JP5556073B2 - Secondary cooling method in continuous casting - Google Patents

Secondary cooling method in continuous casting Download PDF

Info

Publication number
JP5556073B2
JP5556073B2 JP2009166384A JP2009166384A JP5556073B2 JP 5556073 B2 JP5556073 B2 JP 5556073B2 JP 2009166384 A JP2009166384 A JP 2009166384A JP 2009166384 A JP2009166384 A JP 2009166384A JP 5556073 B2 JP5556073 B2 JP 5556073B2
Authority
JP
Japan
Prior art keywords
slab
cooling
temperature
water
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009166384A
Other languages
Japanese (ja)
Other versions
JP2011020138A (en
Inventor
誠 中世古
敏樹 蛭田
透 松葉
毅 鹿子島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009166384A priority Critical patent/JP5556073B2/en
Publication of JP2011020138A publication Critical patent/JP2011020138A/en
Application granted granted Critical
Publication of JP5556073B2 publication Critical patent/JP5556073B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、高速鋳造時であっても鋳片を均一に冷却することのできる、連続鋳造設備の二次冷却帯における鋳片の冷却方法に関するものである。   The present invention relates to a method for cooling a slab in a secondary cooling zone of a continuous casting facility that can uniformly cool the slab even during high-speed casting.

鋼の連続鋳造では、取鍋内の溶鋼を一旦タンディッシュに注入し、タンディッシュ内に所定量の溶鋼が滞在した状態で、タンディッシュ内の溶鋼を、タンディッシュ底部に設置した浸漬ノズルを介して鋳型に注入している。鋳型内に注入された溶鋼は冷却されて鋳型との接触面に凝固シェルを形成し、この凝固シェルを外殻とし、内部に未凝固溶鋼を有する鋳片は、鋳型下方に設けられた二次冷却帯において、鋳片表面に噴射される冷却水(「二次冷却水」ともいう)によって冷却されながら鋳型下方に連続的に引抜かれ、やがて中心部までの凝固が完了する。中心部までの凝固の完了した鋳片を所定の長さに切断して、圧延用素材である鋳片が製造されている。   In continuous casting of steel, the molten steel in the ladle is once poured into the tundish, and with a predetermined amount of molten steel staying in the tundish, the molten steel in the tundish is passed through an immersion nozzle installed at the bottom of the tundish. And injected into the mold. The molten steel injected into the mold is cooled to form a solidified shell on the contact surface with the mold, and this slab with the solidified shell as the outer shell and the unsolidified molten steel inside is a secondary provided below the mold. In the cooling zone, it is continuously drawn down below the mold while being cooled by cooling water (also referred to as “secondary cooling water”) sprayed on the surface of the slab, and eventually solidification to the center is completed. A slab which is a raw material for rolling is manufactured by cutting a slab that has been solidified to the center to a predetermined length.

二次冷却帯において、不均一な冷却が発生すると、鋳片の表面や内部に割れが生じたり、鋳片中心部の中心偏析が悪化したりするので、鋳片の鋳造方向及び幅方向で均一な冷却を行うことが提案され、実施されてきた。この場合、スラブ鋳片は幅が広く、複数個のスプレーノズルを幅方向に配置する必要があることから、幅方向で不均一冷却になりやすく、特に、鋳片幅方向で均一な冷却を行うことが重要となる。   If non-uniform cooling occurs in the secondary cooling zone, cracks will occur on the surface and inside of the slab, or the center segregation at the center of the slab will deteriorate, so it is uniform in the casting direction and width direction of the slab. Cooling has been proposed and implemented. In this case, since the slab slab is wide and it is necessary to arrange a plurality of spray nozzles in the width direction, non-uniform cooling tends to occur in the width direction, and in particular, uniform cooling is performed in the slab width direction. It becomes important.

例えば、特許文献1には、スプレーノズルの先端に複数の噴射孔を設け、隣り合うロール間において、前記噴射孔から噴射される互いに平行な、複数条のフラットスプレー水で鋳片表面を冷却することが開示されている。特許文献1によれば、複数条のスプレー水で冷却するので、冷却−復熱の温度差が小さくなり、それに応じて繰り返しの熱応力が軽減され、鋳片の表面割れが軽減されるとしている。   For example, in Patent Document 1, a plurality of injection holes are provided at the tip of a spray nozzle, and the surface of a slab is cooled with a plurality of parallel flat spray water sprayed from the injection holes between adjacent rolls. It is disclosed. According to Patent Document 1, since cooling is performed with a plurality of spray water, the temperature difference between cooling and recuperation is reduced, and repeated thermal stress is reduced accordingly, and surface cracks of the slab are reduced. .

