JP2010110813A - Secondary cooling method and apparatus for continuously cast slab - Google Patents
Secondary cooling method and apparatus for continuously cast slab Download PDFInfo
- Publication number
- JP2010110813A JP2010110813A JP2008288143A JP2008288143A JP2010110813A JP 2010110813 A JP2010110813 A JP 2010110813A JP 2008288143 A JP2008288143 A JP 2008288143A JP 2008288143 A JP2008288143 A JP 2008288143A JP 2010110813 A JP2010110813 A JP 2010110813A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- temperature
- water
- slab
- spray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Continuous Casting (AREA)
Abstract
Description
本発明は、連続鋳造鋳型で鋳造した鋳片を二次冷却帯で冷却する冷却方法と冷却装置に関する。 The present invention relates to a cooling method and a cooling device for cooling a slab cast with a continuous casting mold in a secondary cooling zone.
連続鋳造機においては、鋳型内で凝固した凝固殻からなり、内部に未凝固の溶鋼を含む鋳片を、鋳型から引き抜き、鋳型に続く湾曲した二次冷却帯で、鋳片表面に冷却媒体を噴霧して、鋳片を冷却するが、二次冷却帯での冷却(以下「二次冷却」ということがある。)は、鋳片の品質に大きく影響する。 In a continuous casting machine, a slab consisting of a solidified shell solidified in a mold and containing unsolidified molten steel inside is drawn out of the mold, and a cooling medium is applied to the slab surface in a curved secondary cooling zone following the mold. The slab is cooled by spraying, but cooling in the secondary cooling zone (hereinafter sometimes referred to as “secondary cooling”) greatly affects the quality of the slab.
例えば、鋳片を過剰に冷却(強冷却)すると、連続鋳造機の二次冷却帯の鋳片曲げ部や、鋳片曲げ戻し部で、鋳片表面に表面割れが発生する。一方、鋳片を緩冷却すると、まだ比較的凝固殻が薄く、大きな溶鋼静圧を受けている鋳片が、二次冷却帯の上部を通過する時、鋳片内部に内部割れが発生する。 For example, when the slab is excessively cooled (strongly cooled), surface cracks are generated on the surface of the slab at the slab bending part and the slab bending return part of the secondary cooling zone of the continuous casting machine. On the other hand, when the slab is slowly cooled, an internal crack is generated inside the slab when the slab still having a relatively thin solidified shell and receiving a large molten steel static pressure passes through the upper part of the secondary cooling zone.
連続鋳造においては、二次冷却帯において、鋳片の表面温度を、適正に制御することが、高品質の鋳片を製造する上で重要である。それ故、鋳片の表面温度又は表面温度分布を、所定の範囲に収めるため、鋳片に噴霧する冷却水量を制御する二次冷却方法及び/又は二次冷却装置が、数多く提案されている(特許文献1〜13、参照)。 In continuous casting, in the secondary cooling zone, appropriately controlling the surface temperature of the slab is important in producing a high-quality slab. Therefore, in order to keep the surface temperature or surface temperature distribution of the slab within a predetermined range, many secondary cooling methods and / or secondary cooling devices for controlling the amount of cooling water sprayed on the slab have been proposed ( References 1 to 13).
例えば、特許文献1には、鋳片表面の幅方向における温度分布を測定し、該温度分布が、目標温度に一致するように、冷却水の噴霧水量を調整することや、噴霧ノズルと鋳片表面の面間距離を変更することが提案されている。また、特許文献2にも、鋳片の表面温度を測定し、冷却水の噴霧水量を調整することが提案されている。
For example, in Patent Document 1, the temperature distribution in the width direction of the slab surface is measured, and the spray water amount is adjusted so that the temperature distribution matches the target temperature, or the spray nozzle and the slab are adjusted. It has been proposed to change the distance between the surfaces.
さらに、特許文献3には、鋳片の鋳造速度に応じて求めた冷却水量を、二次冷却水の温度に基づいて補正し、二次冷却帯において鋼板に噴霧する冷却水量を制御する冷却水制御装置が提案されている。
Furthermore, in
二次冷却帯での冷却水の冷却能は、冷却水の温度により変わるので、特許文献3提案の冷却水制御装置においては、二次冷却帯での冷却水の噴霧水量を、冷却水の温度に基づく補正係数で増減し、冷却水の冷却能を一定に維持していると推定される。
Since the cooling capacity of the cooling water in the secondary cooling zone varies depending on the temperature of the cooling water, in the cooling water control device proposed in
一方、連続鋳造機の操業において、鋳造速度や、鋼種に基づいて、二次冷却帯での冷却水量を調整する冷却方法も提案されている(特許文献5、7、及び、8、参照)。
On the other hand, in the operation of a continuous casting machine, a cooling method for adjusting the amount of cooling water in the secondary cooling zone based on the casting speed and the steel type has also been proposed (see
二次冷却おいては、冷却能を一定に維持することが重要であるが、冷却水の冷却能に影響を及ぼす要素が数多くあり、しかも、これら要因が相互に関連している場合もあり、鋳片の表面温度又は表面温度分布を適確に制御し、高品質の鋳片を安定して製造することは難しいのが実情である。 In secondary cooling, it is important to keep the cooling capacity constant, but there are many factors that affect the cooling capacity of the cooling water, and these factors may be related to each other, Actually, it is difficult to accurately control the surface temperature or surface temperature distribution of a slab and stably produce a high-quality slab.
鋳片温度を測定して、冷却水の噴霧水量を調整することにより、鋳片温度を、所定の範囲内に収め、良質の鋳片を得ることは可能である。しかし、従来の二次冷却方法によっても、鋳片の表面及び/又は内部に、割れが発生する。 By measuring the slab temperature and adjusting the spray water amount of the cooling water, it is possible to keep the slab temperature within a predetermined range and obtain a high quality slab. However, cracks occur on the surface and / or inside of the slab even by the conventional secondary cooling method.
この原因は、冷却水温(以下、「水温」ということがある。)が、冷却水の冷却能に及ぼす影響を考慮していないため、水温が季節要因で変化した場合に、鋳片表面温度の制御精度が悪化するためである。 This is because the effect of the cooling water temperature (hereinafter sometimes referred to as “water temperature”) on the cooling capacity of the cooling water is not taken into account. This is because the control accuracy deteriorates.
