JP6947737B2 - Continuous steel casting method - Google Patents

Continuous steel casting method Download PDF

Info

Publication number
JP6947737B2
JP6947737B2 JP2018540270A JP2018540270A JP6947737B2 JP 6947737 B2 JP6947737 B2 JP 6947737B2 JP 2018540270 A JP2018540270 A JP 2018540270A JP 2018540270 A JP2018540270 A JP 2018540270A JP 6947737 B2 JP6947737 B2 JP 6947737B2
Authority
JP
Japan
Prior art keywords
conductive metal
heat conductive
different heat
mold
metal filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018540270A
Other languages
Japanese (ja)
Other versions
JPWO2018056322A1 (en
Inventor
則親 荒牧
則親 荒牧
孝平 古米
孝平 古米
三木 祐司
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority claimed from PCT/JP2017/033955 external-priority patent/WO2018056322A1/en
Publication of JPWO2018056322A1 publication Critical patent/JPWO2018056322A1/en
Application granted granted Critical
Publication of JP6947737B2 publication Critical patent/JP6947737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/051Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds into moulds having oscillating walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock

Description

本発明は、連続鋳造技術に関し、特に凝固の初期段階における鋳片の不均一凝固を抑制することにより、鋳片の表面割れ及び中心偏析の改善に好適な鋼の連続鋳造方法に関する。 The present invention relates to a continuous casting technique, and more particularly to a steel continuous casting method suitable for improving surface cracking and central segregation of slabs by suppressing non-uniform solidification of slabs in the initial stage of solidification.

一般に連続鋳造によって鋼鋳片を製造する場合、まず鋳型内に注入された溶鋼が鋳型と接して冷却され、薄い凝固層(以下、「凝固シェル」という)を形成する。こうして溶鋼を鋳型内に注入しながら凝固シェルを下方へ引き抜く(以下、「定常鋳込み」という)ことによって、鋳片を製造する。 Generally, when steel slabs are produced by continuous casting, the molten steel injected into the mold is first cooled in contact with the mold to form a thin solidified layer (hereinafter referred to as "solidified shell"). In this way, the solidified shell is pulled downward while injecting molten steel into the mold (hereinafter referred to as "steady casting") to manufacture slabs.

鋳型による冷却が不均一になると、凝固シェルの厚さが不均一になり、その結果、凝固シェルの表面は平滑にならない。特に凝固の初期段階で凝固シェルの厚さが不均一に成長すると、凝固シェルの表面に応力集中が生じて微小な縦割れが発生する。この微小な縦割れは、鋳片が完全に凝固した後も残存し、鋳片表面の縦割れとなる。鋳片の表面に縦割れが発生すると、後工程(たとえば圧延工程等)へ鋳片を送給するに先立って、縦割れの除去(以下、手入れという)が必要となる。 Non-uniform cooling by the mold results in non-uniform thickness of the solidified shell, resulting in a non-smooth surface of the solidified shell. In particular, if the thickness of the solidified shell grows unevenly in the initial stage of solidification, stress concentration occurs on the surface of the solidified shell and minute vertical cracks occur. These minute vertical cracks remain even after the slab is completely solidified, and become vertical cracks on the surface of the slab. When vertical cracks occur on the surface of a slab, it is necessary to remove the vertical cracks (hereinafter referred to as “maintenance”) prior to feeding the slab to a subsequent process (for example, a rolling process).

鋳型は鋳造方向に振動(以下、「オシレーション」ともいう)しており、この鋳型の振動によって凝固シェルの上端部は溶鋼側に曲げられ、曲げられた凝固シェルと鋳型内壁面との空隙に溶鋼が溢流することで、凝固シェルに溶鋼側に張り出した部分(以下、「つめ」という)が形成される。凝固シェルの表面が平滑でない場合は、曲げられた凝固シェルと鋳型内壁面とで形成される空隙が大きくなり、凝固シェルのつめが大きくなる。溶鋼側に張り出したつめが大きくなると、メニスカス(鋳型内溶鋼湯面)において、溶鋼中を浮上する非金属介在物や気泡が当該つめに捕捉される。捕捉された非金属介在物や気泡は、熱間圧延後の鋼板または冷間圧延後の鋼板で表面疵や膨れなどの表面欠陥の原因となる。 The mold vibrates in the casting direction (hereinafter, also referred to as "oscillation"), and the upper end of the solidified shell is bent toward the molten steel by the vibration of the mold, creating a gap between the bent solidified shell and the inner wall surface of the mold. When the molten steel overflows, a portion (hereinafter referred to as “claw”) overhanging the molten steel side is formed in the solidified shell. If the surface of the solidified shell is not smooth, the voids formed between the bent solidified shell and the inner wall surface of the mold become large, and the claws of the solidified shell become large. When the claws overhanging the molten steel side become large, non-metal inclusions and air bubbles floating in the molten steel are trapped in the meniscus (the surface of the molten steel in the mold). The trapped non-metal inclusions and air bubbles cause surface defects such as surface flaws and swelling in the steel sheet after hot rolling or the steel sheet after cold rolling.

このような縦割れや傷、膨れ等の表面欠陥の発生頻度は、鋳造速度の増加に伴って高まる傾向にある。今日では、一般的なスラブ連続鋳造機の鋳造速度は、10年前と比較して約1.5〜2倍に向上しており、それに伴って手入れ作業も増加している。近年、技術的に確立されつつある直送加熱(いわゆるホットチャージ)や直送圧延(いわゆるダイレクトチャージ)においても、鋳片の手入れ作業は操業の安定化を阻害する要因になっている。したがって、凝固の初期段階における不均一冷却に起因する凝固シェル厚の不均一な成長およびつめの発生を防止できれば、経済的に極めて有利となる。 The frequency of occurrence of such surface defects such as vertical cracks, scratches, and swelling tends to increase as the casting speed increases. Today, the casting speed of a general slab continuous casting machine has increased by about 1.5 to 2 times compared to 10 years ago, and the maintenance work has increased accordingly. In recent years, even in direct heating (so-called hot charge) and direct rolling (so-called direct charge), which are becoming technically established, the maintenance work of slabs is a factor that hinders the stabilization of operations. Therefore, it would be extremely economically advantageous to prevent uneven growth of solidification shell thickness and generation of claws due to non-uniform cooling in the initial stage of solidification.

凝固の初期段階における不均一冷却を防止するには、凝固の初期段階で均一かつ緩やかな冷却を行ない、凝固シェルの厚さを均一に成長させることによって、つめの生成を阻止する必要がある。この点に関して、非特許文献1には、280×280mmのビレットの連続鋳造において、鋳片の表面性状を改善するためには、鋳型内面に凹凸を付与することが有効であると記載されている。特許文献1には、直径もしくは幅が3〜80mmかつ深さが0.1〜1.0mmの凹部を鋳型内面に設けることが記載されている。さらに、特許文献2には、幅が0.2〜2mmかつ深さが6mm以下の溝を鋳型内面に設けることが記載されている。 In order to prevent non-uniform cooling in the initial stage of solidification, it is necessary to prevent the formation of claws by performing uniform and gradual cooling in the initial stage of solidification and uniformly growing the thickness of the solidified shell. In this regard, Non-Patent Document 1 describes that it is effective to impart irregularities to the inner surface of the mold in order to improve the surface texture of the slab in the continuous casting of billets of 280 × 280 mm. .. Patent Document 1 describes that a recess having a diameter or width of 3 to 80 mm and a depth of 0.1 to 1.0 mm is provided on the inner surface of the mold. Further, Patent Document 2 describes that a groove having a width of 0.2 to 2 mm and a depth of 6 mm or less is provided on the inner surface of the mold.

これらの技術は、いずれもメニスカス部にモールドパウダーを投入して、鋳型と凝固シェルとの隙間に十分な厚さのモールドパウダー層を長時間安定して維持し、鋳型内面に設けられた凹凸部に空気層や溶融パウダー層を形成させ、その空気層や溶融パウダー層の断熱性を利用して緩やかな冷却(以下、緩冷却という)を実現しようとするものである。 In all of these techniques, mold powder is poured into the meniscus portion to stably maintain a mold powder layer of sufficient thickness in the gap between the mold and the solidified shell for a long period of time, and the uneven portion provided on the inner surface of the mold. An air layer or a molten powder layer is formed in the air layer, and the heat insulating property of the air layer or the molten powder layer is utilized to realize gentle cooling (hereinafter referred to as slow cooling).

しかし、これらの技術を実際に連続鋳造に使用すると種々の問題が生じる。たとえば、幅変更が可能なスラブ連続鋳造機の鋳型は、長辺と短辺の組鋳型であるので、連続鋳造を開始する時に鋳型内面に設けた凹部と鋳型のコーナー部とが一致すると、鋳込みを開始する際の溶鋼のスプラッシュがコーナー部の凹部に差し込むという問題がある。 However, when these techniques are actually used for continuous casting, various problems arise. For example, the mold of a slab continuous casting machine whose width can be changed is a set mold of a long side and a short side. There is a problem that the splash of molten steel is inserted into the recesses at the corners when starting.

浸漬ノズルを交換する時、あるいはタンディッシュを交換する時に、鋳型内の溶鋼の湯面が定常鋳込みの状態より低下するため、鋳型内面に固着したモールドパウダーが剥離、離脱しやすくなり、再度鋳込みを開始する時に溶鋼や溶鋼のスプラッシュがコーナー部の凹部に差し込むという問題がある。このような溶鋼が凹部に差し込む現象は、凝固シェルの拘束性ブレークアウトが発生する原因になる。 When the dipping nozzle is replaced or the tundish is replaced, the molten steel level in the mold is lower than in the steady casting state, so the mold powder adhering to the inner surface of the mold is easily peeled off and separated, and casting is performed again. There is a problem that the molten steel or the splash of molten steel is inserted into the recesses in the corners at the start. Such a phenomenon that the molten steel is inserted into the recess causes a restrictive breakout of the solidified shell.

鋳片の中心偏析の生成機構は、次のように考えられている。凝固が進むにつれて、凝固組織であるデンドライト樹間に偏析成分が濃化する。この偏析成分の濃化した溶鋼が、凝固時の鋳片の収縮またはバルジングと呼ばれる鋳片のふくれなどにより、デンドライト樹間より流出する。流出した偏析成分の濃化した溶鋼が最終凝固部である凝固完了点に向かって流動し、そのまま凝固して偏析成分の濃化帯が形成される。この濃化帯が中心偏析である。鋳片の中心偏析の防止対策として、デンドライト樹間に存在する偏析成分が濃化した溶鋼の移動を防止することと、偏析成分の濃化した溶鋼の局所的な集積を防ぐことが効果的であり、これらの原理を利用したいくつかの方法が提案されている。 The mechanism for generating central segregation of slabs is considered as follows. As coagulation progresses, segregation components are concentrated between the dendrite trees, which are coagulated structures. The molten steel with a concentrated segregation component flows out from the dendrite trees due to shrinkage of the slab during solidification or bulging of the slab called bulging. The outflowed molten steel in which the segregation component is concentrated flows toward the solidification completion point, which is the final solidification part, and solidifies as it is to form a concentration zone of the segregation component. This concentrated zone is the central segregation. As measures to prevent central segregation of slabs, it is effective to prevent the movement of molten steel with concentrated segregation components existing between dendrite trees and to prevent local accumulation of molten steel with concentrated segregation components. There are several methods proposed that utilize these principles.

その1つに、圧下ロール群による鋳片の軽圧下法があるが、凝固収縮量を若干上回る程度の軽圧下では、中心偏析の改善効果には限界がある。特許文献3では、鋳片の中心部の固相率が0.1以下の位置で鋳片をバルジングさせ、幅方向中央部の鋳片の厚みを鋳型内で生じる短辺部の鋳片の厚みより20〜100mm厚くした後、凝固完了点直前に少なくとも1つの圧下ロール対により、1つの圧下ロール対当たりの圧下量を20mm以上とする条件で、バルジング相当量を圧下する方法が提案されている。 One of them is a light reduction method for slabs using a reduction roll group, but there is a limit to the effect of improving central segregation under a light reduction method that slightly exceeds the amount of solidification shrinkage. In Patent Document 3, the slab is bulged at a position where the solid phase ratio at the center of the slab is 0.1 or less, and the thickness of the slab at the center in the width direction is the thickness of the slab at the short side generated in the mold. A method has been proposed in which the bulging equivalent amount is reduced by at least one reduction roll pair immediately before the solidification completion point after making the thickness 20 to 100 mm thicker, under the condition that the reduction amount per reduction roll pair is 20 mm or more. ..

特許文献4では、鋳片の未凝固部の厚みが30mmになるまでの間に、幅方向中央部の鋳片の厚みを短辺部の鋳片の厚みの10〜50%相当の厚みだけバルジングさせた後、凝固完了点までに少なくとも1つの圧下ロール対により、バルジング相当量を圧下する方法が提案されている。 In Patent Document 4, the thickness of the slab in the central portion in the width direction is bulging by a thickness equivalent to 10 to 50% of the thickness of the slab in the short side until the thickness of the unsolidified portion of the slab reaches 30 mm. A method has been proposed in which the bulging equivalent amount is reduced by at least one reduction roll pair until the solidification completion point.

特許文献5では、バルジング開始時の鋳片の厚みの3%以上25%以下バルジングさせた後、中心部の固相率が0.2以上0.7以下の鋳片の位置を、バルジング量の30%以上70%以下に相当する厚みだけ圧下する鋼の連続鋳造方法が提案されている。 In Patent Document 5, after bulging 3% or more and 25% or less of the thickness of the slab at the start of bulging, the position of the slab having a solid phase ratio of 0.2 or more and 0.7 or less in the central portion is determined by the amount of bulging. A continuous casting method of steel has been proposed in which a thickness corresponding to 30% or more and 70% or less is reduced.

特開平9−94634号公報Japanese Unexamined Patent Publication No. 9-94634 特開平10−193041号公報Japanese Unexamined Patent Publication No. 10-193041 特開平7−210382号公報Japanese Unexamined Patent Publication No. 7-21382 特開平9−206903号公報Japanese Unexamined Patent Publication No. 9-20603 特開平11−99285号公報Japanese Unexamined Patent Publication No. 11-99285

P.Perminov et al、Steel in English、(1968)No.7.p.560〜562P. Perminov et al, Steel in English, (1968) No. 7. p. 560-562