特許文献2には、スプレーノズルから噴射される冷却水の、鋳片引き抜き方向の水量分布で、水量分布における最大部の20%となる点をA及びBとしたとき、AとBとの間では最大部の20%以上の水量分布が連続し、且つ、スプレーノズルの噴射孔中心をCとしたとき、角ACBが30度以上であるスプレーノズルを用いて鋳片を冷却することが開示されている。特許文献2によれば、鋳片に対する冷却能を効率良く高めることができるとしている。   In Patent Document 2, the water distribution in the slab drawing direction of the cooling water sprayed from the spray nozzle, where A and B are points that are 20% of the maximum portion of the water distribution, the distance between A and B Then, it is disclosed that the slab is cooled by using a spray nozzle having an angle ACB of 30 degrees or more when the water amount distribution of 20% or more of the maximum portion is continuous and the spray nozzle center of the spray nozzle is C. ing. According to Patent Document 2, the cooling ability for the slab can be efficiently increased.

また、特許文献3には、加圧系にブースターポンプを備えた送水機構を介して、鋳片に25〜100kgf/cm2(2.5〜9.8MPa)の給水圧の冷却水を吹き付けて冷却しながら連続鋳造することが開示されている。特許文献3によれば、鋳片に衝突した冷却水の跳ね返りが霧状化され、鋳片表面の部分的な溜り水の発生が防止され、部分的な過冷却が防止されて、均一な冷却が実現されるとしている。 In Patent Document 3, cooling water having a water supply pressure of 25 to 100 kgf / cm 2 (2.5 to 9.8 MPa) is sprayed on a slab through a water supply mechanism having a booster pump in a pressurizing system. Continuous casting with cooling is disclosed. According to Patent Document 3, the splash of cooling water that has collided with the slab is atomized, the generation of partially accumulated water on the surface of the slab is prevented, and partial overcooling is prevented, so that uniform cooling is achieved. Is supposed to be realized.

特開昭50−103426号公報Japanese Patent Laid-Open No. 50-103426 特開2003−136205号公報JP 2003-136205 A 特開昭57−91857号公報JP-A-57-91857

鋼の連続鋳造において、一般に、二次冷却帯の鋳片の表面温度は700〜1000℃に制御されているが、近年の鋳造速度の高速化に伴い、二次冷却の能力が強化され、鋳造中の鋳片表面温度は全般的に低下する傾向にある。また、鋳造速度の高速化に伴って、鋳片に、700℃を下回る表面温度の部位が局部的に生じる現象(「過冷却現象」と呼ぶ)が発生するようになった。過冷却現象の発生した鋳片の表面温度は、鋳片幅方向に温度ムラが生じる。   In continuous casting of steel, the surface temperature of the slab in the secondary cooling zone is generally controlled to 700-1000 ° C. With the recent increase in casting speed, the ability of secondary cooling has been strengthened, The slab surface temperature inside tends to decrease in general. In addition, with the increase in casting speed, a phenomenon in which a portion having a surface temperature lower than 700 ° C. locally occurs in the slab (referred to as “supercooling phenomenon”) has come to occur. As for the surface temperature of the slab where the supercooling phenomenon occurs, temperature unevenness occurs in the slab width direction.

この過冷却現象は、鋳造中の鋳片の表面が二次冷却帯における過冷却によって低下する現象であり、図1に、過冷却のスラブ鋳片における温度ムラの発生状況(図1(A))と、冷却後のスラブ鋳片の表面割れの発生状況(図1(B))との関係を示す。図1に示すように、鋳造後の鋳片を観察すると、温度ムラの発生部位に表面割れが集中することが分かる。尚、本発明者らは、この過冷却現象の発生原因を追求し、鋳片の温度ムラ発生と、鋳片表面に滞留する二次冷却水(滞留する二次冷却水を「残留水」と呼ぶ)の水温とのあいだに相関があることを知見している。   This supercooling phenomenon is a phenomenon in which the surface of the slab during casting is lowered by supercooling in the secondary cooling zone. FIG. 1 shows the occurrence of temperature unevenness in the supercooled slab slab (FIG. 1A). ) And the occurrence of surface cracks in the slab slab after cooling (FIG. 1B). As shown in FIG. 1, when the cast slab is observed, it can be seen that surface cracks are concentrated on the portion where the temperature unevenness occurs. In addition, the present inventors pursued the cause of the occurrence of this supercooling phenomenon, the occurrence of temperature unevenness of the slab, and the secondary cooling water staying on the surface of the slab (the remaining cooling water is referred to as “residual water”). It is known that there is a correlation with the water temperature of

