JP6747142B2 - Secondary cooling method and secondary cooling device for continuous casting - Google Patents

Secondary cooling method and secondary cooling device for continuous casting Download PDF

Info

Publication number
JP6747142B2
JP6747142B2 JP2016148071A JP2016148071A JP6747142B2 JP 6747142 B2 JP6747142 B2 JP 6747142B2 JP 2016148071 A JP2016148071 A JP 2016148071A JP 2016148071 A JP2016148071 A JP 2016148071A JP 6747142 B2 JP6747142 B2 JP 6747142B2
Authority
JP
Japan
Prior art keywords
cooling
slab
gap
water
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016148071A
Other languages
Japanese (ja)
Other versions
JP2018015781A (en
Inventor
祐輝 ▲桑▼内
祐輝 ▲桑▼内
林 聡
聡 林
仁志 舟金
仁志 舟金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016148071A priority Critical patent/JP6747142B2/en
Publication of JP2018015781A publication Critical patent/JP2018015781A/en
Application granted granted Critical
Publication of JP6747142B2 publication Critical patent/JP6747142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、連続鋳造機で鋳片の連続鋳造を行う際の二次冷却方法及び二次冷却装置に関するものである。 The present invention relates to a secondary cooling method and a secondary cooling device when performing continuous casting of a slab with a continuous casting machine.

鉄鋼業の連続鋳造において、鋳片を二次冷却する方法として、従来、スプレー方式の冷却が広く行われている。この二次冷却方法は、鋳片を搬送する支持ロール間にスプレーノズルを配置し、冷却水をスプレー状にして鋳片の表面に吹き付けて冷却するものである。 In continuous casting in the steel industry, spray-type cooling has been widely used as a method for secondary cooling of a slab. In this secondary cooling method, a spray nozzle is arranged between support rolls that convey the slab, and cooling water is sprayed onto the surface of the slab to cool it.

ところが、スプレー方式の場合、高温の鋳片に水を噴射することで水が飛散し、噴射した水が効率的に利用されないため、冷却能力に限界があった。そのため、将来、鋳造速度を上げて生産性を向上させるためには、給水量を大幅に増量するか、連続鋳造機の機長を延長して二次冷却区間を増やす必要がある。つまり、現状の連続鋳造機では対応できず、連続鋳造の高速化を図るためには、二次冷却における熱伝達係数の大幅な向上が望まれている。 However, in the case of the spray method, when water is sprayed on a high temperature slab, the water is scattered and the sprayed water is not used efficiently, so that the cooling capacity is limited. Therefore, in the future, in order to increase the casting speed and improve the productivity, it is necessary to significantly increase the amount of water supply or extend the length of the continuous casting machine to increase the secondary cooling section. That is, the current continuous casting machine cannot cope with this, and in order to increase the speed of continuous casting, it is desired to significantly improve the heat transfer coefficient in the secondary cooling.

従来、二次冷却における温度ムラを低減して均一に冷却するため、例えば特許文献1には、鋳片表面温度を膜沸騰の領域に保持して冷却する二次冷却方法が開示され、ロール間に多孔板を配置して冷却水を噴出することが記載されている。 Conventionally, in order to reduce the temperature unevenness in the secondary cooling and uniformly cool, for example, Patent Document 1 discloses a secondary cooling method in which the slab surface temperature is held in the region of film boiling for cooling, and It is described that a perforated plate is disposed in the nozzle to eject cooling water.

また、二次冷却の冷却能力を向上させる方法として、例えば特許文献2には、ウェアプレートを用いたクーリンググリッド設備が開示されている。 Further, as a method of improving the cooling capacity of the secondary cooling, for example, Patent Document 2 discloses a cooling grid facility using a wear plate.

また、特許文献3には、水膜流を利用して鋳片を冷却し、冷却能力を高める連続鋳片の二次冷却方法が開示されている。 Further, Patent Document 3 discloses a secondary cooling method for a continuous cast product which cools the cast product by utilizing a water film flow to enhance the cooling capacity.

特許第5146006号公報Japanese Patent No. 5146006 特許第4453562号公報Japanese Patent No. 4453562 特開2002−086253号公報JP, 2002-086253, A

しかしながら、特許文献1の場合、鋳片の長手方向に並んだ複数の噴出孔から冷却水を噴射させるため、冷却水同士の干渉やこれに伴う冷却水の滞留が起こりやすく、均一な冷却ができない。また、特許文献1は、過冷却にならないように膜沸騰の領域で冷却するものであり、冷却能力の大幅な向上は見込めない。 However, in the case of Patent Document 1, since the cooling water is sprayed from a plurality of ejection holes arranged in the longitudinal direction of the slab, interference between the cooling water and accompanying cooling water easily occur, and uniform cooling cannot be performed. .. Further, in Patent Document 1, cooling is performed in the region of film boiling so as not to cause overcooling, and a significant improvement in cooling capacity cannot be expected.

また、特許文献2の場合は、ウェアプレートが鋳片と接触しているため、鋳片の表面に疵が発生し、品質上問題が生じる。 In addition, in the case of Patent Document 2, since the wear plate is in contact with the slab, a flaw is generated on the surface of the slab, which causes a problem in quality.

また、特許文献3の場合、鋳片の引き抜き方向の反対方向へ連続的に移動する、例えばキャタピラー等を用いて駆動される水膜形成板と鋳片との間隙に、各水膜形成板に設けられた給水口から給水して、厚さ0.1〜2.5mmの水膜流を形成する連続鋳造の2次冷却方法が開示されているが、長手方向に並んだ複数の給水口から冷却水を給水するため、冷却水同士の干渉やこれに伴う冷却水の滞留が起こりやすく、均一な冷却ができない。 Further, in the case of Patent Document 3, the water film forming plate that moves continuously in the direction opposite to the drawing direction of the slab, for example, in the gap between the water film forming plate driven by using a caterpillar and the slab, A secondary cooling method of continuous casting is disclosed in which water is supplied from a provided water supply port to form a water film flow having a thickness of 0.1 to 2.5 mm, but from a plurality of water supply ports arranged in the longitudinal direction. Since the cooling water is supplied, the cooling water is likely to interfere with each other and the cooling water is likely to stay there, and uniform cooling cannot be performed.

