JP2011251290A - Secondary cooling method in continuous casting - Google Patents

Secondary cooling method in continuous casting Download PDF

Info

Publication number
JP2011251290A
JP2011251290A JP2010124702A JP2010124702A JP2011251290A JP 2011251290 A JP2011251290 A JP 2011251290A JP 2010124702 A JP2010124702 A JP 2010124702A JP 2010124702 A JP2010124702 A JP 2010124702A JP 2011251290 A JP2011251290 A JP 2011251290A
Authority
JP
Japan
Prior art keywords
cooling
slab
water
temperature
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010124702A
Other languages
Japanese (ja)
Other versions
JP5545041B2 (en
Inventor
Makoto Nakaseko
誠 中世古
Michiya Komaki
倫哉 駒城
Norichika Aramaki
則親 荒牧
Takeshi Kagoshima
毅 鹿子島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010124702A priority Critical patent/JP5545041B2/en
Publication of JP2011251290A publication Critical patent/JP2011251290A/en
Application granted granted Critical
Publication of JP5545041B2 publication Critical patent/JP5545041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide secondary cooling technology in continuous casting, allowing prevention of occurrence of a surface crack of a slab caused by supercooling even if casting speed is increased.SOLUTION: In this secondary cooling method in the continuous casting, the surface of the slab having surface oxide scales and the mold powder remainder is cooled by water jetted from a cooling nozzle in the whole or a part of secondary cooling of the slab in the continuous casting for casting steel material. At least one of an average droplet diameter and an average water temperature of the jetted water is set to a state in which a slab surface temperature is higher than an MHF (Minimum Heat Flux) point that is a temperature point at which film boiling changes to transition boiling, in the cooling by the cooling nozzle. For example, the average droplet diameter of the water jetted from the cooling nozzle is set to be 200 μm or below. Alternatively, the average droplet diameter of the water jetted from the cooling nozzle is set to be 200 μm or above, and the water temperature is set to be 50°C or above.

Description

本発明は、鋼材の連続鋳造における2次冷却技術に係るもので、特に高速鋳造時における鋳片の均一な冷却に好適な2次冷却技術に関する。   The present invention relates to a secondary cooling technique in continuous casting of steel, and more particularly to a secondary cooling technique suitable for uniform cooling of a slab during high-speed casting.

鋼材の連続鋳造設備は、溶鋼を固めて鋼材(スラブ)を連続的に製造する設備である。すなわち、連続鋳造設備は、溶鋼をモールド(鋳型)に押し込むタンディッシュ、溶鋼を初期凝固させるモールド、その後、徐々に冷却しながら鋼材を中心まで固めていく2次冷却を行う2次冷却帯を備える。
上記2次冷却は、一般に鋼材表面温度が700〜1000℃程度で行われるが、近年の鋳造速度の増大に伴い、2次冷却能力が増強され、冷却中の表面温度が低下する傾向にある。このように鋳造速度の増大に伴い冷却能力が上がることにより、近年、鋳造片表面が局部的に700℃を下回る過冷却が発生するようになった。過冷却が発生すると、図1に示すように、スラブ表面割れが発生する原因となる。そのため、鋳造速度の増大には限界があった。
The steel continuous casting equipment is equipment for solidifying molten steel and continuously producing steel (slab). That is, the continuous casting equipment includes a tundish that pushes molten steel into a mold (mold), a mold that initially solidifies the molten steel, and then a secondary cooling zone that performs secondary cooling that solidifies the steel material to the center while gradually cooling. .
The secondary cooling is generally performed at a steel surface temperature of about 700 to 1000 ° C. However, with the recent increase in casting speed, the secondary cooling capacity is enhanced and the surface temperature during cooling tends to decrease. As the cooling capacity increases as the casting speed increases in this way, in recent years, supercooling has occurred where the surface of the cast piece is locally below 700 ° C. When supercooling occurs, it causes a slab surface crack as shown in FIG. For this reason, there is a limit to the increase in casting speed.

これに対し、鋳片の表面割れを防ぐ冷却ノズルによる冷却技術が、特許文献1〜5に開示されている。   On the other hand, Patent Documents 1 to 5 disclose cooling techniques using a cooling nozzle that prevents surface cracks of a slab.

特開昭50−103426号公報Japanese Patent Laid-Open No. 50-103426 特許第3779194号公報Japanese Patent No. 3779194 特開昭57−91857号公報JP-A-57-91857 特開平7−9191号公報Japanese Patent Laid-Open No. 7-9191 特開平9−225599号公報JP-A-9-225599