この過冷却現象つまり温度ムラを防止する観点から上記従来技術を検証すれば、上記従来技術は、何れも過冷却現象の防止には効果がないか、効果があっても効率的ではない。   If the above prior arts are verified from the viewpoint of preventing this overcooling phenomenon, that is, temperature unevenness, none of the above prior arts is effective in preventing the overcooling phenomenon, or even if effective, it is not efficient.

即ち、特許文献1は、スプレー水の噴射される面積、つまり冷却面積を広げて過冷却を防止しているが、フラットスプレーノズルを使用しており、フラットスプレーノズルのみで冷却する限り、冷却時の衝突圧力が強く、二次冷却水量も多いので、残留水の発生を防ぐことはできず、高速鋳造下での過冷却現象の発生を防ぐことはできない。   That is, Patent Document 1 increases the spray water injection area, that is, the cooling area to prevent overcooling, but uses a flat spray nozzle, and as long as cooling is performed using only the flat spray nozzle, Since the collision pressure is strong and the amount of secondary cooling water is large, the generation of residual water cannot be prevented, and the occurrence of the supercooling phenomenon under high-speed casting cannot be prevented.

特許文献2は、鋳造方向の噴射角度を広げたスプレーノズルであり、特許文献1のフラットスプレーノズルに比較すれば、冷却時の衝突圧力を弱くすることができるので、過冷却現象は発生しにくくなる。しかしながら、スプレーノズルを用いて従前の冷却方法で冷却する限り、残留水の発生を防ぐことはできず、鋳造速度を高速化すると、過冷却現象が発生する。   Patent Document 2 is a spray nozzle with a wider injection angle in the casting direction. Compared with the flat spray nozzle of Patent Document 1, the collision pressure during cooling can be reduced, so that the supercooling phenomenon is unlikely to occur. Become. However, as long as cooling is performed by a conventional cooling method using a spray nozzle, the generation of residual water cannot be prevented. If the casting speed is increased, a supercooling phenomenon occurs.

特許文献3は、鋳片に25〜100kgf/cm2の高圧の二次冷却水を噴射することにより、残留水の発生を防ぎ、均一冷却を行うものであり、高圧水によって残留水の発生は抑制され、過冷却現象防止の効果が発現される。しかしながら、鋼の連続鋳造機においては、二次冷却帯の長さは20mから長いものでは50mにも達し、全ての二次冷却ゾーンで高圧水による冷却を実施することは設備費のみならず運転費が嵩み、たとえ上流部の二次冷却ゾーンだけに絞ったとしても運転費が高く、実用的ではない。 In Patent Document 3, the generation of residual water is prevented by injecting high-pressure secondary cooling water of 25 to 100 kgf / cm 2 into the slab to prevent generation of residual water and uniform cooling. It is suppressed and the effect of preventing the supercooling phenomenon is exhibited. However, in the continuous casting machine for steel, the length of the secondary cooling zone reaches 20m from the long one to 50m, and cooling with high-pressure water in all secondary cooling zones is not only an equipment cost but also an operation. The cost is high, and even if it is limited only to the secondary cooling zone in the upstream part, the operation cost is high and it is not practical.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、連続鋳造設備の二次冷却帯にて鋳造中の鋳片を冷却するにあたり、鋳片表面に過冷却現象を発生させることなく、鋳片を均一に冷却することのできる二次冷却方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is to generate a supercooling phenomenon on the surface of the slab when cooling the slab during casting in the secondary cooling zone of the continuous casting facility. It is providing the secondary cooling method which can cool a slab uniformly.