鋼の連続鋳造では、上下方向の振動を鋳型に与え、当該振動により凝固シェルが鋳型に焼き付くことを防止している。鋳型の振動によって、先端部が変形を受けた鋳片の表面には、オシレーションマークと呼ばれる周期的な凹凸が形成される。オシレーションマークの凹凸が大きくなると、凝固シェル表面と鋳型との接触が不均一になり、鋳型からの抜熱量も不均一になるので、凝固シェル内面の凹凸も大きくなる。初期の凝固シェル内面の凹凸が大きくなると、最終凝固部における凝固界面が平滑でなくなり、特許文献3〜5に記載された方法で圧下してもその効果が十分に得られないことがある、という課題がある。 In continuous steel casting, vertical vibration is applied to the mold to prevent the solidified shell from seizing on the mold due to the vibration. Periodic irregularities called oscillation marks are formed on the surface of the slab whose tip is deformed by the vibration of the mold. When the unevenness of the oscillation mark becomes large, the contact between the surface of the solidified shell and the mold becomes non-uniform, and the amount of heat removed from the mold also becomes non-uniform, so that the unevenness of the inner surface of the solidified shell also becomes large. When the unevenness of the inner surface of the initial solidification shell becomes large, the solidification interface in the final solidification portion becomes not smooth, and the effect may not be sufficiently obtained even if the pressure is reduced by the methods described in Patent Documents 3 to 5. There are challenges.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]連続鋳造用鋳型内に溶鋼を注入しつつ、前記連続鋳造用鋳型を鋳造方向に振動させながら前記溶鋼を引き抜いて、鋳片を製造する鋼の連続鋳造方法であって、連続鋳造用鋳型は、定常鋳込み状態のメニスカス位置より上方へ少なくとも20mmの位置から前記メニスカス位置より下方へ少なくとも50mm以上、多くとも200mm以下の位置までの鋳型銅板の内壁面に設けられた複数の凹溝を有し、前記複数の凹溝の内部には、前記鋳型銅板の熱伝導率に対して熱伝導率差の比率が20%以上である金属もしくは金属合金が充填された複数の異熱伝導金属充填部が設けられ、前記複数の異熱伝導金属充填部が設けられた前記内壁面の面積に対する全ての異熱伝導金属充填部の面積の総和の比である面積率が10%以上80%以下であり、オシレーション振動数(f)と鋳造速度(Vc)とで導かれるオシレーションマークピッチ(OMP)及び距離(D1)が下記(1)式を満足し、距離(D2)が下記(2)式を満足する、鋼の連続鋳造方法。
D1≦OMP=Vc×1000/f・・・(1)
D2≦4r ・・・(2)
但し、(1)式において、Vcは、鋳造速度(m/min)であり、fは、オシレーション振動数(cpm)であり、OMPは、オシレーションマークピッチ(mm)であり、D1は、複数のうちの1の異熱伝導金属充填部の重心と、前記鋳型銅板の幅方向に同じ位置に設けられた他の異熱伝導金属充填部であって、前記1の異熱伝導金属充填部に鋳造方向で隣り合う他の異熱伝導金属充填部と前記鋳型銅板との境界線から、前記1の異熱伝導金属充填部と前記鋳型銅板との境界線までの距離(mm)であり、(2)式において、rは、前記異熱伝導金属充填部の重心を中心とし、前記異熱伝導金属充填部の面積と同一の面積の円の半径(mm)であり、D2は、前記1の異熱伝導金属充填部の重心と鋳造方向に同じ位置に設けられた他の異熱伝導金属充填部であって、前記1の異熱伝導金属充填部に前記幅方向で隣り合う他の異熱伝導金属充填部の重心から、前記1の異熱伝導金属充填部の重心まで、の距離(mm)である。
[2]前記複数の異熱伝導金属充填部は、前記距離(D1)が下記の(3)式を満足するように設けられる、[1]に記載の鋼の連続鋳造方法。
D1≦2r・・・(3)
[3]前記複数の凹溝の形状は全て同じである、[1]または[2]に記載の鋼の連続鋳造方法。
[4]前記複数の凹溝の形状は円形または角のない擬似円形である、[1]から[3]の何れか1つに記載の鋼の連続鋳造方法。
[5]前記複数の異熱伝導金属充填部は格子状に設けられる、[1]から[4]の何れか1つに記載の鋼の連続鋳造方法。
[6]前記複数の異熱伝導金属充填部は千鳥状に設けられる、[1]から[4]の何れか1つに記載の鋼の連続鋳造方法。
[7]連続鋳造機に設けられた複数対の鋳片支持ロールのロール開度を鋳造方向下流側に向かって段階的に増加させることで、内部に未凝固部を有する鋳片の長辺面を鋳型出口での鋳片厚み(鋳片長辺面間の厚み)に対して0mm超え20mm以下の範囲の総バルジング量で拡大させ、その後、前記複数対の鋳片支持ロールのロール開度を鋳造方向下流側に向かって段階的に減少させた軽圧下帯で、前記鋳片の厚み中心部の固相率が少なくとも0.2の時点から0.9になる時点まで、圧下速度(mm/min)と鋳造速度(m/min)との積(mm・m/min)が0.30以上1.00以下に相当する圧下力を前記鋳片の長辺面に付与し、前記圧下力によって前記総バルジング量と同等の総圧下量または前記総バルジング量よりも小さい総圧下量で前記鋳片の長辺面を圧下する、[1]から[6]の何れか1つに記載の鋼の連続鋳造方法。
[8]前記鋳型銅板の外壁面には、鋳造方向に沿った複数のスリットが前記鋳型銅板の幅方向に単数または複数のピッチで設けられ、前記複数のスリットが単数のピッチで設けられている場合は、前記単数のピッチをZ(mm)とし、前記複数のスリットが複数のピッチで設けられている場合は、前記複数のピッチのうち最も長いピッチをZ(mm)としたとき、前記Zが下記(4)式を満足する、[1]から[7]の何れか1つに記載の鋼の連続鋳造方法。
Z≧2.5×D2・・・(4)
ここで、前記異熱伝導金属充填部の重心とは、鋳型銅板の溶鋼側平面における異熱伝導金属充填部の断面形状の重心をいう。
The gist of the present invention for solving the above problems is as follows.
[1] A method for continuous casting of steel for producing slabs by drawing out the molten steel while injecting molten steel into a mold for continuous casting and vibrating the mold for continuous casting in the casting direction. The mold has a plurality of recessed grooves provided on the inner wall surface of the mold copper plate from a position at least 20 mm above the meniscus position in the constant casting state to a position at least 50 mm or more and at most 200 mm or less below the meniscus position. However, the inside of the plurality of concave grooves is filled with a plurality of different heat conductive metal filling portions filled with a metal or a metal alloy having a ratio of the difference in thermal conductivity to the thermal conductivity of the mold copper plate of 20% or more. The area ratio, which is the ratio of the total area of all the different heat conductive metal filling parts to the area of the inner wall surface provided with the plurality of different heat conductive metal filling parts, is 10% or more and 80% or less. , The oscillation mark pitch (OMP) and the distance (D1) derived from the oscillation frequency (f) and the casting speed (Vc) satisfy the following equation (1), and the distance (D2) is the following equation (2). Satisfying, continuous casting method of steel.
D1 ≤ OMP = Vc x 1000 / f ... (1)
D2 ≦ 4r ・ ・ ・ (2)
However, in the equation (1), Vc is the casting speed (m / min), f is the oscillation frequency (cpm), OMP is the oscillation mark pitch (mm), and D1 is. The center of gravity of one of the plurality of different heat conductive metal filling portions and another different heat conductive metal filling portion provided at the same position in the width direction of the mold copper plate, wherein the different heat conductive metal filling portion is provided. It is the distance (mm) from the boundary line between the different heat conductive metal filling part and the mold copper plate adjacent to each other in the casting direction to the boundary line between the different heat conductive metal filling part and the mold copper plate. In the equation (2), r is the radius (mm) of a circle having the same area as the area of the different heat conductive metal filling portion centered on the center of gravity of the different heat conductive metal filling portion, and D2 is the above 1 Another different heat conductive metal filling part provided at the same position in the casting direction as the center of gravity of the different heat conductive metal filling part of the above 1 and adjacent to the different heat conductive metal filling part in the width direction. It is a distance (mm) from the center of gravity of the heat conductive metal filling portion to the center of gravity of the different heat conductive metal filling portion of 1.
[2] The method for continuous casting of steel according to [1], wherein the plurality of different heat conductive metal filling portions are provided so that the distance (D1) satisfies the following equation (3).
D1 ≤ 2r ... (3)
[3] The method for continuously casting steel according to [1] or [2], wherein the shapes of the plurality of recessed grooves are all the same.
[4] The method for continuously casting steel according to any one of [1] to [3], wherein the shape of the plurality of concave grooves is a circle or a pseudo-circle without corners.
[5] The method for continuously casting steel according to any one of [1] to [4], wherein the plurality of different heat conductive metal filling portions are provided in a lattice pattern.
[6] The method for continuously casting steel according to any one of [1] to [4], wherein the plurality of different heat conductive metal filling portions are provided in a staggered pattern.
[7] By gradually increasing the roll opening degree of a plurality of pairs of slab support rolls provided in the continuous casting machine toward the downstream side in the casting direction, the long side surface of the slab having an unsolidified portion inside. Is expanded with a total bulging amount in the range of more than 0 mm and not more than 20 mm with respect to the slab thickness (thickness between the long side faces of the slab) at the mold outlet, and then the roll opening of the plurality of pairs of slab support rolls is cast. A light reduction zone that gradually decreases toward the downstream side in the direction, and the reduction rate (mm / min) from the time when the solid phase ratio at the center of the thickness of the slab becomes at least 0.2 to 0.9. ) And the casting speed (m / min) (mm · m / min 2 ) is 0.30 or more and 1.00 or less. The steel according to any one of [1] to [6], which reduces the long side surface of the slab with a total reduction amount equal to the total bulging amount or a total reduction amount smaller than the total bulging amount. Continuous casting method.
[8] On the outer wall surface of the mold copper plate, a plurality of slits along the casting direction are provided at a single or a plurality of pitches in the width direction of the mold copper plate, and the plurality of slits are provided at a single pitch. In this case, the singular pitch is Z (mm), and when the plurality of slits are provided at a plurality of pitches, the longest pitch among the plurality of pitches is Z (mm). The method for continuously casting steel according to any one of [1] to [7], wherein the method satisfies the following formula (4).
Z ≧ 2.5 × D2 ・ ・ ・ (4)
Here, the center of gravity of the different heat conductive metal filling portion means the center of gravity of the cross-sectional shape of the different heat conductive metal filling portion on the molten steel side plane of the mold copper plate.

本発明によれば、複数の異熱伝導金属充填部を、メニスカス位置を含んでメニスカス近傍の連続鋳造用鋳型の幅方向及び鋳造方向に設置するので、メニスカス近傍の鋳型幅方向及び鋳造方向における連続鋳造用鋳型の熱抵抗が周期的に増減する。これによって、メニスカス近傍、つまり、凝固初期での凝固シェルから連続鋳造用鋳型への熱流束が周期的に増減する。この熱流束の周期的な増減により、δ鉄からγ鉄への変態による応力や熱応力が低減し、これらの応力によって生じる凝固シェルの変形が小さくなる。凝固シェルの変形が小さくなることで、凝固シェルの変形に起因する不均一な熱流束分布が均一化され、且つ、発生する応力が分散されて個々の歪量が小さくなる。その結果、凝固シェル表面の割れを防止できる。 According to the present invention, since a plurality of different heat conductive metal filling portions are installed in the width direction and the casting direction of the continuous casting mold near the meniscus including the meniscus position, they are continuous in the mold width direction and the casting direction near the meniscus. The thermal resistance of the casting mold increases and decreases periodically. As a result, the heat flux near the meniscus, that is, from the solidified shell at the initial stage of solidification to the continuous casting mold, increases and decreases periodically. Due to the periodic increase and decrease of the heat flux, the stress and thermal stress due to the transformation from δ iron to γ iron are reduced, and the deformation of the solidified shell caused by these stresses is reduced. By reducing the deformation of the solidified shell, the non-uniform heat flux distribution caused by the deformation of the solidified shell is made uniform, and the generated stress is dispersed to reduce the individual strain amount. As a result, cracking on the surface of the solidified shell can be prevented.

本発明によれば、オシレーションマークの1ピッチの間に少なくとも1回は熱流束が増減する部分を存在させることができるので、オシレーションマークの深さを浅くし、凝固シェルの表面を均一化させることができる。これにより、表面とともに成長する凝固シェル内面も均一化されて最終凝固部での凝固界面が平滑になり、偏析を形成するスポットが減少し、スラブ鋳片の内部品質を改善できる。 According to the present invention, since a portion where the heat flux increases or decreases can be present at least once during one pitch of the oscillation mark, the depth of the oscillation mark is made shallow and the surface of the solidified shell is made uniform. Can be made to. As a result, the inner surface of the solidified shell that grows together with the surface is also made uniform, the solidified interface at the final solidified portion becomes smooth, the spots that form segregation are reduced, and the internal quality of the slab slab can be improved.

図1は、本実施形態に係る鋼の連続鋳造方法を適用できる垂直曲げ型のスラブ連続鋳造機の側面概要図である。FIG. 1 is a side view of a vertical bending type slab continuous casting machine to which the steel continuous casting method according to the present embodiment can be applied. 図2は、ロール開度のプロファイルの一例を示す図である。FIG. 2 is a diagram showing an example of a roll opening profile. 図3は、スラブ連続鋳造用機に設置される鋳型の一部を構成する鋳型長辺銅板の概略側面図である。FIG. 3 is a schematic side view of a mold long-sided copper plate forming a part of a mold installed in a slab continuous casting machine. 図4は、鋳型銅板よりも熱伝導率の低い金属が充填されて形成された異熱伝導金属充填部を有する鋳型長辺銅板の三箇所の位置における熱抵抗を、異熱伝導金属充填部の位置に対応して概念的に示す図である。FIG. 4 shows the thermal resistance of the different heat conductive metal filling portion at three positions of the mold long side copper plate having the different heat conductive metal filling portion formed by filling the metal having a lower thermal conductivity than the mold copper plate. It is a figure which shows conceptually corresponding to a position. 図5は、凹溝の平面形状の例を示す図である。FIG. 5 is a diagram showing an example of the planar shape of the concave groove. 図6は、異熱伝導金属充填部が設けられた領域の部分拡大図である。FIG. 6 is a partially enlarged view of a region provided with a different heat conductive metal filling portion. 図7は、鋳型長辺銅板の外壁面側を示す概略図である。FIG. 7 is a schematic view showing the outer wall surface side of the long-sided copper plate of the mold. 図8は、鋳型長辺銅板の外壁面にバックアッププレートが設けられた状態の図7におけるD−D断面であり、さらにD−D断面の右側のボルト穴の一つにスタッドボルトが螺合した断面を重ねて示した断面模式図である。FIG. 8 is a cross section of DD in FIG. 7 in a state where a backup plate is provided on the outer wall surface of the long-sided copper plate of the mold, and a stud bolt is screwed into one of the bolt holes on the right side of the cross section of DD. It is a cross-sectional schematic diagram which showed the cross section by superimposing. 図9は、異熱伝導金属充填部の配置の他の例を示す図である。FIG. 9 is a diagram showing another example of the arrangement of the different heat conductive metal filling portion.

本発明の具体的な実施方法を、図面を参照して説明する。図1は、本実施形態に係る鋼の連続鋳造方法を適用できる垂直曲げ型のスラブ連続鋳造機の側面概要図である。 A specific method for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a side view of a vertical bending type slab continuous casting machine to which the steel continuous casting method according to the present embodiment can be applied.

スラブ連続鋳造機1には、溶鋼11を注入して凝固させ、鋳片12の外殻形状を形成させ、鋳片12の鋳造方向に振動する連続鋳造用鋳型5(以下、単に「鋳型」という)が設置されている。この鋳型5の上方所定位置には、取鍋(図示せず)から供給される溶鋼11を鋳型5に中継供給するためのタンディッシュ2が設置されている。鋳型5の下方には、サポートロール6、ガイドロール7及びピンチロール8からなる複数対の鋳片支持ロールが設置されている。このうち、ピンチロール8は、鋳片12を支持すると同時に鋳片12を引抜くための駆動ロールでもある。鋳造方向に隣り合う鋳片支持ロールの間隙には、水スプレーノズル或いはエアーミストスプレーノズルなどのスプレーノズル(図示せず)が配置された二次冷却帯が構成され、二次冷却帯のスプレーノズルから噴霧される冷却水(以下、「二次冷却水」ともいう)によって鋳片12は引抜かれながら冷却されて内部の未凝固部14が減少し、凝固シェル13が成長するようにして鋳造を行う。タンディッシュ2の底部には、溶鋼11の流量を調整するためのスライディングノズル3が設置され、このスライディングノズル3の下面には、浸漬ノズル4が設置されている。 Molten steel 11 is injected into the slab continuous casting machine 1 to solidify it to form the outer shell shape of the slab 12, and the continuous casting mold 5 vibrates in the casting direction of the slab 12 (hereinafter, simply referred to as "mold"). ) Is installed. A tundish 2 for relay-supplying the molten steel 11 supplied from the ladle (not shown) to the mold 5 is installed at a predetermined position above the mold 5. Below the mold 5, a plurality of pairs of slab support rolls including a support roll 6, a guide roll 7, and a pinch roll 8 are installed. Of these, the pinch roll 8 is also a drive roll for pulling out the slab 12 at the same time as supporting the slab 12. A secondary cooling zone in which a spray nozzle (not shown) such as a water spray nozzle or an air mist spray nozzle is arranged is formed in the gap between the slab support rolls adjacent to each other in the casting direction. The slab 12 is cooled while being pulled out by the cooling water sprayed from (hereinafter, also referred to as “secondary cooling water”), the unsolidified portion 14 inside is reduced, and the solidified shell 13 is grown so that the casting is performed. conduct. A sliding nozzle 3 for adjusting the flow rate of the molten steel 11 is installed on the bottom of the tundish 2, and a dipping nozzle 4 is installed on the lower surface of the sliding nozzle 3.

鋳片支持ロールの下流側には、鋳造された鋳片12を搬送するための複数の搬送ロール9が設置されており、この搬送ロール9の上方には、鋳造される鋳片12から所定の長さのスラブ鋳片12aを切断するための鋳片切断機10が配置されている。鋳片12の凝固完了位置15を挟んで鋳造方向の前後には、対向するガイドロール7のロール間隔を鋳造方向下流に向かって段階的に狭くなるように設定された、つまり、ロール勾配が施された、複数対のガイドロール群から構成される軽圧下帯17が設置されている。 A plurality of transport rolls 9 for transporting the cast slab 12 are installed on the downstream side of the slab support roll, and above the transport roll 9, a predetermined number from the cast slab 12 is installed. A slab cutting machine 10 for cutting a slab slab 12a having a length is arranged. Before and after the solidification completion position 15 of the slab 12, the roll spacing of the opposing guide rolls 7 is set to be gradually narrowed toward the downstream in the casting direction, that is, a roll gradient is applied. A light reduction band 17 composed of a plurality of pairs of guide rolls is installed.

軽圧下帯17では、その全域または一部選択した領域で、鋳片12に軽圧下を行うことができる。本実施形態では、鋳片12の厚み中心部の固相率が少なくとも0.2から0.9になるまでの鋳片12が、軽圧下帯17の設置範囲内に入るように、軽圧下帯17が設置されている。 In the light reduction zone 17, light reduction can be performed on the slab 12 in the entire area or a partially selected region thereof. In the present embodiment, the light reduction zone is provided so that the slab 12 having a solid phase ratio at the center of the thickness of the slab 12 is at least 0.2 to 0.9 within the installation range of the light reduction zone 17. 17 is installed.