本発明者らのこれまでの研究の結果によると、鋳造速度が速くなると過冷却の発生および表面割れが多く発生することが分かった。
発明者らが鋭意検討した結果、その理由は次の通りである。すなわち、鋳造速度が速くなると鋳片を速く凝固させなければいけないので、2次冷却の冷却能力が強くなり、ひいては冷却ノズルから噴射される冷却水、あるいはミストの量が増量する必要がある。そして、それによって冷却能力が強くなり冷却能力が強くなると、膜沸騰から遷移沸騰に変わる点であるMHF(Minmum Heat Flux)点が高くなることが理由であった。また、冷却スプレーから噴射される冷却水の鋳片表面への衝突圧力が強くなり、鋳片表面と冷却水との間に蒸気膜が存在する膜沸騰状態が、冷却水が鋳片表面へ蒸気膜を破って接触し出す遷移沸騰へと突入するためである(図2参照)。
According to the results of previous studies by the present inventors, it has been found that when the casting speed is increased, supercooling and surface cracks occur frequently.
As a result of intensive studies by the inventors, the reason is as follows. That is, when the casting speed is increased, the slab must be solidified quickly, so that the cooling capacity of the secondary cooling is increased, and accordingly, the amount of cooling water or mist injected from the cooling nozzle needs to be increased. The reason is that when the cooling capacity is increased and the cooling capacity is increased, the MHF (Minum Heat Flux) point, which is a point that changes from film boiling to transition boiling, increases. In addition, the collision pressure of the cooling water sprayed from the cooling spray onto the slab surface increases, and a film boiling state in which a vapor film exists between the slab surface and the cooling water causes the cooling water to steam to the slab surface. This is to enter transition boiling that breaks the membrane and comes into contact (see FIG. 2).

ここで、上記特許文献1には、先端に複数の噴射口を設けたフラットスプレーノズルを用いて、鋳片冷却時のロール間での急激な熱振幅を低減し、表面割れを防止することが開示されている。つまり冷却面積を広げて急激に過冷却されることを抑制している。しかし、フラットスプレーノズルを用いている以上、冷却時の衝突圧力が強く冷却水量も多いので、残留水を防ぐことができず、鋳造速度を増大に伴い過冷却が発生するおそれがある。   Here, in Patent Document 1, a flat spray nozzle provided with a plurality of injection ports at the tip is used to reduce abrupt thermal amplitude between rolls during slab cooling and prevent surface cracking. It is disclosed. That is, the cooling area is expanded to suppress sudden supercooling. However, as long as the flat spray nozzle is used, the collision pressure during cooling is strong and the amount of cooling water is large, so that residual water cannot be prevented, and overcooling may occur as the casting speed increases.

特許文献2に記載の技術は、フラットスプレーノズルを主体とした特許文献1に対して、厚み方向の噴射角度を広げたノズルを使用し、かつ複数の噴射口を設けた冷却ノズルで2次冷却を行う技術である。この技術においては、フラットスプレーノズルで冷却するよりも衝突圧を弱くすることができる。しかし通常の冷却ノズルで行う以上残留水の発生を防ぐことはできないため、鋳造速度を増大するに伴い過冷却が発生するおそれがある。   The technique described in Patent Document 2 uses a nozzle with a wider spray angle in the thickness direction than that of Patent Document 1 mainly including a flat spray nozzle, and performs secondary cooling with a cooling nozzle provided with a plurality of spray ports. It is a technology to do. In this technique, the collision pressure can be reduced as compared with cooling with a flat spray nozzle. However, since the generation of residual water cannot be prevented as long as it is performed with a normal cooling nozzle, overcooling may occur as the casting speed is increased.

特許文献3は、冷却水を25〜100kg/cm2の高圧で噴射することにより滞留水の発生を防いで均一冷却を行うとするものであり、高圧水により滞留水(残留水)の発生を抑制して、均一冷却を狙ったもので、一定の効果はあると考えられる。しかしながら、特許文献3の技術にあっては、2次冷却の冷却帯は20m以上、長いものでは50mもあるため、全冷却ゾーンに高圧水による冷却をすることは設備費が高く、たとえ上流部だけに絞ったとしても運転費がかさむため実用的ではない。 In Patent Document 3, the cooling water is jetted at a high pressure of 25 to 100 kg / cm 2 to prevent the stagnant water from being generated, and the uniform cooling is performed. The generation of the stagnant water (residual water) is caused by the high pressure water. It is intended to achieve uniform cooling with a certain effect. However, in the technique of Patent Document 3, since the cooling zone for secondary cooling is 20 m or more, and it is as long as 50 m, it is expensive to cool the entire cooling zone with high-pressure water, even in the upstream part. Even if it is narrowed down to just that, it is not practical because of the increased operating costs.

ここで、冷却ノズルの液滴径に関して、例えば特許文献4及び5に開示がある。
特許文献4には、100μm以上の液滴径で2次冷却することが開示されている。しかし、特許文献4は、過冷却を防止するためにミスト冷却の液滴径を大きくし、冷却能力を上げるために液滴径が小さくする発想の技術である。すなわち、特許文献4では、冷却能力を上げるために液滴径を小さくする発想のものであり、本発明のようにMHF点を下げるために液滴径を小さくするといった発想は記載も示唆も無い。また、表面酸化スケール及びモールドパウダー残りを有する鋳片表面を2次冷却にする点についてなんら記載がない。
Here, for example, Patent Documents 4 and 5 disclose the droplet diameter of the cooling nozzle.
Patent Document 4 discloses secondary cooling with a droplet diameter of 100 μm or more. However, Patent Document 4 is a conceptional technique in which the droplet diameter of mist cooling is increased in order to prevent overcooling, and the droplet diameter is decreased in order to increase the cooling capacity. That is, in Patent Document 4, the idea is to reduce the droplet diameter in order to increase the cooling capacity, and there is no description or suggestion of the idea to reduce the droplet diameter to lower the MHF point as in the present invention. . Moreover, there is no description about the point which carries out secondary cooling of the slab surface which has a surface oxide scale and mold powder remainder.

