面中央部のシェル厚が薄くなっていることがわかる。そのため、湯面から150mm以内というごく鋳型上部で緩冷却効果を付与する必要があることがわかる。
【0014】
【表1】

Figure 0003643460
【表2】
Figure 0003643460
【0015】
【発明の効果】
面部にスリット加工を施した鋳型を用いることで、中炭素鋼鋳造時の鋳片表面のへこみを大幅に低減することができる。これにより、電磁撹拌の推力を低減する必要がないため、気泡や介在物の捕捉防止や凝固組織の等軸晶化効果を損なうことなく、高品位の鋳片を高歩留で鋳造することができる。
また、凝固点温度の高いパウダ−を用いる必要がないため、凝固点温度の比較的低いパウダ−を使用でき、その結果、鋳造速度を高速化できる。
【図面の簡単な説明】
【図1】緩冷却度とへこみの深さの関係を示す説明図である。
【図2】スリット加工範囲とへこみの深さの関係を示す説明図である。
【図3】スリット加工条件と鋳片表面形状の関係の模式説明図である。
【図4】スリット長さとへこみ深さの関係を示す説明図である。
【図5】鋳型内表面のスリット加工の模式説明図である。
【図6】スリット巾と鋳片表面形状との関係を示す説明図である。
【符号の説明】[0001]
[Prior art]
When continuous casting of molten metal, particularly steel, is performed at a high drawing speed, there is a problem of cracking of the slab surface due to non-uniform growth of a solidified shell formed in the mold. Various solutions have been proposed so far, but unfortunately these problems are not completely resolved at present.
For example, in the field of slab casting, as in JP-A-6-304709 and JP-A-7-284880, the cause of slab surface cracking is the center of the slab width direction in the solidified shell that is generated in the mold. A method of arranging groove-like slits on the inner wall surface of the mold has been proposed as a means of dispersing strain by slow cooling, assuming that the strain concentrates on the solidified shell.
[0002]
In addition, JP-A-7-80608 and JP-A-7-284896 are similar to the above method, and the conditions for disposing the slits are specified to promote the flow of the mold lubricating flux or have different heat transfer coefficients. A method has been proposed in which materials are arranged in a lattice pattern, and conditions such as the viscosity and melting point of the mold lubricating flux are specified to achieve slow cooling.
[0003]
[Problems to be solved by the invention]
On the other hand, when continuously casting a slab having a relatively small cross-sectional area, an integrally formed water-cooled copper mold is generally used. Moreover, when casting such a small cross section, an electromagnetic stirring coil is installed in the mold to form a horizontal swirling flow to prevent trapping of inclusions / bubbles and equiaxed crystallization of the solidified structure. However, it often appears that the corner portion is swelled and the surface portion is swelled by the stirring flow on the hot water surface. When medium carbon steel is cast in such a molten steel surface level shape, a dent is likely to be formed on the surface of the slab at the swelled portion at the surface portion, and cracking occurs when the dent depth is deep.
[0004]
In general, in the casting of medium carbon steel, a powder having a high freezing point temperature is used in order to suppress the cracking. Increasing the freezing point temperature results in slow cooling, reducing the cracking rate of medium carbon steel. However, when the casting speed is increased, the amount of powder consumption tends to decrease. However, when a powder having a high freezing point temperature is used, this tendency becomes particularly remarkable, and constraining breakout is likely to occur. Therefore, it is necessary to replace the above-described slow cooling function of the powder with some means.
Therefore, an object of the present invention is to present mold conditions that can positively control the heat flux from the mold to the slab surface without depending on the powder properties.
[0005]
[Means for Solving the Problems]
According to the inventor's investigation and analysis, in casting medium carbon steel under such casting conditions, it is extremely important to prevent the vertical cracks from controlling the cooling balance between the face part and the corner part. Turned out to be. That is, it was found that since the solidification start position is higher in the corner portion than in the surface portion, a highly rigid shell is likely to be formed in the corner portion, and a dent is likely to occur in the surface portion having low solidified shell rigidity. The cause of the dent is the tensile strain generated during the δ / γ transformation, and it has been found that the dent can be suppressed by slowly cooling only the surface portion even under such a molten metal level condition.
[0006]
The present invention has been made based on this finding, the gist of which is a mold having at least one corner portion formed by two inner wall surfaces adjacent to each other among the inner wall surfaces constituting the mold. In a continuous casting apparatus for continuously obtaining a slab while supplying molten metal therein, an electromagnetic coil for causing horizontal swirling flow by applying electromagnetic force to the molten metal in the mold is embedded in the mold, slit groove-like is provided on the front surface of the face portion excluding the corner portion of the mold inner wall, further slab width range length of processing the slits (R) and the length of the surface portion of the mold inner wall (W) Is a continuous casting mold that satisfies the following formula (1) .
[0007]
R ≧ 0.7W ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (1) Formula
R: Length in the slab width direction of the inner wall surface of the mold for machining the slit (m)
W: Length of the inner wall surface of the mold (m)
More preferably, the width of the slit is 0.3 mm or more and 1 mm or less, and the slit processing range in the mold longitudinal direction is higher than the powder thickness on the upper side and within 150 mm from the molten metal surface on the lower side.
Furthermore, it is more preferable to perform continuous casting using the aforementioned continuous casting mold while applying an electromagnetic force to the molten metal in the mold to cause a horizontal swirling flow.