軽圧下帯17における圧下勾配は、鋳造方向1mあたりのロール開度絞り込み量、つまり「mm/m」で表示されており、軽圧下帯17における鋳片12の圧下速度(mm/min)は、この圧下勾配(mm/m)と鋳造速度(m/min)との積で求められる。軽圧下帯17を構成する各鋳片支持ロール間にも鋳片12を冷却するためのスプレーノズルが配置されている。図1には、軽圧下帯17にはガイドロール7だけが配置された例を示しているが、軽圧下帯17にピンチロール8を配置しても構わない。軽圧下帯17に配置される鋳片支持ロールは「圧下ロール」ともいう。 The reduction gradient in the light reduction zone 17 is indicated by the roll opening narrowing amount per 1 m in the casting direction, that is, "mm / m", and the reduction speed (mm / min) of the slab 12 in the light reduction zone 17 is determined. It is obtained by the product of the reduction gradient (mm / m) and the casting speed (m / min). A spray nozzle for cooling the slab 12 is also arranged between the slab support rolls constituting the light reduction band 17. Although FIG. 1 shows an example in which only the guide roll 7 is arranged in the light reduction band 17, the pinch roll 8 may be arranged in the light reduction band 17. The slab support roll arranged in the light reduction band 17 is also referred to as a “reduction roll”.

鋳型5の下端から鋳片12の液相線クレータエンド位置との間に配置されるガイドロール7の開度は、鋳造方向下流側に向かってロール開度の拡大量が所定値となるまで、1ロール毎または数ロール毎に順次ロール開度が広くなっている。これらガイドロール7によって、内部に未凝固部14を有する鋳片12の長辺面を強制的にバルジングさせるための強制バルジング帯16が構成される。強制バルジング帯16の下流側の鋳片支持ロールは、ロール開度が一定値または鋳片12の温度降下に伴う収縮量に見合う程度に狭められ、その後、軽圧下帯17につながっている。 The opening degree of the guide roll 7 arranged between the lower end of the mold 5 and the liquidus line crater end position of the slab 12 is until the amount of expansion of the roll opening degree reaches a predetermined value toward the downstream side in the casting direction. The roll opening is gradually widened every one roll or every few rolls. These guide rolls 7 form a forced bulging zone 16 for forcibly bulging the long side surface of the slab 12 having the unsolidified portion 14 inside. The slab support roll on the downstream side of the forced bulging zone 16 is narrowed so that the roll opening degree is constant or the amount of shrinkage due to the temperature drop of the slab 12 is commensurate with the roll opening, and then is connected to the light reduction zone 17.

図2は、ロール開度のプロファイルの一例を示す図である。図2に示すように、強制バルジング帯16で鋳片長辺面を溶鋼静圧によって強制的にバルジングさせて鋳片長辺面の中央部の厚みを増大させ(領域b)、強制バルジング帯16を通りすぎた下流側では、ロール開度が一定値または鋳片12の温度降下に伴う収縮量に見合う程度に狭められ(領域c)、その後、軽圧下帯17で鋳片長辺面を圧下する(領域d)というプロファイルにしている。図2中のa及びeは、ロール開度が鋳片12の温度降下に伴う収縮量に見合う程度に狭められる領域である。図2中のa′は、鋳片12の温度降下に伴う収縮量に見合う程度にロール開度を狭くした、軽圧下を実施しない鋳造方法(従来方法)におけるロール開度の例である。 FIG. 2 is a diagram showing an example of a roll opening profile. As shown in FIG. 2, the forced bulging zone 16 forcibly bulges the long side surface of the slab by static pressure of molten steel to increase the thickness of the central portion of the long side surface of the slab (region b), and passes through the forced bulging zone 16. On the too downstream side, the roll opening is narrowed to a constant value or to the extent corresponding to the shrinkage amount due to the temperature drop of the slab 12 (region c), and then the long side surface of the slab is reduced by the light reduction band 17 (region c). The profile is d). Reference numerals a and e in FIG. 2 are regions in which the roll opening degree is narrowed to a extent commensurate with the amount of shrinkage of the slab 12 due to the temperature drop. Reference numeral a'in FIG. 2 is an example of the roll opening degree in a casting method (conventional method) in which the roll opening degree is narrowed to match the amount of shrinkage of the slab 12 due to the temperature drop and light reduction is not performed.

強制バルジング帯16では、ガイドロール7のロール開度を鋳造方向下流側に向かって順次広くすることにより、鋳片12の短辺近傍を除く長辺面は、未凝固部14による溶鋼静圧によってガイドロール7のロール開度に倣って強制的にバルジングさせられる。鋳片長辺面の短辺近傍は、凝固の完了した鋳片短辺面に固持されることから、強制的なバルジングを開始した時点の厚みを維持しており、したがって、鋳片12は、強制的なバルジングによって鋳片長辺面のバルジングした部分のみがガイドロール7に接触することになる。 In the forced bulging zone 16, the roll opening of the guide roll 7 is gradually widened toward the downstream side in the casting direction, so that the long side surface of the slab 12 except for the vicinity of the short side is subjected to the static pressure of molten steel by the unsolidified portion 14. It is forcibly bulged according to the roll opening degree of the guide roll 7. Since the vicinity of the short side of the long side surface of the slab is held by the short side surface of the slab that has been solidified, the thickness at the time when forced bulging is started is maintained, and therefore the slab 12 is forced. Only the bulging portion of the long side surface of the slab comes into contact with the guide roll 7 due to the bulging.

図3は、スラブ連続鋳造用機に設置される鋳型の一部を構成する鋳型長辺銅板の概略側面図である。図3に示す鋳型5は、スラブ鋳片を鋳造するための連続鋳造用鋳型の一例である。鋳型5は、一対の鋳型長辺銅板5a(以後、「鋳型銅板」ともいう)と一対の鋳型短辺銅板とを組み合わせて構成される。図3は、そのうちの鋳型長辺銅板5aを示している。鋳型短辺銅板も鋳型長辺銅板5aと同様に、その内壁面側に異熱伝導金属充填部19が設けられるとして、ここでは、鋳型短辺銅板についての説明は省略する。但し、鋳片12においては、スラブ厚みに対してスラブ幅が極めて大きいという形状に起因して、鋳片長辺面側の凝固シェル13で応力集中が起こりやすく、鋳片長辺面側で表面割れが発生しやすい。したがって、スラブ鋳片用の鋳型5の鋳型短辺銅板には、異熱伝導金属充填部19を設けなくてもよい。 FIG. 3 is a schematic side view of a mold long-sided copper plate forming a part of a mold installed in a slab continuous casting machine. The mold 5 shown in FIG. 3 is an example of a continuous casting mold for casting slab slabs. The mold 5 is formed by combining a pair of mold long-sided copper plates 5a (hereinafter, also referred to as “mold copper plates”) and a pair of mold short-sided copper plates. FIG. 3 shows the mold long-sided copper plate 5a. Similar to the mold long side copper plate 5a, the mold short side copper plate is also provided with the different heat conductive metal filling portion 19 on the inner wall surface side thereof, and the description of the mold short side copper plate will be omitted here. However, in the slab 12, due to the shape that the slab width is extremely large with respect to the slab thickness, stress concentration is likely to occur in the solidification shell 13 on the long side surface side of the slab, and surface cracks occur on the long side surface side of the slab. Likely to happen. Therefore, it is not necessary to provide the different heat conductive metal filling portion 19 on the mold short side copper plate of the mold 5 for the slab slab.

図3に示すように、鋳型長辺銅板5aの定常鋳込み時のメニスカス位置18より少なくとも20mm離れた上方のQ位置から、メニスカス位置18より少なくとも50mm以上、多くとも200mm以下離れた下方のR位置まで、の内壁面の範囲には、鋳型長辺銅板5aの熱伝導率に対してその熱伝導率差の比率が20%以上である金属もしくは金属合金(以下、「異熱伝導金属」という)が充填された円形の異熱伝導金属充填部19が、鋳造方向に垂直となる鋳型幅方向の長さWの範囲に千鳥状に設けられている。「メニスカス」とは「鋳型内溶鋼湯面」を意味する。「定常鋳込み」とは、スラブ連続鋳造機1の鋳型5への溶鋼注入が開始された後、一定の鋳造速度を維持した巡航状態となった状態をいう。定常鋳込み時では、スライディングノズル3により鋳型5への溶鋼11の注入速度が自動制御され、メニスカス位置18が一定になるように制御される。 As shown in FIG. 3, from the Q position above the meniscus position 18 at least 20 mm away from the meniscus position 18 during steady casting of the long-sided copper plate 5a of the mold to the lower R position at least 50 mm or more and at most 200 mm or less away from the meniscus position 18. In the range of the inner wall surface of, a metal or a metal alloy (hereinafter referred to as "different heat conductive metal") in which the ratio of the difference in thermal conductivity to the heat conductivity of the long-sided copper plate 5a of the mold is 20% or more is 20% or more. The filled circular different heat conductive metal filling portion 19 is provided in a staggered manner in a range of length W in the mold width direction perpendicular to the casting direction. "Meniscus" means "hot metal surface in the mold". “Steady casting” refers to a state in which a cruising state is maintained at a constant casting speed after the injection of molten steel into the mold 5 of the slab continuous casting machine 1 is started. During steady casting, the sliding nozzle 3 automatically controls the injection speed of the molten steel 11 into the mold 5 so that the meniscus position 18 becomes constant.

異熱伝導金属充填部19は、鋳型銅板の内壁面側にそれぞれ独立して加工された円形凹溝の内部に、鋳型銅板を構成する銅合金の熱伝導率とは異なる熱伝導率の異熱伝導金属が充填されて形成されたものである。 The different heat conductive metal filling portion 19 has a different heat conductivity different from that of the copper alloy constituting the mold copper plate inside the circular concave groove independently processed on the inner wall surface side of the mold copper plate. It is formed by filling with a conductive metal.

円形凹溝の内部に、鋳型銅板を構成する銅合金の熱伝導率とは異なる異熱伝導金属を充填する手段としては、鍍金処理または溶射処理を適用することが好ましい。円形凹溝の形状に合わせて加工した異熱伝導金属を円形凹溝に嵌め込むなどして充填してもよいが、その場合には、異熱伝導金属と鋳型銅板との間に隙間や割れが生じることがある。異熱伝導金属と鋳型銅板との間に隙間や割れが生じた場合には、異熱伝導金属の亀裂や剥離が生じ、鋳型寿命の低下、鋳片の割れ、更には拘束性ブレークアウトの原因となるので好ましくない。異熱伝導金属を鍍金処理または溶射処理で充填することで、このような問題を未然に防止できる。 It is preferable to apply plating treatment or thermal spraying treatment as a means for filling the inside of the circular concave groove with a different heat conductive metal having a different thermal conductivity from that of the copper alloy constituting the mold copper plate. The different heat conductive metal processed according to the shape of the circular concave groove may be filled by fitting it into the circular concave groove, but in that case, a gap or crack may occur between the different heat conductive metal and the mold copper plate. May occur. If a gap or crack occurs between the different heat conductive metal and the mold copper plate, the different heat conductive metal cracks or peels off, which causes a decrease in mold life, cracks in the slab, and a restrictive breakout. Therefore, it is not preferable. By filling the different heat conductive metal by plating or thermal spraying, such a problem can be prevented.

本実施形態において、鋳型銅板として使用する銅合金としては、一般的に連続鋳造用鋳型として使用されるクロム(Cr)やジルコニウム(Zr)などを微量添加した銅合金を用いてよい。近年では、鋳型内の凝固の均一化または溶鋼中介在物の凝固シェルへの捕捉を防止するために、鋳型内の溶鋼を攪拌する電磁攪拌装置が設置されていることが一般的であり、電磁コイルから溶鋼への磁場強度の減衰を抑制するために導電率を低減した銅合金を用いてもよい。この場合、導電率の低下に応じて熱伝導率も低減するので、鋳型銅板の熱伝導率は、純銅(熱伝導率;約400W/(m×K))の1/2前後になる。鋳型銅板として使用される銅合金は、一般的に、純銅よりも熱伝導率が低い。 In the present embodiment, as the copper alloy used as the mold copper plate, a copper alloy to which a small amount of chromium (Cr), zirconium (Zr) or the like, which is generally used as a mold for continuous casting, may be added. In recent years, in order to homogenize the solidification in the mold or prevent inclusions in the molten steel from being trapped in the solidified shell, an electromagnetic stirrer for stirring the molten steel in the mold is generally installed. A copper alloy with reduced conductivity may be used to suppress the decay of the magnetic field strength from the coil to the molten steel. In this case, since the thermal conductivity also decreases as the conductivity decreases, the thermal conductivity of the mold copper plate becomes about 1/2 of that of pure copper (thermal conductivity; about 400 W / (m × K)). Copper alloys used as mold copper plates generally have lower thermal conductivity than pure copper.

図4は、鋳型銅板よりも熱伝導率の低い金属が充填されて形成された異熱伝導金属充填部を有する鋳型長辺銅板の三箇所の位置における熱抵抗を、異熱伝導金属充填部の位置に対応して概念的に示す図である。図4に示すように、異熱伝導金属充填部19の設置位置では熱抵抗が相対的に高くなる。 FIG. 4 shows the thermal resistance of the different heat conductive metal filling portion at three positions of the mold long side copper plate having the different heat conductive metal filling portion formed by filling the metal having a lower thermal conductivity than the mold copper plate. It is a figure which shows conceptually corresponding to a position. As shown in FIG. 4, the thermal resistance is relatively high at the installation position of the different heat conductive metal filling portion 19.

複数の異熱伝導金属充填部19を、メニスカス位置18を含んでメニスカス近傍の連続鋳造用鋳型の幅方向及び鋳造方向に設けることで、図4に示すように、メニスカス近傍の鋳型幅方向及び鋳造方向における連続鋳造用鋳型の熱抵抗が周期的に増減する分布が形成される。これによって、メニスカス近傍、つまり、凝固初期での凝固シェルから連続鋳造用鋳型への熱流束が周期的に増減する分布が形成される。 By providing a plurality of different heat conductive metal filling portions 19 in the width direction and the casting direction of the continuous casting mold in the vicinity of the meniscus including the meniscus position 18, as shown in FIG. 4, the mold width direction and the casting in the vicinity of the meniscus are formed. A distribution is formed in which the thermal resistance of the continuous casting mold in the direction increases and decreases periodically. As a result, a distribution is formed in which the heat flux from the solidified shell to the continuous casting mold periodically increases or decreases near the meniscus, that is, at the initial stage of solidification.

鋳型銅板よりも熱伝導率の高い金属を充填して異熱伝導金属充填部19を形成した場合には、図4とは異なり、異熱伝導金属充填部19の設置位置で熱抵抗が相対的に低くなるが、この場合も、上記と同様に、メニスカス近傍の鋳型幅方向及び鋳造方向における連続鋳造用鋳型の熱抵抗が周期的に増減する分布が形成される。上述したような熱抵抗の周期的な分布を形成させるには、異熱伝導金属充填部19どうしがそれぞれ独立していることが好ましい。 When the different thermal conductive metal filling portion 19 is formed by filling a metal having a higher thermal conductivity than the mold copper plate, the thermal resistance is relative at the installation position of the different thermal conductive metal filling portion 19, unlike FIG. However, in this case as well, a distribution is formed in which the thermal resistance of the continuous casting mold in the mold width direction and the casting direction near the meniscus periodically increases or decreases. In order to form the periodic distribution of thermal resistance as described above, it is preferable that the different heat conductive metal filling portions 19 are independent of each other.

この熱流束の周期的な増減により、凝固シェル13の相変態(例えば、δ鉄からγ鉄への変態)による応力や熱応力が低減し、これらの応力によって生じる凝固シェル13の変形が小さくなる。凝固シェル13の変形が小さくなることで、凝固シェル13の変形に起因する不均一な熱流束分布が均一化され、且つ、発生する応力が分散されて個々の歪量が小さくなる。その結果、凝固シェル表面における表面割れの発生が抑制される。 Due to the periodic increase and decrease of the heat flux, the stress and thermal stress due to the phase transformation of the solidified shell 13 (for example, the transformation from δ iron to γ iron) are reduced, and the deformation of the solidified shell 13 caused by these stresses is reduced. .. By reducing the deformation of the solidified shell 13, the non-uniform heat flux distribution caused by the deformation of the solidified shell 13 is made uniform, and the generated stress is dispersed to reduce the individual strain amount. As a result, the occurrence of surface cracks on the surface of the solidified shell is suppressed.

凝固初期の熱流束の周期的な増減により、鋳型内における凝固シェル13の厚みが、鋳片の幅方向のみならず鋳造方向でも均一化される。鋳型内における凝固シェル13厚みが均一化することで、鋳型5から引き抜かれた後の鋳片12の凝固シェル13の凝固界面は、鋳片の最終凝固部においても鋳片の幅方向及び鋳造方向で平滑になる。 Due to the periodic increase and decrease of the heat flux at the initial stage of solidification, the thickness of the solidified shell 13 in the mold is made uniform not only in the width direction of the slab but also in the casting direction. By making the thickness of the solidified shell 13 uniform in the mold, the solidified interface of the solidified shell 13 of the slab 12 after being pulled out from the mold 5 is the width direction and the casting direction of the slab even in the final solidified portion of the slab. Becomes smooth.