また特許文献5には、10μmの液滴径でトップ部(最終鋳込部)を冷却することが記載されている。このとき、トップ部で、冷却を一時的に強くするために気水比を100〜300の範囲に上げているが、液滴径は50μm以下になると空気抵抗によって浮遊(霧状態)となるため、実用的でない。また、特許文献5にあっても、過冷却がMHF点を下回ることで発生する点、及び表面酸化スケール及びモールドパウダー残りを有する鋳片表面を2次冷却にする点についてなんら記載も示唆も無い。   Patent Document 5 describes that the top portion (final casting portion) is cooled with a droplet diameter of 10 μm. At this time, the air-to-water ratio is raised to a range of 100 to 300 in order to temporarily strengthen the cooling at the top portion, but if the droplet diameter becomes 50 μm or less, it becomes floating (mist state) due to air resistance. Not practical. Moreover, even if it exists in patent document 5, there is no description or suggestion about the point which supercooling generate | occur | produces below MHF point, and the point which carries out secondary cooling of the slab surface which has a surface oxide scale and mold powder remainder. .

以上のように、引用文献4及び5には、過冷却を抑えるために、MHF点を越える表面温度となるように2次冷却を制御するといった発想が開示されていない。また、鋳片表面に表面酸化スケール及びモールドパウダー残りを有するか否かについても考慮されていない。
本発明は、上記のような点に着目してなされたもので、鋳造速度を増大しても、過冷却が原因となる鋳片の表面割れの発生を防ぐことができる連続鋳造での2次冷却技術を提供する。
As described above, the references 4 and 5 do not disclose the idea of controlling the secondary cooling so that the surface temperature exceeds the MHF point in order to suppress overcooling. Also, no consideration is given to whether or not the surface of the slab has surface oxide scale and mold powder residue.
The present invention has been made paying attention to the above points, and even when the casting speed is increased, secondary cracking in continuous casting that can prevent the occurrence of surface cracks in the slab caused by supercooling. Provide cooling technology.

上記課題を解決するために、本発明のうち請求項1に記載した発明は、鋼材を鋳造する連続鋳造における鋳片の2次冷却の全部又は一部で、表面酸化スケール及びモールドパウダー残りを有する鋳片表面を冷却ノズルから噴射する水によって冷却を行う連続鋳造での2次冷却方法であって、
上記冷却ノズルによる冷却を、膜沸騰から遷移沸騰に変わる温度点であるMHF(Minmum Heat Flux)点よりも鋳片表面温度が高い状態となるように、上記噴射される水の平均液滴径及び平均水温の少なくとも一方を設定することを特徴とするものである。
In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention has a surface oxide scale and a mold powder residue in all or part of secondary cooling of a slab in continuous casting in which a steel material is cast. A secondary cooling method in continuous casting in which the slab surface is cooled by water sprayed from a cooling nozzle,
The average droplet diameter of the jetted water and the slab surface temperature are higher than the MHF (Minum Heat Flux) point, which is a temperature point at which film boiling changes to transition boiling. At least one of the average water temperatures is set.

次に、請求項2に記載した発明は、上記冷却ノズルから噴射される水の平均液滴径を200μm以下に設定することを特徴とするものである。
次に、請求項3に記載した発明は、上記冷却ノズルから噴射される水の平均液滴径を200μm以上に設定し且つその水温を50℃以上に設定することを特徴とするものである。
Next, the invention described in claim 2 is characterized in that an average droplet diameter of water ejected from the cooling nozzle is set to 200 μm or less.
Next, the invention described in claim 3 is characterized in that the average droplet diameter of water ejected from the cooling nozzle is set to 200 μm or more and the water temperature is set to 50 ° C. or more.

本発明によれば、MHF点よりも鋳片表面温度が高い状態で2次冷却を行うように制御することで、鋳造速度を増大しても、過冷却が原因となる鋳片の表面割れの発生を防ぐことができる連続鋳造での2次冷却技術を提供することが出来る。   According to the present invention, by controlling to perform secondary cooling in a state where the slab surface temperature is higher than the MHF point, even if the casting speed is increased, surface cracks of the slab caused by supercooling are caused. It is possible to provide a secondary cooling technique in continuous casting that can prevent generation.

また、発明者らが調査などによって得た知見によれば、表面酸化スケール及びモールドパウダー残りを有する鋳片表面(以下、単にスラブスケール面とも呼ぶ。)は、通常のスケール面に比べてMHF点が高い。一般的な圧延材のスケール厚みは5〜50μm程度であるが、鋳片表面のスケール厚みは50〜1000μm程度、あるいはパウダーなどが残って1000μm以上になることもある。これに対し本発明は、このような通常であればMHF点が高く割れが発生するような鋳片の2次冷却を対象としても、鋳片の表面割れの発生を防ぐことができる。   Further, according to the knowledge obtained by the inventors through research and the like, the slab surface (hereinafter, also simply referred to as a slab scale surface) having a surface oxide scale and mold powder residue has an MHF point as compared with a normal scale surface. Is expensive. The scale thickness of a general rolled material is about 5 to 50 μm, but the scale thickness of the slab surface may be about 50 to 1000 μm, or may be 1000 μm or more with powder remaining. On the other hand, the present invention can prevent the occurrence of surface cracking of the slab even if it is intended for secondary cooling of the slab that normally has a high MHF point and cracks.