そこで、本発明は、連続鋳造機における二次冷却の冷却能力を向上させ、水量を大幅に増やしたり、連続鋳造機の機長を延長したりすることなく、鋳造速度の高速化に対応できる、連続鋳造の二次冷却方法及び二次冷却装置を提供することを目的とするものである。 Therefore, the present invention improves the cooling capacity of the secondary cooling in the continuous casting machine, significantly increases the amount of water, without extending the length of the continuous casting machine, it is possible to correspond to the speeding up of the casting speed, continuous An object of the present invention is to provide a secondary cooling method for casting and a secondary cooling device.

上記課題を解決するため、本発明は、連続鋳造の二次冷却方法であって、鋼片表面温度が600℃〜900℃の範囲を冷却範囲とし、前記冷却範囲内の鋳片を搬送する支持ロール同士の間隙に冷却装置を設け、前記冷却装置は、前記鋳片の表面との間に冷媒の流路を形成するための隙間をあけて前記鋳片と略平行に設置される冷媒ガイド板と、前記隙間に前記冷媒を供給する冷媒管を備え、前記隙間を、0.5mmを超え、且つ下記式(1)を満たすd mm以下とし、前記隙間に供給された前記冷媒が非沸騰または核沸騰の領域で前記鋳片に接触して当該鋳片を冷却することを特徴とする、連続鋳造の二次冷却方法を提供する。なお、非沸騰または核沸騰とは、少なくとも一部の冷媒が液体の状態で鋳片表面に接触して鋳片を冷却する状態をいう。
=3.838×10 −4 ×W 0.48 ×(T+273) 0.80 ・・・(1)
ここで、
(mm):水膜冷却とスプレー冷却の熱伝達係数が同等となる流路隙間間隔
W(L/min.m ):水量密度
T(℃):評価温度
なお、水膜冷却とは本発明の冷却装置を用いた冷却であり、スプレー冷却とはスプレー状に噴射された冷媒を用いた冷却である。
MEANS TO SOLVE THE PROBLEM In order to solve the said subject, this invention is the secondary cooling method of continuous casting, WHEREIN: The support which conveys the slab in the said slab surface temperature makes the range of 600 to 900 degreeC a cooling range, and the said slab. A cooling device is provided in a gap between the rolls, and the cooling device is installed in a coolant guide plate substantially parallel to the slab with a gap for forming a coolant flow path between the slab and the surface of the slab. And a refrigerant pipe for supplying the refrigerant to the gap, and the gap is set to be more than 0.5 mm and d 0 mm or less satisfying the following formula (1), and the refrigerant supplied to the gap is non-boiling Alternatively, there is provided a secondary cooling method for continuous casting, which comprises contacting the slab in the nucleate boiling region to cool the slab. Note that non-boiling or nucleate boiling refers to a state in which at least a part of the refrigerant is in a liquid state and contacts the surface of the slab to cool the slab.
d 0 =3.838×10 −4 ×W 0.48 ×(T+273) 0.80 (1)
here,
d 0 (mm): Flow path gap distance at which water film cooling and spray cooling have the same heat transfer coefficient
W (L/min.m 2 ): Water quantity density
T (°C): Evaluation temperature
The water film cooling is cooling using the cooling device of the present invention, and the spray cooling is cooling using a refrigerant that is sprayed.

前記冷媒は、前記冷媒ガイド板に形成された供給口を介して前記隙間に供給され、前記供給口は、前記鋳片の幅方向に1列に並ぶ複数の孔、または、前記鋳片の幅方向を長手方向とするスリットであってもよい。 The coolant is supplied to the gap through a supply port formed in the coolant guide plate, the supply port is a plurality of holes arranged in a row in the width direction of the slab, or the width of the slab It may be a slit whose direction is the longitudinal direction.

また、本発明は、連続鋳造の二次冷却を行う冷却装置であって、鋼片表面温度が600℃〜900℃の範囲を冷却範囲とし、前記冷却範囲内の鋳片を搬送する支持ロール同士の間隙に設けられ、前記鋳片の表面との間に冷媒の流路を形成するための隙間をあけて前記鋳片と略平行に設置される冷媒ガイド板と、前記隙間に前記冷媒を供給する冷媒管を備え、前記隙間を、0.5mmを超え、且つ下記式(1)を満たすdmm以下とし、前記隙間に供給された前記冷媒が非沸騰または核沸騰の領域で前記鋳片に接触して当該鋳片を冷却することを特徴とする、連続鋳造の二次冷却装置を提供する。
=3.838×10−4×W0.48×(T+273)0.80 ・・・(1)
ここで、
(mm):水膜冷却とスプレー冷却の熱伝達係数が同等となる流路隙間間隔
W(L/min.m):水量密度
T(℃):評価温度
Further, the present invention is a cooling device for performing secondary cooling in continuous casting, wherein the steel slab surface temperature is in the cooling range of 600° C. to 900° C., and the support rolls for conveying the slab in the cooling range are supported. And a coolant guide plate that is installed substantially parallel to the slab with a gap for forming a coolant flow path between the slab and the surface of the slab, and supplies the coolant to the gap. And a gap of more than 0.5 mm and satisfying the following formula (1), d 0 mm or less, and the refrigerant supplied to the gap has the non-boiling or nucleate boiling region. There is provided a secondary cooling device for continuous casting, which is characterized in that the slab is cooled by contacting with.
d 0 =3.838×10 −4 ×W 0.48 ×(T+273) 0.80 (1)
here,
d 0 (mm): Flow path gap distance W (L/min.m 2 ) at which the heat transfer coefficient of water film cooling is equal to that of spray cooling: Water amount density T (° C.): Evaluation temperature

前記冷媒ガイド板に、前記冷媒を前記隙間に供給する供給口が形成され、前記供給口は、前記鋳片の幅方向に1列に並ぶ複数の孔、または、前記鋳片の幅方向を長手方向とするスリットであってもよい。 A supply port for supplying the refrigerant to the gap is formed in the coolant guide plate, and the supply port is a plurality of holes arranged in a row in the width direction of the slab, or the width direction of the slab is long. It may be a slit having a direction.