上記課題を解決するための第1の発明に係る連続鋳造における二次冷却方法は、連続鋳造機で鋳造されている鋳片を、鋳片支持ロールで支持しながら鋳型の下方に設けた複数の冷却ゾーンからなる二次冷却帯にて冷却水または冷却水と気体との混合体を用いて二次冷却するに際し、前記冷却水の水温を50℃以上として鋳片を二次冷却することを特徴とするものである。   The secondary cooling method in continuous casting according to the first aspect of the present invention for solving the above problems includes a plurality of slabs cast by a continuous casting machine and provided below the mold while being supported by a slab support roll. When performing secondary cooling using cooling water or a mixture of cooling water and gas in a secondary cooling zone composed of a cooling zone, the slab is subjected to secondary cooling by setting the water temperature of the cooling water to 50 ° C. or higher. It is what.

第2の発明に係る連続鋳造における二次冷却方法は、第1の発明において、二次冷却帯の全ての冷却ゾーンで、前記冷却水の水温を50℃以上とすることを特徴とするものである。   The secondary cooling method in continuous casting according to the second invention is characterized in that, in the first invention, the cooling water temperature is set to 50 ° C. or more in all cooling zones of the secondary cooling zone. is there.

第3の発明に係る連続鋳造における二次冷却方法は、第1の発明において、鋳型直下から少なくとも二次冷却帯全長の1/2の距離までの範囲の二次冷却帯の冷却ゾーンで、前記冷却水の水温を50℃以上とすることを特徴とするものである。   The secondary cooling method in continuous casting according to the third invention is the cooling zone of the secondary cooling zone in the first invention, in the cooling zone of the secondary cooling zone in the range from immediately below the mold to at least a distance of half the total length of the secondary cooling zone. The water temperature of cooling water shall be 50 degreeC or more.

第4の発明に係る連続鋳造における二次冷却方法は、第1の発明において、冷却水量が100リットル/(m2・min)以上の二次冷却帯の冷却ゾーンで、前記冷却水の水温を50℃以上とすることを特徴とするものである。 A secondary cooling method in continuous casting according to a fourth aspect of the present invention is the method of the first aspect, wherein the cooling water temperature is set in the cooling zone of the secondary cooling zone where the amount of cooling water is 100 liters / (m 2 · min) or more. It is characterized by being 50 ° C. or higher.

本発明によれば、水温が50℃以上の冷却水で連続鋳造中の鋳片を二次冷却するので、連続鋳造中の鋳片表面に二次冷却水の残留水が溜まったとしても残留水の温度は高く、残留水が多くなる鋳造速度を高めた条件下であっても鋳片表面は過冷却とならず、鋳片表面に温度ムラを発生させることなく、鋳片を均一に冷却することが実現される。その結果、表面割れのない表面品質に優れた鋳片を高い生産性で鋳造することが可能となり、工業上有益な効果がもたらされる。   According to the present invention, since the slab during secondary casting is secondarily cooled with cooling water having a water temperature of 50 ° C. or higher, even if residual water of secondary cooling water accumulates on the surface of the slab during continuous casting, The slab surface is not overcooled even under conditions where the temperature of the casting is high and the casting speed at which residual water increases is increased, and the slab is cooled uniformly without causing temperature unevenness on the slab surface. Is realized. As a result, it is possible to cast a slab excellent in surface quality free from surface cracks with high productivity, which brings about an industrially beneficial effect.

過冷却のスラブ鋳片における温度ムラの発生状況と、冷却後のスラブ鋳片の表面割れの発生状況との関係を示す図である。It is a figure which shows the relationship between the generation | occurrence | production state of the temperature nonuniformity in a supercooled slab slab, and the generation | occurrence | production state of the surface crack of the slab slab after cooling. 鋳片の二次冷却を模擬した実験装置の概略図である。It is the schematic of the experimental apparatus which simulated secondary cooling of slab. 模擬実験装置における、供給する冷却水の水温と、スリット出口位置での冷却水の水温との関係を示す図である。It is a figure which shows the relationship between the water temperature of the cooling water supplied in the simulation experiment apparatus, and the water temperature of the cooling water in a slit exit position. 本発明を適用したスラブ連続鋳造機の概略図である。It is the schematic of the slab continuous casting machine to which this invention is applied. 実施例1における鋳片幅方向の表面温度分布を示す図である。It is a figure which shows the surface temperature distribution of the slab width direction in Example 1. FIG. 実施例2における鋳片幅方向の表面温度分布を示す図である。It is a figure which shows the surface temperature distribution of the slab width direction in Example 2. FIG. 実施例3における鋳片幅方向の表面温度分布を示す図である。It is a figure which shows the surface temperature distribution of the slab width direction in Example 3. FIG.