また本発明者らは、種々の実験その他によって、鋳片を2次冷却する際に、噴射される水の平均液滴径及び平均水温の少なくとも一方を制御することで、MHF点の上昇を700℃以下に抑えることが可能であることを突き止めた。
そして、請求項2に係る発明によれば、MHF点の上昇を600℃以下に抑えることが出来る。
In addition, the inventors of the present invention have made it possible to increase the MHF point by controlling at least one of the average droplet diameter and the average water temperature of the jetted water when the slab is secondarily cooled by various experiments and the like. It was found that it was possible to keep the temperature below ℃.
And according to the invention which concerns on Claim 2, the raise of a MHF point can be suppressed to 600 degrees C or less.

同様に、請求項3に係る発明であれば、MHF点の上昇を700℃以下に抑えることが出来る。なお、通常の冷却ノズルの平均液滴径は2000μm以下である。
なお、水温を50℃以上に設定し且つ平均液滴径を430μm以下とするか、水温を60℃以上とすることで、更にMHF点の上昇を600℃以下に抑えることが出来る。
この結果、鋳造速度を増大しても、確実に膜沸点領域での冷却が可能となる。この結果、鋳造速度を増大しても、過冷却が原因となる鋳片の表面割れの発生を防ぐことができる連続鋳造での2次冷却技術を提供することが可能となる。
Similarly, the invention according to claim 3 can suppress an increase in MHF point to 700 ° C. or lower. In addition, the average droplet diameter of a normal cooling nozzle is 2000 μm or less.
The rise in MHF point can be further suppressed to 600 ° C. or lower by setting the water temperature to 50 ° C. or higher and the average droplet diameter to 430 μm or lower, or the water temperature to 60 ° C. or higher.
As a result, even if the casting speed is increased, cooling in the film boiling point region can be ensured. As a result, even if the casting speed is increased, it is possible to provide a secondary cooling technique in continuous casting that can prevent the occurrence of surface cracks in the slab due to overcooling.

鋳片の冷却ムラとその部分が表面割れとなることを説明する図である。It is a figure explaining the cooling nonuniformity of a slab, and the part becoming a surface crack. MHF点と温度ムラ発生を説明する概念図である。It is a conceptual diagram explaining MHF point and temperature nonuniformity generation | occurrence | production. 液滴径と水温によるMHF点への影響を説明する図である。It is a figure explaining the influence on the MHF point by a droplet diameter and water temperature. 液滴径と水温によるMHF点への影響を説明する図である。It is a figure explaining the influence on the MHF point by a droplet diameter and water temperature. 本発明に基づく実施形態に係る連続鋳造設備を説明する図である。It is a figure explaining the continuous casting installation which concerns on embodiment based on this invention. 実施例1を説明する図である。FIG. 3 is a diagram illustrating Example 1. 実施例2を説明する図である。FIG. 6 is a diagram illustrating Example 2. 実施例3を説明する図である。FIG. 6 is a diagram for explaining a third embodiment.

次に、本発明に係る実施形態について図面を参照して説明する。
図5に、鋼材の連続鋳造設備の構成図を示す。
連続鋳造設備は、図5に示すように、溶鋼をモールド6に押し込むタンディッシュ1、溶鋼を初期凝固させるモールド6、徐々に冷却しながら鋳片2を案内する複数のサポートロール3、及び移動トーチカッター5を備える。また。隣り合うサポートロール3の間には2次冷却用の冷却ノズル4が挿入されている。図4では、2次冷却帯を第1〜第4ゾーンに区画する場合を例示している。
Next, an embodiment according to the present invention will be described with reference to the drawings.
In FIG. 5, the block diagram of the continuous casting equipment of steel materials is shown.
As shown in FIG. 5, the continuous casting equipment includes a tundish 1 that pushes molten steel into the mold 6, a mold 6 that initially solidifies the molten steel, a plurality of support rolls 3 that guide the slab 2 while gradually cooling, and a moving torch. A cutter 5 is provided. Also. A cooling nozzle 4 for secondary cooling is inserted between adjacent support rolls 3. FIG. 4 illustrates the case where the secondary cooling zone is partitioned into first to fourth zones.

また、本実施形態は、鋳片表面がスラブスケール面となる鋳片を2次冷却の対象とする。
そして、本実施形態では、上記各冷却ノズル4として微小液滴冷却ノズルを採用し、ノズルから噴射する水の平均液滴径を200μm以下に設定する。
若しくは、冷却ノズル4から噴射される水の平均液滴径を200μm以上に設定し且つその水温を50℃以上に設定する。
In the present embodiment, a slab whose surface is a slab scale surface is a secondary cooling target.
And in this embodiment, a micro droplet cooling nozzle is employ | adopted as said each cooling nozzle 4, and the average droplet diameter of the water sprayed from a nozzle is set to 200 micrometers or less.
Alternatively, the average droplet diameter of water sprayed from the cooling nozzle 4 is set to 200 μm or more, and the water temperature is set to 50 ° C. or more.

このようにすることで、膜沸騰から遷移沸騰に変わる温度点であるMHF点を700℃以下となるように設定することが出来る。
さらに、そのMHF点よりも鋳片表面温度が高い状態、例えば鋳片表面温度が700℃より高い温度であって1000℃以下の範囲に収まる冷却条件となるように、鋳込み速度や溶鋼の温度等に基づき、鋳片表面に噴射する水量を調整する。
By doing in this way, the MHF point which is a temperature point which changes from film | membrane boiling to transition boiling can be set so that it may become 700 degrees C or less.
Furthermore, the slab surface temperature is higher than the MHF point, for example, the slab surface temperature is higher than 700 ° C. and the cooling condition is within the range of 1000 ° C. or less, the casting speed, the temperature of the molten steel, etc. The amount of water sprayed on the slab surface is adjusted based on the above.