本発明によれば、連続鋳造の二次冷却の冷却効率を大幅に向上させることができるので、冷却水量を増加させることなく、鋳造速度の高速化にも対応できる。 According to the present invention, since the cooling efficiency of the secondary cooling of continuous casting can be significantly improved, it is possible to cope with the increase in casting speed without increasing the amount of cooling water.

本発明の実施の形態にかかる連続鋳造機の概要を示す側面図である。It is a side view which shows the outline of the continuous casting machine concerning embodiment of this invention. スプレー冷却の冷却能力を試験する実験装置の概略を示す断面図である。It is sectional drawing which shows the outline of the experimental apparatus which tests the cooling capacity of spray cooling. 鋳片温度が900℃、600℃の場合の、図2の実験装置によって測定されたスプレー冷却の熱伝達係数を水量密度に対して示したグラフである。It is the graph which showed the heat transfer coefficient of the spray cooling measured by the experimental apparatus of FIG. 2 with respect to the water amount density when the slab temperature is 900 degreeC and 600 degreeC. 水膜冷却の冷却能力を試験する実験装置の概略を示す断面図である。It is sectional drawing which shows the outline of the experimental apparatus which tests the cooling capacity of water film cooling. 水膜冷却において、鋳片に接触する水の状態の変化を説明する図である。It is a figure explaining the change of the state of the water which contacts a cast in water film cooling. 鋳片温度が900℃の場合の、図4の実験装置によって測定された水膜冷却の熱伝達係数を、図2の実験装置によって測定されたスプレー冷却の熱伝達係数と比較して、水量密度に対して示したグラフである。When the slab temperature is 900° C., the heat transfer coefficient of water film cooling measured by the experimental apparatus of FIG. 4 is compared with the heat transfer coefficient of spray cooling measured by the experimental apparatus of FIG. Is a graph shown for. 鋳片温度が600℃の場合の、図4の実験装置によって測定された水膜冷却の熱伝達係数を、図2の実験装置によって測定されたスプレー冷却の熱伝達係数と比較して、水量密度に対して示したグラフである。When the slab temperature is 600° C., the heat transfer coefficient of water film cooling measured by the experimental apparatus of FIG. 4 is compared with the heat transfer coefficient of spray cooling measured by the experimental apparatus of FIG. Is a graph shown for. 本発明の実施の形態にかかる冷却装置を備えた連続鋳造機の一部を示す側面図である。It is a side view which shows a part of continuous casting machine provided with the cooling device concerning embodiment of this invention. 図8を、鋳片表面に正対して見た図である。It is the figure which looked at FIG. 8 by facing the surface of a cast piece. 本発明の他の実施の形態にかかる冷却装置を備えた連続鋳造機の一部を示す側面図である。It is a side view which shows a part of continuous casting machine provided with the cooling device concerning other embodiment of this invention. 図10を、鋳片表面に正対して見た図である。It is the figure which looked at FIG. 10 by facing the surface of a cast piece.

以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかる連続鋳造機1の構成の概略を示す説明図である。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is an explanatory diagram showing an outline of the configuration of a continuous casting machine 1 according to this embodiment.

連続鋳造機1は、図1に示すように、溶鋼を一時的に貯留するタンディッシュ2、タンディッシュ2の底部から鋳型3に溶鋼を注入する浸漬ノズル4、鋳型3から引き抜かれる鋳片Hを通過させる鋳片通路5、及び鋳片通路5を挟んで対向配置される一対のロール群6、7を備えている。 As shown in FIG. 1, the continuous casting machine 1 includes a tundish 2 for temporarily storing molten steel, an immersion nozzle 4 for injecting molten steel into a mold 3 from the bottom of the tundish 2, and a cast piece H withdrawn from the mold 3. It is provided with a slab passage 5 to be passed and a pair of roll groups 6 and 7 which are arranged to face each other with the slab passage 5 interposed therebetween.

一対のロール群6、7は、鋳片Hを鋳片通路5に沿った鋳造方向Dに案内するように、鋳片通路5の両面にそれぞれ設けられている。内周側のロール群6は、鋳片通路5内の鋳片Hの内周側を案内する複数の支持ロール10を有している。各支持ロール10は、その中心軸が鋳片Hの幅方向に向くように、鋳造方向Dに沿ってそれぞれ一列に並べて配置されている。また、外周側のロール群7は、鋳片通路5内の鋳片Hの外周側を案内する複数の支持ロール11を有している。各支持ロール11は、その中心軸が鋳片Hの幅方向に向くように、鋳造方向Dに沿ってそれぞれ一列に並べて配置されている。 The pair of roll groups 6 and 7 are provided on both surfaces of the slab passage 5 so as to guide the slab H in the casting direction D 1 along the slab passage 5. The inner peripheral roll group 6 has a plurality of support rolls 10 for guiding the inner peripheral side of the cast slab H in the cast slab passage 5. The respective support rolls 10 are arranged in a line along the casting direction D 1 such that the central axis thereof is oriented in the width direction of the cast slab H. The roll group 7 on the outer peripheral side has a plurality of support rolls 11 that guide the outer peripheral side of the cast slab H in the cast slab passage 5. The respective support rolls 11 are arranged in a line along the casting direction D 1 so that their central axes are oriented in the width direction of the cast slab H.

タンディッシュ2内の溶鋼は、浸漬ノズル4を介して鋳型3の上側から注入され、鋳型3で一次冷却されて鋳型3との接触面に凝固シェルを形成する。さらに、この凝固シェルを外殻とし、内部に未凝固溶鋼を有する鋳片Hは、鋳型3の下方において、各支持ロール10、11で挟み込まれた状態で二次冷却水によって冷却されながら連続的に引き抜かれ、やがて中心部までの凝固が完了した鋳片Hが生産される。 The molten steel in the tundish 2 is poured from the upper side of the mold 3 through the immersion nozzle 4 and is primarily cooled in the mold 3 to form a solidified shell on the contact surface with the mold 3. Further, the cast slab H having the solidified shell as the outer shell and the unsolidified molten steel inside is continuously sandwiched between the supporting rolls 10 and 11 below the mold 3 while being cooled by the secondary cooling water. Then, a cast slab H that has been completely solidified to the center is produced.