以下、本発明を詳細に説明する。先ず、本発明に至った経緯を説明する。   Hereinafter, the present invention will be described in detail. First, the background to the present invention will be described.

本発明者らは、実機連続鋳造機の操業結果から、鋳造速度が速くなると、前述した図1に示すように、温度ムラの原因である鋳片の過冷却現象が多発し、それに応じて鋳片の表面割れが多発することを確認した。そこで、鋳造速度が速くなると過冷却現象が起こりやすくなる原因を追求した。   As shown in FIG. 1 described above, when the casting speed is increased, the present inventors frequently experience the phenomenon of undercooling of the slab, which is a cause of temperature unevenness. It was confirmed that surface cracks frequently occurred on the piece. Therefore, we sought the cause that the supercooling phenomenon easily occurs when the casting speed is increased.

連続鋳造機の設備長は限られており、従って、鋳造速度が速くなると、限られた設備長の範囲内で鋳片の凝固を完了させなければならず、そのために、二次冷却帯における冷却能力を強くする。通常、二次冷却帯の水スプレーノズルやエアーミストスプレーノズル(以下、まとめて「スプレーノズル」とも記す)から噴射される冷却水量或いはエアーミスト量(冷却水と空気との混合体)を増加させて、二次冷却帯における冷却能力を強くしている。一般的に、連続鋳造機の二次冷却は、鋳造される溶鋼1kgあたりの冷却水量が一定となるように制御されており、この場合には、鋳造速度が2倍になると、単位時間あたりの二次冷却水量は2倍になる。   The equipment length of the continuous casting machine is limited. Therefore, as the casting speed increases, the slab solidification must be completed within the limited equipment length, and therefore the cooling in the secondary cooling zone. Strengthen ability. Usually, the amount of cooling water or air mist (mixture of cooling water and air) injected from the water spray nozzle or air mist spray nozzle (hereinafter also referred to as “spray nozzle”) in the secondary cooling zone is increased. Therefore, the cooling capacity in the secondary cooling zone is strengthened. Generally, the secondary cooling of the continuous casting machine is controlled so that the amount of cooling water per 1 kg of molten steel to be cast is constant. In this case, when the casting speed is doubled, The amount of secondary cooling water is doubled.

スプレーノズルから噴射された冷却水は、鋳片表面に衝突した後の水温が初期状態の常温から沸騰温度まで上昇することによる顕熱、及び、蒸発による蒸発潜熱によって鋳片から熱を奪い、且つ、冷却水の衝突力による冷却促進作用が働いて、鋳片表面の冷却が行われる。この場合、噴射された二次冷却水は蒸発しきれず、鋳片表面上や、鋳片支持ロールと鋳片とに挟まれて残留水となって滞留する。また、一部の残留水は鋳片幅方向に流れて鋳片表面から落下し、また、一部の残留水は、鋳片幅方向で2以上に分割された分割型鋳片支持ロールのロールチョックの間隙を通って鋳片表面上を沿うようにして下流側へ流下する。尚、分割型鋳片支持ロールは、鋳片の支持面積を増加させるべくロールピッチ(鋳造方向のロール間距離)を小さくすると、自ずと鋳片支持ロールのロール径が小さくなり、ロール径が小さくなるとロールの剛性が低下してロール自体のたわみが大きくなるので、このたわみを少なくするための鋳片支持ロールである。当然ながら、分割型鋳片支持ロールが配置されないスラブ連続鋳造機も存在する。   The cooling water sprayed from the spray nozzle takes heat from the slab by the sensible heat when the water temperature after colliding with the slab surface rises from the normal temperature of the initial state to the boiling temperature, and the latent heat of evaporation due to evaporation, and The cooling promoting action by the collision force of the cooling water works and the slab surface is cooled. In this case, the injected secondary cooling water cannot evaporate and remains as residual water on the slab surface or sandwiched between the slab support roll and the slab. Moreover, a part of residual water flows in the slab width direction and falls from the slab surface, and a part of the residual water is divided into two or more in the slab width direction. It flows down to the downstream side along the surface of the slab through the gap. When the roll pitch (distance between rolls in the casting direction) is reduced to increase the support area of the slab, the split slab support roll naturally reduces the roll diameter of the slab support roll and reduces the roll diameter. Since the rigidity of the roll is reduced and the deflection of the roll itself is increased, this is a slab support roll for reducing this deflection. Of course, there is also a slab continuous casting machine in which the split slab support roll is not arranged.