例えば、冬場に水温が低下し、鋳片表面温度の測定値が目標温度範囲より下側にあった場合、目標温度に入るように、測定した鋳片表面温度と目標値の差から、必要となる冷却水調整代を演算し、その結果に基づいて、冷却水噴霧水量を調整する(この場合は、水量を減らす)が、水温が冷却能に与える影響を考慮していない場合、演算で求めた冷却水調整代が実機の冷却で必要な調整代と一致せず、水量密度や鋳片表面温度にもよるが、水量調整代に過不足が生じることになる。 For example, if the water temperature drops in winter and the measured value of the slab surface temperature is below the target temperature range, the difference between the measured slab surface temperature and the target value is necessary to enter the target temperature. The cooling water adjustment allowance is calculated, and based on the result, the cooling water spray water amount is adjusted (in this case, the water amount is reduced), but if the effect of the water temperature on the cooling capacity is not taken into account, the calculation is performed. The cooling water adjustment allowance does not match the adjustment allowance required for cooling the actual machine, and depending on the water density and the slab surface temperature, the water adjustment allowance will be excessive or insufficient.
結果として、測定した鋳片表面温度が目標温度範囲に入るまで、冷却水量の調整が繰り返され、調整の間に目標温度範囲に収まらない状態において、水量減少代が足らない場合は、過冷却に起因する表面割れが発生し、また、水量減少代が多すぎた場合は、冷却不足に起因する内部割れが発生することになる。 As a result, the adjustment of the cooling water amount is repeated until the measured slab surface temperature falls within the target temperature range. If the resulting surface crack occurs and the amount of water reduction is too large, an internal crack due to insufficient cooling will occur.
そこで、本発明は、従来の二次冷却方法においては、鋳片の表面温度が、適確に制御されていないとの前提にたち、連続鋳造機の二次冷却帯において、鋳片の表面温度を適確に制御して、表面割れ及び内部割れの発生を防止し、高品質の鋳片を製造することを課題とする。そして、この課題を解決する二次冷却方法及び装置を提供することを目的とする。 Therefore, the present invention is based on the premise that the surface temperature of the slab is not properly controlled in the conventional secondary cooling method, and the surface temperature of the slab is determined in the secondary cooling zone of the continuous casting machine. It is an object to produce a high-quality cast slab by properly controlling the above-mentioned to prevent the occurrence of surface cracks and internal cracks. And it aims at providing the secondary cooling method and apparatus which solve this subject.
本発明者らは、従来の二次冷却方法において、鋳片の表面温度が適確に制御されていない理由について調査した。 The present inventors investigated the reason why the surface temperature of the slab is not properly controlled in the conventional secondary cooling method.
その結果、冷却水の温度変化により、冷却水の冷却能は変化するが、
(x)冷却能の変化幅は、冷却水の水量(水量密度)により異なること、及び、
(y)従来の二次冷却方法においては、(x)が考慮されていないこと
が判明した。
As a result, the cooling capacity of the cooling water changes due to the temperature change of the cooling water.
(X) The change width of the cooling capacity varies depending on the amount of cooling water (water density), and
(Y) It has been found that (x) is not considered in the conventional secondary cooling method.
本発明者らは、知見(x)を前提に、鋳片に噴霧する冷却水の噴霧水量を適確に制御すれば、表面割れ及び内部割れの発生を防止して、高品質の鋳片を安定して製造することができるとの発想の下に鋭意研究し、本発明をなすに至った。本発明の要旨は、以下のとおりである。 Based on knowledge (x), the inventors of the present invention can prevent the occurrence of surface cracks and internal cracks by appropriately controlling the amount of cooling water sprayed on the slab. Based on the idea that it can be stably produced, the inventors have intensively researched and made the present invention. The gist of the present invention is as follows.
(1)連続鋳造機で鋳造した鋳片を、鋳型下部の二次冷却帯で冷却する方法において、
(i)連続鋳造鋳片の幅方向における表面温度を測定し、
(ii)上記表面温度の最大値又は最小値が目標温度範囲を超えたとき、冷却水の噴霧水量W(L/min)を、冷却水の温度、及び、下記(1)式で定義する噴霧水量密度(L/m2min)に基づいて調整し、上記表面温度が目標温度範囲に収まるように冷却する
ことを特徴とする連続鋳造鋳片の二次冷却方法。
噴霧水量密度(L/m2min)=冷却水の噴霧水量W(L/min)/噴霧厚み(m)/スプレーノズルピッチ(m) ・・・(1)
(1) In a method of cooling a slab cast by a continuous casting machine in a secondary cooling zone below the mold,
(I) measuring the surface temperature in the width direction of the continuous cast slab,
(Ii) When the maximum value or the minimum value of the surface temperature exceeds the target temperature range, the spray water amount W (L / min) of the cooling water is defined by the temperature of the cooling water and the following formula (1). A secondary cooling method for a continuous cast slab, wherein the cooling is performed based on a water density (L / m 2 min) and cooling so that the surface temperature falls within a target temperature range.
Spray water density (L / m 2 min) = cooling water spray water quantity W (L / min) / spray thickness (m) / spray nozzle pitch (m) (1)
(2)前記表面温度を、二次冷却帯の湾曲部上部で測定することを特徴とする前記(1)に記載の連続鋳造鋳片の二次冷却方法。 (2) The secondary cooling method for a continuous cast slab according to (1), wherein the surface temperature is measured at an upper portion of the curved portion of the secondary cooling zone.
(3)前記(1)又は(2)に記載の連続鋳造鋳片の二次冷却方法を実施する装置であって、
(x)鋳片の幅方向における表面温度を測定する温度測定手段、
(y)上記温度測定手段で測定した表面温度と目標温度範囲を対比し、該表面温度の最大値又は最小値が目標温度を超えたとき、上記表面温度を目標温度範囲に収める冷却水の噴霧水量W(L/min)を、冷却水の温度、及び、下記(1)式で定義する噴霧水量密度(L/m2min)に基づいて演算する水量演算制御装置、及び、
(z)上記水量演算制御装置で演算した噴霧水量Wに基づいて、ノズルから噴霧する冷却水の噴霧水量を調整する流量調整手段、
を備えることを特徴とする連続鋳造鋳片の二次冷却装置。
噴霧水量密度(L/m2min)=冷却水の噴霧水量W(L/min)/噴霧厚み(m)/スプレーノズルピッチ(m) ・・・(1)
(3) An apparatus for performing the secondary cooling method of the continuous cast slab according to (1) or (2),
(X) temperature measuring means for measuring the surface temperature in the width direction of the slab,
(Y) The surface temperature measured by the temperature measuring means is compared with the target temperature range, and when the maximum value or the minimum value of the surface temperature exceeds the target temperature, the spray of cooling water that keeps the surface temperature within the target temperature range A water amount calculation control device for calculating the water amount W (L / min) based on the temperature of the cooling water and the spray water density (L / m 2 min) defined by the following equation (1);
(Z) A flow rate adjusting means for adjusting the spray water amount of the cooling water sprayed from the nozzle based on the spray water amount W calculated by the water amount calculation control device.