図2は、現在の連続鋳造機で一般的に用いられているスプレーノズル15について、その冷却能力を測定する実験装置を示したものである。所定の評価温度以上の温度にあらかじめ加熱した鋼片16の中央部上方から、種々のノズルを用いて冷却水を鋼片表面に噴射し、鋼片16を冷却した。冷却中の鋼片16の温度推移を測定し、その測定結果を用いて、鋼片表面の熱伝達係数を求めた。この際、鋼片表面のうち、スプレーノズル15からの冷却水のスプレー噴流17が直接衝突していない部分の温度推移も測定し、スプレーノズル15から吐出された冷却水のスプレー噴流17が鋼片表面に衝突して形成される楕円を内接円とする長方形の範囲にわたって平均した値を、該スプレーノズル15を用いたときの熱伝達係数として算出した。また、鋼片16の温度測定は、鋼片16の冷却面から厚さ方向に2mm内側の位置に熱電対を埋め込んで行った。 FIG. 2 shows an experimental apparatus for measuring the cooling capacity of the spray nozzle 15 which is generally used in the current continuous casting machine. Cooling water was sprayed onto the surface of the steel slab 16 from above the central portion of the steel slab 16 preheated to a temperature equal to or higher than a predetermined evaluation temperature to cool the steel slab 16. The temperature change of the steel slab 16 during cooling was measured, and the heat transfer coefficient on the surface of the steel slab was obtained using the measurement result. At this time, the temperature transition of the portion of the surface of the steel billet where the spray jet 17 of the cooling water from the spray nozzle 15 does not directly collide is also measured, and the spray jet 17 of the cooling water discharged from the spray nozzle 15 shows the steel billet. A value obtained by averaging over a range of a rectangle whose inscribed circle is an ellipse formed by colliding with the surface was calculated as a heat transfer coefficient when the spray nozzle 15 was used. The temperature of the steel piece 16 was measured by embedding a thermocouple at a position 2 mm inside from the cooling surface of the steel piece 16 in the thickness direction.

表1に、評価温度を900℃としたときの熱伝達係数の測定値を示す。また図3は、熱伝達係数を水量密度に対してプロットしたものである。ここで、水量密度は、スプレーノズルから噴射される冷却水の水量を、前記鋼片上の長方形の面積で除したものである。 Table 1 shows the measured values of the heat transfer coefficient when the evaluation temperature was 900°C. Further, FIG. 3 is a plot of the heat transfer coefficient with respect to the water amount density. Here, the water amount density is obtained by dividing the amount of cooling water jetted from the spray nozzle by the rectangular area on the steel slab.

表1および図3から、水量密度を増すにしたがって熱伝達係数が向上することが分かる。 It can be seen from Table 1 and FIG. 3 that the heat transfer coefficient improves as the water density increases.

また、表2は、評価温度を600℃としたときの熱伝達係数の測定値であり、評価温度600℃の場合も、水量密度を増すにしたがって熱伝達係数が向上することが分かる。600℃の測定値も図3に合わせて記載した。 Further, Table 2 shows the measured values of the heat transfer coefficient when the evaluation temperature is 600° C., and it can be seen that even at the evaluation temperature of 600° C., the heat transfer coefficient improves as the water amount density increases. The measured values at 600° C. are also shown in FIG.

Figure 0006747142
Figure 0006747142

Figure 0006747142
Figure 0006747142

次に、水膜冷却の冷却効果の試験を行った。図4は、水膜冷却の冷却能力を試験するモデル装置21の概略を示す。鋼片22の表面から適宜間隔をあけて冷媒ガイド板23を設け、給水ノズル24から、鋼片22と冷媒ガイド板23との隙間25に向けて給水した。隙間25が水の流路となって鋼片22の表面に水膜が形成され、鋼片22が冷却される。水が流れる方向(X方向)における給水ノズル24からの距離による鋼片22の温度を測定し、冷却能力を調べた。鋼片22の温度測定は、鋼片22の冷却面から厚さ方向(Z方向)に1.5mm内側の位置に熱電対を埋め込んで行った。 Next, the cooling effect of water film cooling was tested. FIG. 4 schematically shows a model device 21 for testing the cooling capacity of water film cooling. Refrigerant guide plates 23 were provided at appropriate intervals from the surface of the steel piece 22, and water was supplied from the water supply nozzle 24 toward the gap 25 between the steel piece 22 and the refrigerant guide plate 23. The gap 25 serves as a flow path for water, a water film is formed on the surface of the steel piece 22, and the steel piece 22 is cooled. The temperature of the steel piece 22 was measured depending on the distance from the water supply nozzle 24 in the direction of water flow (X direction), and the cooling capacity was investigated. The temperature of the steel piece 22 was measured by embedding a thermocouple at a position 1.5 mm inside from the cooling surface of the steel piece 22 in the thickness direction (Z direction).

表3および表4に、それぞれ評価温度を900℃および600℃としたときの、水膜冷却による熱伝達係数の測定値を示す。水膜冷却の実験においては、鋼片表面上に水膜が形成されている範囲を評価対象面積とした。表3および表4より、水量密度を増加させると熱伝達係数が向上することに加え、同じ水量密度においても、流路隙間間隔を縮小することで熱伝達係数を向上できることが分かった。これは、流路隙間間隔を縮小すると、鋼片と冷媒ガイド板の間を流れる水膜の流速が上昇し、鋼片表面における蒸気膜の形成を抑制したためであると考えられる。なお、水量密度の定義は、水膜流を形成するために給水口から供給される冷却水の水量を、鋼片の面積で除したものである。 Tables 3 and 4 show the measured values of the heat transfer coefficient by water film cooling when the evaluation temperatures were 900°C and 600°C, respectively. In the water film cooling experiment, the area in which the water film was formed on the surface of the steel slab was taken as the evaluation target area. From Tables 3 and 4, it was found that increasing the water content density improves the heat transfer coefficient, and also for the same water content density, the heat transfer coefficient can be improved by reducing the flow path gap interval. It is considered that this is because the flow velocity of the water film flowing between the steel slab and the refrigerant guide plate was increased when the flow path gap interval was reduced, and the formation of the vapor film on the surface of the steel slab was suppressed. The water amount density is defined as the amount of cooling water supplied from the water supply port for forming the water film flow divided by the area of the steel slab.