但し、これらの効果を安定して得るためには、異熱伝導金属充填部19を設置したことによる熱流束の周期的な増減が適正でなければならない。つまり、熱流束の周期的な増減の差が小さすぎれば、異熱伝導金属充填部19を設置した効果が得られず、逆に、熱流束の周期的な増減の差が大きすぎれば、これに起因して発生する応力が大きくなり、この応力で表面割れが発生する。 However, in order to obtain these effects in a stable manner, the periodic increase / decrease in heat flux due to the installation of the different heat conductive metal filling portion 19 must be appropriate. That is, if the difference in the periodic increase / decrease in the heat flux is too small, the effect of installing the different heat conductive metal filling portion 19 cannot be obtained, and conversely, if the difference in the periodic increase / decrease in the heat flux is too large, this. The stress generated due to this increases, and this stress causes surface cracking.

異熱伝導金属充填部19を設置したことによる熱流束の増減の差は、鋳型銅板と異熱伝導金属との熱伝導率差と、異熱伝導金属充填部19が配置された領域の鋳型銅板の内壁面の面積に対する全ての異熱伝導金属充填部19の面積の総和の比である面積率と、に依存する。 The difference in increase / decrease in heat flux due to the installation of the different heat conductive metal filling portion 19 is the difference in thermal conductivity between the mold copper plate and the different heat conductive metal and the mold copper plate in the region where the different heat conductive metal filling portion 19 is arranged. It depends on the area ratio, which is the ratio of the total area of all the different heat conductive metal filling portions 19 to the area of the inner wall surface of the above.

本実施形態に係る鋼の連続鋳造方法で使用する鋳型銅板では、円形凹溝に充填する異熱伝導金属の熱伝導率をλとしたとき、鋳型銅板の熱伝導率(λ)に対する異熱伝導金属の熱伝導率(λ)の差の比率((|λ−λ|/λ)×100)が20%以上である金属もしくは金属合金を使用する。鋳型銅板を構成する銅合金の熱伝導率(λ)に対する差の比率が20%以上である金属もしくは金属合金を使用することで、異熱伝導金属充填部19による熱流束の周期的な変動の効果が十分となり、鋳片表面割れの発生しやすい高速鋳造時や中炭素鋼の鋳造時においても、鋳片の表面割れ抑制効果が十分に得られる。鋳型銅板の熱伝導率および異熱伝導金属の熱伝導率は、常温(約20℃)の熱伝導率である。熱伝導率は、一般的に、高温になるほど小さくなるが、常温での鋳型銅板の熱伝導率に対する異熱伝導金属の熱伝導率の差の比率が20%以上であれば、連続鋳造鋳型としての使用温度(200〜350℃程度)であっても、異熱伝導金属充填部19を設置した部位の熱抵抗と、異熱伝導金属充填部19を設置していない部位の熱抵抗と、に差を生じさせることができる。In the mold copper plate used in the continuous steel casting method according to the present embodiment, when the thermal conductivity of the different heat conductive metal filled in the circular groove is λ m , the difference with respect to the thermal conductivity (λ c) of the mold copper plate. A metal or metal alloy in which the ratio of the difference in thermal conductivity (λ m ) of the heat conductive metal ((| λ c − λ m | / λ c ) × 100) is 20% or more is used. By using a metal or metal alloy in which the ratio of the difference to the thermal conductivity (λ c ) of the copper alloy constituting the mold copper plate is 20% or more, the periodic fluctuation of the heat flux due to the different heat conductive metal filling portion 19 The effect of the above is sufficient, and the effect of suppressing the surface cracking of the slab can be sufficiently obtained even at the time of high-speed casting or the casting of medium carbon steel in which the surface cracking of the slab is likely to occur. The thermal conductivity of the mold copper plate and the thermal conductivity of the different thermal conductive metal are the thermal conductivity at room temperature (about 20 ° C.). Generally, the thermal conductivity decreases as the temperature rises, but if the ratio of the difference in thermal conductivity of the different thermal conductive metal to the thermal conductivity of the mold copper plate at room temperature is 20% or more, it can be used as a continuous casting mold. Even at the operating temperature (about 200 to 350 ° C.), the thermal resistance of the part where the different heat conductive metal filling part 19 is installed and the heat resistance of the part where the different heat conductive metal filling part 19 is not installed. It can make a difference.

本実施形態に係る鋼の連続鋳造方法で使用する鋳型銅板では、異熱伝導金属充填部19が形成された範囲内の鋳型銅板内壁面の面積A(A=(Q+R)×W、単位;mm)に対する、全ての異熱伝導金属充填部19の面積の総和B(mm)の比である面積率ε(ε=(B/A)×100)が10%以上80%以下になるように、異熱伝導金属充填部19を設けている。この面積率εを10%以上とすることで、熱流束の異なる異熱伝導金属充填部19の占める面積が確保され、異熱伝導金属充填部19と鋳型銅板とで熱流束差が得られ、鋳片の表面割れ抑制効果を得ることができる。一方、面積率εが80%を超えると、異熱伝導金属充填部19の部位が多くなりすぎて、熱流束の変動の周期が長くなるので、鋳片の表面割れ抑制効果が得られにくくなる。In the mold copper plate used in the continuous steel casting method according to the present embodiment, the area A (A = (Q + R) × W, unit; mm) of the inner wall surface of the mold copper plate within the range in which the different heat conductive metal filling portion 19 is formed. The area ratio ε (ε = (B / A) × 100), which is the ratio of the total area B (mm 2 ) of all the different heat conductive metal filling portions 19 to 2), is 10% or more and 80% or less. Is provided with a different heat conductive metal filling portion 19. By setting this area ratio ε to 10% or more, the area occupied by the different heat conductive metal filling portions 19 having different heat fluxes is secured, and the heat flux difference is obtained between the different heat conductive metal filling portions 19 and the mold copper plate. The effect of suppressing surface cracking of the slab can be obtained. On the other hand, when the area ratio ε exceeds 80%, the number of parts of the different heat conductive metal filling portion 19 becomes too large, and the cycle of heat flux fluctuation becomes long, so that it becomes difficult to obtain the effect of suppressing surface cracking of the slab. ..

このため、面積率εが30%以上60%以下になるように異熱伝導金属充填部19を設けることがより好ましく、面積率εが40%以上50%以下になるように異熱伝導金属充填部19を設けることがさらに好ましい。 Therefore, it is more preferable to provide the different heat conductive metal filling portion 19 so that the area ratio ε is 30% or more and 60% or less, and the different heat conductive metal filling portion 19 is provided so that the area ratio ε is 40% or more and 50% or less. It is more preferable to provide the portion 19.

異熱伝導金属は、鋳型銅板の熱伝導率(λ)に対する充填金属の熱伝導率(λ)の差の比率が20%以上であれば、特に、その種類を特定しなくてよい。参考までに充填金属として使用可能な金属を挙げれば、純ニッケル(Ni、熱伝導率;90W/(m×K))、純クロム(Cr、熱伝導率;67W/(m×K))、純コバルト(Co、熱伝導率;70W/(m×K))、及び、これらの金属を含有する合金などが好適である。これらの純金属や合金は、銅合金よりも熱伝導率が低く、鍍金処理や溶射処理によって容易に円形凹溝に充填することができる。銅合金よりも熱伝導率が高い純銅を、円形凹溝に充填使用する金属として使用してもよい。例えば、純銅を充填金属として使用した場合には、異熱伝導金属充填部19を設置した部位の方が鋳型銅板の部位よりも熱抵抗が小さくなる。The type of the different heat conductive metal does not need to be specified as long as the ratio of the difference in the thermal conductivity (λ m ) of the packed metal to the thermal conductivity (λ c ) of the mold copper plate is 20% or more. For reference, the metals that can be used as the filling metal are pure nickel (Ni, thermal conductivity; 90 W / (m × K)), pure chromium (Cr, thermal conductivity; 67 W / (m × K)), Pure cobalt (Co, thermal conductivity; 70 W / (m × K)), alloys containing these metals, and the like are suitable. These pure metals and alloys have a lower thermal conductivity than copper alloys, and can be easily filled in the circular concave groove by plating treatment or thermal spraying treatment. Pure copper, which has a higher thermal conductivity than the copper alloy, may be used as the metal to be used for filling the circular concave groove. For example, when pure copper is used as the filling metal, the thermal resistance of the portion where the different heat conductive metal filling portion 19 is installed is smaller than that of the portion of the mold copper plate.

図5は、凹溝の平面形状の例を示す図である。図3及び図4では、凹溝の形状が図5(a)に示すような円形である例を示したが、凹溝は円形でなくてもよい。例えば、凹溝は、図5(b)に示すような楕円であってもよく、図5(c)に示すような角部を円とした正方形または長方形であってもよく、図5(d)に示すようなドーナツ形であってもよい。図5(e)に示すような三角形であってもよく、図5(f)に示すような台形であってもよく、図5(g)に示すような5角形であってもよく、図5(h)に示すような金平糖形であってもよい。これら凹溝に、凹溝の形状に対応した形状の異熱伝導金属充填部が設置される。 FIG. 5 is a diagram showing an example of the planar shape of the concave groove. Although FIGS. 3 and 4 show an example in which the shape of the concave groove is circular as shown in FIG. 5 (a), the concave groove does not have to be circular. For example, the concave groove may be an ellipse as shown in FIG. 5 (b), or may be a square or a rectangle whose corners are circles as shown in FIG. 5 (c), and may be a square or a rectangle as shown in FIG. 5 (d). ) May be in the shape of a donut. It may be a triangle as shown in FIG. 5 (e), a trapezoid as shown in FIG. 5 (f), or a pentagon as shown in FIG. 5 (g). It may be in the form of konpeito as shown in 5 (h). In these concave grooves, a different heat conductive metal filling portion having a shape corresponding to the shape of the concave groove is installed.

凹溝の形状は、図5(a)に示すような円形または(b)〜(d)に示すような「角」を有していない形状であることが好ましいが、図5(e)〜(h)に示すような「角」を有する形状であってもよい。凹溝の形状を「角」を有していない形状にすることで、異熱伝導金属と鋳型銅板との境界面が曲面になり、境界面で応力が集中しにくく、鋳型銅板表面に割れが発生しにくくなる。 The shape of the concave groove is preferably a circular shape as shown in FIG. 5 (a) or a shape having no "corner" as shown in FIGS. It may have a shape having "corners" as shown in (h). By making the shape of the concave groove into a shape that does not have "corners", the boundary surface between the different heat conductive metal and the mold copper plate becomes a curved surface, stress is less likely to concentrate on the boundary surface, and the mold copper plate surface cracks. It is less likely to occur.

本実施形態においては、これらの凹溝の形状のうち、例えば、図5(b)〜(h)に示す円形でない形状を擬似円形とする。凹溝の形状が擬似円形の場合には、鋳型銅板の内壁面に加工される凹溝を、「擬似円形凹溝」という。擬似円形における半径は、擬似円形の面積と同一の面積の円の半径である円相当半径rで評価する。擬似円形の円相当半径rは、下記の(5)式で算出される。 In the present embodiment, among the shapes of these concave grooves, for example, the non-circular shape shown in FIGS. 5 (b) to 5 (h) is defined as a pseudo-circular shape. When the shape of the concave groove is a pseudo-circular shape, the concave groove processed on the inner wall surface of the mold copper plate is called a "pseudo-circular concave groove". The radius in the pseudo-circle is evaluated by the circle-equivalent radius r, which is the radius of the circle having the same area as the area of the pseudo-circle. The quasi-circular equivalent radius r is calculated by the following equation (5).

円相当半径r=(Sma/π)1/2・・・(5)
但し、(5)式において、Smaは擬似円形凹溝の面積(mm)である。
Circle equivalent radius r = (S ma / π) 1/2 ... (5)
However, in the equation (5), Sma is the area (mm 2 ) of the pseudo-circular concave groove.

図6は、異熱伝導金属充填部が設けられた領域の部分拡大図である。図6に示すように、本実施形態の鋳型銅板においては、円形の異熱伝導金属充填部19が千鳥状に設けられている。ここで、千鳥状に設けるとは、異熱伝導金属充填部19の半ピッチの位置に交互に異熱伝導金属充填部19を設けることを意味する。 FIG. 6 is a partially enlarged view of a region provided with a different heat conductive metal filling portion. As shown in FIG. 6, in the mold copper plate of the present embodiment, circular different heat conductive metal filling portions 19 are provided in a staggered manner. Here, the staggered arrangement means that the different heat conductive metal filling portions 19 are alternately provided at half-pitch positions of the different heat conductive metal filling portions 19.

図6において、19aを1の異熱伝導金属充填部とし、19bを他の異熱伝導金属充填部とする。異熱伝導金属充填部19aと異熱伝導金属充填部19bとは、その重心が鋳型銅板の幅方向に同じ位置に設けられ、鋳造方向に互いに隣り合う位置に設けられている。ここで、異熱伝導金属充填部19の重心とは、鋳型銅板の溶鋼側平面における異熱伝導金属充填部19の断面形状の重心である。 In FIG. 6, 19a is a different heat conductive metal filling part of 1, and 19b is another different heat conductive metal filling part. The different heat conductive metal filling portion 19a and the different heat conductive metal filling portion 19b are provided at the same positions in the width direction of the mold copper plate and adjacent to each other in the casting direction. Here, the center of gravity of the different heat conductive metal filling portion 19 is the center of gravity of the cross-sectional shape of the different heat conductive metal filling portion 19 on the molten steel side plane of the mold copper plate.

鋳造方向における異熱伝導金属充填部19aの鋳型銅板との境界線から異熱伝導金属充填部19bの鋳型銅板との境界線までの距離をD1(mm)とすると、異熱伝導金属充填部19は、距離D1が下記(1)式を満足するように鋳型銅板の内壁面に設けられている。 Assuming that the distance from the boundary line of the different heat conductive metal filling portion 19a with the mold copper plate in the casting direction to the boundary line of the different heat conductive metal filling portion 19b with the mold copper plate is D1 (mm), the different heat conductive metal filling portion 19 Is provided on the inner wall surface of the mold copper plate so that the distance D1 satisfies the following equation (1).

D1≦OMP=Vc×1000/f・・・(1)
但し、(1)式において、Vcは、鋳造速度(m/min)、fは、オシレーション振動数(cpm)、OMPは、オシレーションマークピッチ(mm)である。
D1 ≤ OMP = Vc x 1000 / f ... (1)
However, in the formula (1), Vc is the casting speed (m / min), f is the oscillation frequency (cpm), and OMP is the oscillation mark pitch (mm).

このように、鋳造方向における異熱伝導金属充填部19の鋳型銅板との境界線の間隔、すなわち、鋳造方向における異熱伝導金属充填部19どうしの間隔がオシレーションマークの鋳造方向におけるピッチよりも小さい間隔になるように、異熱伝導金属充填部19を鋳型銅板に設ける。これにより、オシレーションマークのピッチ1回分の間に少なくとも1回は、熱流束が増減する部分を存在させることができるので、オシレーションマークの形成時に生成する爪を意図的に短いピッチで緩冷却することで爪の変形に起因する不均一な熱流束が均一化され、個々の歪量が小さくなる。この結果、爪の倒れこみが抑制されてオシレーションマークの深さを浅くでき、鋳造方向の凝固シェル13の厚みを均一にできる。初期の凝固シェル13の厚みを均一にすることで、中心偏析を形成する最終凝固部での凝固界面が平滑化し、これにより、偏析を形成するスポットも減少するので内部品質が改善する。オシレーションマークの深さを浅くすることで、オシレーションマークを起点とした横割れも抑制できる。 In this way, the distance between the boundary lines of the different heat conductive metal filling portions 19 in the casting direction from the mold copper plate, that is, the distance between the different heat conductive metal filling portions 19 in the casting direction is larger than the pitch in the casting direction of the oscillation mark. Different heat conductive metal filling portions 19 are provided on the mold copper plate so as to have a small interval. As a result, a portion where the heat flux increases or decreases can be present at least once during one pitch of the oscillation mark, so that the claws generated when the oscillation mark is formed are intentionally slowly cooled at a short pitch. By doing so, the non-uniform heat flux caused by the deformation of the nail is made uniform, and the amount of individual strain is reduced. As a result, the collapse of the nail can be suppressed, the depth of the oscillation mark can be made shallow, and the thickness of the solidified shell 13 in the casting direction can be made uniform. By making the thickness of the initial solidification shell 13 uniform, the solidification interface at the final solidification portion forming the central segregation is smoothed, whereby the spots forming the segregation are also reduced, so that the internal quality is improved. By making the depth of the oscillation mark shallow, it is possible to suppress lateral cracking starting from the oscillation mark.

異熱伝導金属充填部19は、距離D1が下記(3)式を満足するように鋳型長辺銅板5aの内壁面に設けられている。 The different heat conductive metal filling portion 19 is provided on the inner wall surface of the long side copper plate 5a of the mold so that the distance D1 satisfies the following equation (3).

D1≦2r・・・(3)
但し、(3)式において、rは、異熱伝導金属充填部19の半径(mm)または円相当半径(mm)である。
D1 ≤ 2r ... (3)
However, in the equation (3), r is the radius (mm) or the radius equivalent to a circle (mm) of the different heat conductive metal filling portion 19.