A secondary cooling device for continuously cast slab, comprising:
Spray water density (L / m 2 min) = cooling water spray water quantity W (L / min) / spray thickness (m) / spray nozzle pitch (m) (1)
(4)前記温度測定手段が、二次冷却帯の湾曲部上部に配置されていることを特徴とする前記(3)に記載の連続鋳造鋳片の二次冷却装置。 (4) The secondary cooling device for a continuous cast slab according to (3), wherein the temperature measuring means is disposed above the curved portion of the secondary cooling zone.
本発明によれば、冷却水の温度や水量密度に応じて、冷却水の噴霧水量を調整するので、冷却水の温度が変化した場合においても、鋳片表面温度の精度が悪化しない。 According to the present invention, the amount of water sprayed in the cooling water is adjusted according to the temperature of the cooling water and the water density, so that the accuracy of the slab surface temperature does not deteriorate even when the temperature of the cooling water changes.
例えば、冬場に冷却水の温度が低下し、鋳片表面温度の測定値が目標温度範囲より下側にあった場合、目標温度に入るように、測定した鋳片表面温度と目標値の差から、必要となる冷却水調整代を演算することになる。 For example, if the temperature of the cooling water drops in winter and the measured value of the slab surface temperature is below the target temperature range, the difference between the measured slab surface temperature and the target value is set so that the target temperature is entered. The required cooling water adjustment allowance is calculated.
本発明においては、冷却能に与える水温や水量密度の影響を考慮しているので、実機における冷却現象を精度よく推定でき、演算した冷却水調整代が、実際に必要な冷却水調整代と一致するので、水量調整時間が短縮されて、水量調整の間の過冷却による表面割れや、冷却不足による内部割れの発生が大幅に減少する。 In the present invention, since the influence of the water temperature and the water density on the cooling capacity is taken into account, the cooling phenomenon in the actual machine can be accurately estimated, and the calculated cooling water adjustment allowance coincides with the actually required cooling water adjustment allowance. Therefore, the water amount adjustment time is shortened, and the occurrence of surface cracks due to overcooling during water amount adjustment and internal cracks due to insufficient cooling is greatly reduced.
また、本発明によれば、連続鋳造機の二次冷却帯の湾曲部上部で、鋳片の幅方向における表面温度を測定しているので、鋳片が急激に冷え込んでも(過冷却しても)、冷却水の噴霧水量を直ちに低減して、鋳片が復熱するのに必要な時間を充分に確保し、鋳片を救済することができる。 Further, according to the present invention, since the surface temperature in the width direction of the slab is measured at the upper part of the curved portion of the secondary cooling zone of the continuous casting machine, even if the slab is rapidly cooled (even if it is supercooled) ), It is possible to immediately reduce the amount of cooling water sprayed water, to sufficiently secure the time required for the slab to reheat, and to relieve the slab.
本発明者らは、「連続鋳造機の二次冷却帯において、鋳片の表面温度を適確に制御して、表面割れ及び内部割れの発生を抑制し、高品質の鋳片を製造する」との課題を踏まえ、まず、冷却水の温度が、冷却速度へ及ぼす影響について調査した。 The inventors of the present invention "manufacturing high-quality slabs by appropriately controlling the surface temperature of the slab in the secondary cooling zone of the continuous casting machine to suppress the occurrence of surface cracks and internal cracks." First, we investigated the effect of cooling water temperature on the cooling rate.
表面から4mmの深さの位置に熱電対を埋め込んだ鋼板(試験片)を、1000℃以上に加熱した後、鋼板表面に冷却水を噴霧し、冷却水の温度が冷却速度に及ぼす影響について調査した。 After heating a steel plate (test piece) embedded with a thermocouple at a depth of 4 mm from the surface to 1000 ° C or higher, spray the cooling water on the steel plate surface, and investigate the effect of cooling water temperature on the cooling rate. did.
図1に、冷却水の温度が、25℃、35℃、及び、45℃の場合の冷却曲線を示す。図2に、図1に示す冷却曲線に基づいて求めた表面温度と熱伝達係数の関係(熱伝達曲線)を示す。 In FIG. 1, the cooling curve in case the temperature of a cooling water is 25 degreeC, 35 degreeC, and 45 degreeC is shown. FIG. 2 shows a relationship (heat transfer curve) between the surface temperature and the heat transfer coefficient obtained based on the cooling curve shown in FIG.
図1から、冷却水の温度が低いほど、冷却速度が速いことが解る。また、図2から、鋳片の表面温度が同じでも、冷却水の温度が低いと、熱伝達係数が大きいことが解る。 It can be seen from FIG. 1 that the cooling rate is faster as the temperature of the cooling water is lower. Moreover, even if the surface temperature of a slab is the same from FIG. 2, when the temperature of cooling water is low, it turns out that a heat transfer coefficient is large.
また、図1に示す冷却曲線、及び、図2に示す熱伝達曲線には、変曲点が存在し、この変曲点は、冷却水の温度が低いほど、高温側に移行していることが解る(図中、点線の囲み、参照)。 Further, the cooling curve shown in FIG. 1 and the heat transfer curve shown in FIG. 2 have an inflection point, and the inflection point shifts to a higher temperature side as the temperature of the cooling water is lower. (See the dotted box in the figure).
冷却水は、鋼板表面上で、沸騰し、噴霧当初、膜沸騰状態を形成するが、表面温度の低下に伴い、遷移沸騰状態に移行する。図中に示す変曲点は、冷却途中の鋼材表面における沸騰状態が、膜沸騰状態から遷移沸騰状態に移行した時点を示している。 The cooling water boils on the surface of the steel sheet and forms a film boiling state at the beginning of spraying, but transitions to a transition boiling state as the surface temperature decreases. The inflection point shown in the figure indicates a point in time when the boiling state on the surface of the steel material being cooled has shifted from the film boiling state to the transition boiling state.