水膜冷却を行う場合には、鋳片Hに接触する水の状態によって、鋳片Hに対する冷却能力が大きく異なることが考えられる。すなわち、図5に示すように、水は、給水箇所で熱い鋳片Hに接触し、順に、非沸騰(区間A)、核沸騰(区間B)、膜沸騰(区間C)、無水(区間D)の状態となる。冷却効果が大きいのは区間A〜Bであり、膜沸騰状態となる区間Cからは冷却効果が低下する。水膜冷却を行う際には、鋳片Hに接触する冷却水を非沸騰または核沸騰状態に保つことで、高い熱伝達係数を発揮できる。 When water film cooling is performed, it is conceivable that the cooling capacity for the cast slab H varies greatly depending on the state of the water contacting the cast slab H. That is, as shown in FIG. 5, the water comes into contact with the hot slab H at the water supply point, and in sequence, non-boiling (section A), nucleate boiling (section B), film boiling (section C), anhydrous (section D). ) State. The cooling effect is large in the sections A to B, and the cooling effect decreases from the section C in which the film boiling state occurs. When cooling the water film, a high heat transfer coefficient can be exhibited by keeping the cooling water in contact with the slab H in a non-boiling or nucleate boiling state.

表3および表4に示したように、流路隙間間隔を0.5mmまで冷媒ガイド板と鋼片を近接させた水準では、鋼片を冷却することが不可能であり、熱伝達係数を測定することができなかった。これは、冷却により鋼片表面に発生したスケールや、冷却によって発生した鋼片の曲がりによって、冷却水の流路が閉塞したためと推定される。 As shown in Tables 3 and 4, it is impossible to cool the steel piece at the level where the coolant guide plate and the steel piece are brought close to each other until the passage gap is 0.5 mm, and the heat transfer coefficient is measured. I couldn't. It is presumed that this is because the flow path of the cooling water was blocked by the scale generated on the surface of the steel slab due to cooling and the bending of the steel slab generated by the cooling.

また、表3および表4に示したように、水膜冷却の実験における水量密度の最大値は1000L/min.mとした。これは、既存の連続鋳造機における冷却水ポンプの最大供給能力が1000L/min.m程度であり、これ以上の冷却水の供給を試みる場合、冷却水ポンプの新設が必要となるために設備投資額が過大となり、現実的ではないためである。 Further, as shown in Tables 3 and 4, the maximum value of the water amount density in the water film cooling experiment was 1000 L/min. m 2 . This is because the maximum supply capacity of the cooling water pump in the existing continuous casting machine is 1000 L/min. This is because it is about m 2 and when trying to supply more cooling water than this, a new cooling water pump needs to be installed, resulting in an excessive amount of capital investment, which is not realistic.

また、連続鋳造における支持ロールの間隔は約200mm〜250mmであり、支持ロール間に水膜冷却用の冷媒ガイド板を設置する場合、当該冷却ガイド板の長さは最大でも約200mmである。後述するように冷媒ガイド板の中心部から給水し、給水した冷却水のうち半分が上方(鋳型側)へ、残りの半分が下方に流れることを想定した。このため、本試験では水膜流の長さを100mmとした。 The distance between the support rolls in continuous casting is about 200 mm to 250 mm, and when a coolant guide plate for cooling the water film is installed between the support rolls, the length of the cooling guide plate is about 200 mm at the maximum. As will be described later, it was assumed that water was supplied from the central portion of the refrigerant guide plate, and half of the supplied cooling water flows upward (to the mold side) and the remaining half flows downward. Therefore, in this test, the length of the water film flow was set to 100 mm.

図6は、評価温度900℃の場合の水膜冷却による熱伝達係数を、水量密度を横軸にプロットしたものである。各プロットの肩に記載した数値は、各条件の流路隙間の間隔を示している。また、図6中に示した実線は、評価温度900℃で実施したスプレー冷却による熱伝達係数の測定値である。図6より、例えば、水量密度600L/min.mのプロットを見ると、流路隙間間隔が0.6mmでは非常に大きな熱伝達係数が得られることが分かる。ここから、流路隙間間隔を増やしていくにしたがって熱伝達係数が低下し、流路隙間間隔が2.3mmのときにスプレー冷却と同じ熱伝達係数となることが分かる。すなわち、この点においては、スプレー冷却によっても、水膜冷却によっても同等の熱伝達係数となる。さらに、流路隙間間隔を増加させて4.0mmとした水準では、測定された熱伝達係数がスプレー冷却の値を下回っており、水膜冷却を導入してもスプレー冷却に比べて熱伝達係数が向上しないことを示している。これは、流路隙間間隔を拡大すると、鋼片と冷媒ガイド板の間を流れる水膜の流速が低下し、水膜冷却の効果である鋼片表面における蒸気膜の形成の抑制効果がなくなるためであると考えられる。以上のことより、評価温度900℃、水量密度600L/min.mの場合は、水膜冷却の流路隙間間隔は0.6mmから2.3mmの範囲に設定すべきであることが読み取れる。 FIG. 6 is a plot of the heat transfer coefficient due to water film cooling when the evaluation temperature is 900° C., with the water amount density plotted on the horizontal axis. The numerical value indicated on the shoulder of each plot indicates the flow path gap under each condition. Further, the solid line shown in FIG. 6 is the measured value of the heat transfer coefficient by spray cooling performed at the evaluation temperature of 900° C. From FIG. 6, for example, water density 600 L/min. It can be seen from the plot of m 2 that a very large heat transfer coefficient can be obtained when the flow path gap spacing is 0.6 mm. From this, it can be seen that the heat transfer coefficient decreases as the flow path gap distance increases, and the heat transfer coefficient becomes the same as that of spray cooling when the flow path gap distance is 2.3 mm. That is, at this point, the same heat transfer coefficient is obtained by both spray cooling and water film cooling. Furthermore, at the level where the flow path gap spacing was increased to 4.0 mm, the measured heat transfer coefficient was lower than the spray cooling value, and even if water film cooling was introduced, the heat transfer coefficient was lower than that of spray cooling. Is not improving. This is because when the flow path gap spacing is increased, the flow velocity of the water film flowing between the steel piece and the refrigerant guide plate decreases, and the effect of cooling the water film, which is the effect of suppressing the formation of a vapor film on the surface of the steel piece, disappears. it is conceivable that. From the above, the evaluation temperature was 900° C., the water amount density was 600 L/min. In the case of m 2 , it can be read that the flow channel gap interval for water film cooling should be set in the range of 0.6 mm to 2.3 mm.