鋳造速度が低速の範囲は二次冷却水量が少ないので、鋳片上に滞留している残留水の水温は80℃以上の高温であることが確認されている。また、この場合には、過冷却現象は発生しないことが確認されている。しかしながら、鋳造速度が上がって二次冷却水量が増加すると、鋳片上に滞留する残留水が多くなり、残留水の水温は低下することが予測される。   Since the amount of secondary cooling water is small in the range where the casting speed is low, it has been confirmed that the temperature of the residual water remaining on the slab is as high as 80 ° C. or higher. In this case, it has been confirmed that the supercooling phenomenon does not occur. However, if the casting speed is increased and the amount of secondary cooling water is increased, the residual water staying on the slab increases, and the water temperature of the residual water is expected to decrease.

そこで、図2に示す、鋳片の二次冷却を模擬した実験装置を用いて、二次冷却水量とそのときの残留水の温度との関係について調査した。実験は、加熱した平らな厚鋼板13を斜め(傾斜角度:45°)に配置し、この厚鋼板13の上端部に、ロールチョックの間隙を模擬したスリット(スリットの数:1、スリットの間隔:100mm)を有する遮蔽箱14を配置し、この遮蔽箱14の内側に2本の水供給管15から冷却水を供給し、この冷却水がスリットを通って厚鋼板13の表面を流下するようにして行った。流下する冷却水の温度は、スリットの出口位置に、厚鋼板13の表面から2mm離して配置した熱電対(図示せず)により測定し、厚鋼板13の温度は、スリットの出口位置に、厚鋼板13の表面から1mm離れた厚鋼板13の内部に埋め込んだ熱電対(図示せず)により測定した。   Then, the relationship between the amount of secondary cooling water and the temperature of the residual water at that time was investigated using the experimental apparatus which simulated the secondary cooling of the slab shown in FIG. In the experiment, a heated flat thick steel plate 13 is disposed obliquely (inclination angle: 45 °), and slits (number of slits: 1, slit spacing: imitating the gap of the roll chock are formed at the upper end of the thick steel plate 13. 100 mm), cooling water is supplied from the two water supply pipes 15 to the inside of the shielding box 14, and the cooling water flows down the surface of the thick steel plate 13 through the slits. I went. The temperature of the cooling water flowing down is measured by a thermocouple (not shown) placed 2 mm away from the surface of the thick steel plate 13 at the exit position of the slit, and the temperature of the thick steel plate 13 is measured at the exit position of the slit. It measured with the thermocouple (not shown) embedded in the inside of the thick steel plate 13 1 mm away from the surface of the steel plate 13.

厚鋼板13を遮蔽箱14とともに均熱炉で1000℃に加熱し、この厚鋼板13及び遮蔽箱14を均熱炉から取り出して所定の位置に配置し、厚鋼板13の温度が900℃になった時点で、遮蔽箱14の内側に35℃の冷却水を水供給管15から供給した。冷却水の供給量は10リットル/min及び15リットル/minの2水準とした。   The thick steel plate 13 and the shielding box 14 are heated to 1000 ° C. in a soaking furnace, and the thick steel plate 13 and the shielding box 14 are taken out of the soaking furnace and placed in a predetermined position, and the temperature of the thick steel plate 13 becomes 900 ° C. At that time, 35 ° C. cooling water was supplied from the water supply pipe 15 to the inside of the shielding box 14. The supply amount of cooling water was set at two levels of 10 liter / min and 15 liter / min.