これよって、発明者らの知見によってMHF点が高くなるスラブスケール面の鋳片であっても、過冷却が原因となる鋳片の表面割れの発生を防ぐことができる。
ここで、上述したように、鋳片の表面温度がMHF点を下回るような状況で冷却を行うと、温度ムラ(過冷却)が発生、その温度ムラと表面ひび割れに密接な関係があることから、常に2次冷却においてはMHF点以上で冷却することが必要である。
Thereby, even if it is a slab scale surface slab whose MHF point becomes high by inventors' knowledge, generation | occurrence | production of the surface crack of the slab caused by overcooling can be prevented.
Here, as described above, when cooling is performed in a state where the surface temperature of the slab is lower than the MHF point, temperature unevenness (supercooling) occurs, and the temperature unevenness and the surface crack are closely related. In secondary cooling, it is necessary to always cool above the MHF point.

これまでの発明者らの調査から、スラブスケール面は通常のスケール面に比べてMHF点が高いことが分かった。図3に、平均液滴径430μmでスラブスケール面を切り出して再加熱をした場合のMHF点と、同じ材料をフライスにかけて再加熱した場合のMHF点とを比較した結果を示す。本調査においてスラブスケール面のスケールは約320μmの厚さであり、スケール中にアルミナ(Al23)及びシリカ(SiO2)が含まれていた。フライスしたスケール面は1000℃で10分間の再加熱によって最大11ミクロンのスケールが生成した。図3の結果から発明者らは、スラブスケール面は通常のスケール面に比べてMHF点が高い理由は、スラブスケール面は通常のスケール面に比べて厚みがあり、またパウダーにはアルミ酸化物やシリコン酸化物が含まれているため、水との親和力が高くなることが原因であることを突き止めた。 From the investigations by the inventors so far, it has been found that the slab scale surface has a higher MHF point than the normal scale surface. FIG. 3 shows a result of comparing the MHF point when the slab scale surface is cut out with an average droplet diameter of 430 μm and reheated, and the MHF point when the same material is milled and reheated. In this investigation, the scale of the slab scale surface was about 320 μm thick, and alumina (Al 2 O 3 ) and silica (SiO 2 ) were contained in the scale. The milled scale surface produced scales of up to 11 microns upon reheating at 1000 ° C. for 10 minutes. From the results of FIG. 3, the inventors found that the slab scale surface has a higher MHF point than the normal scale surface. The slab scale surface is thicker than the normal scale surface, and the powder contains aluminum oxide. It was found that this is due to the high affinity with water due to the inclusion of silicon oxide.

そこで本発明者らはミストスプレーノズルなどの冷却ノズルから噴射される液滴径に注目した。液滴径を変更してスラブスケール面を冷却したときのMHF点の結果を図4に示す。この図4に示すように、ミストスプレーノズルなどからなる冷却ノズルから噴射される液滴径が小さければ、MHF点が下がることが分かり、さらに冷却時の水温も高ければMHF点が下がることが分かった。   Therefore, the present inventors paid attention to the diameter of a droplet ejected from a cooling nozzle such as a mist spray nozzle. The result of the MHF point when the slab scale surface is cooled by changing the droplet diameter is shown in FIG. As shown in FIG. 4, it can be seen that the MHF point decreases if the droplet diameter ejected from a cooling nozzle such as a mist spray nozzle is small, and the MHF point decreases if the water temperature during cooling is high. It was.

ここで、図4に示すように、平均液滴径200μm以下に設定すれば、鋳片表面がスラブスケール面となる鋳片に対し、MHF点が600℃以下とすることが出来る。
また図4に示すように、水温を50℃以上とした場合、平均液滴径が2000μm以下であれば、MHF点が700℃以下となる。通常の冷却スプレーの平均液滴径は2000μm以下である。更に、水温を50℃以上とし且つ平均液滴径を430μm以下に設定するか、水温を60℃以上に設定し平均液滴径が2000μm以下であれば、MHF点が600℃以下とすることが出来る。
Here, as shown in FIG. 4, if the average droplet diameter is set to 200 μm or less, the MHF point can be set to 600 ° C. or less with respect to the slab whose surface is a slab scale surface.
As shown in FIG. 4, when the water temperature is 50 ° C. or higher, the MHF point is 700 ° C. or lower if the average droplet diameter is 2000 μm or less. The average droplet diameter of a normal cooling spray is 2000 μm or less. Furthermore, if the water temperature is set to 50 ° C. or more and the average droplet diameter is set to 430 μm or less, or the water temperature is set to 60 ° C. or more and the average droplet diameter is 2000 μm or less, the MHF point may be set to 600 ° C. or less. I can do it.

以上のように、MHF点を下げて2次冷却を行えば、過冷却が発生しにくくなる。MHF点が700℃以下、好ましくは600℃以下であれば、温度ムラが発生しにくい。   As described above, if secondary cooling is performed by lowering the MHF point, supercooling hardly occurs. If the MHF point is 700 ° C. or lower, preferably 600 ° C. or lower, temperature unevenness hardly occurs.