図7は、図6と同様に、評価温度600℃の場合の水膜冷却による熱伝達係数を、水量密度を横軸にプロットしたものである。図6のその他のプロットや図7の各プロットについても同様の検討を行うことで、各条件において実効性のある水膜冷却の流路隙間間隔を読み取ることができる。 Similar to FIG. 6, FIG. 7 is a graph in which the heat transfer coefficient due to water film cooling at the evaluation temperature of 600° C. is plotted on the horizontal axis of the water amount density. By performing the same examination with respect to the other plots in FIG. 6 and the respective plots in FIG. 7, it is possible to read the flow channel gap spacing of water film cooling that is effective under each condition.

すなわち、現にスプレーノズルで鋳片を二次冷却している部位を新たに水膜冷却に置き換える場合、スプレー冷却よりも大きな熱伝達係数を得るためには、設定できる水膜厚みに上限があることが分かった。 In other words, when replacing the part where the slab is secondarily cooled by the spray nozzle with water film cooling, there is an upper limit to the water film thickness that can be set in order to obtain a larger heat transfer coefficient than spray cooling. I understood.

また、評価温度900℃、600℃のいずれの条件においても、測定された熱伝達係数の値から推定して、水膜内の冷却水は、スプレー冷却よりも大きな熱伝達係数が得られる非沸騰または核沸騰の状態になっていると考えられる。 Further, under both conditions of the evaluation temperature of 900° C. and 600° C., it is estimated from the value of the measured heat transfer coefficient that the cooling water in the water film is a non-boiling liquid that has a larger heat transfer coefficient than the spray cooling. Or it is thought that it is in the state of nucleate boiling.

表3および表4に記載した全ての水準の実験結果について上記検討を行い、水膜冷却の熱伝達係数がスプレー冷却の熱伝達係数以上になる条件の水準に「○」印を、水膜冷却の熱伝達係数がスプレー冷却よりも小さくなるか水膜冷却では冷却が不可能な条件の水準に「×」印を、水膜冷却優位条件として表中に記入した。 The above-mentioned examination was conducted on the experimental results of all the levels shown in Table 3 and Table 4, and the level of the condition that the heat transfer coefficient of the water film cooling was equal to or higher than the heat transfer coefficient of the spray cooling was marked with "○", and the water film cooling was carried out. The heat transfer coefficient of is smaller than that of spray cooling or the level at which cooling is not possible with water film cooling is marked with "x" in the table as a condition for predominant water film cooling.

発明者らは、水膜冷却とスプレー冷却のそれぞれの熱伝達係数の測定結果について、異なる評価温度および水量密度における実験結果を解析した。その結果、流路隙間間隔を求める数式を導出するに至った。ここで、水膜冷却とスプレー冷却の熱伝達係数が同等となる流路隙間間隔をd(mm)、水量密度をW(L/min.m)、評価温度をT(℃)と定義すると、dは以下の式(1)で表せる。
=3.838×10−4×W0.48×(T+273)0.80 ・・・式(1)
ここで、
(mm):水膜冷却とスプレー冷却の熱伝達係数が同等となる流路隙間間隔
W(L/min.m):水量密度
T(℃):評価温度
The inventors analyzed the measurement results of the heat transfer coefficients of water film cooling and spray cooling at different evaluation temperatures and water density. As a result, we have derived a mathematical formula for obtaining the flow path gap interval. Here, the flow path gap interval at which the heat transfer coefficients of water film cooling and spray cooling are equal is defined as d 0 (mm), the water amount density is W (L/min.m 2 ), and the evaluation temperature is defined as T (° C.). Then, d 0 can be expressed by the following equation (1).
d 0 =3.838×10 −4 ×W 0.48 ×(T+273) 0.80 ...Equation (1)
here,
d 0 (mm): Flow path gap distance W (L/min.m 2 ) at which the heat transfer coefficient of water film cooling is equal to that of spray cooling: Water amount density T (° C.): Evaluation temperature

上記式(1)を導出するに際しては、水膜冷却とスプレー冷却の熱伝達係数が同等となる流路隙間間隔dを、下記式(2)に示すとおり水量密度Wと評価温度Tのべき乗の積で求められると仮定した。なお、水量密度Wは水が流れる長さ100mmで割っており、また評価温度Tは絶対温度に換算した上で873K(600℃)で割っている。そして、表3および表4に示した測定結果から、係数Aおよび乗数B、Cを求め、上記式(1)を導出するに至った。なお、発明者らは評価温度600℃〜900℃の範囲において、上記式(1)が成立すること確認している。
=A×(W/100)×{(T+273)/873} ・・・(2)
In deriving the above equation (1), the flow path gap distance d 0 at which the heat transfer coefficients of water film cooling and spray cooling are equal to each other, the water amount density W and the power of the evaluation temperature T are expressed by the following equation (2). It is assumed that it is calculated by the product of The water amount density W is divided by a length of 100 mm in which water flows, and the evaluation temperature T is divided by an absolute temperature and then divided by 873K (600°C). Then, the coefficient A and the multipliers B and C were obtained from the measurement results shown in Tables 3 and 4, and the above formula (1) was derived. The inventors have confirmed that the above equation (1) holds in the evaluation temperature range of 600°C to 900°C.
d 0 =A×(W/100) B ×{(T+273)/873} C (2)