冷却水の供給量が10リットル/minの場合には、スリット出口位置の冷却水の水温は85〜90℃と高温のままであり、また、厚鋼板の温度はほぼ一定速度で低下し、給水開始から50秒を経過した時点では約800℃であり、過冷却現象は発生しなかった。しかし、冷却水の供給量が15リットル/minの場合には、冷却水の水温は、給水直後は約80℃程度であったが、給水開始から20秒を過ぎた頃から水温が80℃以下に下がりだし、給水開始から50秒を経過した時点では約60℃程度となった。また、スリット出口位置の冷却水の水温が80℃未満になった以降、厚鋼板の温度も急激に下がりだし、給水開始から50秒を経過した時点では約400℃まで低下した。つまり、冷却水の供給量が15リットル/minの場合には過冷却現象が発生した。   When the supply amount of cooling water is 10 liters / min, the water temperature of the cooling water at the slit exit position remains as high as 85 to 90 ° C., and the temperature of the steel plate decreases at a substantially constant rate. When 50 seconds passed from the start, the temperature was about 800 ° C., and no supercooling phenomenon occurred. However, when the cooling water supply rate is 15 liters / min, the cooling water temperature was about 80 ° C. immediately after the water supply, but the water temperature was 80 ° C. or less after about 20 seconds from the start of the water supply. It began to drop to about 60 ° C when 50 seconds had passed since the start of water supply. Moreover, after the water temperature of the cooling water at the slit exit position became less than 80 ° C., the temperature of the thick steel plate also suddenly decreased, and decreased to about 400 ° C. when 50 seconds passed from the start of water supply. That is, a supercooling phenomenon occurred when the amount of cooling water supplied was 15 liters / min.

これらの結果から、二次冷却水の滞留水の水温が低下することが、過冷却現象の原因であることが分かった。つまり、鋳造速度が上がって二次冷却水量が増加すると、鋳片上に滞留する残留水が多くなり、残留水の水温は80℃未満に低下する。鋳片の幅方向に流れて鋳片表面左右から落下する残留水は問題とならないが、分割型鋳片支持ロールのロールチョックの間隙を通って鋳片表面上を沿うようにして下流側へ流下する残留水は、残留水の水温が低下することに伴ってサブクール度が高くなり、この残留水には鋳片を冷却する作用が発現する。残留水による冷却の作用が一旦鋳片に働くと、その部位の鋳片の表面温度が低下し、鋳片表面の濡れ性が良くなって更に冷却作用が強くなり、局部的に表面温度の低い部位が形成される。そして、これが過冷却現象の発生原因であることを見出した。尚、サブクールとは、冷却水の飽和温度と冷却水温度との温度差によって冷却される効果のことで、サブクール度は、冷却水の飽和温度と冷却水との温度差を示す。   From these results, it was found that the lowering of the temperature of the stagnant water of the secondary cooling water is the cause of the supercooling phenomenon. That is, when the casting speed increases and the amount of secondary cooling water increases, the amount of residual water that remains on the slab increases, and the temperature of the residual water decreases to less than 80 ° C. Residual water that flows in the width direction of the slab and falls from the left and right of the slab surface is not a problem, but it flows downstream along the slab surface through the gap of the roll chock of the split slab support roll. The residual water has a higher subcooling degree as the temperature of the residual water decreases, and the residual water exhibits an action of cooling the slab. Once the action of cooling by residual water acts on the slab, the surface temperature of the slab at that part decreases, the wettability of the slab surface improves, the cooling action becomes stronger, and the surface temperature is locally low. A site is formed. And it discovered that this was a cause of occurrence of the supercooling phenomenon. The subcool is an effect of cooling due to a temperature difference between the saturation temperature of the cooling water and the cooling water temperature, and the subcooling degree indicates a temperature difference between the saturation temperature of the cooling water and the cooling water.

そこで更に、過冷却現象に及ぼす冷却水の水温の影響について、上記の図2に示す実験装置を用いて調査した。この試験では、水供給管15から供給する冷却水の供給量は15リットル/minの一定とし、供給する冷却水の水温を10℃、20℃、30℃、40℃、50℃、60℃の6水準とした。   Therefore, the influence of the cooling water temperature on the supercooling phenomenon was further investigated using the experimental apparatus shown in FIG. In this test, the amount of cooling water supplied from the water supply pipe 15 is constant at 15 liters / min, and the temperature of the cooling water supplied is 10 ° C., 20 ° C., 30 ° C., 40 ° C., 50 ° C., 60 ° C. Six levels were set.