「実施例1」
上記実施形態で説明した連続鋳造設備を使用した本発明の実施例1を説明する。
上記連続鋳造設備として、長さ45m、幅2mの鋳片を鋳造できる連続鋳造設備を使用した。そして、モールド6より下流の2次冷却帯に、平均液滴径が400μmの通常の冷却ノズルによる冷却と本発明に基づく平均液滴径が200μmの微小液滴冷却ノズルを切り替えて使用できるように配置した。
"Example 1"
Example 1 of the present invention using the continuous casting equipment described in the above embodiment will be described.
As the continuous casting equipment, a continuous casting equipment capable of casting a slab having a length of 45 m and a width of 2 m was used. In the secondary cooling zone downstream from the mold 6, the cooling by the normal cooling nozzle having an average droplet diameter of 400 μm and the micro droplet cooling nozzle having an average droplet diameter of 200 μm according to the present invention can be switched and used. Arranged.

ここで、冷却ノズルから噴射される噴射中の液体の液滴径は、移動ドップラ法(PDA:Phase Doppler Anemometer)により調査した。平均液滴径は、ザウダー平均径(D32)で、測定は各条件で5回行い、その平均値を用いた。なお、厳密には、計測した液滴の体積の総和と表面積の総和の比(D32=Σ(ni・di 3)/Σ(ni・di 2)、niは粒子数、diは直径)をザウダー平均径と呼ぶ。他の実施例でも同様である。 Here, the droplet diameter of the liquid being ejected from the cooling nozzle was investigated by a moving Doppler method (PDA: Phase Doppler Anemometer). The average droplet diameter was Sauder average diameter (D32), and measurement was performed 5 times under each condition, and the average value was used. Strictly speaking, the ratio between the total volume of the measured droplets and the total surface area (D32 = Σ (n i · d i 3 ) / Σ (n i · d i 2 ), n i is the number of particles, d i is the diameter) called the Sauder average diameter. The same applies to other embodiments.

そしてまず、幅2000mm、板厚250mm、鋳造速度1.5mpmにおいて、平均液滴径が400μmの通常の冷却ノズルによる冷却で冷却水温度は27℃で鋳造を開始した。鋳造当初は第3ゾーンと第4ゾーンの間に設置されている温度プロフィール計(不図示)で測温したところ、図6に示す温度分布を示すように、温度偏差約40℃以内と均一な2次冷却が実施されていた。しかし、同一条件で、鋳造速度を2.0mpmに上げて、2次冷却水を増加させたところ、温度偏差が250℃以上に拡大した。このように温度偏差が拡大したところに、本発明の約200μmの微小液滴冷却ノズルに冷却水を供給した。供給開始から約5分後に温度偏差が縮小し、約10分後には温度偏差は45℃以内へとなった(図6参照)。
このように、本発明を適用することで、鋳込速度を増大しても過冷却の発生を防止できることが分かる。
First, casting was started at a cooling water temperature of 27 ° C. by cooling with a normal cooling nozzle having a width of 2000 mm, a plate thickness of 250 mm, and a casting speed of 1.5 mpm and an average droplet diameter of 400 μm. When the temperature was measured by a temperature profile meter (not shown) installed between the third zone and the fourth zone at the beginning of casting, the temperature deviation was uniform within about 40 ° C. as shown in the temperature distribution shown in FIG. Secondary cooling was performed. However, when the casting speed was increased to 2.0 mpm and the secondary cooling water was increased under the same conditions, the temperature deviation expanded to 250 ° C. or more. Thus, when the temperature deviation increased, cooling water was supplied to the about 200 μm micro droplet cooling nozzle of the present invention. The temperature deviation decreased about 5 minutes after the start of supply, and the temperature deviation became within 45 ° C. after about 10 minutes (see FIG. 6).
Thus, it can be seen that by applying the present invention, the occurrence of supercooling can be prevented even if the casting speed is increased.

「実施例2」
実施例1と同じ連続鋳造設備を使用した。そして、モールド6より下流の2次冷却帯に、平均液滴径が400μmの通常の冷却ノズルによる冷却と本発明の約200μmの微小液滴冷却ノズルを切り替えて使用できるように配置した。
"Example 2"
The same continuous casting equipment as in Example 1 was used. Then, in the secondary cooling zone downstream of the mold 6, the cooling by the normal cooling nozzle having an average droplet diameter of 400 μm and the micro droplet cooling nozzle of about 200 μm according to the present invention were arranged so as to be used.

