JP5402215B2 - Secondary cooling method in continuous casting - Google Patents

Secondary cooling method in continuous casting Download PDF

Info

Publication number
JP5402215B2
JP5402215B2 JP2009108798A JP2009108798A JP5402215B2 JP 5402215 B2 JP5402215 B2 JP 5402215B2 JP 2009108798 A JP2009108798 A JP 2009108798A JP 2009108798 A JP2009108798 A JP 2009108798A JP 5402215 B2 JP5402215 B2 JP 5402215B2
Authority
JP
Japan
Prior art keywords
slab
water
cooling
continuous casting
secondary cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009108798A
Other languages
Japanese (ja)
Other versions
JP2010253528A (en
Inventor
誠 中世古
敏樹 蛭田
透 松葉
毅 鹿子島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009108798A priority Critical patent/JP5402215B2/en
Publication of JP2010253528A publication Critical patent/JP2010253528A/en
Application granted granted Critical
Publication of JP5402215B2 publication Critical patent/JP5402215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、高速鋳造時であっても鋳片を均一に冷却することのできる、連続鋳造設備の二次冷却帯における鋳片の冷却方法に関するものである。   The present invention relates to a method for cooling a slab in a secondary cooling zone of a continuous casting facility that can uniformly cool the slab even during high-speed casting.

鋼の連続鋳造では、取鍋内の溶鋼を一旦タンディッシュに注入し、タンディッシュ内に所定量の溶鋼が滞在した状態で、タンディッシュ内の溶鋼を、タンディッシュ底部に設置した浸漬ノズルを介して鋳型に注入している。鋳型内に注入された溶鋼は冷却されて鋳型との接触面に凝固シェルを形成し、この凝固シェルを外殻とし、内部に未凝固溶鋼を有する鋳片は、鋳型下方に設けられた二次冷却帯において、鋳片表面に噴射される冷却水(「二次冷却水」ともいう)によって冷却されながら鋳型下方に連続的に引抜かれ、やがて中心部までの凝固が完了する。中心部までの凝固の完了した鋳片を所定の長さに切断して、圧延用素材である鋳片が製造されている。   In continuous casting of steel, the molten steel in the ladle is once poured into the tundish, and with a predetermined amount of molten steel staying in the tundish, the molten steel in the tundish is passed through an immersion nozzle installed at the bottom of the tundish. And injected into the mold. The molten steel injected into the mold is cooled to form a solidified shell on the contact surface with the mold, and this slab with the solidified shell as the outer shell and the unsolidified molten steel inside is a secondary provided below the mold. In the cooling zone, it is continuously drawn down below the mold while being cooled by cooling water (also referred to as “secondary cooling water”) sprayed on the surface of the slab, and eventually solidification to the center is completed. A slab which is a raw material for rolling is manufactured by cutting a slab that has been solidified to the center to a predetermined length.

二次冷却帯において、不均一な冷却が発生すると、鋳片の表面や内部に割れが生じたり、鋳片中心部の中心偏析が悪化したりするので、鋳片の鋳造方向及び幅方向で均一な冷却を行うことが提案され、実施されてきた。この場合、スラブ鋳片は幅が広く、複数個のスプレーノズルを幅方向に配置する必要があることから、幅方向で不均一冷却になりやすく、特に、鋳片幅方向で均一な冷却を行うことが重要となる。   If non-uniform cooling occurs in the secondary cooling zone, cracks will occur on the surface and inside of the slab, or the center segregation at the center of the slab will deteriorate, so it is uniform in the casting direction and width direction of the slab. Cooling has been proposed and implemented. In this case, since the slab slab is wide and it is necessary to arrange a plurality of spray nozzles in the width direction, non-uniform cooling tends to occur in the width direction, and in particular, uniform cooling is performed in the slab width direction. It becomes important.

例えば、特許文献1には、スプレーノズルの先端に複数の噴射孔を設け、隣り合うロール間において、前記噴射孔から噴射される互いに平行な、複数条のフラットスプレー水で鋳片表面を冷却することが開示されている。特許文献1によれば、複数条のスプレー水で冷却するので、冷却−復熱の温度差が小さくなり、それに応じて繰り返しの熱応力が軽減され、鋳片の表面割れが軽減されるとしている。   For example, in Patent Document 1, a plurality of injection holes are provided at the tip of a spray nozzle, and the surface of a slab is cooled with a plurality of parallel flat spray water sprayed from the injection holes between adjacent rolls. It is disclosed. According to Patent Document 1, since cooling is performed with a plurality of spray water, the temperature difference between cooling and recuperation is reduced, and repeated thermal stress is reduced accordingly, and surface cracks of the slab are reduced. .

特許文献2には、スプレーノズルから噴射される冷却水の、鋳片引き抜き方向の水量分布で、水量分布における最大部の20%となる点をA及びBとしたとき、AとBとの間では最大部の20%以上の水量分布が連続し、且つ、スプレーノズルの噴射孔中心をCとしたとき、角ACBが30度以上であるスプレーノズルを用いて鋳片を冷却することが開示されている。特許文献2によれば、鋳片に対する冷却能を効率良く高めることができるとしている。   In Patent Document 2, the water distribution in the slab drawing direction of the cooling water sprayed from the spray nozzle, where A and B are points that are 20% of the maximum portion of the water distribution, the distance between A and B Then, it is disclosed that the slab is cooled by using a spray nozzle having an angle ACB of 30 degrees or more when the water amount distribution of 20% or more of the maximum portion is continuous and the spray nozzle center of the spray nozzle is C. ing. According to Patent Document 2, the cooling ability for the slab can be efficiently increased.

また、特許文献3には、加圧系にブースターポンプを備えた送水機構を介して、鋳片に25〜100kgf/cm2(2.5〜9.8MPa)の給水圧の冷却水を吹き付けて冷却しながら連続鋳造することが開示されている。特許文献3によれば、鋳片に衝突した冷却水のはね帰りが霧状化され、鋳片表面の部分的な溜り水の発生が防止され、部分的な過冷却が防止されて、均一な冷却が実現されるとしている。 In Patent Document 3, cooling water having a water supply pressure of 25 to 100 kgf / cm 2 (2.5 to 9.8 MPa) is sprayed on a slab through a water supply mechanism having a booster pump in a pressurizing system. Continuous casting with cooling is disclosed. According to Patent Document 3, the splash of cooling water that has collided with the slab is atomized, the generation of partial accumulated water on the surface of the slab is prevented, and partial overcooling is prevented. Cooling is realized.

特開昭50−103426号公報Japanese Patent Laid-Open No. 50-103426 特開2003−136205号公報JP 2003-136205 A 特開昭57−91857号公報JP-A-57-91857

鋼の連続鋳造において、一般に、二次冷却帯の鋳片の表面温度は700〜1000℃に制御されているが、近年の鋳造速度の高速化に伴い、二次冷却の能力が強化され、鋳造中の鋳片表面温度は全般的に低下する傾向にある。また、鋳造速度の高速化に伴って、鋳片に、700℃を下回る表面温度の部位が局部的に生じる現象(「過冷却現象」と呼ぶ)が発生するようになった。過冷却現象の発生した鋳片の表面温度は、鋳片幅方向に温度ムラが生じる。   In continuous casting of steel, the surface temperature of the slab in the secondary cooling zone is generally controlled to 700-1000 ° C. With the recent increase in casting speed, the ability of secondary cooling has been strengthened, The slab surface temperature inside tends to decrease in general. In addition, with the increase in casting speed, a phenomenon in which a portion having a surface temperature lower than 700 ° C. locally occurs in the slab (referred to as “supercooling phenomenon”) has come to occur. As for the surface temperature of the slab where the supercooling phenomenon occurs, temperature unevenness occurs in the slab width direction.