膜沸騰状態は、鋼板表面に、蒸気膜が形成されている状態である。鋼板の冷却は、冷却水が蒸気膜を介して熱を奪うことで進行するので、膜沸騰状態での熱伝達係数は小さい。 The film boiling state is a state in which a vapor film is formed on the steel plate surface. Since the cooling of the steel sheet proceeds as the cooling water takes heat through the vapor film, the heat transfer coefficient in the film boiling state is small.
遷移沸騰状態は、鋼材表面に、蒸気膜が局所的に消失している部分が生じている状態である。鋼板の冷却は、冷却水が、蒸気膜消失部分にて、直接、鋼板に接触して熱を奪うことで進行するので、遷移沸騰状態での熱伝達係数は大きい。 The transition boiling state is a state in which a portion where the vapor film is locally lost is generated on the steel material surface. The cooling of the steel sheet proceeds by the cooling water directly contacting the steel sheet and taking heat away at the portion where the vapor film disappears, so that the heat transfer coefficient in the transition boiling state is large.
また、図1から明らかなように、変曲点は、高温側に移行すると同時に、短時間側に移行する。即ち、冷却開始時に鋼材表面に生成する蒸気が消失する(遷移沸騰状態に変化する)時間は、冷却水温が低いほど短くなる。なお、このことは、鋼板表面を目視で観察することで確認した。 As is clear from FIG. 1, the inflection point shifts to the high temperature side and simultaneously shifts to the short time side. That is, the time for which the steam generated on the steel surface at the start of cooling disappears (changes to the transition boiling state) becomes shorter as the cooling water temperature is lower. In addition, this was confirmed by observing the steel plate surface visually.
変曲点の高温側及び短時間側への移行は、「蒸発した水蒸気が水膜に吸収され、復水する量は、水温により変化して、蒸気膜の厚みが変化する」ことに起因すると考えられる。 The transition of the inflection point to the high temperature side and the short time side is due to the fact that the evaporated water vapor is absorbed by the water film, and the amount of condensate changes depending on the water temperature and the vapor film thickness changes. Conceivable.
即ち、鋼板表面に噴霧する冷却水の温度が低いほど、水蒸気が水膜に吸収され、復水する量が多くなるので、蒸気膜の消失が速くなるということである。 That is, the lower the temperature of the cooling water sprayed on the steel sheet surface, the more water vapor is absorbed in the water film, and the more water is condensed, so that the vapor film disappears faster.
以上のことから、次のことが解る。
(i)鋼板の表面温度が同じでも、冷却水の温度が低いほど、熱伝達係数は大きい。
(ii)冷却水の温度が低いほど、膜沸騰状態から遷移沸騰状態へ移行する時点(図中の変曲点。以下、「移行点」ということがある。)は、高温側及び短時間側に移行する。
即ち、冷却水の温度が変化すると、鋼板表面上の蒸気膜の厚みが変化する。
From the above, the following can be understood.
(I) Even if the surface temperature of the steel sheet is the same, the lower the temperature of the cooling water, the larger the heat transfer coefficient.
(Ii) When the temperature of the cooling water is lower, the transition point from the film boiling state to the transition boiling state (the inflection point in the figure; hereinafter, sometimes referred to as “transition point”) is the high temperature side and the short time side. Migrate to
That is, when the temperature of the cooling water changes, the thickness of the vapor film on the steel sheet surface changes.
鋼板表面上の蒸気膜の厚さは、蒸気の生成量と、噴霧した冷却水による抜熱量との平衡関係で定まる。冷却水の噴霧水量密度が高くなると、冷却水が、鋼材表面に連続的に接触するので、抜熱量が増え、鋼板表面上の蒸気膜の厚さが薄くなる。 The thickness of the vapor film on the surface of the steel sheet is determined by an equilibrium relationship between the amount of steam generated and the amount of heat removed by the sprayed cooling water. When the spray water density density of the cooling water increases, the cooling water continuously contacts the steel material surface, so the amount of heat removal increases and the thickness of the vapor film on the steel plate surface decreases.
噴霧水量密度(L/m2min)は、下記(1)式で定義される指標である。
噴霧水量密度(L/m2min)=冷却水の噴霧水量W(L/min)/噴霧厚み(m)/スプレーノズルピッチ(m) ・・・(1)
The spray water density (L / m 2 min) is an index defined by the following equation (1).
Spray water density (L / m 2 min) = cooling water spray water quantity W (L / min) / spray thickness (m) / spray nozzle pitch (m) (1)
図8に、上記(1)式の技術的意味を模式的に示す。図8から、冷却水の噴霧水量密度が高くなると、冷却水が、鋼材表面に連続的に接触することになり、抜熱量が増えることが解る。 FIG. 8 schematically shows the technical meaning of the above equation (1). It can be seen from FIG. 8 that when the spray water density of the cooling water increases, the cooling water continuously comes into contact with the steel material surface, and the amount of heat removal increases.
冷却水の温度が変化すると、鋼板表面上の蒸気膜の厚さが変化する現象は、冷却水の噴霧水量(水量密度)を変化させた場合に発現する上記現象と似た現象である。 When the temperature of the cooling water changes, the phenomenon that the thickness of the vapor film on the surface of the steel sheet changes is a phenomenon similar to the above phenomenon that appears when the amount of water sprayed (water density) is changed.
そこで、本発明者らは、「冷却水の温度変化により変化する冷却能の変化幅は、冷却水の噴霧水量密度により異なる」と考え、冷却水の噴霧水量(水量密度)と、冷却水の温度を変えて冷却試験を行った。結果を、図3及び図4に示す。蒸気膜の厚さの変化は、膜沸騰状態から遷移沸騰状態への移行温度の変化で表示した。図4には、熱伝達係数(kcal/m2hr℃)と冷却水の水量密度(L/m2min)の関係を示す。 Therefore, the present inventors consider that “the change width of the cooling capacity that changes due to the temperature change of the cooling water varies depending on the density of the spray water amount”, and the spray water amount (water density) of the coolant and the cooling water A cooling test was performed at different temperatures. The results are shown in FIGS. The change in the thickness of the vapor film is indicated by the change in transition temperature from the film boiling state to the transition boiling state. FIG. 4 shows the relationship between the heat transfer coefficient (kcal / m 2 hr ° C.) and the coolant water density (L / m 2 min).