そしてまず、幅2000mm、板厚250mm、鋳造速度1.5mpmにおいて、平均液滴径が400μmの通常の冷却ノズルによる冷却で冷却水温度は27℃で鋳造を開始した。鋳造当初は第3ゾーンと第4ゾーンの間に設置されている温度プロフィール計(不図示)で測温したところ、図7に示す温度分布のように、温度偏差約40℃以内と均一な2次冷却が実施されていたが、鋳造速度を2.0mpmに上げて、2次冷却水を増加させたところ、過冷却が発生し温度偏差が250℃以上に拡大した。このように温度偏差が拡大したところに、第3、4ゾーンに本発明の約200μmの微小液滴冷却ノズルに冷却水を供給した。供給開始してから10分しても温度偏差は200℃以上あった。そこで、過冷却が発生していると見られる第1、2ゾーンに本発明の約200μmの微小液滴ノズルに冷却水を供給した。供給開始から約5分後に温度偏差が縮小し、約10分後には温度偏差は45℃以内へとなった(図7参照)。
このように、本発明を適用することで、鋳込速度を増大しても過冷却の発生を防止できることが分かる。
First, casting was started at a cooling water temperature of 27 ° C. by cooling with a normal cooling nozzle having a width of 2000 mm, a plate thickness of 250 mm, and a casting speed of 1.5 mpm and an average droplet diameter of 400 μm. At the beginning of casting, the temperature was measured with a temperature profile meter (not shown) installed between the third zone and the fourth zone, and as shown in the temperature distribution shown in FIG. Although secondary cooling was performed, when the casting speed was increased to 2.0 mpm and the secondary cooling water was increased, supercooling occurred and the temperature deviation expanded to 250 ° C. or more. Thus, when the temperature deviation increased, cooling water was supplied to the third and fourth zones to the micro droplet cooling nozzle of about 200 μm of the present invention. Even after 10 minutes from the start of supply, the temperature deviation was 200 ° C. or more. Therefore, the cooling water was supplied to the first and second zones where supercooling appears to have occurred, to the fine droplet nozzle of about 200 μm of the present invention. The temperature deviation decreased about 5 minutes after the start of supply, and the temperature deviation became within 45 ° C. after about 10 minutes (see FIG. 7).
Thus, it can be seen that by applying the present invention, the occurrence of supercooling can be prevented even if the casting speed is increased.

「実施例3」
実施例1と同じ連続鋳造設備を使用した。そして、モールド6より下流の2次冷却帯に、平均液滴径が400μmの通常の冷却ノズルによる冷却が設置されており、さらに50℃以上の温水が供給できるように配置した。
"Example 3"
The same continuous casting equipment as in Example 1 was used. Then, cooling by a normal cooling nozzle having an average droplet diameter of 400 μm is installed in the secondary cooling zone downstream from the mold 6, and further arranged so that hot water of 50 ° C. or more can be supplied.

そしてまず、幅2000mm、板厚250mm、鋳造速度1.5mpmにおいて、平均液滴径が400μmの通常の冷却ノズルによる冷却で冷却水温度は27℃で鋳造を開始した。鋳造当初は第3ゾーンと第4ゾーンの間に設置されている温度プロフィール計(不図示)で測温したところ図8の温度分布を示すように、温度偏差約40℃以内と均一な2次冷却が実施されていたが、鋳造速度を2.0mpmに上げて、2次冷却水を増加させたところ、過冷却が発生し温度偏差が250℃以上に拡大した。このように温度偏差が拡大したところに、第1、第2ゾーンに水温50℃の冷却水を供給した。供給開始から約5分後に温度偏差が縮小し、約10分後には温度偏差は45℃以内へとなった(図8参照)。   First, casting was started at a cooling water temperature of 27 ° C. by cooling with a normal cooling nozzle having a width of 2000 mm, a plate thickness of 250 mm, and a casting speed of 1.5 mpm and an average droplet diameter of 400 μm. At the beginning of casting, the temperature was measured with a temperature profile meter (not shown) installed between the third and fourth zones, and as shown in the temperature distribution of FIG. Although cooling was performed, when the casting speed was increased to 2.0 mpm and the secondary cooling water was increased, supercooling occurred and the temperature deviation expanded to 250 ° C. or more. Thus, when the temperature deviation has increased, cooling water having a water temperature of 50 ° C. was supplied to the first and second zones. The temperature deviation decreased about 5 minutes after the start of supply, and the temperature deviation became within 45 ° C. after about 10 minutes (see FIG. 8).

このように、本発明を適用することで、鋳込速度を増大しても過冷却の発生を防止できることが分かる。
以上からから分かるように、200μm以下の微小液滴ノズルで2次冷却行うことにより、また、200μm以上の冷却ノズルの場合は2次冷却水に50℃以上の冷却水を給水することにより、過冷却の発生を抑制することができ、過冷却が原因となる鋳片の表面割れの発生を防ぐことができる。また、高速鋳造が可能となるので、鋳片の増産が可能となり、また低コスト化にも寄与する。
Thus, it can be seen that by applying the present invention, the occurrence of supercooling can be prevented even if the casting speed is increased.
As can be seen from the above, by performing secondary cooling with a fine droplet nozzle of 200 μm or less, and in the case of a cooling nozzle of 200 μm or more, by supplying cooling water of 50 ° C. or higher to the secondary cooling water, Generation | occurrence | production of cooling can be suppressed and generation | occurrence | production of the surface crack of the slab caused by overcooling can be prevented. In addition, since high-speed casting is possible, it is possible to increase the production of slabs and contribute to cost reduction.