The “corner portion” referred to here is a corner portion formed by two inner wall surfaces adjacent to each other among the inner wall surfaces constituting the mold, and has a predetermined curvature (curvature in the horizontal section of the mold). ) In the width direction of the slab processed into a curved surface. Further, the “surface portion” means a mold inner wall surface excluding the “corner portion” and a range in the slab width direction having no curvature.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In order to suppress the occurrence of dents by slowly cooling only the surface portion, a plurality of groove-like vertical slits are provided at even intervals in the surface portion, and an air gap is positively formed in the slit portion, and the slab is formed from the mold surface. Reduce the heat flux to the surface. The degree of reduction varies depending on the difference in level of the hot water surface level, but is preferably about -20% to -50% as shown in FIG. By this method, even if solidification delay occurs in the surface portion, the strain generated during the δ / γ transformation can be relieved by slow cooling, and the occurrence of dents on the slab surface can be suppressed.
[0009]
FIG. 2 shows the relationship between the slit machining range and the dent depth. If the machining range is smaller than 70%, that is, slitting is performed only at the center of the surface, the dent at the center of the surface is suppressed, but the dent occurrence position shifts to the vicinity of the corner and cracking occurs at the off-corner part. I found out that For this reason, the range in which the slit is provided is preferably 70% or more of the length of the surface portion excluding the corner portion (FIG. 3), so the following equation (1) is derived.
[0010]
R ≧ 0.7W (1) Formula R: Length in the slab width direction of the mold inner wall surface that processes the slit (m)
W: Length of the inner wall surface of the mold (m)
[0011]
Next, it is appropriate that the slit processing range in the longitudinal direction is more than the powder thickness above the molten metal surface and about 150 mm below the molten metal surface below. The reason is from the relationship between the slit length in FIG. That is, whether or not the dent is generated is almost determined at the upper part of the mold, and it can be understood that the dent generation does not change even if the cooling is performed below 150 mm. On the other hand, if the cooling is slow at the bottom, the thickness of the solidified shell becomes thin, so there is a risk that the solidified shell will be re-dissolved due to the nozzle discharge flow. .
[0012]
FIG. 5 shows a schematic diagram of slit processing. The size of the slit to be processed is preferably as narrow as possible with a width of 0.3 mm or more and 1 mm or less. If the pitch is twice the width and the depth is less than half of the width, the slit conditions should be determined according to the desired degree of slow cooling. Good. The width is set to 1 mm or less when casting a slab having a small slab cross-sectional area, it is difficult to secure a sufficient melt pool thickness of the powder, and even if the powder flow is interrupted, This is because it does not cause a difference. FIG. 6 shows the state of slit transfer onto the surface of the slab under conditions where the slit width is changed. From this, it can be seen that the transfer of the slit is very slight at 0.5 mm.
[0013]
【Example】
A billet slab having a size of 160 mm square was cast at a casting speed of 2.2 m / min. The steel type was 0.1% C steel, and the powder having the composition shown in Table 1 was used. The condition of electromagnetic stirring in the mold was constant within the range of 5 mm to 10 mm in the unevenness of the hot water surface level shape. Table 2 shows the relationship between the slit machining conditions on the mold surface and the occurrence of dents on the surface. From this, it can be understood that the dent generation on the slab surface is greatly reduced by slitting the surface portion and setting the slit processing range to 70 % or more of the length of the surface portion excluding the corner. As described above, this is considered to be due to the fact that the tensile strain generated by the rise at the surface portion, that is, the solidification delay, can be reduced by the effect of slow cooling. On the other hand, when the slow cooling effect is increased below 150 mm from the molten metal surface, the generation of dents is reduced, but conversely, the solidified shell thickness is reduced, and the shell thickness at the center of the surface is reduced. Therefore, it turns out that it is necessary to provide a slow cooling effect at the very upper part of the mold within 150 mm from the molten metal surface.
[0014]
[Table 1]
Figure 0003643460
[Table 2]
Figure 0003643460
[0015]
【The invention's effect】
By using a mold having slits on the surface, it is possible to greatly reduce the dent on the surface of the slab during casting of medium carbon steel. As a result, it is not necessary to reduce the thrust of electromagnetic stirring, so that it is possible to cast high-quality slabs at a high yield without impairing the trapping of bubbles and inclusions and impairing the equiaxed crystallization effect of the solidified structure. it can.
Further, since it is not necessary to use a powder having a high freezing point temperature, a powder having a relatively low freezing point temperature can be used, and as a result, the casting speed can be increased.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the relationship between the degree of slow cooling and the depth of a dent.
FIG. 2 is an explanatory diagram showing a relationship between a slit processing range and a depth of a dent.
FIG. 3 is a schematic explanatory view of a relationship between slit machining conditions and a slab surface shape.
FIG. 4 is an explanatory diagram showing a relationship between a slit length and a dent depth.
FIG. 5 is a schematic explanatory view of slit machining on the inner surface of the mold.
FIG. 6 is an explanatory diagram showing the relationship between the slit width and the slab surface shape.
[Explanation of symbols]