図3から、(a1)膜沸騰状態が遷移沸騰状態に移行する温度(移行温度)が、冷却水の温度と、冷却水の噴霧水量(水量密度)によって変化すること、即ち、(a2)冷却水の噴霧水量(水量密度)に応じて、鋼材表面上の沸騰状態が異なることが解る。 From FIG. 3, (a1) the temperature at which the film boiling state shifts to the transition boiling state (transition temperature) varies depending on the temperature of the cooling water and the amount of water sprayed (water density), that is, (a2) cooling. It can be seen that the boiling state on the surface of the steel material is different depending on the amount of water sprayed (water density).
また、図4から、鋼板の表面温度が一定の条件下では、冷却水の水量密度や温度に応じて沸騰状態が変わるので、冷却水の温度の影響が、冷却水の水量密度によって変化することが解る。 Moreover, since the boiling state changes according to the amount density and temperature of the cooling water under the condition where the surface temperature of the steel sheet is constant, it can be seen from FIG. 4 that the influence of the temperature of the cooling water changes according to the amount density of the cooling water. I understand.
上記知見は、鋼板を冷却する際、鋼板表面の温度を適確に制御するうえで重要である。本発明者らは、上記知見を、連続鋳造機の二次冷却帯における冷却に導入すれば、表面割れ及び内部割れの発生を防止し、高品質の鋳片を、より安定的に製造することができると考えた。 The above knowledge is important for accurately controlling the temperature of the steel sheet surface when cooling the steel sheet. If the present inventors introduce the above knowledge into cooling in the secondary cooling zone of a continuous casting machine, the occurrence of surface cracks and internal cracks can be prevented, and high quality slabs can be manufactured more stably. I thought it was possible.
図5に、連続鋳造機の二次冷却帯に本発明の実施の一態様を示す。鋳型1を下方に引き抜かれた鋳片2は、サポートロール3で誘導され、曲げ部4を経て、二次冷却帯を通過し、曲戻し部5で曲げ戻される間に冷却される。
FIG. 5 shows an embodiment of the present invention in the secondary cooling zone of the continuous casting machine. The
連続鋳造機鋳型の二次冷却帯の湾曲部(図中、AA’間。以下「湾曲部AA’」ということがある。)の上部に、温度計6が配置されている。温度計6で、鋳片の幅方向における表面温度を測定し、測定値を水量演算制御装置9へ送信する。 A thermometer 6 is disposed above the curved portion of the secondary cooling zone of the continuous casting machine mold (between AA 'in the figure; hereinafter referred to as "curved portion AA'"). With the thermometer 6, the surface temperature in the width direction of the slab is measured, and the measured value is transmitted to the water amount calculation control device 9.
温度計6の配置位置は、湾曲部AA’の上部で、表面温度を精度よく測定できる位置であればよく、特定の位置に限定されない。 The arrangement position of the thermometer 6 is not limited to a specific position as long as the surface temperature can be accurately measured at the upper part of the curved portion AA '.
高品質の鋳片を安定的に生産するためには、鋳片に歪みが生じる曲戻し部を通過するときの鋳片の表面温度を、脆化温度以上に維持し、表面割れを回避する必要がある。 In order to stably produce high quality slabs, it is necessary to maintain the slab surface temperature above the embrittlement temperature and avoid surface cracks when passing through the bent part where distortion occurs in the slab. There is.
鋳片の表面温度を、曲戻し部5の付近で測定し、表面温度が脆化温度を下回ったとき、噴霧水量を絞る方法が考えられるが、この方法だと、鋳片が復熱するための時間を充分に確保することができなく、結局は、曲戻し部5で、表面割れが生じてしまう。それ故、温度計6は、曲戻し部5より上流側に設置するのが好ましい。
The surface temperature of the slab is measured in the vicinity of the
さらに、過冷却が発生した場合に、十分な復熱時間を確保すること、また、内部割れは、凝固殻の厚が比較的薄く、溶鋼静圧が大きく作用している鋳片が曲げ部(湾曲部上部)を通過しているときに発生し易いことを考慮すると、温度計6は、湾曲部AA’の上部で、表面温度を精度よく測定できる位置に取り付けるのが好ましい。なお、温度計は、耐久性及び測定精度の点で、放射温度計が好ましい。 Furthermore, when supercooling occurs, a sufficient recuperation time is ensured, and the internal crack has a relatively thin solidified shell thickness, and the slab where the molten steel static pressure is acting is a bent part ( Considering that it is likely to occur when passing through the upper part of the curved part), it is preferable that the thermometer 6 is attached to the upper part of the curved part AA ′ at a position where the surface temperature can be accurately measured. The thermometer is preferably a radiation thermometer in terms of durability and measurement accuracy.
水量演算制御装置9では、温度計6から送信されてくる表面温度の最大値又は最小値と、設定した目標温度を対比し、最大値又は最小値が目標温度を超えたとき、目標値と測定値の温度の差から、必要な冷却水調整代W2(L/min)を演算し、鋳造速度及び/又は鋼種に基づいて予め設定した噴霧冷却水量W0(L/min)から、W2(L/min)を減算し、噴霧冷却水量W(L/m2min)を演算する。 In the water amount calculation control device 9, the maximum value or minimum value of the surface temperature transmitted from the thermometer 6 is compared with the set target temperature, and when the maximum value or minimum value exceeds the target temperature, the target value and measurement are performed. The required cooling water adjustment allowance W 2 (L / min) is calculated from the difference in temperature between the values, and from the spray cooling water amount W 0 (L / min) preset based on the casting speed and / or steel type, W 2 (L / min) is subtracted to calculate the spray cooling water amount W (L / m 2 min).