この過冷却現象は、鋳造中の鋳片の表面が二次冷却帯における過冷却によって低下する現象であり、図1に、過冷却のスラブ鋳片における温度ムラの発生状況(図1(A))と、冷却後のスラブ鋳片の表面割れの発生状況(図1(B))との関係を示す。図1に示すように、鋳造後の鋳片を観察すると、温度ムラの発生部位に表面割れが集中することが分かる。尚、本発明者らは、この過冷却現象の発生原因を追求し、鋳片の温度ムラ発生と、鋳片表面に滞留する二次冷却水(滞留する二次冷却水を「残留水」と呼ぶ)の水温との間に相関があることを知見している。   This supercooling phenomenon is a phenomenon in which the surface of the slab during casting is lowered by supercooling in the secondary cooling zone. FIG. 1 shows the occurrence of temperature unevenness in the supercooled slab slab (FIG. 1A). ) And the occurrence of surface cracks in the slab slab after cooling (FIG. 1B). As shown in FIG. 1, when the cast slab is observed, it can be seen that surface cracks are concentrated on the portion where the temperature unevenness occurs. In addition, the present inventors pursued the cause of the occurrence of this supercooling phenomenon, the occurrence of temperature unevenness of the slab, and the secondary cooling water staying on the surface of the slab (the remaining cooling water is referred to as “residual water”). It is known that there is a correlation with the water temperature.

この過冷却現象つまり温度ムラを防止する観点から上記従来技術を検証すれば、上記従来技術は、何れも過冷却現象の防止には効果がないか、効果があっても効率的ではない。   If the above prior arts are verified from the viewpoint of preventing this overcooling phenomenon, that is, temperature unevenness, none of the above prior arts is effective in preventing the overcooling phenomenon, or even if effective, it is not efficient.

即ち、特許文献1は、スプレー水の噴射される面積、つまり冷却面積を広げて過冷却を防止しているが、フラットスプレーノズルを使用しており、フラットスプレーノズルのみで冷却する限り、冷却時の衝突圧力が強く、二次冷却水量も多いので、残留水の発生を防ぐことはできず、高速鋳造下での過冷却現象の発生を防ぐことはできない。   That is, Patent Document 1 increases the spray water injection area, that is, the cooling area to prevent overcooling, but uses a flat spray nozzle, and as long as cooling is performed using only the flat spray nozzle, Since the collision pressure is strong and the amount of secondary cooling water is large, the generation of residual water cannot be prevented, and the occurrence of the supercooling phenomenon under high-speed casting cannot be prevented.

特許文献2は、鋳造方向の噴射角度を広げたスプレーノズルであり、特許文献1のフラットスプレーノズルに比較すれば、冷却時の衝突圧力を弱くすることができるので、過冷却現象は発生しにくくなる。しかしながら、スプレーノズルを用いて冷却する限り、残留水の発生を防ぐことはできず、鋳造速度を高速化すると、過冷却現象が発生する。   Patent Document 2 is a spray nozzle with a wider injection angle in the casting direction. Compared with the flat spray nozzle of Patent Document 1, the collision pressure during cooling can be reduced, so that the supercooling phenomenon is unlikely to occur. Become. However, as long as the spray nozzle is used for cooling, the generation of residual water cannot be prevented. If the casting speed is increased, a supercooling phenomenon occurs.

特許文献3は、鋳片に25〜100kgf/cm2の高圧の二次冷却水を噴射することにより、残留水の発生を防ぎ、均一冷却を行うものであり、高圧水によって残留水の発生は抑制され、過冷却現象防止の効果が発現される。しかしながら、鋼の連続鋳造機においては、二次冷却帯の長さは20mから長いものでは50mにも達し、全ての二次冷却ゾーンで高圧水による冷却を実施することは設備費のみならず運転費が嵩み、たとえ上流部の二次冷却ゾーンだけに絞ったとしても運転費が高く、実用的ではない。 In Patent Document 3, the generation of residual water is prevented by injecting high-pressure secondary cooling water of 25 to 100 kgf / cm 2 into the slab to prevent generation of residual water and uniform cooling. It is suppressed and the effect of preventing the supercooling phenomenon is exhibited. However, in the continuous casting machine for steel, the length of the secondary cooling zone reaches 20m from the long one to 50m, and cooling with high-pressure water in all secondary cooling zones is not only an equipment cost but also an operation. The cost is high, and even if it is limited only to the secondary cooling zone in the upstream part, the operation cost is high and it is not practical.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、連続鋳造設備の二次冷却帯にて鋳造中の鋳片を冷却するにあたり、鋳片表面に過冷却現象を発生させることなく、鋳片を均一に冷却することのできる二次冷却方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is to generate a supercooling phenomenon on the surface of the slab when cooling the slab during casting in the secondary cooling zone of the continuous casting facility. It is providing the secondary cooling method which can cool a slab uniformly.

上記課題を解決するための第1の発明に係る連続鋳造における二次冷却方法は、連続鋳造機で鋳造されている鋳片を、鋳片支持ロールで支持しながら鋳型の下方に設けた二次冷却帯にて冷却水または冷却水と気体との混合体を用いて二次冷却するに際し、連続鋳造中の鋳片表面に溜まる、前記冷却水の残留水を高圧気体の噴射によって除去しながら鋳片を二次冷却することを特徴とするものである。   The secondary cooling method in continuous casting according to the first invention for solving the above-mentioned problem is a secondary cooling method in which a slab cast by a continuous casting machine is provided below a mold while being supported by a slab support roll. When secondary cooling is performed using cooling water or a mixture of cooling water and gas in the cooling zone, casting is performed while removing residual water of the cooling water accumulated on the slab surface during continuous casting by jetting high-pressure gas. The piece is secondarily cooled.

第2の発明に係る連続鋳造における二次冷却方法は、第1の発明において、前記鋳片支持ロールと並行に、前記高圧気体を噴射することを特徴とするものである。   A secondary cooling method in continuous casting according to a second invention is characterized in that, in the first invention, the high-pressure gas is injected in parallel with the slab support roll.

第3の発明に係る連続鋳造における二次冷却方法は、第1の発明において、前記鋳片支持ロールが鋳片幅方向で2以上に分割された分割型鋳片支持ロールであり、該分割型鋳片支持ロールのロールチョックの部位に、前記高圧気体を噴射することを特徴とするものである。   A secondary cooling method in continuous casting according to a third invention is the split slab support roll in which the slab support roll is divided into two or more in the slab width direction in the first invention, and the split mold The high-pressure gas is jetted onto a roll chock portion of the slab support roll.