Figure 0006747142
Figure 0006747142

Figure 0006747142
Figure 0006747142

(実施形態1)
図8、図9は、本発明の実施の形態を示し、水膜冷却を行う冷却装置31を備えた連続鋳造機1の一部分を示す。図8、図9に示すように、鋳片Hを搬送する支持ロール10の間隙に、冷却装置31が設けられている。冷却装置31は、鋳片Hの幅方向を長手方向とする冷媒ガイド板32と、冷媒管としての給水管33を有し、図示しない支持機構によって支持されている。冷媒ガイド板32は、鋳片Hの表面との間に冷却水の流路を形成するための隙間34をあけて、鋳片Hの表面と略平行に設置され、隙間34の厚みを調整できるように取り付けられている。また、冷媒ガイド板32には、給水管33から供給される冷却水の隙間34内への供給口である給水口35が形成されている。給水口35は、例えば図9に示すように、鋳片Hの幅方向に1列に並んだ複数のφ5mm程度の丸孔でもよいし、鋳片Hの幅方向を長手方向とする1つのスリットまたは幅方向に1列に並んだ複数のスリットでもよい。
(Embodiment 1)
8 and 9 show an embodiment of the present invention and show a part of a continuous casting machine 1 including a cooling device 31 for cooling a water film. As shown in FIGS. 8 and 9, a cooling device 31 is provided in the gap between the support rolls 10 that convey the cast slab H. The cooling device 31 has a coolant guide plate 32 having the width direction of the cast slab H as a longitudinal direction and a water supply pipe 33 as a coolant pipe, and is supported by a support mechanism (not shown). The coolant guide plate 32 is installed substantially parallel to the surface of the cast slab H with a gap 34 for forming a flow path of cooling water between the surface of the cast slab H and the surface of the cast slab H being adjusted. Is installed as. Further, the coolant guide plate 32 is provided with a water supply port 35 which is a supply port into the gap 34 of the cooling water supplied from the water supply pipe 33. The water supply port 35 may be, for example, as shown in FIG. 9, a plurality of round holes of about φ5 mm arranged in a row in the width direction of the slab H, or one slit having the width direction of the slab H as the longitudinal direction. Alternatively, a plurality of slits arranged in a row in the width direction may be used.

給水管33から隙間34に供給された水は、隙間34内で水膜流となって鋳片Hの表面を冷却し、隙間34内を流れた後、冷媒ガイド板32の端から排出される。 The water supplied from the water supply pipe 33 to the gap 34 becomes a water film flow in the gap 34, cools the surface of the cast slab H, flows in the gap 34, and then is discharged from the end of the refrigerant guide plate 32. ..

(実施形態2)
次に、本発明の他の実施の形態について説明する。図10、図11は、他の実施の形態にかかる冷却装置31を備えた連続鋳造機1の一部分を示す。冷却装置31は、上記実施の形態と同様に、冷媒ガイド板32と給水管33を有している。冷却装置31では、給水管33を介して冷媒ガイド板32の中心部から給水され、給水された冷却水のうち半分が上方(鋳型側)へ、残りの半分が下方に流れる。なお、図示の例においては、連続鋳造機1の鉛直部または湾曲部に冷却装置31を設けた場合を示しているが、図8、図9に示したように冷却装置31を水平部に設けてもよい。
(Embodiment 2)
Next, another embodiment of the present invention will be described. 10 and 11 show a part of a continuous casting machine 1 including a cooling device 31 according to another embodiment. The cooling device 31 has a refrigerant guide plate 32 and a water supply pipe 33, as in the above embodiment. In the cooling device 31, water is supplied from the central portion of the refrigerant guide plate 32 via the water supply pipe 33, and half of the supplied cooling water flows upward (to the mold side) and the remaining half flows downward. In the illustrated example, the cooling device 31 is provided in the vertical portion or the curved portion of the continuous casting machine 1, but as shown in FIGS. 8 and 9, the cooling device 31 is provided in the horizontal portion. May be.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to this example. It is obvious to those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and of course, the technical scope of the present invention is also applicable to them. Be understood to belong to.

本発明は、鋳片や鋼板を冷媒で冷却する方法及び装置に適用できる。 INDUSTRIAL APPLICABILITY The present invention can be applied to a method and apparatus for cooling a cast slab or a steel plate with a refrigerant.

1 連続鋳造機
2 タンディッシュ
3 鋳型
4 浸漬ノズル
5 鋳片通路
6、7 ロール群
10、11 支持ロール
15 スプレーノズル
16 鋼片
17 冷却水のスプレー噴流
21 モデル装置
22 鋼片
23 冷媒ガイド板
24 給水ノズル
25 隙間
31 冷却装置
32 冷媒ガイド板
33 給水管
34 隙間
35 給水口
H 鋳片
DESCRIPTION OF SYMBOLS 1 Continuous casting machine 2 Tundish 3 Mold 4 Immersion nozzle 5 Cast piece passage 6, 7 Roll group 10, 11 Support roll 15 Spray nozzle 16 Steel piece 17 Cooling water spray jet 21 Model device 22 Steel piece 23 Refrigerant guide plate 24 Water supply Nozzle 25 Gap 31 Cooling device 32 Refrigerant guide plate 33 Water supply pipe 34 Gap 35 Water supply port H Cast slab

Claims (4)