次いで、噴霧ノズル7から噴霧する冷却水の水量を、鋳造速度及び/又は鋼種に基づいて予め設定した噴霧冷却水量W0(L/min)から、上記噴霧冷却水量W(L/m2min)に替える信号を、流量調整弁8へ送信する。
Next, the amount of cooling water sprayed from the
噴霧ノズル7から噴霧する冷却水の水量を、鋳造速度及び/又は鋼種に基づいて予め設定した噴霧冷却水量W0(L/min)から、上記噴霧冷却水量Wに替えることにより、鋳片の幅方向における表面温度を、目標温度範囲に収めることができる。
By changing the amount of cooling water sprayed from the
噴霧ノズルは、二次冷却帯全域に、適宜の数、配置され、かつ、特定範囲毎に、噴霧冷却水量を調整できるように、噴霧ノズル群に区分されて配置されている。噴霧冷却水量を調整する区間は、特に特定する必要はないが、内部割れ及び表面割れは、二次冷却帯の曲げ部4から曲戻し部5までの間に発生する場合が多いので、曲戻し部5より上流側の噴霧冷却水量を調整することが好ましい。
An appropriate number of spray nozzles are arranged throughout the secondary cooling zone, and are arranged in groups of spray nozzles so that the amount of spray cooling water can be adjusted for each specific range. The section for adjusting the amount of spray cooling water need not be specified in particular, but internal cracks and surface cracks often occur between the
次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
(実施例1)
本発明者らは、鋳片の表面温度の推移と、凝固殻の厚さの成長推移を推定する非定常凝固解析モデルを構築し、前記試験結果で得た知見に基き、冷却水の温度が変化した場合における鋳片の表面温度を推定した。
Example 1
The present inventors constructed a transient solidification analysis model that estimates the transition of the surface temperature of the slab and the growth transition of the thickness of the solidified shell, and based on the knowledge obtained from the test results, the temperature of the cooling water is The surface temperature of the slab when changed was estimated.
なお、非定常凝固解析モデルは、例えば、鉄と鋼、第60巻(1974年)、1023頁に記載されている一般的な手法を用いた。 The unsteady solidification analysis model used was a general method described in, for example, iron and steel, volume 60 (1974), page 1023.
以下の方法を用い、実機表面温度推移とモデル解析値が一致すようにすることで、冷却水の温度が変化した場合における表面温度の推移を推定した。 Using the following method, the transition of the surface temperature when the temperature of the cooling water was changed was estimated by matching the transition of the actual machine surface temperature with the model analysis value.
(1)冷却水の温度及び噴霧水量の冷却能への影響を考慮するため、本発明者らの冷却試験で求めた冷却能に係る回帰式を、非定常凝固解析モデルに組み入れた。
(2)実機に温度計を取り付け、冷却水の温度が変わったときの、鋳片の表面温度を測定した。
(3)上記冷却能に係る回帰式に係数を乗じることで、冷却水の温度が変わったときの表面温度とモデル解析値が一致するようにした。
(1) In order to consider the influence of the cooling water temperature and the amount of spray water on the cooling capacity, a regression equation related to the cooling capacity obtained in the cooling test of the present inventors was incorporated into the unsteady solidification analysis model.
(2) A thermometer was attached to the actual machine, and the surface temperature of the slab was measured when the temperature of the cooling water changed.
(3) By multiplying the regression equation related to the cooling capacity by a coefficient, the surface temperature when the temperature of the cooling water changed and the model analysis value were matched.
なお、二次冷却帯の湾曲部上部(ここでは、メニスカス〜10mの範囲)における鋳片の表面温度の最大目標値、及び、最小目標値を、それぞれ、900℃、及び、700℃とし、冷却水の温度が変わったときの表面温度への影響を推定した。 Note that the maximum target value and the minimum target value of the surface temperature of the slab at the upper part of the curved portion of the secondary cooling zone (here, in the range of meniscus to 10 m) are set to 900 ° C. and 700 ° C., respectively, and cooled. The effect on the surface temperature when the water temperature changed was estimated.
なお、実施例における設備条件及び鋳造条件は、以下の通りである。
[設備条件]
連続鋳造機の機長:30m
二次冷却帯の冷却区間:9区間(湾曲部上部までの冷却区間:4区間)
[鋳造条件]
鋳片の厚み:250mm
鋳片の幅:1250mm
鋳造速度:1.2mpm
冷却区間毎のスプレー水量:表1
In addition, the installation conditions and casting conditions in an Example are as follows.
[Equipment conditions]
Captain of continuous casting machine: 30m
Secondary cooling zone cooling zone: 9 zones (cooling zone up to the upper part of the curve: 4 zones)
[Casting conditions]
Slab thickness: 250mm
Slab width: 1250mm
Casting speed: 1.2 mpm
Spray water volume per cooling section: Table 1
図6に、二次冷却帯の湾曲部上部(ここでは、メニスカス〜10mの位置)における鋳片の表面温度の最大値及び最小値を示す。図6から、冷却水の温度に応じて、鋳片の表面温度が変化し、冷却水の温度が38℃を超えると、鋳片の表面温度が、目標温度の範囲外(900℃超)になることが解る。また、同様に、冷却水の温度が30℃未満になると、鋳片の表面温度が、目標温度の範囲外(700℃未満)になることが解る。 FIG. 6 shows the maximum value and the minimum value of the surface temperature of the slab at the upper part of the curved portion of the secondary cooling zone (here, the position of meniscus to 10 m). From FIG. 6, the surface temperature of the slab changes according to the temperature of the cooling water, and when the temperature of the cooling water exceeds 38 ° C., the surface temperature of the slab is outside the target temperature range (above 900 ° C.). I understand that Similarly, when the temperature of the cooling water is less than 30 ° C., it can be seen that the surface temperature of the slab is outside the target temperature range (less than 700 ° C.).
したがって、冷却水の温度:Tw>38℃、又は、Tw<30℃の場合 冷却水の噴霧水量を増減し、鋳片の温度を目標温度範囲内に戻す必要がある。 Therefore, when the temperature of the cooling water: Tw> 38 ° C. or Tw <30 ° C., it is necessary to increase or decrease the amount of cooling water sprayed to return the slab temperature to the target temperature range.
図7に、冷却水の温度に応じて噴霧水量を増減した場合の、湾曲部上部における鋳片の表面温度の最大値及び最小値を示す。冷却水の水温によらず、鋳片の表面温度は、目標温度範囲内に収まっていることが解る。 FIG. 7 shows the maximum value and the minimum value of the surface temperature of the slab at the upper part of the curved portion when the amount of spray water is increased or decreased according to the temperature of the cooling water. It can be seen that the surface temperature of the slab is within the target temperature range regardless of the coolant temperature.