本発明によれば、連続鋳造中の鋳片表面に溜まる、二次冷却水の残留水を圧縮空気などの高圧気体の噴射によって除去しながら鋳片を二次冷却するので、過冷却現象の原因である残留水が鋳片表面から除去され、鋳造速度を高めた条件下であっても鋳片表面は過冷却とならず、鋳片表面に温度ムラを発生させることなく、鋳片を均一に冷却することが実現される。その結果、表面割れのない表面品質に優れた鋳片を高い生産性で鋳造することが可能となり、工業上有益な効果がもたらされる。   According to the present invention, the slab is secondary cooled while removing residual water of secondary cooling water accumulated on the surface of the slab during continuous casting by injection of high-pressure gas such as compressed air. Even if the residual water is removed from the slab surface and the casting speed is increased, the slab surface is not overcooled, and the slab is made uniform without causing temperature unevenness on the slab surface. Cooling is realized. As a result, it is possible to cast a slab excellent in surface quality free from surface cracks with high productivity, which brings about an industrially beneficial effect.

過冷却のスラブ鋳片における温度ムラの発生状況と、冷却後のスラブ鋳片の表面割れの発生状況との関係を示す図である。It is a figure which shows the relationship between the generation | occurrence | production state of the temperature nonuniformity in a supercooled slab slab, and the generation | occurrence | production state of the surface crack of the slab slab after cooling. 本発明を適用したスラブ連続鋳造機の概略図である。It is the schematic of the slab continuous casting machine to which this invention is applied. 本発明を適用したスラブ連続鋳造機の第1冷却ゾーンの概略図である。It is the schematic of the 1st cooling zone of the slab continuous casting machine to which this invention is applied. 実施例1における鋳片幅方向の表面温度分布を示す図である。It is a figure which shows the surface temperature distribution of the slab width direction in Example 1. FIG. 本発明を適用した他のスラブ連続鋳造機の第1冷却ゾーンの概略図である。It is the schematic of the 1st cooling zone of the other slab continuous casting machine to which this invention is applied. 実施例2における鋳片幅方向の表面温度分布を示す図である。It is a figure which shows the surface temperature distribution of the slab width direction in Example 2. FIG.

以下、本発明を詳細に説明する。先ず、本発明に至った経緯を説明する。   Hereinafter, the present invention will be described in detail. First, the background to the present invention will be described.

本発明者らは、実機連続鋳造機の操業結果から、鋳造速度が速くなると、前述した図1に示すように、温度ムラの原因である鋳片の過冷却現象が多発し、それに応じて鋳片の表面割れが多発することを確認した。そこで、鋳造速度が速くなると過冷却現象が起こりやすくなる原因を追求した。   As shown in FIG. 1 described above, when the casting speed is increased, the present inventors frequently experience the phenomenon of undercooling of the slab, which is a cause of temperature unevenness. It was confirmed that surface cracks frequently occurred on the piece. Therefore, we sought the cause that the supercooling phenomenon easily occurs when the casting speed is increased.

連続鋳造機の設備長は限られており、従って、鋳造速度が速くなると、限られた設備長の範囲内で鋳片の凝固を完了させなければならず、そのために、二次冷却帯における冷却能力を強くする。通常、二次冷却帯の水スプレーノズルやエアーミストスプレーノズル(以下、まとめて「スプレーノズル」とも記す)から噴射される冷却水量或いはエアーミスト量(冷却水と空気との混合体)を増加させて、二次冷却帯における冷却能力を強くしている。一般的に、連続鋳造機の二次冷却は、鋳造される溶鋼1kgあたりの冷却水量が一定となるように制御されており、この場合には、鋳造速度が2倍になると、単位時間あたりの二次冷却水量は2倍になる。   The equipment length of the continuous casting machine is limited. Therefore, as the casting speed increases, the slab solidification must be completed within the limited equipment length, and therefore the cooling in the secondary cooling zone. Strengthen ability. Usually, the amount of cooling water or air mist (mixture of cooling water and air) injected from the water spray nozzle or air mist spray nozzle (hereinafter also referred to as “spray nozzle”) in the secondary cooling zone is increased. Therefore, the cooling capacity in the secondary cooling zone is strengthened. Generally, the secondary cooling of the continuous casting machine is controlled so that the amount of cooling water per 1 kg of molten steel to be cast is constant. In this case, when the casting speed is doubled, The amount of secondary cooling water is doubled.

スプレーノズルから噴射された冷却水は、鋳片表面に衝突した後の水温が初期状態の常温から沸騰温度まで上昇することによる顕熱、及び、蒸発による蒸発潜熱によって鋳片から熱を奪い、且つ、冷却水の衝突力による冷却促進作用が働いて、鋳片表面の冷却が行われる。この場合、噴射された二次冷却水は蒸発しきれず、鋳片表面上や、鋳片支持ロールと鋳片とに挟まれて残留水となって滞留する。また、一部の残留水は鋳片幅方向に流れて鋳片表面から落下し、また、一部の残留水は、鋳片幅方向で2以上に分割された分割型鋳片支持ロールのロールチョックの間隙を通って鋳片表面上を沿うようにして下流側へ流下する。尚、分割型鋳片支持ロールは、鋳片の支持面積を増加させるべくロールピッチ(鋳造方向のロール間距離)を小さくすると、自ずと鋳片支持ロールのロール径が小さくなり、ロール径が小さくなるとロールの剛性が低下してロール自体のたわみが大きくなるので、このたわみを少なくするための鋳片支持ロールである。当然ながら、分割型鋳片支持ロールが配置されないスラブ連続鋳造機も存在する。   The cooling water sprayed from the spray nozzle takes heat from the slab by the sensible heat when the water temperature after colliding with the slab surface rises from the normal temperature of the initial state to the boiling temperature, and the latent heat of evaporation due to evaporation, and The cooling promoting action by the collision force of the cooling water works and the slab surface is cooled. In this case, the injected secondary cooling water cannot evaporate and remains as residual water on the slab surface or sandwiched between the slab support roll and the slab. Moreover, a part of residual water flows in the slab width direction and falls from the slab surface, and a part of the residual water is divided into two or more in the slab width direction. It flows down to the downstream side along the surface of the slab through the gap. When the roll pitch (distance between rolls in the casting direction) is reduced to increase the support area of the slab, the split slab support roll naturally reduces the roll diameter of the slab support roll and reduces the roll diameter. Since the rigidity of the roll is reduced and the deflection of the roll itself is increased, this is a slab support roll for reducing this deflection. Of course, there is also a slab continuous casting machine in which the split slab support roll is not arranged.

鋳造速度が低速の範囲は二次冷却水量が少ないので、鋳片上に滞留している残留水の水温は80℃以上の高温であることが確認されている。また、この場合には、過冷却現象は発生しないことが確認されている。しかしながら、鋳造速度が上がって二次冷却水量が増加すると、鋳片上に滞留する残留水が多くなり、残留水の水温は低下することが予測される。   Since the amount of secondary cooling water is small in the range where the casting speed is low, it has been confirmed that the temperature of the residual water remaining on the slab is as high as 80 ° C. or higher. In this case, it has been confirmed that the supercooling phenomenon does not occur. However, if the casting speed is increased and the amount of secondary cooling water is increased, the residual water staying on the slab increases, and the water temperature of the residual water is expected to decrease.

そこで、実験装置を用いて、二次冷却水量とそのときの残留水の温度との関係について調査した。実験は、加熱した平らな厚鋼板を斜めに配置し、この厚鋼板の上端部に、ロールチョックの間隙を模擬したスリット(スリットの数=1)を有する遮蔽箱を配置し、この遮蔽箱の内側に冷却水を供給し、この冷却水がスリットを通って厚鋼板の表面を流下するようにして行った。流下する冷却水の温度は、スリットの出口位置に、厚鋼板の表面から2mm離して配置した熱電対により測定し、厚鋼板の温度は、スリットの出口位置に、厚鋼板の表面から1mm離れた厚鋼板の内部に埋め込んだ熱電対により測定した。   Therefore, the relationship between the amount of secondary cooling water and the temperature of residual water at that time was investigated using an experimental device. In the experiment, a heated flat thick steel plate is arranged obliquely, and a shielding box having a slit (number of slits = 1) simulating the gap of the roll chock is arranged at the upper end of the thick steel plate. The cooling water was supplied to the steel plate, and the cooling water flowed down the surface of the thick steel plate through the slit. The temperature of the cooling water flowing down was measured by a thermocouple placed 2 mm away from the surface of the thick steel plate at the exit position of the slit, and the temperature of the thick steel plate was 1 mm away from the surface of the thick steel plate at the exit position of the slit. The measurement was made with a thermocouple embedded in the thick steel plate.

厚鋼板を遮蔽箱とともに均熱炉で1000℃に加熱し、この厚鋼板を均熱炉から取り出して所定の位置に配置し、厚鋼板の温度が900℃になった時点で、遮蔽箱の内側に35℃の冷却水を水供給管から供給した。冷却水の供給量は10L(リットル)/分及び20L/分の2水準とした。   The steel plate is heated to 1000 ° C. in a soaking furnace together with the shielding box, and the thick steel plate is taken out of the soaking furnace and placed in a predetermined position. When the temperature of the thick steel plate reaches 900 ° C., the inside of the shielding box Cooling water at 35 ° C. was supplied from the water supply pipe. The supply amount of cooling water was set to two levels of 10 L (liter) / min and 20 L / min.

冷却水の供給量が10L/分の場合には、スリット出口位置の冷却水の水温は85〜90℃と高温のままであり、また、厚鋼板の温度はほぼ一定速度で低下し、給水開始から50秒を経過した時点では約800℃であり、過冷却現象は発生しなかった。しかし、冷却水の供給量が20L/分の場合には、冷却水の水温は、給水直後は約80℃程度であったが、給水開始から20秒を過ぎた頃から水温が80℃以下に下がりだし、給水開始から50秒を経過した時点では約60℃程度となった。また、スリット出口位置の冷却水の水温が80℃未満になった以降、厚鋼板の温度も急激に下がりだし、給水開始から50秒を経過した時点では約300℃まで低下した。つまり、冷却水の供給量が20L/分の場合には過冷却現象が発生した。   When the amount of cooling water supplied is 10 L / min, the temperature of the cooling water at the slit exit position remains as high as 85 to 90 ° C., and the temperature of the steel plate decreases at a substantially constant rate, and water supply starts. When 50 seconds passed, the temperature was about 800 ° C., and no supercooling phenomenon occurred. However, when the amount of cooling water supplied is 20 L / min, the water temperature of the cooling water was about 80 ° C. immediately after the water supply, but the water temperature became 80 ° C. or less after about 20 seconds from the start of the water supply. It started to drop, and it became about 60 ° C when 50 seconds passed from the start of water supply. Moreover, after the water temperature of the cooling water at the slit exit position became less than 80 ° C., the temperature of the thick steel plate also suddenly decreased, and decreased to about 300 ° C. when 50 seconds had elapsed from the start of water supply. That is, a supercooling phenomenon occurred when the amount of cooling water supplied was 20 L / min.

これらの結果から、二次冷却水の滞留水の水温が低下することが、過冷却現象の原因であることが分かった。つまり、鋳造速度が上がって二次冷却水量が増加すると、鋳片上に滞留する残留水が多くなり、残留水の水温は80℃未満に低下する。鋳片の幅方向に流れて鋳片表面から落下する残留水は問題とならないが、分割型鋳片支持ロールのロールチョックの間隙を通って鋳片表面上を沿うようにして下流側へ流下する残留水は、残留水の水温が低下することに伴ってサブクール度が高くなり、この残留水には鋳片を冷却する作用が発現する。残留水による冷却の作用が一旦鋳片に働くと、その部位の鋳片の表面温度が低下し、鋳片表面の濡れ性が良くなって更に冷却作用が強くなり、局部的に表面温度の低い部位が形成される。そして、これが過冷却現象の発生原因であることを見出した。従って、鋳片表面上の残留水を圧縮空気などの高圧気体の噴射により強制的に鋳片表面上から除去すれば、過冷却現象は発生しないとの知見を得た。   From these results, it was found that the lowering of the temperature of the stagnant water of the secondary cooling water is the cause of the supercooling phenomenon. That is, when the casting speed increases and the amount of secondary cooling water increases, the amount of residual water that remains on the slab increases, and the temperature of the residual water decreases to less than 80 ° C. Residual water that flows in the width direction of the slab and falls from the surface of the slab does not matter, but the residual water that flows downstream along the surface of the slab through the gap of the roll chock of the split-type slab support roll The water has a higher subcooling degree as the temperature of the residual water decreases, and the residual water exhibits an action of cooling the slab. Once the action of cooling by residual water acts on the slab, the surface temperature of the slab at that part decreases, the wettability of the slab surface improves, the cooling action becomes stronger, and the surface temperature is locally low. A site is formed. And it discovered that this was a cause of occurrence of the supercooling phenomenon. Accordingly, it has been found that if the residual water on the surface of the slab is forcibly removed from the surface of the slab by injection of high-pressure gas such as compressed air, the supercooling phenomenon does not occur.

本発明は、上記知見に基づきなされたものであり、連続鋳造機で鋳造されている鋳片を、鋳片支持ロールで支持しながら鋳型の下方に設けた二次冷却帯にて冷却水または冷却水と気体との混合体を用いて二次冷却するに際し、連続鋳造中の鋳片表面に溜まる、前記冷却水からなる残留水を圧縮空気などの高圧気体の噴射によって強制的に除去しながら鋳片を二次冷却することを特徴としている。   The present invention has been made on the basis of the above knowledge, and cooling water or cooling is performed in a secondary cooling zone provided below the mold while supporting a slab cast by a continuous casting machine with a slab support roll. When performing secondary cooling using a mixture of water and gas, casting is performed while forcibly removing residual water consisting of the cooling water accumulated on the surface of the slab during continuous casting by injection of high-pressure gas such as compressed air. It is characterized by secondary cooling of the piece.

高圧気体の噴射方法は、特に規定する必要はなく、鋳片上の残留水が、噴射される高圧気体によって強制的に除去される限り、どのような噴射方法であっても構わないが、二次冷却水の残留水は鋳片支持ロールと鋳片との接触面に滞留するので、この部位に向けて鋳片支持ロールと並行に、鋳片支持ロールの一方の端部側から噴射することが好ましい。鋳片支持ロールの一方の端部側から高圧気体を噴射することで、鋳片支持ロールと鋳片との接触面に滞留する残留水は、鋳片支持ロールの他方の端部側に追いやられ、鋳片上から落下する。   The injection method of the high-pressure gas is not particularly required, and any injection method may be used as long as the residual water on the slab is forcibly removed by the injected high-pressure gas. Since the remaining water of the cooling water stays on the contact surface between the slab support roll and the slab, it can be sprayed from one end side of the slab support roll in parallel with the slab support roll toward this part. preferable. By injecting high-pressure gas from one end side of the slab support roll, residual water staying on the contact surface between the slab support roll and the slab is driven to the other end side of the slab support roll. , Fall from above the slab.

また、分割型鋳片支持ロールが配置された連続鋳造機の場合には、分割型鋳片支持ロールのロールチョックの間隙を通って残留水が流下するので、これを防止するために、分割型鋳片支持ロールのロールチョックの部位に向けて、鋳片長辺面と直交する方向から高圧気体を噴射することが好ましい。高圧気体は、ノズルを介して噴射してもよく、また、細管を介して噴射してもよい。更には、供給配管から直接噴射することもできる。   In addition, in the case of a continuous casting machine in which a split mold slab support roll is arranged, residual water flows down through the gap of the roll chock of the split mold slab support roll. It is preferable to inject the high-pressure gas from the direction perpendicular to the long side surface of the cast piece toward the roll chock portion of the single support roll. The high-pressure gas may be injected through a nozzle or may be injected through a thin tube. Further, it can be directly injected from the supply pipe.

高圧気体の噴射は、二次冷却帯の全ての二次冷却ゾーンで実施する必要はなく、二次冷却水量の多い上流部または中流部の二次冷却ゾーンのみで実施してもよく、また、その場合でも、鋳造方向に隣り合う鋳片支持ロールの全ての位置で実施する必要はなく、数本の鋳片支持ロール毎に高圧気体を噴射させてもよい。つまり、完全に残留水を鋳片上から除去する必要はなく、鋳造速度が低速の場合に滞留する残留水と同程度の残留水が滞留しても問題ない。   The injection of the high-pressure gas is not necessarily performed in all the secondary cooling zones of the secondary cooling zone, and may be performed only in the secondary cooling zone in the upstream portion or the midstream portion where the amount of the secondary cooling water is large. Even in that case, it is not necessary to carry out at all the positions of the slab support rolls adjacent to each other in the casting direction, and the high-pressure gas may be injected every several slab support rolls. That is, it is not necessary to completely remove residual water from the slab, and there is no problem even if residual water having the same level as that remaining when the casting speed is low is retained.

使用する高圧気体としては、安価であることから圧縮空気が好適であるが、圧縮空気に限らず、高圧の窒素ガス、炭酸ガスなども使用することができる。また、水スプレーノズルが配置された二次冷却ゾーンであっても、エアーミストスプレーノズルが配置された二次冷却ゾーンであっても、冷却水を使用する限り、本発明を適用することができる。   The high-pressure gas used is preferably compressed air because it is inexpensive, but is not limited to compressed air, and high-pressure nitrogen gas, carbon dioxide gas, or the like can also be used. In addition, the present invention can be applied as long as cooling water is used, whether it is a secondary cooling zone in which a water spray nozzle is disposed or a secondary cooling zone in which an air mist spray nozzle is disposed. .

このように、本発明によれば、連続鋳造中の鋳片表面に溜まる残留水を圧縮空気などの高圧気体の噴射によって強制的に除去しながら鋳片を二次冷却するので、過冷却現象の原因である残留水が鋳片表面から除去され、鋳造速度を高めた鋳造下であっても、鋳片表面は過冷却とならず、鋳片表面に温度ムラを発生させることなく、鋳片を均一に冷却することが実現される。   Thus, according to the present invention, the slab is subjected to secondary cooling while forcibly removing residual water accumulated on the slab surface during continuous casting by injection of high-pressure gas such as compressed air. Residual water, which is the cause, is removed from the slab surface, and even under casting at a higher casting speed, the slab surface is not overcooled, and the slab is removed without causing temperature unevenness on the slab surface. Uniform cooling is realized.

図2に示すスラブ連続鋳造機における本発明の実施例を説明する。図2において、符号1は、垂直曲げ型のスラブ連続鋳造機、2は、取鍋から供給される溶鋼を鋳型に中継供給するためのタンディッシュ、3は、鋳型への溶鋼流量調整用のスライディングノズル、4は、溶鋼を鋳型内に注入するための浸漬ノズル、5は、溶鋼を冷却して鋳片の外殻形状を形成するための鋳型、6は、鋳片を支持・案内するための鋳片支持ロール、7は、鋳造された鋳片を搬送するための搬送ロール、8は、鋳造された鋳片を所定長さに切断するためのガス切断機、9は溶鋼、10は鋳造されつつある鋳片、10aは切断された鋳片、11は凝固シェル、12は未凝固相である。   An embodiment of the present invention in the slab continuous casting machine shown in FIG. 2 will be described. In FIG. 2, reference numeral 1 is a vertical bending type slab continuous casting machine, 2 is a tundish for relaying and supplying molten steel supplied from a ladle to a mold, and 3 is a sliding for adjusting the flow rate of molten steel to the mold. Nozzle 4 is an immersion nozzle for injecting molten steel into the mold, 5 is a mold for cooling the molten steel to form the outer shell shape of the slab, and 6 is for supporting and guiding the slab. A slab support roll, 7 is a transport roll for transporting the cast slab, 8 is a gas cutter for cutting the cast slab into a predetermined length, 9 is molten steel, and 10 is cast. The cast slab 10a is a cut slab, 11 is a solidified shell, and 12 is an unsolidified phase.

使用したスラブ連続鋳造機1の設備長は45mであり、幅2000mmのスラブ鋳片の鋳造が可能な設備である。鋳型5の上端から鋳型5の下端までが1mであり、鋳型直下から機端までの44mの範囲が二次冷却帯であり、この二次冷却帯を、およそ11m毎に、鋳型直下側から機端側に向いて、第1冷却ゾーン、第2冷却ゾーン、第3冷却ゾーン、第4冷却ゾーンの4つの二次冷却ゾーンに分け、それぞれの二次冷却ゾーン毎に冷却条件を設定した。図2において、A−A’位置からB−B’位置直上の鋳片支持ロール6までの範囲が第1冷却ゾーン、B−B’位置からC−C’位置直上の鋳片支持ロール6までの範囲が第2冷却ゾーン、C−C’位置からD−D’位置直上の鋳片支持ロール6までの範囲が第3冷却ゾーン、D−D’位置から機端の鋳片支持ロール6までの範囲が第4冷却ゾーンである。二次冷却帯の各二次冷却ゾーンにはエアーミストスプレーノズルが配置されており、このエアーミストスプレーノズルから噴射されるエアーミストにより、鋳片10は冷却される。   The used slab continuous casting machine 1 has an equipment length of 45 m and is capable of casting a slab slab having a width of 2000 mm. The distance from the upper end of the mold 5 to the lower end of the mold 5 is 1 m, and the range of 44 m from the position immediately below the mold to the machine end is the secondary cooling zone. Toward the end side, it was divided into four secondary cooling zones, a first cooling zone, a second cooling zone, a third cooling zone, and a fourth cooling zone, and cooling conditions were set for each secondary cooling zone. In FIG. 2, the range from the AA ′ position to the slab support roll 6 immediately above the BB ′ position is the first cooling zone, and from the BB ′ position to the slab support roll 6 just above the CC ′ position. Is the second cooling zone, and the range from the CC ′ position to the slab support roll 6 immediately above the DD ′ position is the third cooling zone, from the DD ′ position to the slab support roll 6 at the end of the machine. Is the fourth cooling zone. An air mist spray nozzle is disposed in each secondary cooling zone of the secondary cooling zone, and the slab 10 is cooled by the air mist sprayed from the air mist spray nozzle.

これらの二次冷却ゾーンのうち、第1冷却ゾーン及び第2冷却ゾーンで本発明方法を適用した。図3は、図2に示すスラブ連続鋳造機の第1冷却ゾーンの上部側の垂直部の範囲を示す概略図であり、図3(A)は鋳片の短辺側から見た図、図3(B)は鋳片の長辺側から見た図である。   Among these secondary cooling zones, the method of the present invention was applied to the first cooling zone and the second cooling zone. 3 is a schematic view showing the range of the vertical portion on the upper side of the first cooling zone of the slab continuous casting machine shown in FIG. 2, and FIG. 3 (A) is a view as seen from the short side of the slab, FIG. 3 (B) is a view seen from the long side of the slab.

図3に示すように、この範囲の鋳片支持ロール6は、ロールチョック6aで鋳片10の幅方向に2つに分割された分割型鋳片支持ロールであり、ロールチョック6aの部位が鋳造方向に互い違いに並ぶように、鋳片支持ロール6が配置されている。隣り合う鋳片支持ロール6の間には、それぞれ2つのエアーミストスプレーノズル13が配置されており、鋳片10は、分割型の鋳片支持ロール6で支持されながら、エアーミストスプレーノズル13から噴射されるエアーミストで冷却される。また、鋳片10の一方の側面には、高圧気体としての圧縮空気を噴射するための圧縮空気噴射ノズル14が各ロール間に配置されている。各圧縮空気噴射ノズル14は、枝管17を介して、圧縮空気を供給するためのヘッダー管16と連結している。圧縮空気噴射ノズル14の出口噴射孔の直径は約4.5mmであり、1つの圧縮空気噴射ノズル14から約1000Nm3/hrの圧縮空気が噴射されるように構成されており、各噴射ノズル14から噴射される圧縮空気は、鋳片支持ロール6の軸心方向に並行して噴射され、ロール間に滞留する残留水を他方側の鋳片短辺面側から吹き飛ばすようになっている。 As shown in FIG. 3, the slab support roll 6 in this range is a split slab support roll divided into two in the width direction of the slab 10 by a roll chock 6a, and the part of the roll chock 6a is in the casting direction. The slab support rolls 6 are arranged so as to be arranged alternately. Two air mist spray nozzles 13 are arranged between adjacent slab support rolls 6, and the slab 10 is supported by the split slab support roll 6 while being separated from the air mist spray nozzle 13. It is cooled by the injected air mist. Moreover, the compressed air injection nozzle 14 for injecting the compressed air as high-pressure gas is arrange | positioned between each roll on one side surface of the slab 10. Each compressed air injection nozzle 14 is connected via a branch pipe 17 to a header pipe 16 for supplying compressed air. The diameter of the outlet injection hole of the compressed air injection nozzle 14 is about 4.5 mm, and the compressed air of about 1000 Nm 3 / hr is injected from one compressed air injection nozzle 14. Compressed air is injected in parallel with the axial direction of the slab support roll 6 and blows away residual water staying between the rolls from the other side of the short side of the slab.

尚、図3では鋳片10の片側の長辺面のみにエアーミストスプレーノズル13及び圧縮空気噴射ノズル14が配置されているが、これは、図が煩雑になることを避けるためであり、実際には、鋳片10の両側の長辺面に、エアーミストスプレーノズル13及び圧縮空気噴射ノズル14が配置されている。但し、スラブ連続鋳造機1の湾曲部及び水平部の鋳片10の下面側では、鋳片10に噴射された二次冷却水は重力によって自然落下し、残留水は発生しないので、鋳片10の傾斜角度が小さくなる範囲は、鋳片下面側には圧縮空気噴射ノズル14を配置する必要がない。従って、ここでは、第1冷却ゾーンでは、鋳片10の両側に圧縮空気噴射ノズル14を配置しているが、第2冷却ゾーンでは、鋳片下面側には圧縮空気噴射ノズル14を配置せず、鋳片10の上面側にのみ圧縮空気噴射ノズル14を配置した。   In FIG. 3, the air mist spray nozzle 13 and the compressed air injection nozzle 14 are arranged only on the long side surface of one side of the slab 10, but this is to avoid making the figure complicated. The air mist spray nozzle 13 and the compressed air injection nozzle 14 are arranged on the long side surfaces on both sides of the slab 10. However, on the lower surface side of the slab 10 of the slab continuous casting machine 1, the secondary cooling water sprayed on the slab 10 naturally falls due to gravity and no residual water is generated. In the range where the inclination angle becomes small, it is not necessary to arrange the compressed air injection nozzle 14 on the lower surface side of the slab. Accordingly, here, the compressed air injection nozzles 14 are arranged on both sides of the slab 10 in the first cooling zone, but the compressed air injection nozzles 14 are not arranged on the lower surface side of the slab in the second cooling zone. The compressed air injection nozzle 14 is disposed only on the upper surface side of the slab 10.

この構成のスラブ連続鋳造機1を用い、二次冷却帯の第3冷却ゾーンと第4冷却ゾーンとの境界の鋳片上面側に設置した、赤外線カメラからなる表面温度プロフィール計(図示せず)で鋳片表面温度を測定しながら、厚み250mm、幅2000mmのスラブ鋳片を1.5m/分の鋳造速度(Vc)で鋳造開始した。鋳片表面温度プロフィール計で測定された鋳片幅方向の表面温度分布を図4に示す。鋳造速度が1.5m/分の場合には、鋳片表面温度プロフィール計で測定される鋳片幅方向の表面温度分布は、温度偏差が約40℃以下であり、ほぼ均一に冷却されていた。   Using the slab continuous casting machine 1 of this configuration, a surface temperature profile meter (not shown) comprising an infrared camera installed on the upper surface side of the slab at the boundary between the third cooling zone and the fourth cooling zone of the secondary cooling zone While measuring the slab surface temperature, casting of a slab slab having a thickness of 250 mm and a width of 2000 mm was started at a casting speed (Vc) of 1.5 m / min. FIG. 4 shows the surface temperature distribution in the slab width direction measured by the slab surface temperature profile meter. When the casting speed was 1.5 m / min, the surface temperature distribution in the slab width direction measured by the slab surface temperature profile meter had a temperature deviation of about 40 ° C. or less and was cooled substantially uniformly. .

その後、鋳造速度を2.0m/分に増速し、二次冷却水量を鋳造速度に比例して増加したところ、ロールチョック6aの部位に相当する鋳片表面部位で過冷却が発生し、図4に示すように、鋳片表面温度の偏差は250℃以上に拡大した。そこで、第1冷却ゾーン及び第2冷却ゾーンに設置した各圧縮空気噴射ノズル14から、それぞれ約1000Nm3/hrの圧縮空気の噴射を開始した。各圧縮空気噴射ノズル14から圧縮空気を噴射開始してから約5分後に鋳片表面温度の偏差が小さくなり始め、約10分後には、図4に示すように鋳片表面温度の偏差は45℃以内となった。尚、図4に示す「従来法」とは、圧縮空気を噴射しない鋳造形態であり、「本発明法」とは、圧縮空気を噴射した鋳造形態である。 Thereafter, the casting speed was increased to 2.0 m / min, and the amount of secondary cooling water was increased in proportion to the casting speed. As a result, supercooling occurred at the slab surface corresponding to the roll chock 6a, and FIG. As shown in FIG. 2, the deviation of the slab surface temperature was increased to 250 ° C. or more. Therefore, injection of compressed air of about 1000 Nm 3 / hr was started from each compressed air injection nozzle 14 installed in the first cooling zone and the second cooling zone. The deviation of the slab surface temperature starts to decrease about 5 minutes after the start of jetting of the compressed air from each compressed air injection nozzle 14, and after about 10 minutes, the deviation of the slab surface temperature is 45 as shown in FIG. It was within ℃. The “conventional method” shown in FIG. 4 is a casting form in which compressed air is not injected, and the “method of the present invention” is a casting form in which compressed air is injected.

実施例1に示すスラブ連続鋳造機1における圧縮空気噴射ノズル14の設置位置に替えて、第1冷却ゾーン及び第2冷却ゾーンの鋳片支持ロール6のロールチョック6aの部位に圧縮空気噴射ノズル15を配置したスラブ連続鋳造機を用いて本発明を実施した。   In place of the installation position of the compressed air injection nozzle 14 in the slab continuous casting machine 1 shown in the first embodiment, the compressed air injection nozzle 15 is provided at the site of the roll chock 6a of the slab support roll 6 in the first cooling zone and the second cooling zone. The present invention was carried out using a placed slab continuous casting machine.

図5に、鋳片支持ロール6のロールチョック6aの部位に圧縮空気噴射ノズル15を配置した概略図を示す。尚、図5は、第1冷却ゾーンの上部側の垂直部の範囲を示す概略図であり、図5(A)は鋳片の短辺側から見た図、図5(B)は鋳片の長辺側から見た図である。   In FIG. 5, the schematic which arrange | positioned the compressed air injection nozzle 15 in the site | part of the roll chock 6a of the slab support roll 6 is shown. FIG. 5 is a schematic view showing the range of the vertical portion on the upper side of the first cooling zone, FIG. 5 (A) is a view seen from the short side of the slab, and FIG. 5 (B) is the slab. It is the figure seen from the long side.

図5に示すように、ロールチョック6aの部位が鋳造方向に互い違いに並ぶように、鋳片支持ロール6が配置されており、このロールチョック6aの直上に、鋳片長辺面に対してほぼ垂直な方向を向いて、圧縮空気を噴射するための圧縮空気噴射ノズル15が各ロール間に配置されている。各圧縮空気噴射ノズル15は、枝管17を介して、圧縮空気を供給するためのヘッダー管16と連結している。圧縮空気噴射ノズル15の出口噴射孔の直径は約4.5mmであり、1つの圧縮空気噴射ノズル15から約1000Nm3/hrの圧縮空気が噴射されるように構成されており、各噴射ノズル15から噴射される圧縮空気は、鋳片表面にほぼ垂直な方向に噴射され、ロールチョック6aを介して流下する残留水を鋳片表面上から吹き飛ばすようになっている。 As shown in FIG. 5, the slab support rolls 6 are arranged so that the portions of the roll chock 6a are alternately arranged in the casting direction, and a direction substantially perpendicular to the long side surface of the slab is directly above the roll chock 6a. The compressed air injection nozzle 15 for injecting compressed air is arranged between each roll. Each compressed air injection nozzle 15 is connected via a branch pipe 17 to a header pipe 16 for supplying compressed air. The diameter of the outlet injection hole of the compressed air injection nozzle 15 is about 4.5 mm, and is configured such that compressed air of about 1000 Nm 3 / hr is injected from one compressed air injection nozzle 15. Compressed air is injected in a direction substantially perpendicular to the surface of the slab, and the residual water flowing down through the roll chock 6a is blown off from the surface of the slab.

尚、図5では鋳片10の片側の長辺面のみにエアーミストスプレーノズル13及び圧縮空気噴射ノズル15が配置されているが、これは、図が煩雑になることを避けるためであり、実際には、鋳片10の両側の長辺面に、エアーミストスプレーノズル13及び圧縮空気噴射ノズル15が配置されている。また、実施例1と同様に、第1冷却ゾーンでは、鋳片10の両側に圧縮空気噴射ノズル15を配置しているが、第2冷却ゾーンでは、鋳片10の上面側にのみ圧縮空気噴射ノズル15を配置した。このスラブ連続鋳造機のその他の構造は、実施例1に示すスラブ連続鋳造機1と同一構造であり、その説明は省略する。   In FIG. 5, the air mist spray nozzle 13 and the compressed air injection nozzle 15 are arranged only on the long side surface of one side of the slab 10, but this is to avoid making the figure complicated. The air mist spray nozzle 13 and the compressed air injection nozzle 15 are arranged on the long side surfaces on both sides of the slab 10. Further, as in the first embodiment, in the first cooling zone, the compressed air injection nozzles 15 are disposed on both sides of the slab 10, but in the second cooling zone, the compressed air injection is performed only on the upper surface side of the slab 10. A nozzle 15 was arranged. The other structure of this slab continuous casting machine is the same structure as the slab continuous casting machine 1 shown in Example 1, and the description thereof is omitted.

この構成のスラブ連続鋳造機を用い、二次冷却帯の第3冷却ゾーンと第4冷却ゾーンとの境界の鋳片上面側に設置した、赤外線カメラからなる表面温度プロフィール計で鋳片表面温度を測定しながら、厚み250mm、幅2000mmのスラブ鋳片を1.5m/分の鋳造速度(Vc)で鋳造開始した。鋳片表面温度プロフィール計で測定された鋳片幅方向の表面温度分布を図6に示す。鋳造速度が1.5m/分の場合には、鋳片表面温度プロフィール計で測定される鋳片幅方向の表面温度分布は、温度偏差が約40℃以下であり、ほぼ均一に冷却されていた。   Using the slab continuous casting machine of this configuration, the surface temperature of the slab was measured with a surface temperature profile meter consisting of an infrared camera installed on the upper surface side of the slab at the boundary between the third cooling zone and the fourth cooling zone of the secondary cooling zone. While measuring, casting of a slab slab having a thickness of 250 mm and a width of 2000 mm was started at a casting speed (Vc) of 1.5 m / min. FIG. 6 shows the surface temperature distribution in the slab width direction measured by the slab surface temperature profile meter. When the casting speed was 1.5 m / min, the surface temperature distribution in the slab width direction measured by the slab surface temperature profile meter had a temperature deviation of about 40 ° C. or less and was cooled substantially uniformly. .

その後、鋳造速度を2.0m/分に増速し、二次冷却水量を鋳造速度に比例して増加したところ、ロールチョック6aの部位に相当する鋳片表面部位で過冷却が発生し、図6に示すように、鋳片表面温度の偏差は250℃以上に拡大した。そこで、第1冷却ゾーン及び第2冷却ゾーンに設置した各圧縮空気噴射ノズル15から、それぞれ約1000Nm3/hrの圧縮空気の噴射を開始した。各圧縮空気噴射ノズル15から圧縮空気を噴射開始してから約5分後に鋳片表面温度の偏差が小さくなり始め、約10分後には、図6に示すように鋳片表面温度の偏差は40℃以内となった。尚、図6に示す「従来法」とは、圧縮空気を噴射しない鋳造形態であり、「本発明法」とは、圧縮空気を噴射した鋳造形態である。 Thereafter, the casting speed was increased to 2.0 m / min, and the amount of secondary cooling water was increased in proportion to the casting speed. As a result, supercooling occurred at the slab surface portion corresponding to the portion of the roll chock 6a. As shown in FIG. 2, the deviation of the slab surface temperature was increased to 250 ° C. or more. Therefore, injection of compressed air of about 1000 Nm 3 / hr was started from each compressed air injection nozzle 15 installed in the first cooling zone and the second cooling zone. The deviation of the slab surface temperature starts to decrease about 5 minutes after the start of the injection of the compressed air from each compressed air injection nozzle 15, and after about 10 minutes, the deviation of the slab surface temperature is 40 as shown in FIG. It was within ℃. The “conventional method” shown in FIG. 6 is a casting form in which compressed air is not injected, and the “method of the present invention” is a casting form in which compressed air is injected.

1 スラブ連続鋳造機
2 タンディッシュ
3 スライディングノズル
4 浸漬ノズル
5 鋳型
6 鋳片支持ロール
6a ロールチョック
7 搬送ロール
8 ガス切断機
9 溶鋼
10 鋳片
11 凝固シェル
12 未凝固相
13 エアーミストスプレーノズル
14 圧縮空気噴射ノズル
15 圧縮空気噴射ノズル
16 ヘッダー管
17 枝管
DESCRIPTION OF SYMBOLS 1 Slab continuous casting machine 2 Tundish 3 Sliding nozzle 4 Immersion nozzle 5 Mold 6 Casting piece support roll 6a Roll chock 7 Conveying roll 8 Gas cutting machine 9 Molten steel 10 Cast piece 11 Solidified shell 12 Unsolidified phase 13 Air mist spray nozzle 14 Compressed air Injection nozzle 15 Compressed air injection nozzle 16 Header pipe 17 Branch pipe

Claims (3)

連続鋳造機で鋳造されている鋳片を、鋳片支持ロールで支持しながら鋳型の下方に設けた二次冷却帯にて冷却水または冷却水と気体との混合体を用いて二次冷却するに際し、前記鋳片支持ロールと鋳片とに挟まれて連続鋳造中の鋳片表面に溜まる、前記冷却水の残留水を高圧気体の噴射によって除去しながら鋳片を二次冷却することを特徴とする、連続鋳造における二次冷却方法。 The slab cast by the continuous casting machine is secondarily cooled using a cooling water or a mixture of cooling water and gas in a secondary cooling zone provided below the mold while being supported by a slab support roll. In this case, the slab is secondarily cooled while removing the residual water of the cooling water which is sandwiched between the slab support roll and the slab and accumulates on the surface of the slab during continuous casting by jetting high-pressure gas. And a secondary cooling method in continuous casting. 前記鋳片支持ロールと並行に、前記高圧気体を噴射することを特徴とする、請求項1に記載の連続鋳造における二次冷却方法。   The secondary cooling method in continuous casting according to claim 1, wherein the high-pressure gas is injected in parallel with the slab support roll. 前記鋳片支持ロールが鋳片幅方向で2以上に分割された分割型鋳片支持ロールであり、該分割型鋳片支持ロールのロールチョックの部位に、前記高圧気体を噴射することを特徴とする、請求項1に記載の連続鋳造における二次冷却方法。   The slab support roll is a split slab support roll divided into two or more in the slab width direction, and the high-pressure gas is injected into a roll chock portion of the split slab support roll. The secondary cooling method in the continuous casting according to claim 1.
JP2009108798A 2009-04-28 2009-04-28 Secondary cooling method in continuous casting Active JP5402215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009108798A JP5402215B2 (en) 2009-04-28 2009-04-28 Secondary cooling method in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009108798A JP5402215B2 (en) 2009-04-28 2009-04-28 Secondary cooling method in continuous casting

Publications (2)

Publication Number Publication Date
JP2010253528A JP2010253528A (en) 2010-11-11
JP5402215B2 true JP5402215B2 (en) 2014-01-29

Family

ID=43315068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009108798A Active JP5402215B2 (en) 2009-04-28 2009-04-28 Secondary cooling method in continuous casting

Country Status (1)

Country Link
JP (1) JP5402215B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5701710B2 (en) * 2011-07-27 2015-04-15 株式会社神戸製鋼所 Continuous casting method of slabs using partial reduction roll stands.
JP5701711B2 (en) * 2011-07-27 2015-04-15 株式会社神戸製鋼所 Cooling device for continuous casting machine to suppress variation of center segregation in slab width direction.
KR101882067B1 (en) * 2011-11-15 2018-07-25 신닛테츠스미킨 카부시키카이샤 Secondary cooling method and secondary cooling device for continuous casting machine
BR112014006896B1 (en) 2013-09-11 2019-11-19 Nippon Steel & Sumitomo Metal Corp injection nozzle and secondary cooling method in continuous casting using the injection nozzle
CN112548053B (en) * 2020-11-23 2021-12-31 湖南中科电气股份有限公司 Asymmetric sectional roller type electromagnetic stirring device for continuous casting slab secondary cooling area

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100253A (en) * 2006-10-19 2008-05-01 Jfe Steel Kk Cast slab draining device in continuous casting machine

Also Published As

Publication number Publication date
JP2010253528A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP2010253529A (en) Secondary cooling method for continuous casting
JP5402215B2 (en) Secondary cooling method in continuous casting
CN108472718B (en) Secondary cooling method and secondary cooling device for continuous casting blank
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
JP5609199B2 (en) Secondary cooling method in continuous casting
JP4453562B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JP2010082637A (en) Secondary cooling method in continuous casting
JP7052931B2 (en) Secondary cooling method for continuously cast slabs
JP2008100253A (en) Cast slab draining device in continuous casting machine
JP5556073B2 (en) Secondary cooling method in continuous casting
JP5402678B2 (en) Steel continuous casting method
JP5146006B2 (en) Secondary cooling method in continuous casting
JP2018103248A (en) Cooling device and cooling method for h-beam
JP4998666B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JP2013094828A (en) Secondary cooling method in continuous casting
JP5094154B2 (en) Slab cooling method in continuous casting machine
JP4518117B2 (en) Apparatus and method for cooling hot-rolled steel strip
JP4882406B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
CN114096362B (en) Method and apparatus for secondary cooling of continuously cast slabs
JP4518107B2 (en) Apparatus and method for cooling hot-rolled steel strip
JP5515440B2 (en) Thick steel plate cooling equipment and cooling method thereof
JP2011200892A (en) Secondary cooling method in continuous casting
JP4506691B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
WO2023248632A1 (en) Cast slab continuous casting equipment and cast slab continuous casting method
JP2008073765A (en) Cooler and cooling method of hot rolled steel band

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250