1 タンディッシュ
2 鋳片
3 サポートロール
4 冷却ノズル
5 移動トーチカッター
6 モールド
1 Tundish 2 Slab 3 Support roll 4 Cooling nozzle 5 Moving torch cutter 6 Mold

Claims (3)

鋼材を鋳造する連続鋳造における鋳片の2次冷却の全部又は一部で、表面酸化スケール及びモールドパウダー残りを有する鋳片表面を冷却ノズルから噴射する水によって冷却を行う連続鋳造での2次冷却方法であって、
上記冷却ノズルによる冷却を、膜沸騰から遷移沸騰に変わる温度点であるMHF(Minmum Heat Flux)点よりも鋳片表面温度が高い状態となるように、上記噴射される水の平均液滴径及び平均水温の少なくとも一方を設定することを特徴とする連続鋳造での2次冷却方法。
Secondary cooling in continuous casting in which cooling is performed by water sprayed from a cooling nozzle on the surface of the slab having a surface oxide scale and mold powder residue in all or part of the secondary cooling of the slab in continuous casting for casting steel materials. A method,
The average droplet diameter of the jetted water and the slab surface temperature are higher than the MHF (Minum Heat Flux) point, which is a temperature point at which film boiling changes to transition boiling. A secondary cooling method in continuous casting, wherein at least one of the average water temperatures is set.
上記冷却ノズルから噴射される水の平均液滴径を200μm以下に設定することを特徴とする請求項1に記載した連続鋳造での2次冷却方法。   The secondary cooling method in continuous casting according to claim 1, wherein an average droplet diameter of water sprayed from the cooling nozzle is set to 200 µm or less. 上記冷却ノズルから噴射される水の平均液滴径を200μm以上に設定し且つその水温を50℃以上に設定することを特徴とする請求項1に記載した連続鋳造での2次冷却方法。   2. The secondary cooling method in continuous casting according to claim 1, wherein an average droplet diameter of water ejected from the cooling nozzle is set to 200 μm or more and a water temperature thereof is set to 50 ° C. or more.
JP2010124702A 2010-05-31 2010-05-31 Secondary cooling method in continuous casting Active JP5545041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010124702A JP5545041B2 (en) 2010-05-31 2010-05-31 Secondary cooling method in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010124702A JP5545041B2 (en) 2010-05-31 2010-05-31 Secondary cooling method in continuous casting

Publications (2)

Publication Number Publication Date
JP2011251290A true JP2011251290A (en) 2011-12-15
JP5545041B2 JP5545041B2 (en) 2014-07-09

Family

ID=45415668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010124702A Active JP5545041B2 (en) 2010-05-31 2010-05-31 Secondary cooling method in continuous casting

Country Status (1)

Country Link
JP (1) JP5545041B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200803A (en) * 2013-04-02 2014-10-27 新日鐵住金株式会社 Cooling method and cooling system of continuous casting cast piece

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11170022A (en) * 1997-12-08 1999-06-29 Kawasaki Steel Corp Method for cooling cast slab in continuous casting
JP2009202166A (en) * 2008-02-26 2009-09-10 Jfe Steel Corp Secondary cooling method and secondary cooling device in continuous casting
JP2010082637A (en) * 2008-09-30 2010-04-15 Jfe Steel Corp Secondary cooling method in continuous casting
JP2010110813A (en) * 2008-11-10 2010-05-20 Nippon Steel Corp Secondary cooling method and apparatus for continuously cast slab

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11170022A (en) * 1997-12-08 1999-06-29 Kawasaki Steel Corp Method for cooling cast slab in continuous casting
JP2009202166A (en) * 2008-02-26 2009-09-10 Jfe Steel Corp Secondary cooling method and secondary cooling device in continuous casting
JP2010082637A (en) * 2008-09-30 2010-04-15 Jfe Steel Corp Secondary cooling method in continuous casting
JP2010110813A (en) * 2008-11-10 2010-05-20 Nippon Steel Corp Secondary cooling method and apparatus for continuously cast slab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200803A (en) * 2013-04-02 2014-10-27 新日鐵住金株式会社 Cooling method and cooling system of continuous casting cast piece

Also Published As

Publication number Publication date
JP5545041B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
US7328737B2 (en) Installation for continuously producing a thin steel strip
KR101209355B1 (en) Cooling method for hot-rolled steel sheets
JP2010110813A (en) Secondary cooling method and apparatus for continuously cast slab
JP5604946B2 (en) Steel continuous casting method
JP6003850B2 (en) Manufacturing method of continuous casting mold and continuous casting method of steel
JP6003851B2 (en) Continuous casting mold and steel continuous casting method
JP4954932B2 (en) Manufacturing method of hot-rolled steel sheet
JP5545041B2 (en) Secondary cooling method in continuous casting
TWI787589B (en) Continuous casting method of steel billet
WO2021006253A1 (en) Secondary cooling method and secondary cooling apparatus for continuous casting slab
JP6044614B2 (en) Steel continuous casting method
JP5402215B2 (en) Secondary cooling method in continuous casting
JP4924104B2 (en) Method for producing high Ni content steel slab
JP2010082637A (en) Secondary cooling method in continuous casting
JP2008254062A (en) Secondary cooling device for continuous casting machine, and secondary cooling method therefor
JP5146006B2 (en) Secondary cooling method in continuous casting
JP2009255127A (en) Method and equipment for cooling of continuously cast slab
JP5131229B2 (en) Slab continuous casting method
JP5609199B2 (en) Secondary cooling method in continuous casting
JP2011251291A (en) Secondary cooling and secondary cooling equipment in continuous casting
JP5443203B2 (en) Continuous casting method using a cooling method for rolls arranged in an air cooling zone
JP5200264B2 (en) Steel continuous casting method
JP2011020138A (en) Secondary cooling method in continuous casting
JP4682669B2 (en) H-shaped steel cooling equipment and cooling method
WO2023248632A1 (en) Cast slab continuous casting equipment and cast slab continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5545041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250