前述したように、本発明によれば、冷却水の温度の変動に起因して鋳片の表面及び/又は内部に発生する割れを防止して、高品質の鋳片を、安定して製造することができ、また、鋳片が急激に冷え込んだ場合でも、冷却水の噴霧水量を直ちに低減して、鋳片が復熱するのに必要な時間を充分に確保し、鋳片を救済することができる。 As described above, according to the present invention, cracks generated on the surface and / or inside of the slab due to fluctuations in the temperature of the cooling water can be prevented, and a high-quality slab can be stably produced. Even if the slab cools down rapidly, the amount of spray water of cooling water can be reduced immediately to ensure sufficient time for the slab to reheat and to rescue the slab. Can do.
したがって、本発明は、連続鋳造技術を柱とする鉄鋼産業において、利用可能性が大きいものである。 Therefore, the present invention has great applicability in the steel industry using continuous casting technology as a pillar.
1 鋳型
2 鋳片
3 サポートロール
4 曲げ部
5 曲戻し部
6 温度計
7 ノズル
8 流量調整弁
9 水量演算制御装置
AA’ 湾曲部
W0 冷却水量
DESCRIPTION OF SYMBOLS 1
Claims (4)
(i)連続鋳造鋳片の幅方向における表面温度を測定し、
(ii)上記表面温度の最大値又は最小値が目標温度範囲を超えたとき、冷却水の噴霧水量W(L/min)を、冷却水の温度、及び、下記(1)式で定義する噴霧水量密度(L/m2min)に基づいて調整し、上記表面温度が目標温度範囲に収まるように冷却する
ことを特徴とする連続鋳造鋳片の二次冷却方法。
噴霧水量密度(L/m2min)=冷却水の噴霧水量W(L/min)/噴霧厚み(m)/スプレーノズルピッチ(m) ・・・(1) In the method of cooling the slab cast by the continuous casting machine in the secondary cooling zone at the bottom of the mold,
(I) measuring the surface temperature in the width direction of the continuous cast slab,
(Ii) When the maximum value or the minimum value of the surface temperature exceeds the target temperature range, the spray water amount W (L / min) of the cooling water is defined by the temperature of the cooling water and the following formula (1). A secondary cooling method for a continuous cast slab, wherein the cooling is performed based on a water density (L / m 2 min) and cooling so that the surface temperature falls within a target temperature range.
Spray water density (L / m 2 min) = cooling water spray water quantity W (L / min) / spray thickness (m) / spray nozzle pitch (m) (1)
(x)鋳片の幅方向における表面温度を測定する温度測定手段、
(y)上記温度測定手段で測定した表面温度と目標温度範囲を対比し、該表面温度の最大値又は最小値が目標温度を超えたとき、上記表面温度を目標温度範囲に収める冷却水の噴霧水量W(L/min)を、冷却水の温度、及び、下記(1)式で定義する噴霧水量密度(L/m2min)に基づいて演算する水量演算制御装置、及び、
(z)上記水量演算制御装置で演算した噴霧水量Wに基づいて、ノズルから噴霧する冷却水の噴霧水量を調整する流量調整手段、
を備えることを特徴とする連続鋳造鋳片の二次冷却装置。
噴霧水量密度(L/m2min)=冷却水の噴霧水量W(L/min)/噴霧厚み(m)/スプレーノズルピッチ(m) ・・・(1) An apparatus for carrying out the secondary cooling method for continuously cast slabs according to claim 1 or 2,
(X) temperature measuring means for measuring the surface temperature in the width direction of the slab,
(Y) The surface temperature measured by the temperature measuring means is compared with the target temperature range, and when the maximum value or the minimum value of the surface temperature exceeds the target temperature, the spray of cooling water that keeps the surface temperature within the target temperature range A water amount calculation control device for calculating the water amount W (L / min) based on the temperature of the cooling water and the spray water density (L / m 2 min) defined by the following equation (1);
(Z) A flow rate adjusting means for adjusting the spray water amount of the cooling water sprayed from the nozzle based on the spray water amount W calculated by the water amount calculation control device.
A secondary cooling device for continuously cast slab, comprising:
Spray water density (L / m 2 min) = cooling water spray water quantity W (L / min) / spray thickness (m) / spray nozzle pitch (m) (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008288143A JP2010110813A (en) | 2008-11-10 | 2008-11-10 | Secondary cooling method and apparatus for continuously cast slab |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008288143A JP2010110813A (en) | 2008-11-10 | 2008-11-10 | Secondary cooling method and apparatus for continuously cast slab |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010110813A true JP2010110813A (en) | 2010-05-20 |
Family
ID=42299806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008288143A Withdrawn JP2010110813A (en) | 2008-11-10 | 2008-11-10 | Secondary cooling method and apparatus for continuously cast slab |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010110813A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011251290A (en) * | 2010-05-31 | 2011-12-15 | Jfe Steel Corp | Secondary cooling method in continuous casting |
CN102632213A (en) * | 2011-02-12 | 2012-08-15 | 沈阳鑫君城电子有限公司 | Method for measuring and controlling surface temperature of casting blank and special device thereof |
CN102699299A (en) * | 2012-06-29 | 2012-10-03 | 秦皇岛首秦金属材料有限公司 | Method for producing high-quality extra thick slab through complete gas atomization secondary cooling mode |
JP2013052416A (en) * | 2011-09-05 | 2013-03-21 | Jfe Steel Corp | Continuous casting method for cast slab |
KR101267340B1 (en) * | 2011-01-28 | 2013-05-24 | 현대제철 주식회사 | Device for preventing crack of strand in continuous casting process and method therefor |
KR101328357B1 (en) | 2011-11-15 | 2013-11-11 | 주식회사 포스코 | Cooling water temperature controller of continuous casting machine and a control method thereof |
KR101412537B1 (en) * | 2012-01-31 | 2014-07-01 | 현대제철 주식회사 | Reducing method of crack for addition of boron high-carbon steel |
JP2014200803A (en) * | 2013-04-02 | 2014-10-27 | 新日鐵住金株式会社 | Cooling method and cooling system of continuous casting cast piece |
CN107630172A (en) * | 2016-07-18 | 2018-01-26 | 鞍钢股份有限公司 | Method for preventing surface cracks of low-carbon boron-containing steel |
KR101858864B1 (en) | 2016-12-23 | 2018-05-17 | 주식회사 포스코 | Method and apparatus for cooling of casting steel |
EP3375546A4 (en) * | 2016-01-29 | 2019-05-22 | Nippon Steel & Sumitomo Metal Corporation | Secondary cooling method and secondary cooling device for continuously cast slab |