このように、鋳造方向における異熱伝導金属充填部19の間隔が異熱伝導金属充填部19の半径または円相当半径の2倍以下になるように、異熱伝導金属充填部19を鋳型銅板に設ける。これにより、鋳造方向に満遍なく熱流束差を与えることができ、凝固初期での凝固シェルから連続鋳造用鋳型への熱流束を周期的に増減させることができ、個々の歪量を小さくできる。 In this way, the different heat conductive metal filling portion 19 is placed on the mold copper plate so that the distance between the different heat conductive metal filling portions 19 in the casting direction is not more than twice the radius of the different heat conductive metal filling portion 19 or the equivalent radius of the circle. prepare. As a result, the heat flux difference can be evenly applied in the casting direction, the heat flux from the solidification shell to the continuous casting mold at the initial stage of solidification can be periodically increased or decreased, and the individual strain amount can be reduced.

図6において、19aを1の異熱伝導金属充填部とし、19cを他の異熱伝導金属充填部とする。異熱伝導金属充填部19aと異熱伝導金属充填部19cとは、その重心が鋳造方向に対して同じ位置に設けられ、鋳型銅板の幅方向に互いに隣り合う位置に設けられている。ここで、異熱伝導金属充填部19aの重心から異熱伝導金属充填部19cの重心までの距離をD2(mm)とすると、異熱伝導金属充填部19は、距離D2が、下記(2)式を満足するように、鋳型長辺銅板5aの内壁面に設けられている。 In FIG. 6, 19a is a different heat conductive metal filling part of 1, and 19c is another different heat conductive metal filling part. The different heat conductive metal filling portion 19a and the different heat conductive metal filling portion 19c are provided at the same positions with respect to the casting direction and at positions adjacent to each other in the width direction of the mold copper plate. Here, assuming that the distance from the center of gravity of the different heat conductive metal filling portion 19a to the center of gravity of the different heat conductive metal filling portion 19c is D2 (mm), the distance D2 of the different heat conductive metal filling portion 19 is as follows (2). It is provided on the inner wall surface of the long-sided copper plate 5a of the mold so as to satisfy the formula.

D2≦4r・・・(2)
但し、(2)式において、rは、異熱伝導金属充填部19の半径(mm)または円相当半径(mm)である。
D2 ≤ 4r ... (2)
However, in the equation (2), r is the radius (mm) or the radius equivalent to a circle (mm) of the different heat conductive metal filling portion 19.

このように、異熱伝導金属充填部19aの重心から異熱伝導金属充填部19cの重心までの距離が、異熱伝導金属充填部19の半径の4倍以下になるように異熱伝導金属充填部19を鋳型銅板に設ける。これにより、異熱伝導金属充填部19によって形成される熱流束が増減する部分を不均一に凝固する凝固シェル先端部の凝固揺らぎの空間周期よりも短いピッチで存在させることができ、凝固初期における凝固シェル13の変形を小さくさせ、個々の歪み量も小さくなり、凝固シェル表面の割れを抑制できる。 In this way, the different heat conductive metal filling portion 19a is filled with the different heat conductive metal so that the distance from the center of gravity of the different heat conductive metal filling portion 19a to the center of gravity of the different heat conductive metal filling portion 19c is four times or less the radius of the different heat conductive metal filling portion 19. The portion 19 is provided on the mold copper plate. As a result, the portion where the heat flux increases or decreases formed by the different heat conductive metal filling portion 19 can be allowed to exist at a pitch shorter than the spatial period of the solidification fluctuation of the solidification shell tip portion that uniformly solidifies, and is present at the initial stage of solidification. The deformation of the solidified shell 13 is reduced, the amount of individual strain is also reduced, and cracking on the surface of the solidified shell can be suppressed.

図7は、鋳型長辺銅板の外壁面側を示す概略図である。図8は、鋳型長辺銅板の外壁面にバックアッププレートが設けられた状態の図7におけるD−D断面であり、さらにD−D断面の右側のボルト穴の一つにスタッドボルトが螺合した断面を重ねて示した断面模式図である。鋳型長辺銅板5aの外壁面には、冷却水44が通るスリット30と、バックアッププレート40を固定するスタッドボルト42と螺合するボルト穴32が複数設けられている。スリット30は、鋳造方向に沿って鋳型長辺銅板5aの幅方向に、ボルト穴32を避けて複数のピッチで設けられている。図7に示した例では、ボルト穴32を避けた位置では、スリット30はL2のピッチで設けられ、それ以外の位置では、スリット30はL1のピッチで設けられている。ここで、L2>L1であり、図7に示した例では、スリット30の最も長いピッチはL2である。 FIG. 7 is a schematic view showing the outer wall surface side of the long-sided copper plate of the mold. FIG. 8 is a cross section of DD in FIG. 7 in a state where a backup plate is provided on the outer wall surface of the long-sided copper plate of the mold, and a stud bolt is screwed into one of the bolt holes on the right side of the cross section of DD. It is a cross-sectional schematic diagram which showed the cross section by superimposing. The outer wall surface of the long-sided copper plate 5a of the mold is provided with a plurality of slits 30 through which the cooling water 44 passes and a plurality of bolt holes 32 screwed with the stud bolts 42 for fixing the backup plate 40. The slits 30 are provided at a plurality of pitches in the width direction of the long side copper plate 5a of the mold along the casting direction, avoiding the bolt holes 32. In the example shown in FIG. 7, the slits 30 are provided at a pitch of L2 at positions avoiding the bolt holes 32, and the slits 30 are provided at a pitch of L1 at other positions. Here, L2> L1, and in the example shown in FIG. 7, the longest pitch of the slit 30 is L2.

バックアッププレート40は、スタッドボルト42によって鋳型長辺銅板5aの外壁面に固定される。冷却水44は、バックアッププレート40の下方から供給され、スリット30を通り、バックアッププレート40の上方から排出される。このように、鋳型長辺銅板5aのスリット30を冷却水44が通ることで、冷却水44により鋳型長辺銅板5aが冷却される。 The backup plate 40 is fixed to the outer wall surface of the mold long side copper plate 5a by the stud bolts 42. The cooling water 44 is supplied from below the backup plate 40, passes through the slit 30, and is discharged from above the backup plate 40. In this way, the cooling water 44 passes through the slit 30 of the mold long side copper plate 5a, so that the mold long side copper plate 5a is cooled by the cooling water 44.

スリット30が設けられている部分は、異熱伝導金属充填部19ほどではないものの鋳型幅方向に周期的な熱流束の変動を生じさせる。スリット30が設けられた空間周期と、異熱伝導金属充填部19の幅方向の距離D2が近くなると、両者の周期的な熱流束の周期的な変動にいわゆる「唸り」(以下、「ビート」という)が生じる。ビートが生じると、異熱伝導金属充填部19による熱流束の周期的な変動が崩れることが懸念される。 The portion provided with the slit 30 causes a periodic fluctuation of the heat flux in the mold width direction, although it is not as large as that of the different heat conductive metal filling portion 19. When the space period in which the slit 30 is provided and the distance D2 in the width direction of the different heat conductive metal filling portion 19 become close to each other, the so-called “beat” (hereinafter, “beat”” is caused by the periodic fluctuation of the heat flux of both. ) Occurs. When a beat occurs, there is a concern that the periodic fluctuation of the heat flux due to the different heat conductive metal filling portion 19 may be disrupted.

スリット30は、ボルト穴32を避けたL2のピッチで設けられる領域の熱流束の大きさと、他の領域の熱流束の大きさとが同じになるようにL1のピッチ、および、スリット30の深さが調整される。このため、スリット30の最も長いピッチをZとすると、Zを基準として異熱伝導金属充填部19の幅方向の距離D2が、下記(4)式を満足するように異熱伝導金属充填部19を設けることが好ましい。 The slit 30 has a pitch of L1 and a depth of the slit 30 so that the size of the heat flux in the region provided at the pitch of L2 avoiding the bolt hole 32 and the size of the heat flux in the other region are the same. Is adjusted. Therefore, assuming that the longest pitch of the slit 30 is Z, the distance D2 in the width direction of the different heat conductive metal filling portion 19 with reference to Z satisfies the following equation (4). It is preferable to provide.

Z≧2.5×D2・・・(4)
但し、(4)式において、Zは、鋳型長辺銅板5aの幅方向におけるスリット30の最も長いピッチ(mm)である。
Z ≧ 2.5 × D2 ・ ・ ・ (4)
However, in the formula (4), Z is the longest pitch (mm) of the slit 30 in the width direction of the mold long side copper plate 5a.

これにより、スリット30が設けられた空間周期と、異熱伝導金属充填部19の幅方向の距離D2とが近づくことが抑制され、異熱伝導金属充填部19による熱流束の周期的な変動が崩れることを抑制できる。 As a result, it is suppressed that the space period in which the slit 30 is provided and the distance D2 in the width direction of the different heat conductive metal filling portion 19 are close to each other, and the periodic fluctuation of the heat flux by the different heat conductive metal filling portion 19 is caused. It can prevent it from collapsing.

図7に示した例では、鋳型長辺銅板5aの外壁面に複数のピッチでスリット30が設けた例を示したが、これに限られない。スリット30は、鋳型長辺銅板5aの外壁面に単数のピッチで設けられてもよい。スリット30が単数のピッチで設けられている場合は、単数のピッチをZ(mm)とする。 In the example shown in FIG. 7, the outer wall surface of the long-sided copper plate 5a of the mold is provided with slits 30 at a plurality of pitches, but the present invention is not limited to this. The slits 30 may be provided on the outer wall surface of the long-sided copper plate 5a of the mold at a single pitch. When the slits 30 are provided with a singular pitch, the singular pitch is Z (mm).

図9は、異熱伝導金属充填部の配置の他の例を示す図である。図9においては、円形の異熱伝導金属充填部20が、格子状に鋳型銅板の内壁面に設けられている。ここで、異熱伝導金属充填部20を格子状に設けるとは、鋳造方向の幅が一定であって鋳型幅方向に平行な平行線群と、鋳型幅方向の幅が一定であって鋳造方向に平行な平行線群の交点となる位置に異熱伝導金属充填部20を設けることを意味する。 FIG. 9 is a diagram showing another example of the arrangement of the different heat conductive metal filling portion. In FIG. 9, circular different heat conductive metal filling portions 20 are provided on the inner wall surface of the mold copper plate in a grid pattern. Here, when the different heat conductive metal filling portions 20 are provided in a grid pattern, a group of parallel lines having a constant width in the casting direction and parallel to the mold width direction and a group of parallel lines having a constant width in the mold width direction and the casting direction This means that the different heat conductive metal filling portion 20 is provided at a position at the intersection of parallel lines parallel to the above.

図9において、20aを1の異熱伝導金属充填部とし、20b、20cを他の異熱伝導金属充填部とする。異熱伝導金属充填部20aと異熱伝導金属充填部20bとは、その重心が鋳型銅板の幅方向に対して同じ位置に設けられ、鋳造方向に互いに隣り合った位置に設けられている。異熱伝導金属充填部20aと異熱伝導金属充填部20cとは、その重心が鋳造方向に対して同じ位置に設けられ、鋳型銅板の幅方向に互いに隣り合った位置に設けられている。 In FIG. 9, 20a is a different heat conductive metal filling part of 1, and 20b and 20c are other different heat conductive metal filling parts. The different heat conductive metal filling portion 20a and the different heat conductive metal filling portion 20b are provided at the same positions with respect to the width direction of the mold copper plate, and are provided at positions adjacent to each other in the casting direction. The different heat conductive metal filling portion 20a and the different heat conductive metal filling portion 20c are provided at the same positions with respect to the casting direction and at positions adjacent to each other in the width direction of the mold copper plate.

図9において、距離D1は、鋳造方向に沿った距離であって、異熱伝導金属充填部20aと鋳型銅板との境界線から、異熱伝導金属充填部20bと鋳型銅板との境界線までの距離であり、距離D2は、異熱伝導金属充填部20aの重心から異熱伝導金属充填部20cの重心までの距離である。図9において、異熱伝導金属充填部20は、上記(1)式、(2)式および(3)式を満足するように、鋳型長辺銅板5aの内壁面に設けられる。 In FIG. 9, the distance D1 is a distance along the casting direction, from the boundary line between the different heat conductive metal filling portion 20a and the mold copper plate to the boundary line between the different heat conductive metal filling portion 20b and the mold copper plate. It is a distance, and the distance D2 is the distance from the center of gravity of the different heat conductive metal filling portion 20a to the center of gravity of the different heat conductive metal filling portion 20c. In FIG. 9, the different heat conductive metal filling portion 20 is provided on the inner wall surface of the mold long side copper plate 5a so as to satisfy the above equations (1), (2) and (3).

このように、異熱伝導金属充填部を鋳型銅板に格子状に設けてもよく、格子状に異熱伝導金属充填部を設けた場合においても、上記(1)式を満足することで、爪の倒れこみが抑制されてオシレーションマークの深さを浅くでき、異熱伝導金属充填部を千鳥状に設けた場合と同様の効果が得られる。 As described above, the different heat conductive metal filling portion may be provided on the mold copper plate in a grid pattern, and even when the different heat conductive metal filling portion is provided in a grid pattern, the claws can be satisfied by satisfying the above equation (1). The collapse of the oscillating mark can be suppressed and the depth of the oscillation mark can be made shallow, and the same effect as when the different heat conductive metal filling portion is provided in a staggered pattern can be obtained.

本実施形態では、鋳型銅板に設けられた凹溝の形状が全て同じ円形である例を示したが、これに限られない。少なくとも上述した面積率が10%以上80%以下であって(1)式、(2)式を満足すれば、凹溝の形状は全て同じでなくてもよい。 In the present embodiment, an example is shown in which the shapes of the concave grooves provided in the mold copper plate are all the same circular shape, but the present invention is not limited to this. If at least the above-mentioned area ratio is 10% or more and 80% or less and the equations (1) and (2) are satisfied, the shapes of the concave grooves do not have to be the same.

異熱伝導金属充填部19が設けられた鋳型と、意図的に鋳片を0mm超え20mm以下バルジングさせ、さらに中心部の固相率が0.2以上0.9以下の鋳片を、圧下速度(mm/min)と鋳造速度(m/min)の積(m・mm/min)が0.30以上1.00以下に相当する圧下力で、意図的にバルジングさせたときの鋳片の膨らみ量と同等かそれよりも小さい量を軽圧下する方法と、を組み合わせると、さらに鋳片の内部品質を改善することができる。A mold provided with a different heat conductive metal filling portion 19 and a slab in which the slab is intentionally bulged over 0 mm and 20 mm or less and the solid phase ratio at the center is 0.2 or more and 0.9 or less are reduced. When the product (m · mm / min 2 ) of (mm / min) and the casting speed (m / min) is intentionally bulging with a rolling force corresponding to 0.30 or more and 1.00 or less, the slab The internal quality of the slab can be further improved by combining with a method of lightly reducing an amount equal to or less than the amount of swelling.

本実施形態では、強制バルジング帯16の強制的なバルジングの総量(以後、「総バルジング量」という)を、鋳型出口での鋳片厚み(鋳片長辺面間の厚み)に対して0mm超え20mm以下の範囲としている。本実施形態では、鋳型内における初期凝固を制御し、鋳片12の最終凝固部においても凝固界面が鋳片の幅方向及び鋳造方向で平滑にできるので、軽圧下による圧下力が凝固界面に均等に作用し、これにより、総バルジング量が0mm超え20mm以下であっても、中心偏析を軽減できる。 In the present embodiment, the total amount of forced bulging of the forced bulging zone 16 (hereinafter referred to as “total bulging amount”) is more than 0 mm and 20 mm with respect to the slab thickness (thickness between the long side faces of the slab) at the mold outlet. The range is as follows. In the present embodiment, the initial solidification in the mold is controlled, and the solidification interface can be smoothed in the width direction and the casting direction of the slab even in the final solidification portion of the slab 12, so that the reduction force under light reduction is equal to the solidification interface. As a result, central segregation can be reduced even when the total bulging amount is more than 0 mm and 20 mm or less.

軽圧下帯17では、少なくとも鋳片の厚み中心部の固相率が0.2の時点から0.9になる時点まで、鋳片12を圧下している。中心部の固相率が0.2未満の時期での圧下では、圧下直後の圧下位置での鋳片の未凝固部の厚みが厚いため、その後の凝固の進行とともに、再び中心偏析が発生する。中心部の固相率が0.9を超える時期に圧下する場合には、偏析成分の濃化した溶鋼が排出されにくく、中心偏析の改善効果が少なくなる。圧下時の鋳片の凝固シェル13の厚みが厚く、圧下力が十分厚み中心部にまで達しないためである。さらに、中心部固相率が0.9を超え、圧下量が大きい場合には、前述するように、厚み中心部近傍に正偏析が発生する。したがって、中心部固相率が0.2以上0.9以下の鋳片の位置を圧下する。当然ではあるが、鋳片厚み中心部の固相率が0.2になる以前、及び、鋳片厚み中心部の固相率が0.9を超えた以降も、軽圧下帯17で鋳片12を圧下してもよい。 In the light reduction zone 17, the slab 12 is reduced at least from the time when the solid phase ratio at the center of the thickness of the slab becomes 0.2 to 0.9. When the solid phase ratio of the central portion is less than 0.2, the unsolidified portion of the slab is thick at the reduced position immediately after the reduction, so that central segregation occurs again as the solidification progresses thereafter. .. When the pressure is reduced when the solid phase ratio of the central portion exceeds 0.9, the molten steel having a concentrated segregation component is less likely to be discharged, and the effect of improving the central segregation is reduced. This is because the solidification shell 13 of the slab at the time of reduction is thick, and the reduction force does not sufficiently reach the center of the thickness. Further, when the solid phase ratio of the central portion exceeds 0.9 and the amount of reduction is large, positive segregation occurs in the vicinity of the central portion of the thickness as described above. Therefore, the position of the slab having a central solid phase ratio of 0.2 or more and 0.9 or less is reduced. As a matter of course, the slab is formed in the light reduction zone 17 before the solid phase ratio at the center of the slab thickness reaches 0.2 and after the solid phase ratio at the center of the slab thickness exceeds 0.9. 12 may be reduced.

鋳片厚み中心部の固相率は、二次元伝熱凝固計算によって求めることができる。ここで、固相率とは、鋼の液相線温度以上で固相率=0、鋼の固相線温度以下で固相率=1.0と定義されるものであり、鋳片厚み中心部の固相率が1.0となる位置が凝固完了位置15であり、当該凝固完了位置15は、鋳片が下流側へ移動しながら鋳片厚み中心部の固相率が1となる最も下流側の位置に該当する。 The solid phase ratio at the center of the slab thickness can be obtained by two-dimensional heat transfer solidification calculation. Here, the solid phase ratio is defined as a solid phase ratio = 0 above the liquidus temperature of the steel and a solid phase ratio = 1.0 below the solid phase temperature of the steel, and is centered on the thickness of the slab. The position where the solid phase ratio of the portion is 1.0 is the solidification completion position 15, and at the solidification completion position 15, the solid phase ratio at the center of the slab thickness becomes 1 while the slab moves to the downstream side. Corresponds to the downstream position.

本実施形態において、軽圧下帯17における鋳片12の圧下量の総量(以後、「総圧下量」という)を、総バルジング量と同等または総バルジング量よりも小さくしている。総圧下量を総バルジング量と同等または総バルジング量よりも小さくすることで、鋳片12の短辺側の厚み中心部までの凝固が完了した部分は圧下されず、軽圧下帯17を構成するガイドロール7の負荷荷重が軽減され、ガイドロール7のベアリング破損や折損などの設備トラブルを抑制できる。 In the present embodiment, the total amount of reduction of the slab 12 in the light reduction zone 17 (hereinafter referred to as “total reduction amount”) is equal to or smaller than the total bulging amount. By making the total reduction amount equal to or smaller than the total bulging amount, the portion of the slab 12 that has been solidified to the center of the thickness on the short side is not reduced and constitutes the light reduction zone 17. The load on the guide roll 7 is reduced, and equipment troubles such as bearing breakage and breakage of the guide roll 7 can be suppressed.

本実施形態では、軽圧下帯17で軽圧下する際の圧下速度と鋳造速度との積(mm・m/min)が0.30以上1.00以下に相当する圧下力を鋳片の長辺面に付与している。0.30よりも小さな圧下量による圧下では、圧下後の圧下位置での鋳片の未凝固部の厚みが厚く、偏析成分の濃化した溶鋼がデンドライト樹間から十分排出されないので、圧下後に再び中心偏析が発生する。1.00を超える圧下量を圧下する場合には、デンドライト樹間に存在する偏析成分の濃化した溶鋼のほとんど全てが、絞り出されて鋳造方向の上流側に排出されるが、未凝固部の厚みが薄いために、圧下位置より鋳造方向のやや上流側の鋳片の厚み方向の両側の凝固殻に捕捉され、これにより、鋳片の厚み中心部近傍に正偏析が発生する。In the present embodiment, the length of the slab is the reduction force corresponding to the product (mm · m / min 2 ) of the reduction speed and the casting speed when lightly reducing in the light reduction band 17 is 0.30 or more and 1.00 or less. It is given to the side surface. Under reduction with a reduction amount smaller than 0.30, the thickness of the unsolidified part of the slab at the reduction position after reduction is thick, and the molten steel with a concentrated segregation component is not sufficiently discharged from the dendrite trees. Central segregation occurs. When the reduction amount exceeds 1.00, almost all of the molten steel with concentrated segregation components existing between the dendrite trees is squeezed out and discharged to the upstream side in the casting direction, but the unsolidified portion. Because the thickness of the slab is thin, it is trapped in the solidified shells on both sides of the slab on the thickness direction of the slab slightly upstream of the casting position, which causes positive segregation in the vicinity of the center of the thickness of the slab.

鋳片の中心部の中心偏析および中心部近傍の正偏析の発生防止に対する軽圧下の効果には、鋳片の凝固組織の影響もあり、未凝固部に接する部分の凝固組織が等軸晶の場合には、等軸晶間にセミマクロ偏析の原因となる濃化溶鋼が存在し、圧下による効果が少ない。したがって、凝固組織を等軸晶ではなく、柱状晶組織とすることが望ましい。 The effect of light pressure on the prevention of central segregation of the central part of the slab and positive segregation near the central part is also affected by the solidified structure of the slab, and the solidified structure of the part in contact with the unsolidified part is equiaxed. In some cases, concentrated molten steel that causes semi-macro segregation exists between equiaxed crystals, and the effect of reduction is small. Therefore, it is desirable that the solidified structure has a columnar crystal structure instead of an equiaxed crystal structure.

本実施形態では、連続鋳造操業の種々の鋳造条件において、予め二次元伝熱凝固計算などを用いて凝固シェル13の厚み及び鋳片厚み中心部の固相率を求め、少なくとも、鋳片厚み中心部の固相率が0.2の時点から0.9になる時点まで、軽圧下帯14で鋳片10を圧下できるように、二次冷却水量、二次冷却の幅切り、鋳造速度のうちのいずれか1種または2種以上を調整する。ここで、「二次冷却の幅切り」とは、鋳片長辺面の両端部への冷却水の噴射を中止することである。二次冷却の幅切りを実施することで、二次冷却は弱冷化され、一般的に、凝固完了位置13は鋳造方向下流側に延長される。 In the present embodiment, under various casting conditions of the continuous casting operation, the thickness of the solidified shell 13 and the solid phase ratio at the center of the slab thickness are obtained in advance by using two-dimensional heat transfer solidification calculation or the like, and at least the slab thickness center. Of the amount of secondary cooling water, the width of the secondary cooling, and the casting speed so that the slab 10 can be reduced by the light reduction zone 14 from the time when the solid phase ratio of the part becomes 0.2 to 0.9. Adjust any one or more of the above. Here, "cutting the width of the secondary cooling" means stopping the injection of the cooling water to both ends of the long side surface of the slab. By performing the width cutting of the secondary cooling, the secondary cooling is weakened, and the solidification completion position 13 is generally extended to the downstream side in the casting direction.

以上説明したように、本実施形態に係る鋼の連続鋳造方法を実施することで、凝固初期の凝固シェルの不均一冷却による鋳片の表面割れを防止することができると同時に、オシレーションマークの深さも浅くすることができる。オシレーションマークを浅くして初期の凝固シェル13の表面を均一にすることで最終凝固部での凝固界面も平滑化され、さらに意図的なバルジング及び軽圧下することで、当該圧下力を凝固界面に均等に作用させることができ、鋳片の厚み中心部に発生する中心偏析を抑制することができる。これにより、高品質の鋳片を安定して製造することが実現される。 As described above, by carrying out the steel continuous casting method according to the present embodiment, it is possible to prevent surface cracking of the slab due to non-uniform cooling of the solidified shell at the initial stage of solidification, and at the same time, it is possible to prevent the surface cracking of the slab. The depth can also be shallow. By making the oscillation mark shallow and making the surface of the initial solidification shell 13 uniform, the solidification interface at the final solidification part is also smoothed, and by intentional bulging and light reduction, the reduction force is reduced to the solidification interface. Can be evenly acted on, and the central segregation generated in the central portion of the thickness of the slab can be suppressed. As a result, it is possible to stably produce high-quality slabs.

上記説明はスラブ鋳片の連続鋳造に関して行ったが、本実施形態に係る鋼の連続鋳造方法はスラブ鋳片の連続鋳造に限定されるものではなく、ブルーム鋳片やビレット鋳片の連続鋳造においても上記に沿って適用することができる。 Although the above description has been made for continuous casting of slab slabs, the method for continuous casting of steel according to the present embodiment is not limited to continuous casting of slab slabs, and is used for continuous casting of bloom slabs and billet slabs. Can also be applied according to the above.

中炭素鋼(化学成分、C:0.08〜0.17質量%、Si:0.10〜0.30質量%、Mn:0.50〜1.20質量%、P:0.010〜0.030質量%、S:0.005〜0.015質量%、Al:0.020〜0.040質量%)を、内壁面に種々の条件で金属を配置した水冷銅鋳型を用い、且つ、強制バルジング帯における総バルジング量及び軽圧下帯における圧下速度と鋳造速度との積を種々変更して鋳造し、鋳造後の鋳片の表面割れおよび内部品質(中心偏析)を調査する試験を行った。 Medium carbon steel (chemical composition, C: 0.08 to 0.17% by mass, Si: 0.10 to 0.30% by mass, Mn: 0.50 to 1.20% by mass, P: 0.010 to 0 .030% by mass, S: 0.005 to 0.015% by mass, Al: 0.020 to 0.040% by mass) using a water-cooled copper mold in which a metal is arranged on the inner wall surface under various conditions, and A test was conducted to investigate the surface cracking and internal quality (center segregation) of the slab after casting by changing the total bulging amount in the forced bulging zone and the product of the rolling speed and the casting speed in the light rolling zone. ..

軽圧下帯における圧下速度と鋳造速度との積は、0.28〜0.90mm・m/min であり、いずれの試験も、軽圧下帯では、鋳片の厚み中心部の固相率が少なくとも0.2の時点から0.9になる時点まで鋳片を圧下した。鋳片を強制バルジング帯で強制的にバルジングさせた場合の総圧下量は、総バルジング量と同等または総バルジング量よりも小さくした。鋳片を強制バルジング帯でバルジングさせない試験では、軽圧下帯では鋳片短辺側の凝固完了位置も圧下した。 The product of the reduction speed and the casting speed in the light reduction zone is 0.28 to 0.90 mm ・ m / min. 2In each test, in the light reduction zone, the slab was reduced from the time when the solid phase ratio at the center of the thickness of the slab became at least 0.2 to 0.9. When the slab was forcibly bulged in the forced bulging zone, the total reduction amount was equal to or smaller than the total bulging amount. In the test in which the slab was not bulged in the forced bulging zone, the solidification completion position on the short side of the slab was also reduced in the light reduction zone.

使用した鋳型は、長辺長さが2.1m、短辺長さが0.26mの内面空間サイズを有する鋳型である。使用した水冷銅鋳型の上端から下端までの長さ(=鋳型長)は950mmであり、定常鋳造時のメニスカス(鋳型内溶鋼湯面)の位置を、鋳型上端から100mm下方位置に設定した。本実施形態に係る鋼の連続鋳造方法の効果を把握するために以下の条件の鋳型を作成し比較試験を行なった。いずれの鋳型も異熱伝導金属として、鋳型銅板の熱伝導率よりも熱伝導率が低い金属を使用した。異熱伝導金属充填部19の形状はφ6mmの円形状である。当該鋳造条件において、オシレーションマークピッチは13mmであった。 The mold used is a mold having an inner space size of 2.1 m in long side length and 0.26 m in short side length. The length (= mold length) from the upper end to the lower end of the water-cooled copper mold used was 950 mm, and the position of the meniscus (hot metal surface in the mold) during steady casting was set to a position 100 mm below the upper end of the mold. In order to understand the effect of the continuous steel casting method according to this embodiment, a mold under the following conditions was prepared and a comparative test was conducted. In each of the molds, a metal having a thermal conductivity lower than that of the mold copper plate was used as the different heat conductive metal. The shape of the different heat conductive metal filling portion 19 is a circular shape having a diameter of 6 mm. Under the casting conditions, the oscillation mark pitch was 13 mm.

鋳型1:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲(範囲長さ=220mm)に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部19を設置した。異熱伝導金属充填部19の面積率εは50%である。鋳造方向における異熱伝導金属充填部19どうしの距離D1は6mmであり、鋳型幅方向における異熱伝導金属充填部19の重心間の距離D2は12mmである。鋳型の外壁面に設けられたスリット30の最も長いピッチは33.0mmである。 Mold 1: In the range from the position 80 mm below the upper end of the mold to the position 300 mm below the upper end of the mold (range length = 220 mm), the ratio of the difference in thermal conductivity to the thermal conductivity of copper is 20%. The different thermal conductive metal was filled in a staggered manner, and the different thermal conductive metal filling portion 19 was installed. The area ratio ε of the different heat conductive metal filling portion 19 is 50%. The distance D1 between the different heat conductive metal filling portions 19 in the casting direction is 6 mm, and the distance D2 between the centers of gravity of the different heat conductive metal filling portions 19 in the mold width direction is 12 mm. The longest pitch of the slits 30 provided on the outer wall surface of the mold is 33.0 mm.

鋳型2:鋳型上端より190mm下方の位置から鋳型上端より750mm下方の位置までの範囲(範囲長さ=670mm)に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部19を設置した。異熱伝導金属充填部19の面積率εは50%である。鋳造方向における異熱伝導金属充填部19どうしの距離D1は6mmであり、鋳型幅方向における異熱伝導金属充填部19の重心間の距離D2は12mmである。鋳型の外壁面に設けられたスリット30の最も長いピッチは33.0mmである。 Mold 2: In the range from the position 190 mm below the upper end of the mold to the position 750 mm below the upper end of the mold (range length = 670 mm), the ratio of the difference in thermal conductivity to the thermal conductivity of copper is 20%. The different thermal conductive metal was filled in a staggered manner, and the different thermal conductive metal filling portion 19 was installed. The area ratio ε of the different heat conductive metal filling portion 19 is 50%. The distance D1 between the different heat conductive metal filling portions 19 in the casting direction is 6 mm, and the distance D2 between the centers of gravity of the different heat conductive metal filling portions 19 in the mold width direction is 12 mm. The longest pitch of the slits 30 provided on the outer wall surface of the mold is 33.0 mm.

鋳型3:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部19を設置した。異熱伝導金属充填部19の面積率εは50%である。鋳造方向における異熱伝導金属充填部19どうしの距離D1は15mmであり、鋳型幅方向における異熱伝導金属充填部19の重心間の距離D2は12mmである。鋳型の外壁面に設けられたスリット30の最も長いピッチは33.0mmである。 Mold 3: Staggered different heat conductive metals with the ratio of the difference in thermal conductivity to the thermal conductivity of copper being 20% in the range from the position 80 mm below the upper end of the mold to the position 300 mm below the upper end of the mold. 19 was installed. The area ratio ε of the different heat conductive metal filling portion 19 is 50%. The distance D1 between the different heat conductive metal filling portions 19 in the casting direction is 15 mm, and the distance D2 between the centers of gravity of the different heat conductive metal filling portions 19 in the mold width direction is 12 mm. The longest pitch of the slits 30 provided on the outer wall surface of the mold is 33.0 mm.

鋳型4:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部19を設置した。異熱伝導金属充填部19の面積率εは50%である。鋳造方向における異熱伝導金属充填部19どうしの距離D1は6mmであり、鋳型幅方向における異熱伝導金属充填部19の重心間の距離D2は15mmである。鋳型の外壁面に設けられたスリット30の最も長いピッチは38.0mmである。 Mold 4: Staggered different heat conductive metals with the ratio of the difference in thermal conductivity to the thermal conductivity of copper being 20% in the range from the position 80 mm below the upper end of the mold to the position 300 mm below the upper end of the mold. 19 was installed. The area ratio ε of the different heat conductive metal filling portion 19 is 50%. The distance D1 between the different heat conductive metal filling portions 19 in the casting direction is 6 mm, and the distance D2 between the centers of gravity of the different heat conductive metal filling portions 19 in the mold width direction is 15 mm. The longest pitch of the slits 30 provided on the outer wall surface of the mold is 38.0 mm.

鋳型5:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲に、銅の熱伝導率に対してその熱伝導率差の比率を15%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部19を設置した。異熱伝導金属充填部19の面積率εは50%である。鋳造方向における異熱伝導金属充填部19どうしの距離D1は6mmであり、鋳型幅方向における異熱伝導金属充填部19の重心間の距離D2は12mmである。鋳型の外壁面に設けられたスリット30の最も長いピッチは33.0mmである。 Mold 5: Staggered different heat conductive metals with the ratio of the difference in thermal conductivity to the thermal conductivity of copper is 15% in the range from the position 80 mm below the upper end of the mold to the position 300 mm below the upper end of the mold. 19 was installed. The area ratio ε of the different heat conductive metal filling portion 19 is 50%. The distance D1 between the different heat conductive metal filling portions 19 in the casting direction is 6 mm, and the distance D2 between the centers of gravity of the different heat conductive metal filling portions 19 in the mold width direction is 12 mm. The longest pitch of the slits 30 provided on the outer wall surface of the mold is 33.0 mm.

鋳型6:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属19を千鳥状に充填して、異熱伝導金属充填部19を設置した。異熱伝導金属充填部19の面積率εは5%である。鋳造方向における異熱伝導金属充填部19どうしの距離D1は6mmであり、鋳型幅方向における異熱伝導金属充填部19の重心間の距離D2は12mmである。鋳型の外壁面に設けられたスリット30の最も長いピッチは33.0mmである。 Mold 6: Staggered different heat conductive metals 19 in a range from a position 80 mm below the upper end of the mold to a position 300 mm below the upper end of the mold, in which the ratio of the difference in thermal conductivity to the thermal conductivity of copper is 20%. The different heat conductive metal filling portion 19 was installed by filling in a shape. The area ratio ε of the different heat conductive metal filling portion 19 is 5%. The distance D1 between the different heat conductive metal filling portions 19 in the casting direction is 6 mm, and the distance D2 between the centers of gravity of the different heat conductive metal filling portions 19 in the mold width direction is 12 mm. The longest pitch of the slits 30 provided on the outer wall surface of the mold is 33.0 mm.

鋳型7:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部19を設置した。異熱伝導金属充填部19の面積率εは85%である。鋳造方向における異熱伝導金属充填部19どうしの距離D1は6mmであり、鋳型幅方向における異熱伝導金属充填部19どうしの重心間の距離D2は12mmである。鋳型の外壁面に設けられたスリット30の最も長いピッチは33.0mmである。 Mold 7: Staggered different heat conductive metals with the ratio of the difference in thermal conductivity to the thermal conductivity of copper being 20% in the range from the position 80 mm below the upper end of the mold to the position 300 mm below the upper end of the mold. 19 was installed. The area ratio ε of the different heat conductive metal filling portion 19 is 85%. The distance D1 between the different heat conductive metal filling portions 19 in the casting direction is 6 mm, and the distance D2 between the centers of gravity of the different heat conductive metal filling portions 19 in the mold width direction is 12 mm. The longest pitch of the slits 30 provided on the outer wall surface of the mold is 33.0 mm.

鋳型8:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を格子状に充填して、異熱伝導金属充填部19を設置した。異熱伝導金属充填部19の面積率εは50%である。鋳造方向における異熱伝導金属充填部19どうしの距離D1は6mmであり、鋳型幅方向における異熱伝導金属充填部19どうしの重心間の距離D2は12mmである。鋳型の外壁面に設けられたスリット30の最も長いピッチは33.0mmである。 Mold 8: In the range from the position 80 mm below the upper end of the mold to the position 300 mm below the upper end of the mold, different heat conductive metals having the ratio of the difference in thermal conductivity to the thermal conductivity of copper of 20% are arranged in a grid pattern. 19 was installed. The area ratio ε of the different heat conductive metal filling portion 19 is 50%. The distance D1 between the different heat conductive metal filling portions 19 in the casting direction is 6 mm, and the distance D2 between the centers of gravity of the different heat conductive metal filling portions 19 in the mold width direction is 12 mm. The longest pitch of the slits 30 provided on the outer wall surface of the mold is 33.0 mm.

鋳型9:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部19を設置した。異熱伝導金属充填部19の面積率εは50%である。鋳造方向における異熱伝導金属充填部19どうしの距離D1は9mmであり、鋳型幅方向における異熱伝導金属充填部19の重心間の距離D2は12mmである。鋳型の外壁面に設けられたスリット30の最も長いピッチは33.0mmである。 Mold 9: Staggered different heat conductive metals with the ratio of the difference in thermal conductivity to the thermal conductivity of copper being 20% in the range from the position 80 mm below the upper end of the mold to the position 300 mm below the upper end of the mold. 19 was installed. The area ratio ε of the different heat conductive metal filling portion 19 is 50%. The distance D1 between the different heat conductive metal filling portions 19 in the casting direction is 9 mm, and the distance D2 between the centers of gravity of the different heat conductive metal filling portions 19 in the mold width direction is 12 mm. The longest pitch of the slits 30 provided on the outer wall surface of the mold is 33.0 mm.

鋳型10:鋳型上端より80mm下方の位置から鋳型上端より300mm下方の位置までの範囲に、銅の熱伝導率に対してその熱伝導率差の比率を20%とする異熱伝導金属を千鳥状に充填して、異熱伝導金属充填部19を設置した。異熱伝導金属充填部19の面積率εは50%である。鋳造方向における異熱伝導金属充填部19どうしの距離D1は9mmであり、鋳型幅方向における異熱伝導金属充填部19の重心間の距離D2は12mmである。鋳型の外壁面に設けられたスリット30の最も長いピッチは16.5mmである。 Mold 10: Staggered different heat conductive metals with the ratio of the difference in thermal conductivity to the thermal conductivity of copper being 20% in the range from the position 80 mm below the upper end of the mold to the position 300 mm below the upper end of the mold. 19 was installed. The area ratio ε of the different heat conductive metal filling portion 19 is 50%. The distance D1 between the different heat conductive metal filling portions 19 in the casting direction is 9 mm, and the distance D2 between the centers of gravity of the different heat conductive metal filling portions 19 in the mold width direction is 12 mm. The longest pitch of the slits 30 provided on the outer wall surface of the mold is 16.5 mm.

鋳型11:異熱伝導金属充填部19を設けていない鋳型である。 Mold 11: A mold not provided with a different heat conductive metal filling portion 19.

連続鋳造操業においては、モールドパウダーとして、塩基度((質量%CaO)/(質量%SiO))が1.1、凝固温度が1090℃、1300℃における粘性率が0.15Pa・sのモールドパウダーを使用した。凝固温度とは、溶融モールドパウダーの冷却途上で、モールドパウダーの粘性率が急激な増加を示す温度である。定常鋳造時での鋳型内のメニスカス位置は、鋳型上端から100mm下方位置であり、鋳造中、メニスカスが設置範囲内に存在するようにメニスカス位置を制御した。定常鋳造時の鋳造速度は1.7〜2.2m/minであり、鋳片の表面割れ及び内質を調査する鋳片は、全ての試験で、定常鋳造時の鋳造速度が2.0m/minの鋳片を対象とした。タンディッシュ内の溶鋼過熱度は25〜35℃である。鋳型の温度管理として、熱電対を鋳型のメニスカス下50mmの位置に表面(溶鋼側の面)から5mmの深さ位置に背面から埋め込み、熱電対による銅板温度の測定値から鋳型の表面温度を推定した。In the continuous casting operation, as a mold powder, a mold having a basicity ((mass% CaO) / (mass% SiO 2 )) of 1.1 and a solidification temperature of 1090 ° C. and a viscosity of 0.15 Pa · s at 1300 ° C. I used powder. The solidification temperature is a temperature at which the viscosity of the mold powder rapidly increases during the cooling of the molten mold powder. The position of the meniscus in the mold during steady casting was 100 mm below the upper end of the mold, and the position of the meniscus was controlled so that the meniscus was within the installation range during casting. The casting speed during steady casting is 1.7 to 2.2 m / min, and the casting speed for steady casting is 2.0 m / min in all tests for slabs for investigating surface cracks and internal quality of slabs. The target was min slabs. The degree of superheat of molten steel in the tundish is 25 to 35 ° C. To control the temperature of the mold, a thermocouple is embedded 50 mm below the meniscus of the mold at a depth of 5 mm from the surface (the surface on the molten steel side) from the back, and the surface temperature of the mold is estimated from the measured value of the copper plate temperature by the thermocouple. bottom.

連続鋳造が終了した後、鋳片長辺の表面を酸洗してスケールを除去し、表面割れの発生数を測定した。鋳片表面割れの発生状況は、検査対象の鋳片の鋳造方向長さを分母とし、表面割れが発生した部位の鋳片の鋳造方向長さを分子として算出した値を用いて評価した。鋳片内質(中心偏析)の評価については、鋳片の横断面サンプルを採取し、横断面サンプルの鏡面研磨面の鋳片中心部分±10mmの範囲で、EPMAによりMn濃度を100μm毎に測定し、偏析度を評価した。具体的には、偏析が生じていないであろう端部のMn濃度(C)と中心部分±10mmにおけるMn濃度の平均値(C)との比(C/C)をMn偏析度と定義して評価した。After the continuous casting was completed, the surface of the long side of the slab was pickled to remove the scale, and the number of surface cracks was measured. The occurrence of slab surface cracks was evaluated using a value calculated using the casting direction length of the slab to be inspected as the denominator and the casting direction length of the slab at the site where the surface cracks occurred as the numerator. Regarding the evaluation of the slab internal quality (center segregation), a cross-sectional sample of the slab is taken, and the Mn concentration is measured every 100 μm by EPMA within a range of ± 10 mm at the center of the slab on the mirror-polished surface of the cross-sectional sample. Then, the segregation degree was evaluated. Specifically, the ratio (C / C 0 ) of the Mn concentration (C 0 ) at the end where segregation will not occur and the average value (C) of the Mn concentration at the central portion ± 10 mm is defined as the Mn segregation degree. Defined and evaluated.

これらの検討とは別に、各試験水準での条件で、凝固シェル厚みの不均一度σ(mm)の測定を行なった。凝固シェル厚みの不均一度の測定は、鋳型内溶鋼にFeS(硫化鉄)粉を投入し、得られた鋳片の断面からサルファプリントをとることで凝固シェル厚みを測定した。凝固シェル厚みの測定は、鋳型の幅方向1/4の位置でメニスカス位置から200mm下方の位置まで、5mmピッチで40点行なった。σの算出は、下記(6)式に従い算出した。 Apart from these studies, the non-uniformity σ (mm) of the solidified shell thickness was measured under the conditions at each test level. To measure the non-uniformity of the solidified shell thickness, FeS (iron sulfide) powder was added to the molten steel in the mold, and sulfaprint was taken from the cross section of the obtained slab to measure the solidified shell thickness. The solidification shell thickness was measured at 40 points at a pitch of 5 mm from the meniscus position to a position 200 mm below the position 1/4 in the width direction of the mold. The calculation of σ was performed according to the following equation (6).

Figure 0006947737
Figure 0006947737

但し、(6)式において、Dは、凝固シェル厚みの実測値(mm)であり、Diは、凝固シェル厚と凝固時間との関係を規定した近似式を用いて、凝固シェル厚みを測定した位置のメニスカスからの距離に対応する凝固時間を用いて算出された凝固シェル厚みの計算値(mm)である。Nは、測定数であり、本実施例においては40である。 However, in the formula (6), D is the measured value (mm) of the solidification shell thickness, and Di is the solidification shell thickness measured using an approximate formula that defines the relationship between the solidification shell thickness and the solidification time. It is a calculated value (mm) of the solidification shell thickness calculated by using the solidification time corresponding to the distance from the meniscus of the position. N is the number of measurements, which is 40 in this embodiment.

表1に、試験水準1〜14の各試験の試験条件及び鋳片の表面および内部の品質の調査結果を示す。 Table 1 shows the test conditions of each test of test levels 1 to 14 and the survey results of the surface and internal quality of the slab.

Figure 0006947737
Figure 0006947737

試験水準1、8、9、10、11、13は、鋳型表面の異熱伝導金属充填部19の設置条件が本発明の範囲内であり、スリット30の最も長いピッチは(4)式を満足する。これらの試験水準は、いずれも表面割れ比率は大幅に改善された。凝固シェル厚みの不均一度も0.30以下になり、凝固シェルの厚みを均一にできた。しかし、試験水準1については、圧下速度と鋳造速度との積が0.30以上1.00以下の範囲内でないので、軽微であるが中心偏析が確認された。その他の水準については、中心偏析も改善される結果となった。 In the test levels 1, 8, 9, 10, 11, and 13, the installation conditions of the different heat conductive metal filling portion 19 on the mold surface are within the scope of the present invention, and the longest pitch of the slit 30 satisfies the equation (4). do. At all of these test levels, the surface crack ratio was significantly improved. The non-uniformity of the solidified shell thickness was also 0.30 or less, and the solidified shell thickness could be made uniform. However, with respect to test level 1, since the product of the rolling speed and the casting speed was not within the range of 0.30 or more and 1.00 or less, a slight central segregation was confirmed. At other levels, central segregation was also improved.

試験水準2では、異熱伝導金属充填部19を設置した範囲が下方にずれたものであり、かつ、圧下速度と鋳造速度との積が0.30以上1.00以下の範囲内ではない。このため、試験水準2では、鋳片に微細な表面割れが発生し、従来と比較して表面割れの低減効果は確認できなかった。凝固シェル厚みの不均一度も0.38mmと大きくなり、中心偏析についても改善効果を確認できなかった。 At the test level 2, the range in which the different heat conductive metal filling portion 19 is installed is shifted downward, and the product of the reduction speed and the casting speed is not within the range of 0.30 or more and 1.00 or less. Therefore, at the test level 2, fine surface cracks were generated in the slab, and the effect of reducing the surface cracks could not be confirmed as compared with the conventional case. The non-uniformity of the solidification shell thickness also increased to 0.38 mm, and the improvement effect on the central segregation could not be confirmed.

試験水準3では、鋳造方向における距離D1が長く、かつ、圧下速度と鋳造速度との積が0.30以上1.00以下の範囲内ではない。試験水準3では、鋳片の表面割れは改善したが、凝固シェル厚みの不均一度が0.37mmと大きくなり、中心偏析についても改善効果を確認できなかった。 At the test level 3, the distance D1 in the casting direction is long, and the product of the reduction speed and the casting speed is not within the range of 0.30 or more and 1.00 or less. At test level 3, the surface cracking of the slab was improved, but the non-uniformity of the solidification shell thickness was as large as 0.37 mm, and the improvement effect could not be confirmed for the central segregation.

試験水準4では、鋳型幅方向における距離D2が長く、かつ、圧下速度と鋳造速度との積が0.30以上1.00以下の範囲内ではない。試験水準4では、鋳片の表面割れが確認され、表面割れの改善効果は確認されなかった。凝固シェル厚みの不均一度も0.31mmと若干大きくなり、中心偏析についても軽微ながら確認された。 At the test level 4, the distance D2 in the mold width direction is long, and the product of the reduction speed and the casting speed is not within the range of 0.30 or more and 1.00 or less. At test level 4, surface cracks in the slab were confirmed, and the effect of improving the surface cracks was not confirmed. The non-uniformity of the solidified shell thickness was also slightly large at 0.31 mm, and the central segregation was also slightly confirmed.

試験水準5は、異熱伝導金属の熱伝導率の差の比率が20%より低く、試験水準6は、異熱伝導金属充填部19の面積率が10%よりも低く、試験水準7は、異熱伝導金属充填部19の面積率が80%よりも高い。このため、これら試験水準5〜7では、鋳片の表面割れが確認され、表面割れの改善効果は確認されなかった。凝固シェル厚みの不均一度も0.31〜0.33と若干大きくなり、中心偏析についても軽微ながら確認された。 In the test level 5, the ratio of the difference in thermal conductivity of the different heat conductive metals is lower than 20%, in the test level 6, the area ratio of the different heat conductive metal filling portion 19 is lower than 10%, and in the test level 7, the test level 7 is The area ratio of the different heat conductive metal filling portion 19 is higher than 80%. Therefore, at these test levels 5 to 7, surface cracks in the slab were confirmed, and the effect of improving the surface cracks was not confirmed. The non-uniformity of the solidified shell thickness was also slightly large, 0.31 to 0.33, and the central segregation was also slightly confirmed.

試験水準12は、圧下速度と鋳造速度との積が0.30以上1.00以下の範囲内であるが、鋳造方向における距離D1が長い。試験水準12では、鋳片の表面割れおよび中心偏析は改善したが、凝固シェル厚みの不均一度が0.37mmと大きくなった。 In the test level 12, the product of the rolling speed and the casting speed is in the range of 0.30 or more and 1.00 or less, but the distance D1 in the casting direction is long. At test level 12, surface cracking and central segregation of the slab were improved, but the non-uniformity of the solidification shell thickness was as large as 0.37 mm.

試験水準14は、鋳型表面の異熱伝導金属充填部19の設置条件が本発明の範囲内であり、スリット30の最も長いピッチZは(4)式を満足する。しかし、鋳造方向における距離D1が長く(1)式は満足するものの(3)式を満足しない。このため、表面割れ比率は試験水準2〜7より良化したものの1.8%と若干大きくなり、軽微な中心偏析が確認され、凝固シェル厚みの不均一度も0.31mmと若干大きくなった。 In the test level 14, the installation conditions of the different heat conductive metal filling portion 19 on the mold surface are within the range of the present invention, and the longest pitch Z of the slit 30 satisfies the equation (4). However, although the distance D1 in the casting direction is long and the equation (1) is satisfied, the equation (3) is not satisfied. Therefore, although the surface cracking ratio was improved from the test levels 2 to 7, it was slightly larger at 1.8%, slight central segregation was confirmed, and the non-uniformity of the solidification shell thickness was also slightly larger at 0.31 mm. ..

試験水準15は、鋳型表面の異熱伝導金属充填部19の設置条件が本発明の範囲内であるが、スリット30の最も長いピッチZは(4)式を満足しない。また、鋳造方向における距離D1が長く(1)式は満足するものの(3)式を満足しない。このため、表面割れ比率は試験水準2〜7より良化したものの1.5%と若干大きくなり、軽微な中心偏析が確認され、凝固シェル厚みの不均一度も0.33mmと若干大きくなった。 In the test level 15, the installation condition of the different heat conductive metal filling portion 19 on the mold surface is within the range of the present invention, but the longest pitch Z of the slit 30 does not satisfy the equation (4). Further, although the distance D1 in the casting direction is long and the equation (1) is satisfied, the equation (3) is not satisfied. Therefore, although the surface cracking ratio was improved from the test levels 2 to 7, it was slightly larger at 1.5%, slight central segregation was confirmed, and the non-uniformity of the solidification shell thickness was also slightly larger at 0.33 mm. ..

試験水準16は、異熱伝導金属充填部19を設けていないので、鋳片の表面割れが確認された。凝固シェル厚みの不均一度も0.32mmと若干大きくなり、中心偏析も確認された。 At the test level 16, since the different heat conductive metal filling portion 19 was not provided, surface cracking of the slab was confirmed. The non-uniformity of the solidified shell thickness was also slightly large at 0.32 mm, and central segregation was also confirmed.

1 スラブ連続鋳造機
2 タンディッシュ
3 スライディングノズル
4 浸漬ノズル
5 連続鋳造用鋳型
5a 鋳型長辺銅板
6 サポートロール
7 ガイドロール
8 ピンチロール
9 搬送ロール
10 鋳片切断機
11 溶鋼
12 鋳片
12a スラブ鋳片
13 凝固シェル
14 未凝固部
15 凝固完了位置
16 強制バルジング帯
17 軽圧下帯
18 メニスカス位置
19 異熱伝導金属充填部
19a 1の異熱伝導金属充填部
19b 他の異熱伝導金属充填部
19c 他の異熱伝導金属充填部
20 異熱伝導金属充填部
20a 1の異熱伝導金属充填部
20b 他の異熱伝導金属充填部
20c 他の異熱伝導金属充填部
30 スリット
32 ボルト穴
40 バックアッププレート
42 スタッドボルト
44 冷却水
1 Slab continuous casting machine 2 Tandish 3 Sliding nozzle 4 Immersion nozzle 5 Continuous casting mold 5a Mold long side copper plate 6 Support roll 7 Guide roll 8 Pinch roll 9 Conveyance roll 10 Shard cutting machine 11 Molten steel 12 Slab 12a Slab slab 13 Solidified shell 14 Unsolidified part 15 Solidified completed position 16 Forced bulging band 17 Light reduction band 18 Meniscus position 19 Different heat conductive metal filling part 19a 1 Different heat conductive metal filling part 19b Other different heat conductive metal filling part 19c Other Different heat conductive metal filling part 20 Different heat conductive metal filling part 20a 1 Different heat conductive metal filling part 20b Other different heat conductive metal filling part 20c Other different heat conductive metal filling part 30 Slit 32 Bolt hole 40 Backup plate 42 Stud Bolt 44 cooling water

Claims (8)

連続鋳造用鋳型内に溶鋼を注入しつつ、前記連続鋳造用鋳型を鋳造方向に振動させながら前記溶鋼を引き抜いて、鋳片を製造する鋼の連続鋳造方法であって、
連続鋳造用鋳型は、定常鋳込み状態のメニスカス位置より上方へ少なくとも20mmの位置から前記メニスカス位置より下方へ少なくとも50mm以上、多くとも200mm以下の位置までの鋳型銅板の内壁面に設けられた複数の凹溝を有し、
前記複数の凹溝の内部には、前記鋳型銅板の熱伝導率に対して熱伝導率差の比率が20%以上である金属もしくは金属合金が充填された複数の異熱伝導金属充填部が設けられ、前記複数の異熱伝導金属充填部が設けられた前記内壁面の面積に対する全ての異熱伝導金属充填部の面積の総和の比である面積率が10%以上80%以下であり、
オシレーション振動数(f)と鋳造速度(Vc)とで導かれるオシレーションマークピッチ(OMP)及び距離(D1)が下記(1)式を満足し、距離(D2)が下記(2)式を満足する、鋼の連続鋳造方法。
D1≦OMP=Vc×1000/f・・・(1)
D2≦4r ・・・(2)
但し、(1)式において、
Vcは、鋳造速度(m/min)であり、
fは、オシレーション振動数(cpm)であり、
OMPは、オシレーションマークピッチ(mm)であり、
D1は、複数のうちの1の異熱伝導金属充填部の重心と、前記鋳型銅板の幅方向に同じ位置に設けられた他の異熱伝導金属充填部であって、前記1の異熱伝導金属充填部に鋳造方向で隣り合う他の異熱伝導金属充填部と前記鋳型銅板との境界線から、前記1の異熱伝導金属充填部と前記鋳型銅板との境界線までの距離(mm)であり、
(2)式において、
rは、前記異熱伝導金属充填部の重心を中心とし、前記異熱伝導金属充填部の面積と同一の面積の円の半径(mm)であり、
D2は、前記1の異熱伝導金属充填部の重心と鋳造方向に同じ位置に設けられた他の異熱伝導金属充填部であって、前記1の異熱伝導金属充填部に前記幅方向で隣り合う他の異熱伝導金属充填部の重心から、前記1の異熱伝導金属充填部の重心まで、の距離(mm)である。
A method for continuously casting steel to produce slabs by injecting molten steel into a mold for continuous casting and pulling out the molten steel while vibrating the mold for continuous casting in the casting direction.
The mold for continuous casting has a plurality of recesses provided on the inner wall surface of the mold copper plate from a position at least 20 mm above the meniscus position in the steady casting state to a position at least 50 mm or more and at most 200 mm or less below the meniscus position. Has a groove,
Inside the plurality of recesses, a plurality of different heat conductive metal filling portions filled with a metal or a metal alloy having a ratio of the thermal conductivity difference to the thermal conductivity of the mold copper plate of 20% or more are provided. The area ratio, which is the ratio of the total area of all the different heat conductive metal filling parts to the area of the inner wall surface provided with the plurality of different heat conductive metal filling parts, is 10% or more and 80% or less.
The oscillation mark pitch (OMP) and the distance (D1) derived from the oscillation frequency (f) and the casting speed (Vc) satisfy the following equation (1), and the distance (D2) satisfies the following equation (2). Satisfied continuous casting method of steel.
D1 ≤ OMP = Vc x 1000 / f ... (1)
D2 ≦ 4r ・ ・ ・ (2)
However, in equation (1),
Vc is the casting speed (m / min).
f is the oscillation frequency (cpm).
OMP is the oscillation mark pitch (mm).
D1 is the center of gravity of one of the plurality of different heat conductive metal filling portions and another different heat conductive metal filling portion provided at the same position in the width direction of the mold copper plate, and is the different heat conductive metal filling portion of 1. Distance (mm) from the boundary line between the mold copper plate and another different heat conductive metal filling part adjacent to the metal filling part in the casting direction to the boundary line between the different heat conductive metal filling part 1 and the mold copper plate. And
In equation (2)
r is the radius (mm) of a circle having the same area as the area of the different heat conductive metal filling portion centered on the center of gravity of the different heat conductive metal filling portion.
D2 is another different heat conductive metal filling part provided at the same position in the casting direction as the center of gravity of the different heat conductive metal filling part of the above 1, and is formed in the different heat conductive metal filling part of the above 1 in the width direction. It is the distance (mm) from the center of gravity of the other adjacent different heat conductive metal filling portions to the center of gravity of the different heat conductive metal filling portion of 1.
前記複数の異熱伝導金属充填部は、前記距離(D1)が下記の(3)式を満足するように設けられる、請求項1に記載の鋼の連続鋳造方法。
D1≦2r・・・(3)
The method for continuous casting of steel according to claim 1, wherein the plurality of different heat conductive metal filling portions are provided so that the distance (D1) satisfies the following equation (3).
D1 ≤ 2r ... (3)
前記複数の凹溝の形状は全て同じである、請求項1または請求項2に記載の鋼の連続鋳造方法。 The method for continuously casting steel according to claim 1 or 2, wherein the shapes of the plurality of concave grooves are all the same. 前記複数の凹溝の形状は円形または角のない擬似円形である、請求項1から請求項3の何れか一項に記載の鋼の連続鋳造方法。 The method for continuously casting steel according to any one of claims 1 to 3, wherein the shape of the plurality of concave grooves is a circle or a pseudo-circle without corners. 前記複数の異熱伝導金属充填部は格子状に設けられる、請求項1から請求項4の何れか一項に記載の鋼の連続鋳造方法。 The method for continuously casting steel according to any one of claims 1 to 4, wherein the plurality of different heat conductive metal filling portions are provided in a lattice pattern. 前記複数の異熱伝導金属充填部は千鳥状に設けられる、請求項1から請求項4の何れか一項に記載の鋼の連続鋳造方法。 The method for continuously casting steel according to any one of claims 1 to 4, wherein the plurality of different heat conductive metal filling portions are provided in a staggered pattern. 連続鋳造機に設けられた複数対の鋳片支持ロールのロール開度を鋳造方向下流側に向かって段階的に増加させることで、内部に未凝固部を有する鋳片の長辺面を鋳型出口での鋳片厚み(鋳片長辺面間の厚み)に対して0mm超え20mm以下の範囲の総バルジング量で拡大させ、
その後、前記複数対の鋳片支持ロールのロール開度を鋳造方向下流側に向かって段階的に減少させた軽圧下帯で、前記鋳片の厚み中心部の固相率が少なくとも0.2の時点から0.9になる時点まで、圧下速度(mm/min)と鋳造速度(m/min)との積(mm・m/min)が0.30以上1.00以下に相当する圧下力を前記鋳片の長辺面に付与し、前記圧下力によって前記総バルジング量と同等の総圧下量または前記総バルジング量よりも小さい総圧下量で前記鋳片の長辺面を圧下する、請求項1から請求項6の何れか一項に記載の鋼の連続鋳造方法。
By gradually increasing the roll opening of a plurality of pairs of slab support rolls provided in the continuous casting machine toward the downstream side in the casting direction, the long side surface of the slab having an unsolidified portion inside is formed at the mold outlet. The total bulging amount in the range of more than 0 mm and 20 mm or less with respect to the slab thickness (thickness between the long side faces of the slab) in
After that, in a light reduction zone in which the roll opening degree of the plurality of pairs of slab support rolls is gradually reduced toward the downstream side in the casting direction, the solid phase ratio at the center of the thickness of the slab is at least 0.2. The rolling force corresponding to the product (mm · m / min 2 ) of the rolling speed (mm / min) and the casting speed (m / min 2) of 0.30 or more and 1.00 or less from the time point to the time point of 0.9. Is applied to the long side surface of the slab, and the long side surface of the slab is reduced by the reducing force with a total reduction amount equal to the total bulging amount or a total reduction amount smaller than the total bulging amount. The method for continuously casting steel according to any one of items 1 to 6.
前記鋳型銅板の外壁面には、鋳造方向に沿った複数のスリットが前記鋳型銅板の幅方向に単数または複数のピッチで設けられ、
前記複数のスリットが単数のピッチで設けられている場合は、前記単数のピッチをZ(mm)とし、前記複数のスリットが複数のピッチで設けられている場合は、前記複数のピッチのうち最も長いピッチをZ(mm)としたとき、
前記Zが下記(4)式を満足する、請求項1から請求項7の何れか一項に記載の鋼の連続鋳造方法。
Z≧2.5×D2・・・(4)
A plurality of slits along the casting direction are provided on the outer wall surface of the mold copper plate at a single pitch or a plurality of pitches in the width direction of the mold copper plate.
When the plurality of slits are provided at a single pitch, the single pitch is Z (mm), and when the plurality of slits are provided at a plurality of pitches, the most of the plurality of pitches. When the long pitch is Z (mm)
The method for continuously casting steel according to any one of claims 1 to 7, wherein Z satisfies the following equation (4).
Z ≧ 2.5 × D2 ・ ・ ・ (4)
JP2018540270A 2016-09-21 2017-09-20 Continuous steel casting method Active JP6947737B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016183726 2016-09-21
JP2016183726 2016-09-21
PCT/JP2017/009906 WO2018055799A1 (en) 2016-09-21 2017-03-13 Continuous steel casting method
JPPCT/JP2017/009906 2017-03-13
PCT/JP2017/033955 WO2018056322A1 (en) 2016-09-21 2017-09-20 Continuous steel casting method

Publications (2)

Publication Number Publication Date
JPWO2018056322A1 JPWO2018056322A1 (en) 2019-10-17
JP6947737B2 true JP6947737B2 (en) 2021-10-13

Family

ID=61690210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018540270A Active JP6947737B2 (en) 2016-09-21 2017-09-20 Continuous steel casting method

Country Status (6)

Country Link
EP (1) EP3488947B1 (en)
JP (1) JP6947737B2 (en)
KR (1) KR102245010B1 (en)
BR (1) BR112019004155B1 (en)
TW (2) TWI630961B (en)
WO (1) WO2018055799A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203715A1 (en) 2019-04-02 2020-10-08 Jfeスチール株式会社 Method for continuous steel casting
KR102216880B1 (en) 2019-04-16 2021-02-18 넷마블 주식회사 A game server and a computer program providing custom voice
KR20210021501A (en) 2021-02-10 2021-02-26 넷마블 주식회사 A game server and a computer program providing custom voice

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206555A (en) * 1981-06-16 1982-12-17 Kawasaki Steel Corp Cooling method for water cooled mold for continuous casting of slab
US5176197A (en) * 1990-03-30 1993-01-05 Nippon Steel Corporation Continuous caster mold and continuous casting process
JP2980006B2 (en) 1995-08-18 1999-11-22 住友金属工業株式会社 Continuous casting method
JPH0994634A (en) 1995-09-29 1997-04-08 Kawasaki Steel Corp Water cooling mold for continuous casting
JP3055453B2 (en) 1996-01-29 2000-06-26 住友金属工業株式会社 Continuous casting method
JPH09276994A (en) * 1996-04-22 1997-10-28 Nippon Steel Corp Mold for continuous casting
JP3380412B2 (en) 1997-01-07 2003-02-24 新日本製鐵株式会社 Mold for continuous casting of molten steel
JP3402251B2 (en) 1999-04-06 2003-05-06 住友金属工業株式会社 Continuous casting method
JP2001105102A (en) * 1999-10-14 2001-04-17 Kawasaki Steel Corp Mold for continuous casting and continuous casting method
CN1256203C (en) * 2004-07-19 2006-05-17 钢铁研究总院 Method for improving continuous casting blank quality and vibration support roller device
JP5655988B2 (en) * 2012-06-27 2015-01-21 Jfeスチール株式会社 Continuous casting mold and steel continuous casting method
WO2014020860A1 (en) * 2012-07-31 2014-02-06 Jfeスチール株式会社 Method for continuously casting steel
JP5992851B2 (en) * 2013-03-26 2016-09-14 Jfeスチール株式会社 Continuous casting mold and method for producing the continuous casting mold
JP6003850B2 (en) * 2013-09-06 2016-10-05 Jfeスチール株式会社 Manufacturing method of continuous casting mold and continuous casting method of steel
JP5962733B2 (en) * 2013-10-10 2016-08-03 Jfeスチール株式会社 Steel continuous casting method
BR112017008615B1 (en) * 2014-10-28 2022-02-15 Jfe Steel Corporation CONTINUOUS CASTING MOLD AND METHOD FOR CONTINUOUS CASTING STEEL
KR102245013B1 (en) * 2015-07-22 2021-04-26 제이에프이 스틸 가부시키가이샤 Continuous casting method of molds and steels for continuous casting

Also Published As

Publication number Publication date
TWI655979B (en) 2019-04-11
BR112019004155B1 (en) 2023-04-11
TW201813739A (en) 2018-04-16
TWI630961B (en) 2018-08-01
BR112019004155A2 (en) 2019-05-28
EP3488947A4 (en) 2019-08-21
TW201813740A (en) 2018-04-16
KR20190029757A (en) 2019-03-20
EP3488947B1 (en) 2020-08-19
KR102245010B1 (en) 2021-04-26
JPWO2018056322A1 (en) 2019-10-17
WO2018055799A1 (en) 2018-03-29
EP3488947A1 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP5692451B2 (en) Continuous casting mold and steel continuous casting method
JP6947737B2 (en) Continuous steel casting method
JP6439762B2 (en) Steel continuous casting method
JP6365604B2 (en) Steel continuous casting method
JP5962733B2 (en) Steel continuous casting method
WO2018056322A1 (en) Continuous steel casting method
JP6787359B2 (en) Continuous steel casting method
JP6428721B2 (en) Continuous casting mold and steel continuous casting method
JP5712685B2 (en) Continuous casting method
JP6947192B2 (en) Mold for continuous casting of steel and continuous casting method of steel
JP6740924B2 (en) Continuous casting mold and steel continuous casting method
JP6402750B2 (en) Steel continuous casting method
JP2018149602A (en) Method for continuously casting steel
JP7004085B2 (en) Mold for continuous steel casting and continuous steel casting method
JP7020376B2 (en) Mold for continuous steel casting and continuous steel casting method
JP7031628B2 (en) Continuous steel casting method
JP2016168610A (en) Steel continuous casting method
JP6146346B2 (en) Mold for continuous casting of steel and continuous casting method
JP2024035081A (en) Continuous casting mold
JP2024047886A (en) Continuous casting mold and method of manufacturing the same
JP2024047887A (en) Continuous casting mold, manufacturing method for continuous casting mold, and continuous casting method for steel

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190618

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201104

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210203

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210629

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210803

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210914

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210916

R150 Certificate of patent or registration of utility model

Ref document number: 6947737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150