連続鋳造の二次冷却方法であって、
鋼片表面温度が600℃〜900℃の範囲を冷却範囲とし、
前記冷却範囲内の鋳片を搬送する支持ロール同士の間隙に冷却装置を設け、
前記冷却装置は、前記鋳片の表面との間に冷媒の流路を形成するための隙間をあけて前記鋳片と略平行に設置される冷媒ガイド板と、前記隙間に前記冷媒を供給する冷媒管を備え、
前記隙間を、0.5mmを超え、且つ下記式(1)を満たすd mm以下とし、
前記隙間に供給された前記冷媒が非沸騰または核沸騰の領域で前記鋳片に接触して当該鋳片を冷却することを特徴とする、連続鋳造の二次冷却方法。
=3.838×10 −4 ×W 0.48 ×(T+273) 0.80 ・・・(1)
ここで、
(mm):水膜冷却とスプレー冷却の熱伝達係数が同等となる流路隙間間隔
W(L/min.m ):水量密度
T(℃):評価温度
A secondary cooling method for continuous casting,
The range in which the surface temperature of the billet is 600°C to 900°C is the cooling range,
Providing a cooling device in the gap between the support rolls that convey the slab in the cooling range ,
The cooling device supplies a coolant to the coolant guide plate, which is installed substantially parallel to the cast slab with a gap for forming a flow path of the coolant between the slab and the surface of the cast slab. Equipped with a refrigerant pipe,
The gap is 0.5 mm or less and d 0 mm or less that satisfies the following formula (1) ,
A secondary cooling method for continuous casting, characterized in that the cooling medium supplied to the gap contacts the slab in a non-boiling or nucleate boiling region to cool the slab.
d 0 =3.838×10 −4 ×W 0.48 ×(T+273) 0.80 (1)
here,
d 0 (mm): Flow path gap distance at which water film cooling and spray cooling have the same heat transfer coefficient
W (L/min.m 2 ): Water quantity density
T (°C): Evaluation temperature
前記冷媒は、前記冷媒ガイド板に形成された供給口を介して前記隙間に供給され、
前記供給口は、前記鋳片の幅方向に1列に並ぶ複数の孔、または、前記鋳片の幅方向を長手方向とするスリットであることを特徴とする、請求項1に記載の連続鋳造の二次冷却方法。
The refrigerant is supplied to the gap through a supply port formed in the refrigerant guide plate,
2. The continuous casting according to claim 1, wherein the supply port is a plurality of holes arranged in one row in the width direction of the slab, or slits having the width direction of the slab as a longitudinal direction. Secondary cooling method.
連続鋳造の二次冷却を行う冷却装置であって、
鋼片表面温度が600℃〜900℃の範囲を冷却範囲とし、
前記冷却範囲内の鋳片を搬送する支持ロール同士の間隙に設けられ、前記鋳片の表面との間に冷媒の流路を形成するための隙間をあけて前記鋳片と略平行に設置される冷媒ガイド板と、前記隙間に前記冷媒を供給する冷媒管を備え、
前記隙間を、0.5mmを超え、且つ下記式(1)を満たすdmm以下とし、前記隙間に供給された前記冷媒が非沸騰または核沸騰の領域で前記鋳片に接触して当該鋳片を冷却することを特徴とする、連続鋳造の二次冷却装置。
=3.838×10−4×W0.48×(T+273)0.80 ・・・(1)
ここで、
(mm):水膜冷却とスプレー冷却の熱伝達係数が同等となる流路隙間間隔
W(L/min.m):水量密度
T(℃):評価温度
A cooling device for performing secondary cooling of continuous casting,
The range in which the surface temperature of the billet is 600°C to 900°C is the cooling range,
It is provided in the gap between the support rolls that convey the slab in the cooling range, and is installed substantially parallel to the slab with a gap for forming a flow path of a refrigerant between the slab and the surface of the slab. A refrigerant guide plate and a refrigerant pipe for supplying the refrigerant to the gap,
The gap is set to more than 0.5 mm and not more than d 0 mm that satisfies the following formula (1), and the refrigerant supplied to the gap contacts the slab in a non-boiling or nucleate boiling region and the casting is performed. Secondary cooling device for continuous casting, characterized by cooling pieces.
d 0 =3.838×10 −4 ×W 0.48 ×(T+273) 0.80 (1)
here,
d 0 (mm): Flow path gap distance W (L/min.m 2 ) at which the heat transfer coefficient of water film cooling is equal to that of spray cooling: Water amount density T (° C.): Evaluation temperature
前記冷媒ガイド板に、前記冷媒を前記隙間に供給する供給口が形成され、
前記供給口は、前記鋳片の幅方向に1列に並ぶ複数の孔、または、前記鋳片の幅方向を長手方向とするスリットであることを特徴とする、請求項に記載の連続鋳造の二次冷却装置。
In the refrigerant guide plate, a supply port for supplying the refrigerant to the gap is formed,
The continuous casting according to claim 3 , wherein the supply port is a plurality of holes arranged in a row in the width direction of the slab, or slits having the width direction of the slab as a longitudinal direction. Secondary cooling system.
JP2016148071A 2016-07-28 2016-07-28 Secondary cooling method and secondary cooling device for continuous casting Active JP6747142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016148071A JP6747142B2 (en) 2016-07-28 2016-07-28 Secondary cooling method and secondary cooling device for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016148071A JP6747142B2 (en) 2016-07-28 2016-07-28 Secondary cooling method and secondary cooling device for continuous casting

Publications (2)

Publication Number Publication Date
JP2018015781A JP2018015781A (en) 2018-02-01
JP6747142B2 true JP6747142B2 (en) 2020-08-26

Family

ID=61075524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016148071A Active JP6747142B2 (en) 2016-07-28 2016-07-28 Secondary cooling method and secondary cooling device for continuous casting

Country Status (1)

Country Link
JP (1) JP6747142B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114096362B (en) * 2019-07-11 2024-06-25 杰富意钢铁株式会社 Method and apparatus for secondary cooling of continuously cast slabs
EP3998126A4 (en) * 2019-07-11 2022-09-14 JFE Steel Corporation Secondary cooling method and secondary cooling apparatus for continuous casting slab
KR102631495B1 (en) 2019-10-29 2024-01-30 제이에프이 스틸 가부시키가이샤 Secondary cooling method of continuous casting cast steel

Also Published As

Publication number Publication date
JP2018015781A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
KR101801441B1 (en) Secondary cooling method and secondary cooling device for continuous casting machine
JP6572978B2 (en) Secondary cooling method and secondary cooling device for continuous cast slab
KR102635630B1 (en) Continuous casting method of steel
JP2010110813A (en) Secondary cooling method and apparatus for continuously cast slab
JP6747142B2 (en) Secondary cooling method and secondary cooling device for continuous casting
JP4453562B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
KR102245010B1 (en) Method for continuous casting of steel
JP7052931B2 (en) Secondary cooling method for continuously cast slabs
TWI787589B (en) Continuous casting method of steel billet
JP2017024079A (en) Continuous casting method for steel
CN109689247B (en) Method for continuously casting steel
JP5402678B2 (en) Steel continuous casting method
WO2020095932A1 (en) Mold for continuous steel casting and continuous steel casting method
JP5556073B2 (en) Secondary cooling method in continuous casting
JP4506691B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JP2020121329A (en) Mold and method for steel continuous casting
JP2022174996A (en) Steel continuous casting method and continuous casting mold
JP2016036821A (en) Continuous casting method
JP2016140912A (en) Continuous casting equipment for molten steel of high carbon steel and continuous casting method for molten steel of high carbon steel using the same
KR20160027474A (en) Casting apparatus and casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R151 Written notification of patent or utility model registration

Ref document number: 6747142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151