CN114126782A (en) * | 2019-07-11 | 2022-03-01 | 杰富意钢铁株式会社 | Secondary cooling method and secondary cooling device for continuous casting of cast piece |
CN114406227A (en) * | 2022-01-27 | 2022-04-29 | 山东莱钢永锋钢铁有限公司 | Water distribution operation method for secondary cooling section of billet continuous casting machine |
CN116571706A (en) * | 2023-06-07 | 2023-08-11 | 福建三宝钢铁有限公司 | Crack control process for slab continuous casting center |
-
2008
- 2008-11-10 JP JP2008288143A patent/JP2010110813A/en not_active Withdrawn
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011251290A (en) * | 2010-05-31 | 2011-12-15 | Jfe Steel Corp | Secondary cooling method in continuous casting |
KR101267340B1 (en) * | 2011-01-28 | 2013-05-24 | 현대제철 주식회사 | Device for preventing crack of strand in continuous casting process and method therefor |
CN102632213A (en) * | 2011-02-12 | 2012-08-15 | 沈阳鑫君城电子有限公司 | Method for measuring and controlling surface temperature of casting blank and special device thereof |
JP2013052416A (en) * | 2011-09-05 | 2013-03-21 | Jfe Steel Corp | Continuous casting method for cast slab |
KR101328357B1 (en) | 2011-11-15 | 2013-11-11 | 주식회사 포스코 | Cooling water temperature controller of continuous casting machine and a control method thereof |
KR101412537B1 (en) * | 2012-01-31 | 2014-07-01 | 현대제철 주식회사 | Reducing method of crack for addition of boron high-carbon steel |
CN102699299A (en) * | 2012-06-29 | 2012-10-03 | 秦皇岛首秦金属材料有限公司 | Method for producing high-quality extra thick slab through complete gas atomization secondary cooling mode |
CN102699299B (en) * | 2012-06-29 | 2014-08-27 | 秦皇岛首秦金属材料有限公司 | Method for producing high-quality extra thick slab through complete gas atomization secondary cooling mode |
JP2014200803A (en) * | 2013-04-02 | 2014-10-27 | 新日鐵住金株式会社 | Cooling method and cooling system of continuous casting cast piece |
EP3375546A4 (en) * | 2016-01-29 | 2019-05-22 | Nippon Steel & Sumitomo Metal Corporation | Secondary cooling method and secondary cooling device for continuously cast slab |
US10974316B2 (en) | 2016-01-29 | 2021-04-13 | Nippon Steel Corporation | Secondary cooling method and secondary cooling device for casting product in continuous casting |
CN107630172A (en) * | 2016-07-18 | 2018-01-26 | 鞍钢股份有限公司 | Method for preventing surface cracks of low-carbon boron-containing steel |
KR101858864B1 (en) | 2016-12-23 | 2018-05-17 | 주식회사 포스코 | Method and apparatus for cooling of casting steel |
CN114126782A (en) * | 2019-07-11 | 2022-03-01 | 杰富意钢铁株式会社 | Secondary cooling method and secondary cooling device for continuous casting of cast piece |
CN114126782B (en) * | 2019-07-11 | 2023-07-04 | 杰富意钢铁株式会社 | Secondary cooling method and secondary cooling device for continuous casting cast sheet |
CN114406227A (en) * | 2022-01-27 | 2022-04-29 | 山东莱钢永锋钢铁有限公司 | Water distribution operation method for secondary cooling section of billet continuous casting machine |
CN114406227B (en) * | 2022-01-27 | 2023-09-12 | 山东莱钢永锋钢铁有限公司 | Two-cooling-section water distribution operation method for small square billet continuous casting machine |
CN116571706A (en) * | 2023-06-07 | 2023-08-11 | 福建三宝钢铁有限公司 | Crack control process for slab continuous casting center |
CN116571706B (en) * | 2023-06-07 | 2024-08-27 | 福建三宝钢铁有限公司 | Crack control process for slab continuous casting center |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010110813A (en) | Secondary cooling method and apparatus for continuously cast slab | |
JP6115735B2 (en) | Steel continuous casting method | |
JP5812113B2 (en) | Method for estimating solidification completion state of slab in continuous casting, and continuous casting method | |
CN108472718B (en) | Secondary cooling method and secondary cooling device for continuous casting blank | |
JP2010069496A (en) | Secondary cooling apparatus and method in continuous casting | |
JP5012056B2 (en) | Steel continuous casting method | |
JP5585739B2 (en) | Solidification completion position control method and solidification completion position control device | |
JP6384679B2 (en) | Manufacturing method of hot-rolled steel sheet | |
JP4987545B2 (en) | Secondary cooling device for continuous casting machine and its secondary cooling method | |
JP4899629B2 (en) | Billet continuous casting method | |
KR20120044429A (en) | Device for controlling cooling of slab and method therefor | |
JP4453562B2 (en) | Cooling grid equipment for continuous casting machine and method for producing continuous cast slab | |
JP6747142B2 (en) | Secondary cooling method and secondary cooling device for continuous casting | |
TWI787589B (en) | Continuous casting method of steel billet | |
JP4924104B2 (en) | Method for producing high Ni content steel slab | |
JP2013123713A (en) | Method for continuously casting steel | |
TW201813739A (en) | Continuous steel casting method in which the inner wall surface of a mold copper plate of the casting mold filled with hetero-thermally conductive metal filling portion and the area ration is 10% or more and 80% or less | |
KR102046949B1 (en) | Austenitic stainless steel continuous casting method with uniform distribution of cooling water of second cooling stand | |
JP5131229B2 (en) | Slab continuous casting method | |
JP5397214B2 (en) | Steel continuous casting method | |
JP2008200704A (en) | Slab cooling method in continuous casting machine | |
JP5556073B2 (en) | Secondary cooling method in continuous casting | |
JP2009142876A (en) | Method for continuously casting steel | |
JP7355285B1 (en) | Continuous steel casting method | |
JP6146346B2 (en) | Mold for continuous casting of steel and continuous casting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20120110 |