Claims (3)

鋳型を構成する内壁面のうち互いに隣り合う2つの内壁面で形成されるコーナー部を少なくとも1つ有する鋳型の中に溶融金属を供給しながら連続的に鋳片を得る連続鋳造装置において、該鋳型内溶融金属に電磁力を印加して水平旋回流動を起こさせるための電磁コイルが鋳型内に埋設され、前記鋳型内壁面のうちコーナー部を除いた面部の表面に溝状のスリットが設けられ、さらにスリットを加工する鋳片幅方向範囲長さ(R)と鋳型内壁面の面部の長さ(W)との関係が下記(1)式を満足することを特徴とする連続鋳造用鋳型。
R≧0.7W・・・・・・・・・・・(1)式
R: スリットを加工する鋳型内壁面の鋳片幅方向長さ(m)
W: 鋳型内壁面の面部の長さ(m)
In a continuous casting apparatus for continuously obtaining a slab while supplying molten metal into a mold having at least one corner portion formed by two inner wall surfaces adjacent to each other among inner wall surfaces constituting the mold, the mold an electromagnetic coil for causing the horizontal swirling fluidized by applying an electromagnetic force to the inner molten metal is embedded in the mold, the slit groove-like is provided on the front surface of the face portion excluding the corner portion of the mold inner wall A continuous casting mold characterized in that the relationship between the length (R) in the slab width direction for further processing the slit and the length (W) of the surface portion of the inner wall surface of the mold satisfies the following expression (1).
R ≧ 0.7W ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (1) Formula
R: Length in the slab width direction of the inner wall surface of the mold for machining the slit (m)
W: Length of the inner wall surface of the mold (m)
前記スリットの幅が0.3mm以上1mm以下であり、鋳型長手方向のスリット加工範囲は上方はパウダー厚み以上でかつ下方は湯面から150mm以内とすることを特徴とする請求項1に記載の連続鋳造用鋳型。  The continuous width according to claim 1, wherein a width of the slit is 0.3 mm or more and 1 mm or less, and a slit processing range in the mold longitudinal direction is an upper portion of the powder thickness or more and a lower portion thereof is within 150 mm from the molten metal surface. Casting mold. 請求項1または2に記載の連続鋳造用鋳型を用いて、該鋳型内溶融金属に電磁力を印加して水平旋回流動を起こさせながら連続鋳造を行うことを特徴とする連続鋳造方法。 Using a continuous casting mold according to claim 1 or 2, continuous casting method and performing continuous casting while causing horizontal swirling fluidized by applying an electromagnetic force to the template in the molten metal.
JP05855397A 1997-02-27 1997-02-27 Continuous casting mold and continuous casting method Expired - Fee Related JP3643460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05855397A JP3643460B2 (en) 1997-02-27 1997-02-27 Continuous casting mold and continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05855397A JP3643460B2 (en) 1997-02-27 1997-02-27 Continuous casting mold and continuous casting method

Publications (2)

Publication Number Publication Date
JPH10235455A JPH10235455A (en) 1998-09-08
JP3643460B2 true JP3643460B2 (en) 2005-04-27

Family

ID=13087658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05855397A Expired - Fee Related JP3643460B2 (en) 1997-02-27 1997-02-27 Continuous casting mold and continuous casting method

Country Status (1)

Country Link
JP (1) JP3643460B2 (en)

Also Published As

Publication number Publication date
JPH10235455A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
JP6947737B2 (en) Continuous steel casting method
JP4337565B2 (en) Steel slab continuous casting method
JP6611331B2 (en) Continuous casting method of slab made of titanium or titanium alloy
JP3643460B2 (en) Continuous casting mold and continuous casting method
CN109689247B (en) Method for continuously casting steel
JPH09276994A (en) Mold for continuous casting
JP7087749B2 (en) Continuous metal casting method
JP6947192B2 (en) Mold for continuous casting of steel and continuous casting method of steel
JP6331757B2 (en) Equipment for continuous casting of steel
JP5822519B2 (en) Melting furnace for metal melting
JP2000033461A (en) Continuous casting mold
JP4203167B2 (en) Continuous casting method for molten steel
JP3237177B2 (en) Continuous casting method
JP2001087846A (en) Continuous casting method of steel slab and continuous casting device
JP3283746B2 (en) Continuous casting mold
TWI805110B (en) Steel continuous casting method
JP2867894B2 (en) Continuous casting method
JP2006130553A (en) Mold for continuous casting
JPH09225593A (en) Mold for continuously casting square billet
RU2009005C1 (en) Method of producing sheet slab from aluminium and its alloys
JPH05115961A (en) Semi-continuous casting method for casting block having plural extending parts
JP2024047886A (en) Continuous casting mold and method of manufacturing the same
JPH09285853A (en) Manufacture of continuously cast slab
JPH0947852A (en) Continuous casting method and immersion nozzle
JPH08257695A (en) Continuous casting mold for steel and continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees