JP7004085B2 - Mold for continuous steel casting and continuous steel casting method - Google Patents

Mold for continuous steel casting and continuous steel casting method Download PDF

Info

Publication number
JP7004085B2
JP7004085B2 JP2020556110A JP2020556110A JP7004085B2 JP 7004085 B2 JP7004085 B2 JP 7004085B2 JP 2020556110 A JP2020556110 A JP 2020556110A JP 2020556110 A JP2020556110 A JP 2020556110A JP 7004085 B2 JP7004085 B2 JP 7004085B2
Authority
JP
Japan
Prior art keywords
mold
cooling water
continuous casting
water channel
substance filling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020556110A
Other languages
Japanese (ja)
Other versions
JPWO2020095932A1 (en
Inventor
則親 荒牧
陽一 伊藤
智也 小田垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2020095932A1 publication Critical patent/JPWO2020095932A1/en
Application granted granted Critical
Publication of JP7004085B2 publication Critical patent/JP7004085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/08Accessories for starting the casting procedure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0401Moulds provided with a feed head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

本発明は、凝固シェルの不均一冷却に起因する鋳片表面割れを防止するとともに、鋳型の使用回数が従来技術よりも向上した連続鋳造用鋳型に関し、また、この連続鋳造用鋳型を用いた鋼の連続鋳造方法に関する。 The present invention relates to a mold for continuous casting in which the number of times the mold is used is improved as compared with the prior art while preventing cracks on the surface of the slab due to non-uniform cooling of the solidified shell, and the steel using the mold for continuous casting. Regarding the continuous casting method.

鋼の連続鋳造では、鋳型内に注入された溶鋼は水冷式鋳型によって冷却され、鋳型との接触面で溶鋼が凝固して凝固層(「凝固シェル」という)が生成される。この凝固シェルを外殻とし、内部を未凝固の溶鋼とする鋳片を、鋳型下方に設けた鋳片支持ロールで支持しつつ且つ水スプレーや気水スプレーによって冷却しつつ連続的に鋳型下方に引き抜き、中心部まで凝固させて鋼鋳片を製造している。 In continuous steel casting, the molten steel injected into the mold is cooled by a water-cooled mold, and the molten steel solidifies at the contact surface with the mold to form a solidified layer (referred to as a "solidified shell"). A slab having this solidified shell as an outer shell and an unsolidified molten steel inside is continuously supported by a slab support roll provided below the mold and continuously cooled by a water spray or an air-water spray to the lower part of the mold. Steel slabs are manufactured by drawing and solidifying to the center.

鋳型での凝固シェルの冷却が不均一になると、凝固シェルの厚みが鋳片引き抜き方向及び鋳型幅方向で不均一となる。凝固シェルには、凝固シェル自体の収縮や変形に起因する応力が作用する。この応力は凝固シェルの薄肉部に集中し、集中した応力によって凝固初期の凝固シェルの表面に割れが発生する。この割れは、その後の熱応力や連続鋳造機の曲げ応力及び矯正応力などの外力によって拡大し、大きな表面割れとなる。鋳片の表面割れは、次工程の熱間圧延工程において鋼製品の表面欠陥となる。したがって、鋼製品の表面欠陥の発生を防止するためには、鋳片表面を溶削する、または、研削し、鋳片段階でその表面割れを除去することが必要である。 When the cooling of the solidified shell in the mold becomes non-uniform, the thickness of the solidified shell becomes non-uniform in the slab drawing direction and the mold width direction. Stress caused by shrinkage and deformation of the solidified shell itself acts on the solidified shell. This stress is concentrated on the thin part of the solidified shell, and the concentrated stress causes cracks on the surface of the solidified shell at the initial stage of solidification. This crack expands due to external forces such as subsequent thermal stress, bending stress of the continuous casting machine, and straightening stress, and becomes a large surface crack. Surface cracks in the slab become surface defects in the steel product in the hot rolling process of the next step. Therefore, in order to prevent the occurrence of surface defects in steel products, it is necessary to melt or grind the surface of the slab to remove the surface cracks at the slab stage.

鋳型内の不均一凝固は、特に、炭素含有量が0.08~0.17質量%の鋼(「中炭素鋼」という)で発生しやすい。中炭素鋼では凝固時に包晶反応が起こる。鋳型内の不均一凝固は、包晶反応によるδ鉄(フェライト)からγ鉄(オーステナイト)への変態時の体積収縮による変態応力に起因すると考えられている。つまり、包晶反応時の変態応力に起因する歪みによって凝固シェルが変形し、この変形により凝固シェルが鋳型内壁面から離れる。鋳型内壁面から離れた部位は鋳型による冷却が低下し、この鋳型内壁面から離れた部位の凝固シェル厚みが薄くなる。凝固シェル厚みが薄くなると、この部分に上記応力が集中し、表面割れが発生すると考えられている。 Non-uniform solidification in the mold is particularly likely to occur in steels with a carbon content of 0.08 to 0.17% by mass (referred to as "medium carbon steel"). In medium carbon steel, a peritectic reaction occurs during solidification. The non-uniform solidification in the mold is considered to be caused by the transformation stress due to the volume shrinkage during the transformation from δ iron (ferrite) to γ iron (austenite) due to the peritectic reaction. That is, the solidified shell is deformed by the strain caused by the transformation stress during the peritectic reaction, and this deformation causes the solidified shell to separate from the inner wall surface of the mold. Cooling by the mold is reduced at the portion away from the inner wall surface of the mold, and the thickness of the solidified shell at the portion away from the inner wall surface of the mold is reduced. It is considered that when the solidified shell thickness becomes thin, the above stress is concentrated on this portion and surface cracking occurs.

そこで、包晶反応を伴う鋼の鋳片表面割れを防止することを目的として、多数の提案がなされている。例えば、特許文献1には、鋳型内壁面に、鋳型プレート(「鋳型銅板」ともいう)を構成する銅合金とは熱伝導率が異なる部位であって、それぞれが独立して複数形成されている異種物質充填部を有する連続鋳造用鋳型が提案されている。特許文献1は、この鋳型を用いることで、凝固初期の凝固シェルの不均一冷却による鋳片の表面割れを効果的に防止できる旨を記載している。特に、包晶反応を伴う中炭素鋼での、δ鉄からγ鉄への変態に起因する凝固シェル厚みが不均一になることによる鋳片の表面割れを効果的に防止できる旨が記載されている。 Therefore, many proposals have been made for the purpose of preventing cracks on the surface of steel slabs accompanied by a peritectic reaction. For example, in Patent Document 1, a plurality of parts having different thermal conductivity from the copper alloy constituting the mold plate (also referred to as “mold copper plate”) are independently formed on the inner wall surface of the mold. A mold for continuous casting having a dissimilar material filling part has been proposed. Patent Document 1 describes that by using this mold, surface cracking of the slab due to non-uniform cooling of the solidified shell at the initial stage of solidification can be effectively prevented. In particular, it is described that surface cracking of slabs due to non-uniform solidification shell thickness due to transformation from δ iron to γ iron in medium carbon steel accompanied by austenite reaction can be effectively prevented. There is.

特開2017-39165号公報Japanese Unexamined Patent Publication No. 2017-39165

特許文献1に記載された鋼の連続鋳造用鋳型では、鋳型プレートとは異なる材料である異種物質充填部が鋳型プレートに形成されているので、鋳型プレートと異種物質充填部とで熱膨張率が異なり、これらの境界部位に熱応力が集中し易い。結果的に、鋳型表面に割れが生じ易い。また、特許文献1は、熱履歴による鋳型表面の割れを抑制することを目的として、異種物質充填部を覆う鍍金層を鋳型内壁面に設けることが好ましいとし、これにより、鋳型の長寿命化を図ることが可能としている。しかしながら、鋳型内壁面に鍍金層を設けたとしても、鋳型プレートと異種物質充填部とで熱応力の差が生じることに変わりはなく、異種物質充填部が形成された鋳型は使用寿命が短い傾向にある。つまり、特許文献1に記載された鋳型の使用寿命を延長する技術が希求されている。 In the mold for continuous casting of steel described in Patent Document 1, since a dissimilar substance filling portion, which is a material different from that of the mold plate, is formed on the mold plate, the thermal expansion rate is different between the mold plate and the dissimilar substance filling portion. Unlike these boundaries, thermal stress tends to concentrate. As a result, the mold surface is prone to cracking. Further, Patent Document 1 states that it is preferable to provide a plating layer on the inner wall surface of the mold for covering the dissimilar substance-filled portion for the purpose of suppressing cracking of the mold surface due to thermal history, thereby extending the life of the mold. It is possible to plan. However, even if a plating layer is provided on the inner wall surface of the mold, there is still a difference in thermal stress between the mold plate and the dissimilar substance filling portion, and the mold on which the dissimilar substance filling portion is formed tends to have a short service life. It is in. That is, there is a demand for a technique for extending the service life of the mold described in Patent Document 1.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、異種物質充填部が形成された鋼の連続鋳造用鋳型において、鋳型の使用回数を従来技術に比較して格段に延長させることが可能な連続鋳造用鋳型を提供することである。また、前記連続鋳造用鋳型を用いた鋼の連続鋳造方法を提供することである。 The present invention has been made in view of the above circumstances, and an object thereof is to significantly reduce the number of times the mold is used in a mold for continuous casting of steel in which a dissimilar substance filling portion is formed as compared with the prior art. It is to provide a mold for continuous casting which can be extended. Another object of the present invention is to provide a method for continuously casting steel using the continuous casting mold.

本発明者らは、前記課題を解決するべく鋭意検討した。その結果、異種物質充填部が形成された領域に対応する冷却水路と、該冷却流路を通過する水流との熱伝達係数を増大させ、前記領域の鋳型プレートを効果的に抜熱することが有効であるとの知見を得た。これは、異種物質充填部が形成された領域の鋳型プレートを効果的に抜熱することで、異種物質充填部及び鋳型プレートの温度が下がり、これによって鋳型プレートと異種物質充填部との境界部位の熱応力が低減されることによる。 The present inventors have diligently studied to solve the above-mentioned problems. As a result, it is possible to increase the heat transfer coefficient between the cooling water channel corresponding to the region where the dissimilar substance filling portion is formed and the water flow passing through the cooling flow path, and effectively remove heat from the mold plate in the region. We obtained the finding that it is effective. This is because the temperature of the dissimilar substance filling part and the mold plate is lowered by effectively removing heat from the mold plate in the region where the dissimilar substance filling part is formed, whereby the boundary portion between the mold plate and the dissimilar substance filling part is formed. By reducing the thermal stress of.

本発明は、上記知見に基づきなされたものであり、その要旨は以下のとおりである。
[1] 表面が鋳型内壁面を形成し、裏面に冷却水路が形成された銅合金製の鋳型プレートと、
前記冷却水路を覆うように前記鋳型プレートに取り付けられるバックアッププレートと、を備えた鋼の連続鋳造用鋳型であって、
前記鋳型プレートの表面の少なくともメニスカスを含む領域に形成された凹部に、前記鋳型プレートの熱伝導率とは異なる熱伝導率の異種物質が充填された異種物質充填部が形成され、
前記異種物質充填部が形成されている領域に対応する前記鋳型プレートの裏面の冷却水路には、水流を撹乱し且つ前記冷却水路の表面積を大きくする水流撹乱部が形成されている、鋼の連続鋳造用鋳型。
[2] 前記水流撹乱部が、前記水流の流れ方向に沿って複数配置され且つ前記冷却水路の鋳型幅方向及び冷却水路の厚み方向に広がる突起で構成されている、上記[1]に記載の鋼の連続鋳造用鋳型。
[3] 前記水流撹乱部が、前記冷却水路に千鳥配置に複数配置される突起で構成されている、上記[1]に記載の鋼の連続鋳造用鋳型。
[4] 前記異種物質充填部は、複数の円形凹部または擬似円形凹部を含み、且つ、複数形成されており、
前記鋳型プレートの表面における複数の異種物質充填部の上端から下端までの領域で、鋳型内壁面から前記冷却水路に向かう鋳型内壁面での熱流束が周期的に変化するように、前記複数の異種物質充填部が形成されている、上記[1]から上記[3]のいずれかに記載の鋼の連続鋳造用鋳型。
[5] 前記異種物質充填部及び前記冷却水路は、下記の(1)式から下記の(3)式のうちの少なくとも1つの条件を満たすように形成されている、上記[4]に記載の鋼の連続鋳造用鋳型。
d<P≦S ………(1)
e≦L≦1000×Vc/f ………(2)
F≦L ………(3)
ここで、(1)式から(3)式において、各記号は以下を表す。
d;鋳型幅方向での異種物質充填部の幅(mm)
P;異種物質充填部のうち隣接する同士の鋳型幅方向での間隔距離(mm)
S;鋳型プレートの裏面に複数形成される冷却水路のうち隣接する同士の鋳型幅方向での間隔距離(mm)
e;鋳片引き抜き方向での異種物質充填部の幅(mm)
L;異種物質充填部のうち隣接する同士の鋳片引き抜き方向の間隔距離(mm)
Vc;鋼の連続鋳造工程における鋳片引き抜き速度(m/min)
f;鋼の連続鋳造工程における連続鋳造用鋳型の振動周波数(1/min)
F;冷却水路に配置される突起のうち隣接する同士の鋳片引き抜き方向の間隔距離(mm)
[6] 前記異種物質充填部は、下記の(4)式の条件を満たすように形成されている、上記[4]または上記[5]に記載の鋼の連続鋳造用鋳型。
0.5≦t≦d ………(4)
ここで、(4)式において、各記号は以下を表す。
t;異種物質充填部における異種物質の充填深さ(mm)
d;鋳型幅方向での異種物質充填部の幅(mm)
[7] 前記異種物質充填部を覆うように、鍍金層が前記鋳型プレートの表面に形成されている、上記[1]から上記[6]のいずれかに記載の鋼の連続鋳造用鋳型。
[8] 上記[1]から上記[7]のいずれかに記載の鋼の連続鋳造用鋳型を用いた鋼の連続鋳造方法であって、冷却水路中の水流撹乱部が形成された位置では水流が乱流となるように前記連続鋳造用鋳型に冷却水を供給する、鋼の連続鋳造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A copper alloy mold plate having a mold inner wall surface formed on the front surface and a cooling water channel formed on the back surface.
A mold for continuous casting of steel comprising a backup plate attached to the mold plate so as to cover the cooling water channel.
In the recess formed on the surface of the mold plate at least in the region containing the meniscus, a heterogeneous substance filling portion filled with a heterogeneous substance having a thermal conductivity different from that of the mold plate is formed.
The cooling water channel on the back surface of the mold plate corresponding to the region where the dissimilar substance filling portion is formed is formed with a water flow disturbing portion that disturbs the water flow and increases the surface area of the cooling water channel. Casting mold.
[2] The above-mentioned [1], wherein a plurality of the water flow disturbing portions are arranged along the flow direction of the water flow and are composed of protrusions extending in the mold width direction of the cooling water channel and the thickness direction of the cooling water channel. Mold for continuous casting of steel.
[3] The mold for continuous casting of steel according to the above [1], wherein the water flow disturbing portion is composed of a plurality of protrusions arranged in a staggered arrangement in the cooling water channel.
[4] The dissimilar substance filling portion includes a plurality of circular recesses or pseudo-circular recesses, and is formed in a plurality.
In the region from the upper end to the lower end of the plurality of dissimilar substance filling portions on the surface of the mold plate, the plurality of dissimilar substances so that the heat flux on the inner wall surface of the mold from the inner wall surface of the mold to the cooling water channel changes periodically. The mold for continuous casting of steel according to any one of the above [1] to [3], wherein a material filling portion is formed.
[5] The above-mentioned [4], wherein the dissimilar substance filling portion and the cooling water channel are formed so as to satisfy at least one of the following equations (1) to (3). Mold for continuous casting of steel.
d <P ≦ S ……… (1)
e ≦ L ≦ 1000 × Vc / f ……… (2)
F ≤ L ……… (3)
Here, in the equations (1) to (3), each symbol represents the following.
d; Width of dissimilar substance filling portion in the mold width direction (mm)
P; Spacing distance (mm) in the mold width direction between adjacent parts filled with different substances
S; Spacing distance (mm) in the mold width direction between adjacent cooling water channels formed on the back surface of the mold plate.
e; Width (mm) of dissimilar substance filling part in the slab drawing direction
L; Spacing distance (mm) in the slab drawing direction between adjacent parts of the filling part of different substances
Vc; slab drawing speed (m / min) in the continuous steel casting process
f; Vibration frequency (1 / min) of the mold for continuous casting in the continuous casting process of steel
F; Distance between adjacent protrusions arranged in the cooling water channel in the slab drawing direction (mm)
[6] The mold for continuous casting of steel according to the above [4] or the above [5], wherein the dissimilar substance filling portion is formed so as to satisfy the condition of the following formula (4).
0.5 ≦ t ≦ d ……… (4)
Here, in the equation (4), each symbol represents the following.
t; Filling depth of dissimilar substances in dissimilar substance filling part (mm)
d; Width (mm) of dissimilar substance filling portion in the mold width direction
[7] The mold for continuous casting of steel according to any one of the above [1] to [6], wherein a plating layer is formed on the surface of the mold plate so as to cover the dissimilar substance filling portion.
[8] The method for continuous steel casting using the steel continuous casting mold according to any one of the above [1] to [7], wherein the water flow is formed at a position in the cooling water channel where a water flow disturbing portion is formed. A method for continuous casting of steel, in which cooling water is supplied to the continuous casting mold so that the flow becomes turbulent.

本発明に係る鋼の連続鋳造用鋳型には、異種物質充填部が形成された領域に対応する範囲の冷却水路に、水流を撹乱し且つ冷却水路の表面積を大きくする水流撹乱部を設けてある。これにより、その範囲の冷却水路では、水流と冷却水路との熱伝達係数が大きくなって対流伝熱量が増大し、異種物質充填部が形成された領域の鋳型プレートの熱を効果的に除去可能としている。異種物質充填部と鋳型プレートとを効果的に冷却することで、鋳型プレートと異種物質充填部との境界部位で生じる熱応力を効果的に抑えることができる。結果的に、包晶反応を伴う鋼種の鋳片表面割れを防止し且つ異種物質充填部が形成された鋳型の使用回数の延長、つまり、長寿命化を図ることが可能となる。 The mold for continuous casting of steel according to the present invention is provided with a water flow disturbing portion that disturbs the water flow and increases the surface area of the cooling water channel in the cooling water channel in the range corresponding to the region where the dissimilar substance filling portion is formed. .. As a result, in the cooling water channel in that range, the heat transfer coefficient between the water flow and the cooling water channel increases, the amount of convection heat transfer increases, and the heat of the mold plate in the region where the dissimilar substance filling portion is formed can be effectively removed. It is supposed to be. By effectively cooling the dissimilar substance filling portion and the mold plate, the thermal stress generated at the boundary portion between the mold plate and the dissimilar substance filling portion can be effectively suppressed. As a result, it is possible to prevent cracking on the surface of the slab of the steel grade accompanied by the peritectic reaction and to extend the number of times the mold with the different substance filling portion is formed, that is, to extend the life.

図1は鋼の連続鋳造用鋳型の斜視図である。FIG. 1 is a perspective view of a mold for continuous casting of steel. 図2は、本発明の実施形態の鋳型長辺を構成する鋳型プレートの表面の一例を示す図である。FIG. 2 is a diagram showing an example of the surface of a mold plate constituting the long side of the mold according to the embodiment of the present invention. 図3は、図2の四角形(□)で囲った部位の鋳型長辺の構造を示す図である。FIG. 3 is a diagram showing the structure of the long side of the mold of the portion surrounded by the quadrangle (□) in FIG. 図4は、本発明の別の実施形態の鋳型プレートの裏面を示す図である。FIG. 4 is a diagram showing the back surface of a mold plate according to another embodiment of the present invention. 図5は、本発明の別の実施形態の鋳型長辺の鉛直断面図である。FIG. 5 is a vertical cross-sectional view of the long side of the mold according to another embodiment of the present invention.

以下、添付図面を参照して本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to the accompanying drawings.

本発明を説明する前に、鋼の連続鋳造方法を簡単に説明する。連続鋳造用鋳型の斜視図を図1に示す。スラブ鋳片を連続鋳造するための連続鋳造用鋳型1(以下、単に「鋳型1」とも記す)は、相対する一対の鋳型長辺2と、鋳型長辺2に挟持され且つ相対する一対の鋳型短辺3とを有する。鋳型1の上方には、溶鋼4を収容するタンディッシュ(図示せず)が配置されており、タンディッシュの底部には浸漬ノズル5が設置されている。一対の鋳型長辺2と一対の鋳型短辺3とで、鋳型1には矩形の内部空間が形成されており、この内部空間に浸漬ノズル5が挿入されている。後述するように、鋳型長辺2及び鋳型短辺3の溶鋼4と接触する側は、銅合金製の鋳型プレートで構成され、この鋳型プレートの背面にはバックアッププレートが配置されている。 Before explaining the present invention, a method for continuous casting of steel will be briefly described. A perspective view of the mold for continuous casting is shown in FIG. The continuous casting mold 1 for continuous casting of slab slabs (hereinafter, also simply referred to as "mold 1") is a pair of mold long sides 2 facing each other and a pair of molds sandwiched between the mold long sides 2 and facing each other. It has a short side 3. A tundish (not shown) for accommodating the molten steel 4 is arranged above the mold 1, and a dipping nozzle 5 is installed at the bottom of the tundish. A rectangular internal space is formed in the mold 1 by a pair of mold long sides 2 and a pair of mold short sides 3, and a dipping nozzle 5 is inserted in this internal space. As will be described later, the side of the mold long side 2 and the mold short side 3 in contact with the molten steel 4 is composed of a copper alloy mold plate, and a backup plate is arranged on the back surface of the mold plate.

鋳型長辺2及び鋳型短辺3を構成する銅合金製の鋳型プレートには、溶鋼4と接する面の裏側の面に冷却水路が形成されており、この冷却水路に冷却水を通過させて鋳型1を冷却している。鋼の連続鋳造の操業では、鋳型1の内部空間に浸漬ノズル5を介して溶鋼4を注入し、溶鋼4を鋳型1によって冷却して凝固させ、鋳型1との接触面に凝固シェルを形成させる。この凝固シェルを外殻とし、内部を未凝固の溶鋼4とする鋳片を、鉛直方向下方となる鋳片引き抜き方向Aに鋳型1から連続的に引き抜き、鋼のスラブ鋳片を製造する。鋳型1においては、溶鋼4及び高温の鋳片と接触することで、鋳型プレートの表面温度(溶鋼と接触する側の温度)は上昇し、鋳型内のメニスカスM(鋳型内溶鋼湯面)の位置近傍で最高値を示す。図1では、メニスカスMの位置を一点鎖線で示している。 The copper alloy mold plate constituting the mold long side 2 and the mold short side 3 has a cooling water channel formed on the back surface of the surface in contact with the molten steel 4, and the cooling water is passed through the cooling water channel to pass the cooling water to the mold. 1 is being cooled. In the continuous steel casting operation, the molten steel 4 is injected into the internal space of the mold 1 via the dipping nozzle 5, the molten steel 4 is cooled by the mold 1 and solidified, and a solidified shell is formed on the contact surface with the mold 1. .. A slab in which the solidified shell is used as an outer shell and the inside is made of unsolidified molten steel 4 is continuously drawn from the mold 1 in the slab drawing direction A which is downward in the vertical direction to manufacture a slab slab of steel. In the mold 1, the surface temperature of the mold plate (the temperature on the side in contact with the molten steel) rises due to contact with the molten steel 4 and the high-temperature slab, and the position of the meniscus M (the molten steel surface in the mold) in the mold. Shows the highest value in the vicinity. In FIG. 1, the position of the meniscus M is indicated by a chain double-dashed line.

鋼種にもよるが、特に、鋳型内壁面のメニスカスMの位置で、凝固シェルから鋳片引き抜き方向A及び鋳型幅方向Bで均一な抜熱を行うことが望ましい。凝固シェル厚みの均一な成長を促進できるからである。ここで、鋳片引き抜き方向Aと鋳型幅方向Bとは直交している。また、鋳型プレートとしては、熱応力に対する変形抵抗が高く、且つ、冷却水による冷却効果を高めることのできる熱伝導率の高い銅合金を使用する。 Although it depends on the steel type, it is particularly desirable to uniformly remove heat from the solidified shell in the slab drawing direction A and the mold width direction B at the position of the meniscus M on the inner wall surface of the mold. This is because the uniform growth of the solidified shell thickness can be promoted. Here, the slab drawing direction A and the mold width direction B are orthogonal to each other. Further, as the mold plate, a copper alloy having high deformation resistance to thermal stress and having high thermal conductivity capable of enhancing the cooling effect by cooling water is used.

鋳型1の下方には鋳片支持ロール(図示せず)が複数配置されており、且つ、隣接する鋳片支持ロールの間には、水スプレーノズルまたはエアーミストスプレーノズルが配置されている。水スプレーノズルまたはエアーミストスプレーノズルを介して冷却水を鋳片表面に吹き付けて鋳片を冷却しつつ鋳片支持ロールで鋳片を支持しつつ引き抜き、鋳片の中心部まで凝固が完了した後に、鋳片を所定の長さに切断する。 A plurality of slab support rolls (not shown) are arranged below the mold 1, and a water spray nozzle or an air mist spray nozzle is arranged between the adjacent slab support rolls. Cooling water is sprayed onto the surface of the slab through a water spray nozzle or an air mist spray nozzle to cool the slab, and the slab is pulled out while being supported by the slab support roll, and after solidification is completed to the center of the slab. , Cut the slab to a predetermined length.

上記のようにして、次工程の熱間圧延の対象となる所定長さの鋼鋳片が製造される。 As described above, steel slabs having a predetermined length to be hot-rolled in the next step are manufactured.

本発明は、異種物質充填部が設けられた鋳型プレートを冷却する冷却水路に、水流を撹乱し且つ冷却水路の表面積を大きくする部材を設けることで、冷却水路と冷却水との熱伝達係数を増大させ、鋳型プレートを効果的に抜熱する。これにより、異種物質充填部及びその周囲の鋳型プレートの温度を下げ、鋳型プレートと異種物質充填部との境界部位で生じる熱応力を抑え、連続鋳造用鋳型の長寿命化を図る。 In the present invention, the heat transfer coefficient between the cooling water channel and the cooling water is increased by providing a member for disturbing the water flow and increasing the surface area of the cooling water channel in the cooling water channel for cooling the mold plate provided with the dissimilar substance filling portion. Increase and effectively remove heat from the mold plate. As a result, the temperature of the dissimilar substance filling portion and the surrounding mold plate is lowered, the thermal stress generated at the boundary portion between the mold plate and the dissimilar substance filling portion is suppressed, and the life of the continuous casting mold is extended.

本発明に係る連続鋳造用鋳型の実施形態の一例を説明する。連続鋳造用鋳型1を構成する鋳型長辺2及び鋳型短辺3は、それぞれ、表面が鋳型内壁面を形成し、裏面に冷却水路が形成される鋳型プレートと、この鋳型プレートに、ボルトやナットによって取り付けられるバックアッププレートとを有する。 An example of the embodiment of the continuous casting mold according to the present invention will be described. The long side 2 and the short side 3 of the mold constituting the mold 1 for continuous casting each have a mold plate on which the front surface forms an inner wall surface of the mold and a cooling water channel is formed on the back surface, and bolts and nuts on the mold plate. Has a backup plate and is attached by.

鋳型長辺2を構成する鋳型プレートの表面の一例を図2に示す。鋳型プレート21の表面には、メニスカスMを含む領域に形成された凹部(へこみ部)に、鋳型プレート21とは熱伝導率が異なる異種物質が充填された異種物質充填部22が形成されている。異種物質充填部22は、少なくともメニスカスMを含むメニスカス近傍の鋳片引き抜き方向A及び鋳型幅方向Bに形成されている。異種物質を凹部に嵌合する形状に加工して、凹部に嵌め込んで異種物質を充填することも可能であるが、鍍金手段や溶射手段などによって凹部に異種物質を充填することも可能である。鍍金手段や溶射手段などによって凹部に異種物質を充填する場合には、凹部と異種物質との間に空隙が生じることを防ぐことができる。 FIG. 2 shows an example of the surface of the mold plate constituting the mold long side 2. On the surface of the mold plate 21, a dissimilar substance filling portion 22 filled with a dissimilar substance having a thermal conductivity different from that of the mold plate 21 is formed in a recess (dent portion) formed in a region containing the meniscus M. .. The dissimilar substance filling portion 22 is formed in the slab drawing direction A and the mold width direction B in the vicinity of the meniscus containing at least the meniscus M. It is possible to process a dissimilar substance into a shape that fits into the recess and fit it into the recess to fill the dissimilar substance, but it is also possible to fill the recess with the dissimilar substance by plating means, thermal spraying means, or the like. .. When the recess is filled with a dissimilar substance by a plating means, a thermal spraying means, or the like, it is possible to prevent the formation of a void between the recess and the dissimilar substance.

鋳型プレート21の表面には、円形状凹部を複数形成し、異種物質を円形状凹部に充填して、互いに独立した複数の異種物質装入部22を形成する。その場合、鋳型内壁面から冷却水路に向かう鋳型内壁面での熱流束が周期的に変化するように、異種物質装入部22の各々を規則的に配列することが好ましい。 A plurality of circular recesses are formed on the surface of the mold plate 21, and the circular recesses are filled with different substances to form a plurality of different substance charging portions 22 independent of each other. In that case, it is preferable to regularly arrange each of the dissimilar substance charging portions 22 so that the heat flux on the inner wall surface of the mold from the inner wall surface of the mold to the cooling water channel changes periodically.

メニスカスMの近傍を含む領域に異種物質充填部22を複数配列することで、メニスカスMの近傍を含む領域の鋳片引き抜き方向A及び鋳型幅方向Bにおける鋳型プレート21の熱抵抗は、規則的且つ周期的に増減される。これにより、メニスカスMの近傍、つまり、凝固初期での凝固シェルから鋳型プレート21への熱流束が規則的且つ周期的に増減する。熱流束の規則的且つ周期的な増減により、δ鉄からγ鉄への変態によって発生する応力や熱応力が低減し、これらの応力によって生じる凝固シェルの変形が小さくなる。凝固シェルの変形が小さくなることで、凝固シェルの変形に起因する不均一な熱流束分布が均一化され、且つ、発生する応力が分散されて個々の歪量が小さくなる。その結果、凝固シェル表面における表面割れの発生が防止される。 By arranging a plurality of different substance filling portions 22 in the region including the vicinity of the meniscus M, the thermal resistance of the mold plate 21 in the slab drawing direction A and the mold width direction B in the region including the vicinity of the meniscus M is regular and It is increased or decreased periodically. As a result, the heat flux from the solidified shell to the mold plate 21 in the vicinity of the meniscus M, that is, at the initial stage of solidification, increases and decreases regularly and periodically. The regular and periodic increase and decrease of the heat flux reduces the stress and thermal stress generated by the transformation from δ iron to γ iron, and the deformation of the solidified shell caused by these stresses is reduced. By reducing the deformation of the solidified shell, the non-uniform heat flux distribution caused by the deformation of the solidified shell is made uniform, and the generated stress is dispersed to reduce the individual strain amount. As a result, the occurrence of surface cracks on the surface of the solidified shell is prevented.

なお、凹部は、鋳型プレート21の表面における形状が完全な円形(「円形凹部」という)ではなく、擬似円形(「擬似円形凹部」という)であってもよい。擬似円形とは、例えば楕円形や、角部を円や楕円とする正方形や長方形など、角部を有していない形状である。更には、花びら模様のような形状であってもよい。 The concave portion may have a pseudo-circular shape (referred to as a “pseudo-circular concave portion”) instead of a perfect circular shape (referred to as a “circular concave portion”) on the surface of the mold plate 21. The pseudo-circle is a shape having no corners, such as an ellipse, a square or a rectangle whose corners are circles or ellipses. Further, it may have a shape like a petal pattern.

鋳型内壁面での熱流束の変化を確実に周期的なものとするべく、隣接する異種物質充填部22の間隔は同じであることが好ましい。また、鋳型長辺2及び鋳型短辺3を構成する鋳型プレートの熱伝導率に対して異種物質の熱伝導率は80%以下または125%以上であることが好ましい。なお、異種物質の熱伝導率は雰囲気温度の変化に伴い変化する。よって、異種物質及び鋳型プレートの熱伝導率は、鋳型の製造時における室温(常温)時を基準とする。室温時において、異種物質の熱伝導率が鋳型プレートの熱伝導率に対して20%程度の差があれば、鋳型内壁面での熱流束の規則的且つ周期的な増減により、δ鉄からγ鉄への変態によって発生する応力や熱応力を低減させることが可能である。但し、前述の変態によって発生する応力などを低減させて、鋳片の表面割れを防ぐことが可能であればよいので、異種物質の熱伝導率が必ずしも前述の範囲である必要はないし、異種物質充填部22同士の間隔も必ずしも同じである必要はない。 In order to ensure that the change in heat flux on the inner wall surface of the mold is periodic, it is preferable that the intervals between the adjacent dissimilar substance filling portions 22 are the same. Further, the thermal conductivity of the dissimilar substance is preferably 80% or less or 125% or more with respect to the thermal conductivity of the mold plate constituting the mold long side 2 and the mold short side 3. The thermal conductivity of different substances changes as the atmospheric temperature changes. Therefore, the thermal conductivity of different substances and the mold plate is based on the room temperature (normal temperature) at the time of manufacturing the mold. If there is a difference of about 20% in the thermal conductivity of dissimilar substances with respect to the thermal conductivity of the mold plate at room temperature, the heat flux on the inner wall surface of the mold will increase and decrease regularly and periodically, and the heat flux will increase from δ iron to γ. It is possible to reduce the stress and thermal stress generated by the transformation to iron. However, the thermal conductivity of different substances does not necessarily have to be in the above range, as long as it is possible to reduce the stress generated by the above-mentioned transformation and prevent surface cracking of the slab. The spacing between the filling portions 22 does not necessarily have to be the same.

鋳型プレートの熱伝導率に対して熱伝導率が80%以下となる異種物質の例としては、鍍金や溶射のしやすいNi(熱伝導率;約90W/(m×K))及びNi合金(熱伝導率;約40~90W/(m×K))を用いることができる。鋳型プレートには、銅合金(熱伝導率;約100~385W/(m×K))を使用し、例えば高熱伝導型の銅合金(熱伝導率;約318W/(m×K))や電磁攪拌用の低熱伝導型の銅合金(熱伝導率;約119~239W/(m×K))を用いることができる。但し、異種物質及び鋳型プレートには、Ni合金や銅合金以外の金属を使用可能である。 Examples of dissimilar substances having a thermal conductivity of 80% or less with respect to the thermal conductivity of the mold plate include plating, Ni (thermal conductivity; about 90 W / (m × K)) and Ni alloy (heat conductivity; Thermal conductivity; about 40-90 W / (m × K)) can be used. A copper alloy (thermal conductivity; about 100 to 385 W / (m × K)) is used for the mold plate, for example, a high thermal conductivity type copper alloy (thermal conductivity; about 318 W / (m × K)) or electromagnetic waves. A low thermal conductivity type copper alloy for stirring (thermal conductivity; about 119 to 239 W / (m × K)) can be used. However, metals other than Ni alloys and copper alloys can be used for dissimilar substances and mold plates.

鋳型プレートとしては、純銅(熱伝導率;約398W/(m×K))や前述の銅合金を使用してもよい。特に、鋳型内溶鋼の電磁攪拌を行う場合には、コイルからの溶鋼中への磁場強度を減衰させないために、銅成分以外の成分が数質量%加えられ、導電率が低くなった銅合金を使用することが好ましい。銅合金の熱伝導率は純銅に比べて低下する。即ち、鋳型1の用途に応じて、異種物質及び/または鋳型プレートの材料を適宜選択して、異種物質及び鋳型プレートの熱伝導率を調整することが望ましい。 As the mold plate, pure copper (thermal conductivity; about 398 W / (m × K)) or the above-mentioned copper alloy may be used. In particular, when the molten steel in the mold is electromagnetically agitated, in order not to attenuate the magnetic field strength from the coil into the molten steel, a copper alloy having a low conductivity due to the addition of several mass% of components other than the copper component is used. It is preferable to use it. The thermal conductivity of copper alloy is lower than that of pure copper. That is, it is desirable to appropriately select a different substance and / or a material of the mold plate according to the use of the mold 1 to adjust the thermal conductivity of the different substance and the mold plate.

図示及び説明を省略してある鋳型短辺3の表面に、鋳型長辺2と同様に異種物質充填部を形成してもよい。但し、スラブ鋳片においては、その形状に起因して長辺面側の凝固シェルに応力集中が起こりやすく、長辺面側で表面割れが発生しやすい。したがって、スラブ鋳片用の連続鋳造用鋳型の鋳型長辺には、異種物質充填部を設置することが必要であるが、鋳型短辺には必ずしも異種物質充填部を設置する必要はない。 Similar to the mold long side 2, a dissimilar substance filling portion may be formed on the surface of the mold short side 3 for which illustration and description are omitted. However, in the slab slab, stress concentration is likely to occur in the solidified shell on the long side surface side due to its shape, and surface cracking is likely to occur on the long side surface side. Therefore, it is necessary to install a dissimilar substance filling portion on the long side of the mold for continuous casting for slab slabs, but it is not always necessary to install a dissimilar substance filling portion on the short side of the mold.

初期凝固への影響を勘案して、定常鋳造時のメニスカスMの位置よりも距離Q離れた上方の位置から、メニスカスよりも距離R離れた下方の位置までの鋳型内壁面の領域に、異種物質充填部22を設けることが好ましい。距離Qはゼロより大きい任意の値である。距離Rは下記の(5)式から算出できる。 Considering the effect on initial solidification, dissimilar substances are found in the region of the inner wall surface of the mold from the upper position Q away from the position of the meniscus M during steady casting to the lower position R away from the meniscus. It is preferable to provide the filling portion 22. The distance Q is any value greater than zero. The distance R can be calculated from the following equation (5).

R(mm)=2×Vc×1000/60 ………(5)
ここで、Vcは、鋼の連続鋳造工程における鋳片引き抜き速度(m/min)である。
R (mm) = 2 x Vc x 1000/60 ……… (5)
Here, Vc is a slab drawing speed (m / min) in the continuous steel casting process.

距離Rは、凝固開始した後の凝固シェル(鋳片)が、異種物質充填部22が形成された領域を通過する時間に関係する。凝固シェル(鋳片)は、凝固開始後から少なくとも2秒間、異種物質充填部22が設置された領域内に滞在することが好ましい。凝固シェル(鋳片)が凝固開始後から少なくとも2秒間、異種物質充填部22が設置された領域に存在するためには、メニスカスMよりも(5)式で求まる距離R以上下方まで異種物質充填部22を設置することが必要である。 The distance R is related to the time for the solidified shell (slab) after the start of solidification to pass through the region where the dissimilar substance filling portion 22 is formed. It is preferable that the solidified shell (slab) stays in the region where the dissimilar substance filling portion 22 is installed for at least 2 seconds after the start of solidification. In order for the solidified shell (slab) to exist in the region where the dissimilar substance filling portion 22 is installed for at least 2 seconds after the start of solidification, the dissimilar substance is filled to a distance R or more lower than the meniscus M by the formula (5). It is necessary to install the unit 22.

凝固開始した後の鋳片が異種物質充填部22の設置された領域内に滞在する時間を2秒以上確保すれば、異種物質充填部22による、鋳型内壁面から冷却水路に向かう熱流束の周期的な変化による効果が十分に得られる。つまり、凝固シェルの異種物質充填部22の領域内での滞在時間を2秒以上とすることで、表面割れの発生しやすい高速鋳造時や中炭素鋼の鋳造時でも、鋳片表面割れの防止効果が得られる。但し、異種物質充填部22による熱流束の周期的な変化の効果を安定して得るうえでは、凝固シェルが異種物質充填部22の設置された領域を通過する時間として4秒以上を確保することがより好ましい。一方、薄スラブ連続鋳造機の場合は、鋳片引き抜き速度が速いので、距離Rが大きく、異種物質充填部22を設置すべき鋳片引き抜き方向Aの範囲が大きくなり、鋳型の加工コストが嵩む場合がある。このような場合でも、前記の異種物質充填部22を通過する時間を1秒以上確保すれば、該時間に見合った熱流束の周期的変化効果を得ることができる。 If the time for the slab to stay in the region where the dissimilar substance filling section 22 is installed after the start of solidification is secured for 2 seconds or more, the cycle of heat flux from the inner wall surface of the mold to the cooling water channel by the dissimilar substance filling section 22. The effect of the change can be fully obtained. That is, by setting the staying time in the region of the dissimilar substance filling portion 22 of the solidified shell to 2 seconds or more, the surface cracking of the slab can be prevented even during high-speed casting where surface cracking is likely to occur or during casting of medium carbon steel. The effect is obtained. However, in order to stably obtain the effect of the periodic change of the heat flux by the dissimilar substance filling section 22, the time required for the solidified shell to pass through the region where the dissimilar substance filling section 22 is installed should be 4 seconds or more. Is more preferable. On the other hand, in the case of the thin slab continuous casting machine, since the slab drawing speed is high, the distance R is large, the range of the slab drawing direction A in which the dissimilar substance filling portion 22 should be installed becomes large, and the processing cost of the mold increases. In some cases. Even in such a case, if the time for passing through the dissimilar substance filling portion 22 is secured for 1 second or more, the effect of periodically changing the heat flux corresponding to the time can be obtained.

異種物質充填部22が形成される領域の上端は、メニスカスMよりも上方である限り特に限定されない。したがって、距離Qはゼロを超えた任意の値となる。但し、鋳造中にメニスカスMは上下方向に変動するので、異種物質充填部22の領域の上端が常にメニスカスMよりも上方位置となるように、メニスカスMよりも10mm程度上方位置まで、異種物質充填部22を形成することが好ましい。望ましくは20mm程度上方位置までとする。メニスカスMの位置は、鋳型長辺2の上端から60~150mm下方位置とするのが一般的であり、これに応じて異種物質充填部22を形成する領域を決めればよい。 The upper end of the region where the dissimilar substance filling portion 22 is formed is not particularly limited as long as it is above the meniscus M. Therefore, the distance Q is an arbitrary value exceeding zero. However, since the meniscus M fluctuates in the vertical direction during casting, the meniscus M is filled up to a position about 10 mm above the meniscus M so that the upper end of the region of the dissimilar substance filling portion 22 is always above the meniscus M. It is preferable to form the portion 22. It is preferably up to about 20 mm above. The position of the meniscus M is generally 60 to 150 mm below the upper end of the long side 2 of the mold, and the region for forming the dissimilar substance filling portion 22 may be determined accordingly.

鋼の連続鋳造工程では、高温の溶鋼を鋳型の内部空間に注入するので、鋳型プレートの温度は上昇する。このため、鋳型長辺及び鋳型短辺を構成する鋳型プレートには冷却水路が形成されていて、該冷却水路に冷却水を通過させて鋳型プレートを冷却しており、これにより鋳型の形態を維持している。但し、異種物質充填部22の熱膨張率は鋳型プレート21の熱膨張率とは異なり、そのために、これらの境界に集中する熱応力に起因して鋳型プレートの表面(鋳型内壁面)に割れが生じる可能性がある。 In the continuous steel casting process, the temperature of the mold plate rises because the hot molten steel is injected into the internal space of the mold. Therefore, a cooling water channel is formed in the mold plate constituting the long side and the short side of the mold, and the cooling water is passed through the cooling water channel to cool the mold plate, thereby maintaining the shape of the mold. is doing. However, the thermal expansion rate of the dissimilar substance filling portion 22 is different from the thermal expansion rate of the mold plate 21, and therefore, the surface of the mold plate (the inner wall surface of the mold) is cracked due to the thermal stress concentrated on these boundaries. It can occur.

そこで、本発明では、鋳型プレート21の異種物質充填部22が形成されている領域を対応して冷却する冷却水路の範囲に、水流を撹乱し且つ冷却水路の表面積を大きくする水流撹乱部を形成して、当該部位における冷却水路と水流との熱伝達係数を増大させる。これにより、異種物質充填部22が形成された領域の鋳型プレートの抜熱を促進させる。 Therefore, in the present invention, a water flow disturbing portion that disturbs the water flow and increases the surface surface of the cooling water channel is formed in the range of the cooling water channel that correspondingly cools the region where the dissimilar substance filling portion 22 of the mold plate 21 is formed. Then, the heat transfer coefficient between the cooling water channel and the water flow at the site is increased. This promotes heat removal from the mold plate in the region where the dissimilar substance filling portion 22 is formed.

水流撹乱部について説明する。図3に、図2に示す四角形(□)で囲った部位の鋳型長辺の構造を示す。図3において、(a)は鋳型プレートの表面を示す平面図であり、(b)は鋳型プレートの裏面を示す平面図である。(c)は前記部位の鋳型長辺の鉛直断面図であり、(d)は前記部位の鋳型長辺の水平断面図である。なお、図3(c)及び図3(d)に示すように、鋳型プレート21の背面には、鋳型プレート21に形成された冷却水路31を覆うように、バックアッププレート23が取り付けられている。 The water flow disturbance part will be described. FIG. 3 shows the structure of the long side of the mold of the portion surrounded by the quadrangle (□) shown in FIG. In FIG. 3, (a) is a plan view showing the front surface of the mold plate, and (b) is a plan view showing the back surface of the mold plate. (C) is a vertical cross-sectional view of the long side of the mold of the portion, and (d) is a horizontal cross-sectional view of the long side of the mold of the said portion. As shown in FIGS. 3 (c) and 3 (d), a backup plate 23 is attached to the back surface of the mold plate 21 so as to cover the cooling water channel 31 formed in the mold plate 21.

図3(b)に示すように、鋳型プレート21の裏面には冷却水路31が形成されている。冷却水路31は、鋳片引き抜き方向Aに沿って伸長している縦長形状の複数の溝で構成され、この複数の溝は鋳型幅方向Bに整列している。縦長形状であることによって、冷却水路31への水の供給流量を少なくしても冷却水路31における線流速を容易に速くでき、水流の温度を低く抑えやすく、鋳型プレート21を効率的に冷却できる。 As shown in FIG. 3B, a cooling water channel 31 is formed on the back surface of the mold plate 21. The cooling water channel 31 is composed of a plurality of vertically elongated grooves extending along the slab drawing direction A, and the plurality of grooves are aligned in the mold width direction B. Due to the vertically long shape, the linear flow velocity in the cooling water channel 31 can be easily increased even if the flow rate of water supplied to the cooling water channel 31 is reduced, the temperature of the water flow can be easily kept low, and the mold plate 21 can be efficiently cooled. ..

本発明に係る連続鋳造用鋳型1では、異種物質充填部22が形成されている領域に対応する鋳型プレート21の裏面の冷却水路31に、水流を撹乱する水流撹乱部が形成されている。水流撹乱部は、例えば、図3(b)~(d)に示すように、冷却水路31の鋳型幅方向B及び冷却水路31の厚み方向に広がって設置される突起32で構成することができる。つまり、突起32は、冷却水路31の流路面積を縮小させて、冷却水路31を流れる水流に対して障害物となるように、冷却水路31の鋳型幅方向B及び冷却水路31の厚み方向に広がって設置されている。 In the continuous casting mold 1 according to the present invention, a water flow disturbing portion that disturbs the water flow is formed in the cooling water channel 31 on the back surface of the mold plate 21 corresponding to the region where the dissimilar material filling portion 22 is formed. As shown in FIGS. 3 (b) to 3 (d), the water flow disturbing portion can be composed of, for example, protrusions 32 that are installed so as to extend in the mold width direction B of the cooling water channel 31 and the thickness direction of the cooling water channel 31. .. That is, the protrusion 32 reduces the flow path area of the cooling water channel 31 and becomes an obstacle to the water flow flowing through the cooling water channel 31 in the mold width direction B of the cooling water channel 31 and the thickness direction of the cooling water channel 31. It is spread out and installed.

冷却水路内の水流をより一層撹乱し且つ冷却水路31の表面積をより一層大きくするために、この突起32を、水流の流れ方向(鋳片引き抜き方向Aの逆方向)に沿って冷却水路31に複数配置することが好ましい。突起32は、冷却水路31に設けた溝(図示せず)に嵌め込む、溶接によって鋳型プレート21に接合する、接着剤で鋳型プレート21に接合するなどして設置することができる。 In order to further disturb the water flow in the cooling water channel and further increase the surface area of the cooling water channel 31, this protrusion 32 is provided in the cooling water channel 31 along the flow direction of the water flow (the direction opposite to the slab drawing direction A). It is preferable to arrange more than one. The protrusion 32 can be installed by fitting it into a groove (not shown) provided in the cooling water channel 31, joining it to the mold plate 21 by welding, joining it to the mold plate 21 with an adhesive, or the like.

冷却水路31を流れる水流が突起32に衝突して撹乱され、突起32が設けられた領域における水流は乱流の度合が増加し、冷却水路31に接する水流(乱流)の境界層の厚みが薄くなる。その結果、冷却水路31から水流への熱伝達係数が大きくなり、異種物質充填部22が形成された領域の鋳型プレート21を効果的に冷却することが可能となる。また、突起32によって、冷却水が鋳型プレート21に接触する表面積が大きくなるので、より効果的に、異種物質充填部22が形成された領域の鋳型プレート21を冷却することが可能となる。 The water flow flowing through the cooling water channel 31 collides with the protrusion 32 and is disturbed, the degree of turbulence increases in the water flow in the region where the protrusion 32 is provided, and the thickness of the boundary layer of the water flow (turbulent flow) in contact with the cooling water channel 31 increases. Become thin. As a result, the heat transfer coefficient from the cooling water channel 31 to the water flow becomes large, and the mold plate 21 in the region where the dissimilar substance filling portion 22 is formed can be effectively cooled. Further, since the surface area where the cooling water comes into contact with the mold plate 21 is increased by the protrusion 32, it is possible to more effectively cool the mold plate 21 in the region where the dissimilar substance filling portion 22 is formed.

ここで、突起32は、鋳型幅方向Bでは、冷却水路31の幅(鋳型幅方向の長さ)の1/3以上、鋳型幅方向全体以下となる長さとすることが好ましい。また、冷却水路31の厚み方向では、鋳型プレート21の裏面(冷却水路31の底面)から1mm以上、冷却水路31の厚みwの1/2以下となる高さ(長さ)とすることが好ましい。なお、図3では、突起32は、異種物質充填部22が形成されている領域に対応する鋳型プレート21の裏面の位置に形成されているが、鋳型プレート21の上端から下端までの冷却水路31に突起32を設けてもよい。また、図3は、突起32が冷却水路31の鋳型幅方向全体を覆うように形成された例を示している。 Here, it is preferable that the protrusion 32 has a length of 1/3 or more of the width (length in the mold width direction) of the cooling water channel 31 and not more than the entire width direction of the mold in the mold width direction B. Further, in the thickness direction of the cooling water channel 31, it is preferable that the height (length) is 1 mm or more from the back surface of the mold plate 21 (bottom surface of the cooling water channel 31) and ½ or less of the thickness w of the cooling water channel 31. .. In FIG. 3, the protrusion 32 is formed at a position on the back surface of the mold plate 21 corresponding to the region where the dissimilar substance filling portion 22 is formed, but the cooling water channel 31 from the upper end to the lower end of the mold plate 21 is formed. The protrusion 32 may be provided on the surface. Further, FIG. 3 shows an example in which the protrusion 32 is formed so as to cover the entire cooling water channel 31 in the mold width direction.

冷却水路31を流れる水流の乱流の度合または水流が層流であるかは、公知のレイノルズ数Reを指標にして判断できる。一般的に、水流の密度(kg/m)と、水流の線速度(m/s)と、水流が流れる距離などの特性長さ(m)と、水流の粘性係数(Pa×s)とから、レイノルズ数Reが算出可能である。本発明に係る連続鋳造用鋳型では、突起32が無い場合の冷却水路31の厚みw(図3(c)を参照)を「特性長さ(m)」に採用して、レイノルズ数Reを算出すればよい。突起32が無いと仮定して算出されたレイノルズ数Reが2300を超える条件で冷却水を冷却水路31に供給すれば、突起32が形成された領域では、突起32によって冷却水路31の厚みが小さくなり、突起32に衝突した水流は乱流になっているとみなし得る。The degree of turbulence of the water flow flowing through the cooling water channel 31 or whether the water flow is a laminar flow can be determined by using a known Reynolds number Re as an index. Generally, the density of water flow (kg / m 3 ), the linear velocity of water flow (m / s), the characteristic length (m) such as the distance through which water flows, and the viscosity coefficient of water flow (Pa × s). From, the Reynolds number Re can be calculated. In the continuous casting mold according to the present invention, the Reynolds number Re is calculated by adopting the thickness w (see FIG. 3C) of the cooling water channel 31 when there is no protrusion 32 as the “characteristic length (m)”. do it. If the cooling water is supplied to the cooling water channel 31 under the condition that the Reynolds number Re calculated assuming that there is no protrusion 32 exceeds 2300, the thickness of the cooling water channel 31 is reduced by the protrusion 32 in the region where the protrusion 32 is formed. Therefore, the water flow that collides with the protrusion 32 can be regarded as a turbulent flow.

本発明に係る連続鋳造用鋳型においては、異種物質充填部22及び冷却水路31が、下記の(1)式から(3)式のうちの少なくとも1つの条件を満たすように、鋳型プレート21に形成されていることが好ましい。 In the mold for continuous casting according to the present invention, the dissimilar substance filling portion 22 and the cooling water channel 31 are formed on the mold plate 21 so as to satisfy at least one of the following equations (1) to (3). It is preferable that it is.

d<P≦S ………(1)
e≦L≦1000×Vc/f ………(2)
F≦L ………(3)
ここで、(1)式から(3)式において、各記号は以下を表す。
d <P ≦ S ……… (1)
e ≦ L ≦ 1000 × Vc / f ……… (2)
F ≤ L ……… (3)
Here, in the equations (1) to (3), each symbol represents the following.

d;鋳型幅方向での異種物質充填部の幅(mm)
P;異種物質充填部のうち隣接する同士の鋳型幅方向での間隔距離(mm)
S;鋳型プレートの裏面に複数形成される冷却水路のうち隣接する同士の鋳型幅方向での間隔距離(mm)
e;鋳片引き抜き方向での異種物質充填部の幅(mm)
L;異種物質充填部のうち隣接する同士の鋳片引き抜き方向の間隔距離(mm)
Vc;鋼の連続鋳造工程における鋳片引き抜き速度(m/min)
f;鋼の連続鋳造工程における連続鋳造用鋳型の振動周波数(1/min)
F;冷却水路に配置される突起のうち隣接する同士の鋳片引き抜き方向の間隔距離(mm)
なお、「間隔距離」とは、各部位の隣接する2つの部位の鋳片引き抜き方向Aまたは鋳型幅方向Bにおける中心間距離をいう(図3を参照)。
d; Width of dissimilar substance filling portion in the mold width direction (mm)
P; Spacing distance (mm) in the mold width direction between adjacent parts filled with different substances
S; Spacing distance (mm) in the mold width direction between adjacent cooling water channels formed on the back surface of the mold plate.
e; Width (mm) of dissimilar substance filling part in the slab drawing direction
L; Spacing distance (mm) in the slab drawing direction between adjacent parts of the filling part of different substances
Vc; slab drawing speed (m / min) in the continuous steel casting process
f; Vibration frequency (1 / min) of the mold for continuous casting in the continuous casting process of steel
F; Distance between adjacent protrusions arranged in the cooling water channel in the slab drawing direction (mm)
The "interval distance" refers to the distance between the centers in the slab drawing direction A or the mold width direction B of two adjacent parts of each part (see FIG. 3).

また、本発明に係る連続鋳造用鋳型においては、異種物質充填部22が、下記の(4)式の条件を満たすように、鋳型プレート21に形成されていることが好ましい。 Further, in the continuous casting mold according to the present invention, it is preferable that the dissimilar substance filling portion 22 is formed on the mold plate 21 so as to satisfy the condition of the following formula (4).

0.5≦t≦d ………(4)
ここで、(4)式において、t;異種物質充填部における異種物質の充填深さ(mm)、d;鋳型幅方向での異種物質充填部の幅(mm)である。
0.5 ≦ t ≦ d ……… (4)
Here, in the equation (4), t; the filling depth (mm) of the different substance in the different substance filling portion, and d; the width (mm) of the different substance filling portion in the mold width direction.

連続鋳造用鋳型においては、冷却水路31が鋳型プレート21の裏面に形成されているので、鋳型プレート21のうち、冷却水路31に近い部位が遠い部位よりも冷却が進み、鋳型プレート21の表面の冷却度合が不均一になる傾向がある。異種物質充填部22による熱抵抗の周期的な増減量への冷却水路31による冷却の影響を抑えるために、(1)式を満たすことが好ましい。つまり、異種物質充填部22の鋳型幅方向Bでの間隔距離Pを、異種物質充填部22の幅d以上且つ冷却水路31の間隔距離S以下とすることが好ましい(図3(d)を参照)。 In the mold for continuous casting, since the cooling water channel 31 is formed on the back surface of the mold plate 21, the portion of the mold plate 21 near the cooling channel 31 is cooled more than the portion far away, and the surface of the mold plate 21 is cooled. The degree of cooling tends to be uneven. It is preferable to satisfy the equation (1) in order to suppress the influence of the cooling by the cooling water channel 31 on the periodic increase / decrease in thermal resistance by the dissimilar substance filling portion 22. That is, it is preferable that the spacing distance P in the mold width direction B of the dissimilar substance filling portion 22 is equal to or greater than the width d of the dissimilar substance filling portion 22 and equal to or less than the spacing distance S of the cooling water channel 31 (see FIG. 3D). ).

また、鋳型プレート21の裏面の冷却水路31を流れる冷却水で鋳型プレート21を冷却しているので、鋳型プレート21は冷却水路31から放射状に抜熱される。したがって、鋳型プレート21の表面においては、冷却水路31に近い部位と遠い部位とで冷却むらが生じる。異種物質充填部22による熱抵抗の周期的な増減により、δ鉄からγ鉄への変態によって発生する応力や熱応力が低減する効果をより発揮させるためには、冷却水路31の間隔距離Sよりも小さな間隔で熱流束差を出すことが好ましい。したがって、(1)式を持たすこと、つまり、異種物質充填部22の鋳型幅方向Bの間隔距離Pを冷却水路31の間隔距離S以下とすることが好ましく、異種物質充填部22の幅dは間隔距離P未満であることが好ましい。 Further, since the mold plate 21 is cooled by the cooling water flowing through the cooling water channel 31 on the back surface of the mold plate 21, the mold plate 21 is radially discharged from the cooling water channel 31. Therefore, on the surface of the mold plate 21, cooling unevenness occurs between the portion near the cooling water channel 31 and the portion far from the cooling water channel 31. In order to further exert the effect of reducing the stress and thermal stress generated by the transformation from δ iron to γ iron by the periodic increase / decrease of the thermal resistance by the dissimilar substance filling portion 22, the interval distance S of the cooling water channel 31 is used. It is preferable to generate a heat flux difference at small intervals. Therefore, it is preferable to have the equation (1), that is, it is preferable that the spacing distance P in the mold width direction B of the dissimilar substance filling portion 22 is equal to or less than the spacing distance S of the cooling water channel 31, and the width d of the dissimilar substance filling portion 22 is. It is preferably less than the interval distance P.

異種物質充填部22の幅dは2~20mmとすることが好ましい。異種物質充填部22が擬似円形の場合には、幅dとして、下記の(6)式から求まる円相当径を採用してもよい。 The width d of the dissimilar substance filling portion 22 is preferably 2 to 20 mm. When the dissimilar substance filling portion 22 is a pseudo-circular shape, a circle-equivalent diameter obtained from the following equation (6) may be adopted as the width d.

円相当径=(4×S/π)1/2 ………(6)
ここで(6)式において、Sは異種物質充填部22の面積(mm)である。
Circle equivalent diameter = (4 x S / π) 1/2 ……… (6)
Here, in the equation (6), S is the area (mm 2 ) of the dissimilar substance filling portion 22.

幅dあるいは円相当径を2mm以上とすることで、異種物質を鍍金手段や溶射手段によって円形や擬似円形の凹部に充填することが容易となる。一方、幅d及び円相当径を20mm以下とすることで、異種物質充填部22での熱流束の低下が抑制され、つまり、異種物質充填部22での凝固遅れが抑制され、その位置での凝固シェルへの応力集中が防止され、凝固シェルにおける表面割れ発生を防止し易くなる。 By setting the width d or the equivalent diameter of the circle to 2 mm or more, it becomes easy to fill the circular or pseudo-circular recesses by the plating means or the thermal spraying means. On the other hand, by setting the width d and the equivalent circle diameter to 20 mm or less, the decrease in the heat flux in the dissimilar substance filling portion 22 is suppressed, that is, the solidification delay in the dissimilar substance filling section 22 is suppressed, and the solidification delay at that position is suppressed. Stress concentration on the solidified shell is prevented, and it becomes easy to prevent the occurrence of surface cracks in the solidified shell.

また、鋼の連続鋳造方法では、鋳型に溶鋼を注入する際に、溶鋼の鋳型への焼き付きを防止するために、モールドパウダーを溶鋼湯面上に投入しつつ鋳型を振動させることが一般的である。この振動に起因して、鋳片の表面には鋳片引き抜き方向Aにおいて周期的にオシレーションマークが形成されることが知られており、鋳片引き抜き方向Aにおいて周期的に鋳片の厚みが変わる傾向がある。 Further, in the continuous steel casting method, when injecting molten steel into a mold, it is common to vibrate the mold while pouring mold powder onto the molten steel surface in order to prevent seizure of the molten steel on the mold. be. It is known that oscillation marks are periodically formed on the surface of the slab due to this vibration in the slab withdrawal direction A, and the thickness of the slab is periodically increased in the slab withdrawal direction A. Tends to change.

異種物質充填部22の幅e(mm)と、隣接する異種物質充填部22の間隔距離L(mm)と、鋳片引き抜き速度Vc(m/min)と、鋳型の振動周波数f(1/min)とが、(2)式を満たすことで、鋳片の横割れを抑制することができる。つまり、鋳片引き抜き方向Aの異種物質充填部22の幅eが、オシレーションマークに起因する鋳片の増減する厚みの鋳片引き抜き方向Aにおける1周期の長さ(ピッチ)よりも小さくなれば、鋳片の横割れを抑制することができる。 The width e (mm) of the dissimilar substance filling portion 22, the spacing distance L (mm) between the adjacent dissimilar substance filling portions 22, the slab drawing speed Vc (m / min), and the vibration frequency f (1 / min) of the mold. ) And satisfy the equation (2), so that lateral cracking of the slab can be suppressed. That is, if the width e of the dissimilar substance filling portion 22 in the slab drawing direction A becomes smaller than the length (pitch) of one cycle in the slab pulling direction A of the thickness of the slab that increases or decreases due to the oscillation mark. , Lateral cracking of the slab can be suppressed.

隣接する突起32の間隔距離Fと、隣接する異種物質充填部22の鋳片引き抜き方向Aの間隔距離Lとが(3)式を満たすことは、鋳片引き抜き方向Aに隣接する異種物質充填部22の間の部位に対応する位置に突起32が形成されることを意味する。これにより、その部分の冷却水路は突起の表面積分の表面積が大きくなり、冷却水路では水流が乱流となりやすくなる。その結果、鋳型プレート21の抜熱がより効果的に行われる。 When the spacing distance F between the adjacent protrusions 32 and the spacing distance L in the slab drawing direction A of the adjacent dissimilar substance filling section 22 satisfy the equation (3), the dissimilar substance filling section adjacent to the slab drawing direction A is satisfied. It means that the protrusion 32 is formed at the position corresponding to the portion between 22. As a result, the surface area of the cooling water channel in that portion increases by the surface area of the protrusion, and the water flow tends to be turbulent in the cooling water channel. As a result, the heat of the mold plate 21 is removed more effectively.

なお、(4)式を満たすべく、異種物質の充填厚みtを0.5mm以上dmm以下とすることが好ましい。異種物質充填部22の充填厚みt(図3(d)を参照)が0.5mm未満では、異種物質充填部22における熱流束の変動量が不十分になる可能性がある。一方で、充填厚みtが大き過ぎると、異種物質の凹部への充填が難しくなる。したがって、充填厚みtは鋳型幅方向での異種物質充填部の幅d(mm)以下にすることが好ましい。また、充填厚みtは、最大でも10mmとすることが好ましい。充填厚みtが10mmを超えると、異種物質の充填が難しくなるからである。 In addition, in order to satisfy the equation (4), it is preferable that the filling thickness t of the different substances is 0.5 mm or more and dmm or less. If the filling thickness t (see FIG. 3D) of the dissimilar substance filling portion 22 is less than 0.5 mm, the fluctuation amount of the heat flux in the dissimilar substance filling portion 22 may be insufficient. On the other hand, if the filling thickness t is too large, it becomes difficult to fill the recesses with different substances. Therefore, it is preferable that the filling thickness t is equal to or less than the width d (mm) of the dissimilar substance filling portion in the mold width direction. Further, the filling thickness t is preferably 10 mm at the maximum. This is because if the filling thickness t exceeds 10 mm, it becomes difficult to fill different substances.

図4に示すように、冷却水路31に千鳥配置に突起42を複数配置してもよい。これにより、図3の場合と同様に、突起42が設けられた冷却水路31の水流が乱流になり易い。突起42を、例えばラグビーボールを半分に切って形成される楕円体状にすれば、水流はより乱流度合は強くなり、鋳型プレート21と水流との熱伝達係数が高くなり、異種物質充填部22が形成された鋳型プレート21の領域を効果的に冷却することが可能となる。ここで、「千鳥配置」とは、鋳型幅方向Bに並んで配置される突起42の群は、鋳片引き抜き方向Aに隣り合う、上段及び/または下段の鋳型幅方向Bに並んで配置される突起42の群に対して、突起42の群の幅方向ピッチの半分の位置に配置されることである。なお、本明細書では、鋳型幅方向Bに並んで配置される突起42が1つの場合も「群」と称す。 As shown in FIG. 4, a plurality of protrusions 42 may be arranged in a staggered arrangement in the cooling water channel 31. As a result, as in the case of FIG. 3, the water flow of the cooling water channel 31 provided with the protrusion 42 tends to be turbulent. If the protrusion 42 is formed into an ellipsoid formed by cutting a rugby ball in half, for example, the water flow has a stronger degree of turbulence, the heat transfer coefficient between the mold plate 21 and the water flow becomes higher, and the dissimilar substance filling portion. It is possible to effectively cool the region of the mold plate 21 on which the 22 is formed. Here, the "staggered arrangement" means that the group of protrusions 42 arranged side by side in the mold width direction B are arranged side by side in the upper and / or lower mold width direction B adjacent to the slab drawing direction A. It is arranged at a position half of the widthwise pitch of the group of protrusions 42 with respect to the group of protrusions 42. In the present specification, the case where one protrusion 42 is arranged side by side in the mold width direction B is also referred to as a “group”.

図3では、冷却水路31の鋳型プレート21側、つまり、冷却水路31の底面側に突起32を設けてあるが、冷却水路31のバックアッププレート23側に突起32を設けてもよい。その場合には、冷却水に面する鋳型プレート21の表面積は小さくなるものの、冷却水路では水流が乱流となりやすくなることに変わりはなく、鋳型プレート21の抜熱をより効果的に行なうことは可能であり、本発明の効果を十分に奏する。 In FIG. 3, the protrusion 32 is provided on the mold plate 21 side of the cooling water channel 31, that is, on the bottom surface side of the cooling water channel 31, but the protrusion 32 may be provided on the backup plate 23 side of the cooling water channel 31. In that case, although the surface area of the mold plate 21 facing the cooling water becomes smaller, the water flow tends to be turbulent in the cooling water channel, and the heat of the mold plate 21 can be removed more effectively. It is possible and the effect of the present invention is fully exhibited.

図5に示すように、異種物質充填部22を覆うように鍍金層51を鋳型プレート21の表面に形成してもよい。これにより、凝固シェルによる磨耗や熱履歴による鋳型表面の割れを抑制できる。鍍金層51は、一般的に用いられるニッケルまたはニッケルを含有する合金、例えば、ニッケル-コバルト合金(Ni-Co合金)やニッケル-クロム合金(Ni-Cr合金)などを鍍金処理または溶射処理することで形成できる。 As shown in FIG. 5, the plating layer 51 may be formed on the surface of the mold plate 21 so as to cover the dissimilar substance filling portion 22. As a result, it is possible to suppress wear due to the solidified shell and cracking of the mold surface due to heat history. The plating layer 51 is formed by plating or spraying a commonly used nickel or nickel-containing alloy, for example, a nickel-cobalt alloy (Ni—Co alloy) or a nickel-chromium alloy (Ni—Cr alloy). Can be formed with.

以上に説明した連続鋳造用鋳型を用い、冷却水路中の水流撹乱部が形成された位置では水流が乱流となるように連続鋳造用鋳型に冷却水を供給して、鋳片を鋳造する鋼の連続鋳造を行うことで、特に、溶鋼が中炭素鋼の場合には、鋳片表面割れを効果的に防止し且つ同一鋳型を用いて長期間の連続鋳造操業を行うことができる。 Using the continuous casting mold described above, the steel that casts the slab by supplying cooling water to the continuous casting mold so that the water flow becomes turbulent at the position where the water flow disturbing part is formed in the cooling water channel. In particular, when the molten steel is medium carbon steel, continuous casting can be carried out for a long period of time by effectively preventing cracks on the surface of the slab and using the same mold.

図2に記載されているような異種物質充填部が鋳型内壁面に形成された連続鋳造用鋳型ではあるが、図3(b)~(d)に示す突起32が冷却水路に形成されていない連続鋳造用鋳型を準備し、この鋳型を用いて鋼の連続鋳造の操業を行った(比較例)。準備した連続鋳造用鋳型は、鋳型長辺の長さ2.1m、鋳型短辺の長さ0.22mの矩形の内面空間を有する鋳型であり、鋳型長辺及び鋳型短辺を構成する鋳型プレートを、室温における熱伝導率が約380(W/(m×K))である銅合金で作製した。 Although the mold for continuous casting has a dissimilar substance filling portion formed on the inner wall surface of the mold as shown in FIG. 2, the protrusions 32 shown in FIGS. 3 (b) to 3 (d) are not formed in the cooling water channel. A mold for continuous casting was prepared, and continuous casting of steel was performed using this mold (comparative example). The prepared mold for continuous casting is a mold having a rectangular inner surface space having a mold long side length of 2.1 m and a mold short side length of 0.22 m, and is a mold plate constituting the mold long side and the mold short side. Was made of a copper alloy having a thermal conductivity of about 380 (W / (m × K)) at room temperature.

連続鋳造の対象鋼種としては、化学成分が、C;0.08~0.17質量%、Si;0.10~0.30質量%、Mn;0.50~1.20質量%、P;0.010~0.030質量%、S;0.005~0.015質量%、Al;0.020~0.040質量%、残部Fe及び不可避的不純物である中炭素鋼とした。1チャージの溶鋼質量は300トンである。比較例では、中炭素鋼の溶鋼を、準備した鋳型に注入しつつ、鋳型を鋳片引き抜き方向に振動させながら鋳型を冷却して凝固シェルを形成させ、該凝固シェルを引き抜いてスラブ鋳片を鋳造した。鋳片引き抜き速度Vcは2.0(m/min)とした。 As the target steel type for continuous casting, the chemical composition is C; 0.08 to 0.17% by mass, Si; 0.10 to 0.30% by mass, Mn; 0.50 to 1.20% by mass, P; 0.010 to 0.030% by mass, S; 0.005 to 0.015% by mass, Al; 0.020 to 0.040% by mass, the balance Fe and medium carbon steel which is an unavoidable impurity. The mass of molten steel per charge is 300 tons. In the comparative example, while injecting molten steel of medium carbon steel into the prepared mold, the mold is cooled while vibrating the mold in the direction of drawing out the slab to form a solidified shell, and the solidified shell is pulled out to form a slab slab. Cast. The slab drawing speed Vc was 2.0 (m / min).

連続鋳造操業では、振動している鋳型内の溶鋼上にモールドパウダーを投入して、鋳型の溶鋼の焼き付きを防止した。モールドパウダーとしては、塩基度((質量%CaO)/(質量%SiO))が1.1、溶融温度が1210℃、1300℃での粘度が0.15Pa×sのモールドパウダーを使用した。In the continuous casting operation, mold powder was poured onto the molten steel in the vibrating mold to prevent seizure of the molten steel in the mold. As the mold powder, a mold powder having a basicity ((mass% CaO) / (mass% SiO 2 )) of 1.1 and a melting temperature of 1210 ° C. and a viscosity of 0.15 Pa × s at 1300 ° C. was used.

連続鋳造操業では鋳型を交換せずに3000チャージの連続鋳造を行うことを目標とし、100チャージの鋳造終了毎に、鋳型長辺における表面割れを調査した。鋳型長辺の表面に割れが在るかを目視で調査し、割れが確認できた場合には、その時点で連続鋳造操業を中止することとした。全ての連続鋳造毎に、鋳片の表面割れを調査した。鋳片の表面割れは、浸透探傷試験(カラーチェック)を施した鋳片表面を目視で調査し、鋳片引き抜き方向に沿った縦割れ、鋳片幅方向に沿った横割れを確認した。 In the continuous casting operation, the goal was to perform continuous casting of 3000 charges without changing the mold, and the surface cracks on the long side of the mold were investigated after every 100 charges of casting. It was decided to visually inspect whether there were cracks on the surface of the long side of the mold, and if cracks were confirmed, stop the continuous casting operation at that point. The surface cracks of the slab were investigated for each continuous casting. For surface cracks in the slab, the surface of the slab subjected to the penetrant inspection (color check) was visually inspected, and vertical cracks along the slab drawing direction and horizontal cracks along the slab width direction were confirmed.

比較例の鋳型では、鋳型長辺を構成する鋳型プレートに円形凹部を複数形成し、その内部に鍍金手段を用いて異種物質としてニッケル合金(室温での熱伝導率;80(W/(m×K)))を充填し、異種物質充填部を形成した。また、鋳型内壁面には、図5に示すような鍍金層51を設けた。その材料も異種物質と同じニッケル合金を用いた。 In the mold of the comparative example, a plurality of circular recesses are formed in the mold plate constituting the long side of the mold, and a nickel alloy (thermal conductivity at room temperature; 80 (W / (m ×)) is used as a dissimilar substance by using plating means inside the concave portions. K))) was filled to form a heterogeneous substance filling part. Further, a plating layer 51 as shown in FIG. 5 was provided on the inner wall surface of the mold. The same nickel alloy as the dissimilar substance was used as the material.

また、図2に示すように異種物質充填部22が鋳型プレート21の表面に形成され、図3に示すような突起32を冷却水路に形成した連続鋳造用鋳型を準備し、その鋳型を用いて鋼の連続鋳造の操業を行った(本発明例1)。本発明例1は、異種物質の充填深さtを1mmとし、(1)式、(2)式、(3)式を満たすように、異種物質充填部22及び突起32を設置した。 Further, as shown in FIG. 2, a mold for continuous casting in which the dissimilar substance filling portion 22 is formed on the surface of the mold plate 21 and the protrusions 32 as shown in FIG. 3 are formed in the cooling water channel is prepared, and the mold is used. A continuous casting operation of steel was carried out (Example 1 of the present invention). In Example 1 of the present invention, the filling depth t of a different substance is set to 1 mm, and the different substance filling portion 22 and the protrusion 32 are installed so as to satisfy the equations (1), (2) and (3).

本発明例1の鋳型では、比較例と同様に鍍金層51を設け、その材料も比較例と同様にニッケル合金を用いた。本発明例1では、使用した連続鋳造用鋳型以外は比較例と同じ条件で鋼の連続鋳造操業を行った。例えば、比較例における鋳型への冷却水の供給速度は、突起が形成されていない鋳型において冷却水路の水流のレイノルズ数Reが乱流となる速度であり、本発明例1でもまた、比較例での冷却水の供給速度と同じ速度となるように冷却水を鋳型に供給した。 In the mold of Example 1 of the present invention, the plating layer 51 was provided as in the comparative example, and a nickel alloy was used as the material thereof as in the comparative example. In Example 1 of the present invention, the continuous casting operation of steel was carried out under the same conditions as in the comparative example except for the mold for continuous casting used. For example, the speed at which the cooling water is supplied to the mold in the comparative example is the speed at which the Reynolds number Re of the water flow in the cooling water channel becomes turbulent in the mold in which the protrusions are not formed. The cooling water was supplied to the mold so as to be the same as the supply speed of the cooling water in.

また、本発明例1では、鋳型を交換せずに3000チャージの連続鋳造を行うことを目標とし、比較例と同様に、100チャージの鋳造終了毎に、鋳型長辺における表面割れを調査し、鋳型長辺の表面に割れが確認された場合には、その時点で連続鋳造を中止することとした。また、連続鋳造毎に、鋳片の表面割れを調査した。 Further, in Example 1 of the present invention, it is aimed to perform continuous casting of 3000 charges without exchanging the mold, and as in the comparative example, surface cracks on the long side of the mold are investigated after each 100 charge of casting is completed. If cracks were found on the surface of the long side of the mold, continuous casting was stopped at that point. In addition, surface cracks in the slab were investigated for each continuous casting.

比較例では、2400チャージの鋳造終了時点で、鋳型長辺を構成する鋳型プレートに表面割れが見つかった。これに対して、本発明例1では、3000チャージの鋳造終了時点でも鋳型長辺を構成する鋳型プレートに表面割れは発生しなかった。つまり、本発明例1では、鋳型長辺を構成する鋳型プレートに表面割れを生じさせずに、目標回数の連続鋳造を行うことができた。 In the comparative example, surface cracks were found in the mold plate constituting the long side of the mold at the end of casting of 2400 charges. On the other hand, in Example 1 of the present invention, surface cracking did not occur in the mold plate constituting the long side of the mold even at the end of casting of 3000 charges. That is, in Example 1 of the present invention, continuous casting could be performed a target number of times without causing surface cracks in the mold plate constituting the long side of the mold.

比較例では、鋳型の寿命について、2400チャージの連続鋳造終了後の調査で、鋳型長辺を構成する鋳型プレートに表面割れが生じたことがわかった。一方で、本発明例1では、鋳型を交換せずに目標回数の3000チャージの連続鋳造を行うことができ、比較例よりも鋳型の使用寿命を向上させることができた。これは、突起32(水流撹乱部)によって、水流を比較例の場合よりも乱れた乱流にできたうえに、冷却水路の表面積を大きくして、鋳型をより効率的に冷却できたことによると考えられる。 In the comparative example, regarding the life of the mold, it was found that the mold plate constituting the long side of the mold had surface cracks in the investigation after the completion of continuous casting of 2400 charges. On the other hand, in Example 1 of the present invention, continuous casting of 3000 charges of the target number of times could be performed without replacing the mold, and the service life of the mold could be improved as compared with the comparative example. This is because the protrusion 32 (water flow disturbing part) made the water flow more turbulent than in the comparative example, and also increased the surface area of the cooling water channel to cool the mold more efficiently. it is conceivable that.

なお、比較例及び本発明例1の鋳片に表面割れが生じていないかを調査したが、いずれにおいても表面割れは確認されなかった。いずれの鋳型であっても、異種物質充填部によって、中炭素鋼鋳造で生じるδ鉄からγ鉄への変態に起因する凝固シェル厚みが不均一であることによって生じる表面割れを効果的に防止でき、鋳片の表面割れを防止できたと予想される。 It was investigated whether the slabs of Comparative Example and Example 1 of the present invention had surface cracks, but no surface cracks were confirmed in either of them. In any mold, the dissimilar material filling section can effectively prevent surface cracking caused by the non-uniform solidification shell thickness caused by the transformation from δ iron to γ iron that occurs in medium carbon steel casting. It is expected that the surface cracking of the slab could be prevented.

前述の実施例1と同様の方法で、鋼の連続鋳造の操業を行った(本発明例2~21)。実施例2では、1つの本発明例における鋳造チャージ数を5チャージとした。また、本発明例2~21の各々では、図3に示す、異種物質充填部22の鋳型幅方向での幅d(mm)、異種物質充填部22の鋳型幅方向での間隔距離P(mm)や、鋳片引き抜き方向Aでの異種物質充填部22の幅e(mm)などを変更し、更に、振動周波数(1/min)や鋳片引き抜き速度Vc(m/min)を変更した。 The continuous casting operation of steel was carried out in the same manner as in Example 1 described above (Examples 2 to 21 of the present invention). In Example 2, the number of casting charges in one example of the present invention was set to 5 charges. Further, in each of Examples 2 to 21 of the present invention, the width d (mm) of the dissimilar substance filling portion 22 in the mold width direction and the spacing distance P (mm) of the dissimilar substance filling portion 22 in the mold width direction shown in FIG. ), The width e (mm) of the dissimilar substance filling portion 22 in the slab drawing direction A, and the like, and further, the vibration frequency (1 / min) and the slab drawing speed Vc (m / min) were changed.

各操業では5チャージの連続鋳造操業を1回行うこととし、使用した鋳型では、メニスカスMの近傍の複数の異種物質充填部22の各々、及び、隣接する異種物質充填部22の中間点の各々に熱電対を埋め込んで、熱電対でそれらの温度を測定した。1秒間隔で温度を測定し、その温度データを記録した。熱電対の測温点から鋳型プレート21の溶鋼側表面までの距離は15mmである。伝熱モデルに基づき、測定した温度データから鋳型プレート21の表面温度を算出した。 In each operation, a continuous casting operation of 5 charges is performed once, and in the mold used, each of the plurality of dissimilar substance filling portions 22 in the vicinity of the meniscus M and each of the intermediate points of the adjacent dissimilar substance filling portions 22. Thermocouples were embedded in the thermocouples and their temperatures were measured with the thermocouples. The temperature was measured at 1 second intervals and the temperature data was recorded. The distance from the temperature measuring point of the thermocouple to the surface of the mold plate 21 on the molten steel side is 15 mm. Based on the heat transfer model, the surface temperature of the mold plate 21 was calculated from the measured temperature data.

本発明例19を除く本発明例では、図3に示すように、冷却水路31の鋳型プレート21側に突起32を設けた。一方で、本発明例19では、冷却水路31のバックアッププレート23側に突起32を設けた。 In the examples of the present invention excluding the example 19 of the present invention, as shown in FIG. 3, the protrusion 32 is provided on the mold plate 21 side of the cooling water channel 31. On the other hand, in Example 19 of the present invention, the protrusion 32 is provided on the backup plate 23 side of the cooling water channel 31.

本発明例2~21での幅d、間隔距離P(mm)などや、算出した温度を表1に示す。 Table 1 shows the width d, the interval distance P (mm), and the calculated temperature in Examples 2 to 21 of the present invention.

Figure 0007004085000001
Figure 0007004085000001

表1では、(1)~(3)式の項目を設けている。(1)~(3)式の各項目が「〇」である場合には、各項目の式の条件を満たし、「×」である場合には、その条件を満たさないことを意味する。 In Table 1, the items of the formulas (1) to (3) are provided. When each item of the formulas (1) to (3) is "○", it means that the condition of the formula of each item is satisfied, and when it is "x", it means that the condition is not satisfied.

また、表1には、複数の異種物質充填部22と複数の中間点とで測定された温度データから伝熱モデルに基づき得られた鋳型プレート21の表面温度の平均温度を算出し、次いで、5チャージの連続鋳造の定常操業時間内のデータサンプル数で前記平均温度を更に平均して算出される値を「メニスカス位置温度」として記載している。更に表1には、5チャージの連続鋳造の定常操業時間内において複数の異種物質充填部22と複数の中間点とで測定された温度データから同様にして算出される鋳型プレート21の表面温度と、「メニスカス位置温度」との差の絶対値のうちの最大の値を「最大温度振幅」として記載している。 Further, in Table 1, the average temperature of the surface temperature of the mold plate 21 obtained based on the heat transfer model is calculated from the temperature data measured at the plurality of different substance filling portions 22 and the plurality of intermediate points, and then the average temperature is calculated. The value calculated by further averaging the average temperature with the number of data samples within the steady operation time of 5-charge continuous casting is described as "meniscus position temperature". Further, Table 1 shows the surface temperature of the mold plate 21 similarly calculated from the temperature data measured at the plurality of dissimilar substance filling portions 22 and the plurality of intermediate points within the steady operation time of the continuous casting of 5 charges. , The maximum value among the absolute values of the difference from the "meniscus position temperature" is described as the "maximum temperature amplitude".

表1の「メニスカス位置温度」が低いほど、メニスカスMの位置での鋳型プレートの表面がより冷却されていることを意味し、また、「最大温度振幅」が小さいほど、メニスカスMの位置での鋳型幅方向において、冷却むらが抑えられていることを意味している。 The lower the "meniscus position temperature" in Table 1, the cooler the surface of the mold plate at the meniscus M position, and the smaller the "maximum temperature amplitude", the lower the meniscus M position. It means that the cooling unevenness is suppressed in the mold width direction.

実施例2でも、全ての連続鋳造操業毎に鋳片の表面割れを調査した。1チャージの連続鋳造操業で10枚のスラブ鋳片を製造することができ、1つの本発明例で5チャージを連続鋳造しているので、1つの本発明例で50枚のスラブ鋳片が製造される。この全ての鋳片に対して浸透探傷試験を施し、浸透探傷試験を施した鋳片表面を目視で調査し、鋳片表面割れを調査した。鋳片の表面に横割れ及び/または縦割れを発見した場合には、その鋳片を数え、スラブ総数(=50)に対する、割れが発見された鋳片の総数の百分率を、縦割れ及び横割れ毎に、「縦割れ発生率」(%)及び「横割れ発生率」(%)として表1に示した。この割れ発生率がゼロ(=0)でない場合も、非常に細かな割れを目視で発見した場合でもその鋳片を数えているので、割れ発生率が15%以下であれば、実質的には問題ない。 Also in Example 2, surface cracks in the slab were investigated for each continuous casting operation. Since 10 slab slabs can be produced in a 1-charge continuous casting operation and 5 charges are continuously cast in one example of the present invention, 50 slab slabs can be produced in one example of the present invention. Will be done. All of these slabs were subjected to a penetrant inspection, and the surface of the slabs subjected to the penetrant inspection was visually inspected to investigate cracks on the surface of the slabs. If horizontal cracks and / or vertical cracks are found on the surface of the slab, count the slabs and divide the total number of slabs (= 50) by the percentage of the total number of slabs found with cracks. Table 1 shows the "vertical crack occurrence rate" (%) and "horizontal crack occurrence rate" (%) for each crack. Even if the crack occurrence rate is not zero (= 0), even if very fine cracks are visually found, the slabs are counted, so if the crack occurrence rate is 15% or less, it is practically. no problem.

メニスカス位置温度が300℃以下であり且つ最大温度振幅が40℃以下であれば、概ね安定的に冷却できているといえる。また、異種物質充填部が鋳型表面に形成されていれば、大抵の場合には、鋳片の表面割れを防ぐことができる。 When the meniscus position temperature is 300 ° C. or lower and the maximum temperature amplitude is 40 ° C. or lower, it can be said that cooling is generally stable. Further, if the dissimilar substance filling portion is formed on the mold surface, it is possible to prevent the surface cracking of the slab in most cases.

(1)~(3)式を満たす本発明例2~12では、1回の連続鋳造操業で得られた全ての鋳片で表面割れを防ぐことができた。また、鋳型においてはメニスカス位置温度が300℃以下であり且つ最大温度振幅が40℃以下であるので、より効果的に鋳型を冷却できたことが確認できた。 In Examples 2 to 12 of the present invention satisfying the formulas (1) to (3), surface cracking could be prevented in all the slabs obtained in one continuous casting operation. Further, in the mold, the meniscus position temperature was 300 ° C. or lower and the maximum temperature amplitude was 40 ° C. or lower, so that it was confirmed that the mold could be cooled more effectively.

本発明例13~16では、(3)式を満たしており、冷却は概ね効果的にできていたことがわかるものの、(1)式及び/または(2)式を満たさないので、50枚のスラブ鋳片のうちの幾らかで、縦割れ及び/または横割れが生じた。 In Examples 13 to 16 of the present invention, the equation (3) is satisfied, and it can be seen that the cooling is generally effective, but the equations (1) and / or the equation (2) are not satisfied, so that 50 sheets are satisfied. Some of the slab slabs had vertical and / or horizontal cracks.

本発明例17は、(1)式及び(2)式を満たしているので、表面割れが生じた鋳片はなかったが、(3)式を満たさないので、メニスカス位置温度が300℃を超えており、冷却効果が本発明例3などよりも劣っていることがわかる。本発明例18では、最大温度振幅が22℃であり、本発明例3よりも鋳型幅方向に沿った冷却むらが小さい。しかし、メニスカス位置温度は本発明例3よりも上昇しており、メニスカスの冷却については、本発明例3よりも劣る。また、本発明例18では、充填深さtが0.5未満であるので、周期的な熱抵抗の変動量が、他の本発明例の場合よりも小さくなり、(1)式を満たしているものの、縦割れが発生した。 In Example 17 of the present invention, since the equations (1) and (2) were satisfied, there was no slab having surface cracks, but since the equation (3) was not satisfied, the meniscus position temperature exceeded 300 ° C. It can be seen that the cooling effect is inferior to that of Example 3 of the present invention. In Example 18 of the present invention, the maximum temperature amplitude is 22 ° C., and the cooling unevenness along the mold width direction is smaller than that of Example 3 of the present invention. However, the meniscus position temperature is higher than that of Example 3 of the present invention, and the cooling of the meniscus is inferior to that of Example 3 of the present invention. Further, in the example 18 of the present invention, since the filling depth t is less than 0.5, the amount of periodic fluctuation in thermal resistance becomes smaller than in the case of other examples of the present invention, and the equation (1) is satisfied. However, vertical cracks occurred.

本発明例19は、バックアッププレート23側に突起32を設けてある以外は本発明例5と同じ条件で鋼の連続鋳造を行っている。本発明例19では、本発明例5と同様に鋳片の表面割れ発生率はゼロであるものの、メニスカス位置温度は、本発明例5よりも若干上昇した。これは、突起32がバックアッププレート23側に設けてあるので、冷却水路31に面する鋳型プレート21の表面積が本発明例5の場合よりも小さくなったことによると推察される。 In Example 19 of the present invention, steel is continuously cast under the same conditions as in Example 5 of the present invention except that the protrusion 32 is provided on the backup plate 23 side. In Example 19 of the present invention, the rate of occurrence of surface cracks in the slab was zero as in Example 5 of the present invention, but the meniscus position temperature was slightly higher than that of Example 5 of the present invention. It is presumed that this is because the protrusion 32 is provided on the backup plate 23 side, so that the surface area of the mold plate 21 facing the cooling water channel 31 is smaller than that in the case of Example 5 of the present invention.

(3)式を満たす本発明例20は、最大温度振幅が本発明例3より小さい。但し、本発明例20は、メニスカス位置温度が本発明例3よりも高くなっている。メニスカス位置温度が高くなるということは、鋳型幅方向に沿ったいずれの位置でも温度が高いことを意味しており、その結果、最大温度振幅(最も高い温度または低い温度と平均温度との差)が小さくなっていると推察される。本発明例21は、(3)式を満たさないので、やはり、メニスカス位置温度が300℃を超え、最大温度振幅が40℃を超えている。 Example 20 of the present invention satisfying the equation (3) has a maximum temperature amplitude smaller than that of Example 3 of the present invention. However, in Example 20 of the present invention, the meniscus position temperature is higher than that of Example 3 of the present invention. Higher meniscus position temperature means higher temperature at any position along the mold width direction, resulting in maximum temperature amplitude (difference between highest or lowest temperature and average temperature). Is presumed to be smaller. Since Example 21 of the present invention does not satisfy the equation (3), the meniscus position temperature exceeds 300 ° C. and the maximum temperature amplitude exceeds 40 ° C.

以上の結果からわかるとおり、本発明によって、中炭素鋼の鋳片の表面割れの発生を抑制できるとともに、異種物質充填部が形成されたメニスカス部近傍の鋳型プレートの温度を効果的に低下させることができることが確認できた。本発明によって、異種物質充填部が形成された鋳型の長寿命化が達成できる。 As can be seen from the above results, according to the present invention, the occurrence of surface cracks in the slab of medium carbon steel can be suppressed, and the temperature of the mold plate near the meniscus portion in which the dissimilar substance filling portion is formed can be effectively lowered. I was able to confirm that it was possible. According to the present invention, it is possible to achieve a long life of a mold in which a different substance filling portion is formed.

1 連続鋳造用鋳型
2 鋳型長辺
3 鋳型短辺
4 溶鋼
5 浸漬ノズル
21 鋳型プレート
22 異種物質充填部(円形)
23 バックアッププレート
31 冷却水路
32 突起(水流撹乱部)
42 突起(水流撹乱部)
51 鍍金層
1 Mold for continuous casting 2 Mold long side 3 Mold short side 4 Molten steel 5 Immersion nozzle 21 Mold plate 22 Dissimilar substance filling part (circular)
23 Backup plate 31 Cooling water channel 32 Protrusion (water flow disturbing part)
42 Protrusions (water flow disturbance part)
51 Plating layer

Claims (7)

表面が鋳型内壁面を形成し、裏面に冷却水路が形成された銅合金製の鋳型プレートと、
前記冷却水路を覆うように前記鋳型プレートに取り付けられるバックアッププレートと、を備えた鋼の連続鋳造用鋳型であって、
前記鋳型プレートの表面の少なくともメニスカスを含む領域に形成された凹部に、前記鋳型プレートの熱伝導率とは異なる熱伝導率の異種物質が充填された異種物質充填部が形成され、
前記異種物質充填部が形成されている領域に対応する前記鋳型プレートの裏面の冷却水路には、水流を撹乱し且つ前記冷却水路の表面積を大きくする水流撹乱部が形成されていて、
前記異種物質充填部は、複数の円形凹部または擬似円形凹部を含み、且つ、複数形成されており、
前記水流撹乱部は、前記水流の流れ方向に沿って複数配置された突起で構成されており、
前記異種物質充填部及び前記冷却水路は、下記の(1)式から下記の(3)式のうちの少なくとも1つの条件を満たすように形成されている、鋼の連続鋳造用鋳型。
d<P≦S ………(1)
e≦L≦1000×Vc/f ………(2)
F≦L ………(3)
ここで、(1)式から(3)式において、各記号は以下を表す。
d;鋳型幅方向での異種物質充填部の幅(mm)
P;異種物質充填部のうち隣接する同士の鋳型幅方向での間隔距離(mm)
S;鋳型プレートの裏面に複数形成される冷却水路のうち隣接する同士の鋳型幅方向での間隔距離(mm)
e;鋳片引き抜き方向での異種物質充填部の幅(mm)
L;異種物質充填部のうち隣接する同士の鋳片引き抜き方向の間隔距離(mm)
Vc;鋼の連続鋳造工程における鋳片引き抜き速度(m/min)
f;鋼の連続鋳造工程における連続鋳造用鋳型の振動周波数(1/min)
F;冷却水路に配置される突起のうち隣接する同士の鋳片引き抜き方向の間隔距離(mm)
A copper alloy mold plate with a front surface forming the inner wall surface of the mold and a cooling water channel formed on the back surface.
A mold for continuous casting of steel comprising a backup plate attached to the mold plate so as to cover the cooling water channel.
In the recess formed on the surface of the mold plate at least in the region containing the meniscus, a heterogeneous substance filling portion filled with a heterogeneous substance having a thermal conductivity different from that of the mold plate is formed.
In the cooling water channel on the back surface of the mold plate corresponding to the region where the dissimilar substance filling portion is formed, a water flow disturbing portion that disturbs the water flow and increases the surface area of the cooling water channel is formed .
The dissimilar substance filling portion includes a plurality of circular recesses or pseudo-circular recesses, and is formed in a plurality.
The water flow disturbing portion is composed of a plurality of protrusions arranged along the flow direction of the water flow.
The dissimilar substance filling portion and the cooling water channel are formed so as to satisfy at least one of the following equations (1) to (3) below, which is a mold for continuous casting of steel.
d <P ≦ S ……… (1)
e ≦ L ≦ 1000 × Vc / f ……… (2)
F ≤ L ……… (3)
Here, in the equations (1) to (3), each symbol represents the following.
d; Width of dissimilar substance filling portion in the mold width direction (mm)
P; Spacing distance (mm) in the mold width direction between adjacent parts filled with different substances
S; Spacing distance (mm) in the mold width direction between adjacent cooling water channels formed on the back surface of the mold plate.
e; Width (mm) of dissimilar substance filling part in the slab drawing direction
L; Spacing distance (mm) in the slab drawing direction between adjacent parts of the filling part of different substances
Vc; slab drawing speed (m / min) in the continuous steel casting process
f; Vibration frequency (1 / min) of the mold for continuous casting in the continuous casting process of steel
F; Distance between adjacent protrusions arranged in the cooling water channel in the slab drawing direction (mm)
前記水流撹乱部が、前記冷却水路の鋳型幅方向及び冷却水路の厚み方向に広がる突起で構成されている、請求項1に記載の鋼の連続鋳造用鋳型。 The mold for continuous casting of steel according to claim 1 , wherein the water flow disturbing portion is composed of protrusions extending in the mold width direction of the cooling water channel and the thickness direction of the cooling water channel. 前記水流撹乱部が、前記冷却水路に千鳥配置に複数配置される突起で構成されている、請求項1に記載の鋼の連続鋳造用鋳型。 The mold for continuous casting of steel according to claim 1, wherein the water flow disturbing portion is composed of a plurality of protrusions arranged in a staggered arrangement in the cooling water channel. 記鋳型プレートの表面における複数の異種物質充填部の上端から下端までの領域で、鋳型内壁面から前記冷却水路に向かう鋳型内壁面での熱流束が周期的に変化するように、前記複数の異種物質充填部が形成されている、請求項1から請求項3のいずれか1項に記載の鋼の連続鋳造用鋳型。 In the region from the upper end to the lower end of the plurality of dissimilar substance filling portions on the surface of the mold plate, the plurality of said so that the heat flow on the inner wall surface of the mold from the inner wall surface of the mold to the cooling water channel changes periodically. The mold for continuous casting of steel according to any one of claims 1 to 3, wherein a dissimilar substance filling portion is formed. 前記異種物質充填部は、下記の(4)式の条件を満たすように形成されている、請求項1から請求項4のいずれか1項に記載の鋼の連続鋳造用鋳型。
0.5≦t≦d ………(4)
ここで、(4)式において、各記号は以下を表す。
t;異種物質充填部における異種物質の充填深さ(mm)
d;鋳型幅方向での異種物質充填部の幅(mm)
The mold for continuous casting of steel according to any one of claims 1 to 4, wherein the dissimilar substance filling portion is formed so as to satisfy the condition of the following formula (4).
0.5 ≦ t ≦ d ……… (4)
Here, in the equation (4), each symbol represents the following.
t; Filling depth of dissimilar substances in dissimilar substance filling part (mm)
d; Width of dissimilar substance filling portion in the mold width direction (mm)
前記異種物質充填部を覆うように、鍍金層が前記鋳型プレートの表面に形成されている、請求項1から請求項のいずれか1項に記載の鋼の連続鋳造用鋳型。 The mold for continuous casting of steel according to any one of claims 1 to 5 , wherein a plating layer is formed on the surface of the mold plate so as to cover the dissimilar substance filling portion. 請求項1から請求項のいずれか1項に記載の鋼の連続鋳造用鋳型を用いた鋼の連続鋳造方法であって、冷却水路中の水流撹乱部が形成された位置では水流が乱流となるように前記連続鋳造用鋳型に冷却水を供給する、鋼の連続鋳造方法。 The method for continuous casting of steel using the steel continuous casting mold according to any one of claims 1 to 6 , wherein the water flow is turbulent at a position in the cooling water channel where a water flow disturbing portion is formed. A method for continuous casting of steel, in which cooling water is supplied to the continuous casting mold so as to be.
JP2020556110A 2018-11-09 2019-11-06 Mold for continuous steel casting and continuous steel casting method Active JP7004085B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018211623 2018-11-09
JP2018211623 2018-11-09
PCT/JP2019/043434 WO2020095932A1 (en) 2018-11-09 2019-11-06 Mold for continuous steel casting and continuous steel casting method

Publications (2)

Publication Number Publication Date
JPWO2020095932A1 JPWO2020095932A1 (en) 2021-09-02
JP7004085B2 true JP7004085B2 (en) 2022-01-21

Family

ID=70611890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020556110A Active JP7004085B2 (en) 2018-11-09 2019-11-06 Mold for continuous steel casting and continuous steel casting method

Country Status (5)

Country Link
EP (1) EP3878572A4 (en)
JP (1) JP7004085B2 (en)
KR (1) KR102521186B1 (en)
CN (1) CN113015587B (en)
WO (1) WO2020095932A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112059150B (en) * 2020-09-25 2024-07-05 杭州凯普科技有限公司 Anode plate casting system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341312A (en) 2005-06-07 2006-12-21 Km Europ Metal Ag Liquid-cooled casting mold for continuously casting metal
JP2009006348A (en) 2007-06-27 2009-01-15 Mishima Kosan Co Ltd Continuous casting mold
JP2010515580A (en) 2007-01-17 2010-05-13 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Continuous casting mold with refrigerant passage
JP2017039165A (en) 2015-08-18 2017-02-23 Jfeスチール株式会社 Casting mold for continuous casting and continuous casting method of steel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1267246B1 (en) * 1994-06-06 1997-01-28 Danieli Off Mecc WALL UNDERLAY FOR CONTINUOUS CASTING
JPH10128513A (en) * 1996-10-30 1998-05-19 Sumitomo Metal Ind Ltd Division mold for continuous casting
JP3865615B2 (en) * 2001-10-30 2007-01-10 三島光産株式会社 Continuous casting mold for high heat flux
CN101444837A (en) * 2008-09-25 2009-06-03 太原科技大学 Method for forming turbulence by cooling water in continuous casting crystallizer and crystallizer
CN102933334B (en) * 2010-06-04 2016-11-02 住友电气工业株式会社 Composite, continuously casting parts, continuously casting nozzle, continuous casing, founding materials and magnesium alloy cast coiled material
CN202270948U (en) * 2011-09-27 2012-06-13 中冶南方工程技术有限公司 Special-shaped blank crystallizer capable of enhancing turbulence cooling effect
CN103317108B (en) * 2012-03-19 2016-06-01 宝山钢铁股份有限公司 Continuous casting billet oscillation mark control method
CN104395015B (en) * 2012-06-27 2016-08-17 杰富意钢铁株式会社 Casting mold and the continuous casing of steel continuously
JP6003851B2 (en) * 2013-09-06 2016-10-05 Jfeスチール株式会社 Continuous casting mold and steel continuous casting method
US11331716B2 (en) * 2014-10-28 2022-05-17 Jfe Steel Corporation Continuous casting mold and method for continuous casting of steel (as amended)
JP2016168610A (en) * 2015-03-13 2016-09-23 Jfeスチール株式会社 Steel continuous casting method
JP2018149602A (en) * 2018-05-24 2018-09-27 Jfeスチール株式会社 Method for continuously casting steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341312A (en) 2005-06-07 2006-12-21 Km Europ Metal Ag Liquid-cooled casting mold for continuously casting metal
JP2010515580A (en) 2007-01-17 2010-05-13 エス・エム・エス・ジーマーク・アクチエンゲゼルシャフト Continuous casting mold with refrigerant passage
JP2009006348A (en) 2007-06-27 2009-01-15 Mishima Kosan Co Ltd Continuous casting mold
JP2017039165A (en) 2015-08-18 2017-02-23 Jfeスチール株式会社 Casting mold for continuous casting and continuous casting method of steel

Also Published As

Publication number Publication date
EP3878572A1 (en) 2021-09-15
KR20210069092A (en) 2021-06-10
EP3878572A4 (en) 2021-09-15
JPWO2020095932A1 (en) 2021-09-02
CN113015587B (en) 2022-12-27
KR102521186B1 (en) 2023-04-13
WO2020095932A1 (en) 2020-05-14
CN113015587A (en) 2021-06-22

Similar Documents

Publication Publication Date Title
JP6439762B2 (en) Steel continuous casting method
KR101941506B1 (en) Continuous casting mold and method for continuous casting of steel
KR102245010B1 (en) Method for continuous casting of steel
JP6003851B2 (en) Continuous casting mold and steel continuous casting method
JP6003850B2 (en) Manufacturing method of continuous casting mold and continuous casting method of steel
JP7004085B2 (en) Mold for continuous steel casting and continuous steel casting method
KR102245013B1 (en) Continuous casting method of molds and steels for continuous casting
JP5962733B2 (en) Steel continuous casting method
JP6365604B2 (en) Steel continuous casting method
JP6747142B2 (en) Secondary cooling method and secondary cooling device for continuous casting
JP6787359B2 (en) Continuous steel casting method
CN109689247B (en) Method for continuously casting steel
JP6402750B2 (en) Steel continuous casting method
JP6428721B2 (en) Continuous casting mold and steel continuous casting method
JP7020376B2 (en) Mold for continuous steel casting and continuous steel casting method
JP6740924B2 (en) Continuous casting mold and steel continuous casting method
JP6947192B2 (en) Mold for continuous casting of steel and continuous casting method of steel
JP2018149602A (en) Method for continuously casting steel
JP2016168610A (en) Steel continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 7004085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150