その結果、冷却水の水温が40℃以下では過冷却現象が発生したが、冷却水の水温が50℃以上では過冷却現象は発生しないことが確認できた。図3に、供給する冷却水の水温が30℃、40℃及び50℃のときの、スリット出口位置での冷却水の水温の測定結果を示す。図3に示すように、冷却水の水温が50℃以上の場合には、スリット出口位置での水温は90℃以上になっており、サブクール度は10度以下であった。この場合、厚鋼板の温度はほぼ一定速度で低下し、給水開始から50秒を経過した時点では約770℃であり、過冷却現象は発生しなかった。一方、冷却水の水温が40℃以下の場合には、スリット出口位置での水温は給水開始時は80℃程度を確保していたが、時間の経過とともに低下し、給水開始から50秒を経過した時点では約60℃程度となり、サブクール度も10度以上に増加した。この場合、スリット出口位置の冷却水の水温が80℃未満になった以降、厚鋼板の温度も急激に下がりだし、給水開始から50秒を経過した時点では約400℃まで低下し、過冷却現象が発生した。   As a result, it was confirmed that the supercooling phenomenon occurred when the cooling water temperature was 40 ° C. or lower, but the supercooling phenomenon did not occur when the cooling water temperature was 50 ° C. or higher. FIG. 3 shows the measurement results of the coolant temperature at the slit exit position when the coolant temperature to be supplied is 30 ° C., 40 ° C., and 50 ° C. As shown in FIG. 3, when the water temperature of the cooling water was 50 ° C. or higher, the water temperature at the slit exit position was 90 ° C. or higher, and the subcooling degree was 10 ° C. or lower. In this case, the temperature of the thick steel plate decreased at a substantially constant rate, and was about 770 ° C. when 50 seconds passed from the start of water supply, and no supercooling phenomenon occurred. On the other hand, when the temperature of the cooling water is 40 ° C. or lower, the water temperature at the slit exit position was secured at about 80 ° C. at the start of water supply, but decreased with the passage of time, and 50 seconds passed from the start of water supply. At that time, the temperature became about 60 ° C., and the subcooling degree also increased to 10 degrees or more. In this case, after the temperature of the cooling water at the slit outlet becomes less than 80 ° C., the temperature of the thick steel plate also starts to drop sharply, and after about 50 seconds from the start of water supply, it drops to about 400 ° C. There has occurred.

本発明は、上記知見に基づきなされたものであり、連続鋳造機で鋳造されている鋳片を、鋳片支持ロールで支持しながら鋳型の下方に設けた複数の冷却ゾーンからなる二次冷却帯にて冷却水または冷却水と気体との混合体を用いて二次冷却するに際し、前記冷却水の水温を50℃以上として鋳片を二次冷却することを特徴としている。   The present invention has been made on the basis of the above knowledge, and a secondary cooling zone comprising a plurality of cooling zones provided below a mold while supporting a slab cast by a continuous casting machine with a slab support roll. In the secondary cooling using the cooling water or the mixture of cooling water and gas, the slab is secondary cooled by setting the water temperature of the cooling water to 50 ° C. or higher.

連続鋳造機の二次冷却帯は、複数の冷却ゾーンで構成されていて、一般的には冷却ゾーン毎に冷却水量が制御されている。また、鋳片表面に噴霧された冷却水は、スケールピット、沈殿槽、冷却塔、給水槽を経由し、再度二次冷却水として循環使用されることが一般的であり、スプレーノズルから噴霧される冷却水の水温は、冷却塔出口における水温により左右される。つまり、冷却塔の冷却ファンの稼動数を変更するなどして冷却塔での抜熱量を調整して冷却水の水温を制御している。   The secondary cooling zone of the continuous casting machine is composed of a plurality of cooling zones, and the amount of cooling water is generally controlled for each cooling zone. The cooling water sprayed on the surface of the slab is generally circulated and reused as secondary cooling water via the scale pit, sedimentation tank, cooling tower, and water supply tank, and is sprayed from the spray nozzle. The cooling water temperature depends on the water temperature at the outlet of the cooling tower. That is, the temperature of cooling water is controlled by adjusting the amount of heat removed from the cooling tower by changing the number of operating cooling fans of the cooling tower.

本発明においても、冷却塔における抜熱量の調整により供給する冷却水の水温を50℃以上に制御することを基本とする。但し、循環使用される冷却水の水温は、冷却塔を経由しないでバイパスを設置したとしても、50℃を超えることは希であり、特に厳寒の冬場は、50℃を確保することは困難である。従って、本発明を実施するにおいては、供給する冷却水の温度を50℃以上に確保するために、スケールピット、沈殿槽、給水槽などに水没式の加熱器などを設置する、或いは蒸気を吹き込むなどして水温を50℃以上に確保する。   In the present invention, the temperature of the cooling water supplied by adjusting the amount of heat removal in the cooling tower is basically controlled to 50 ° C. or higher. However, the temperature of the cooling water used for circulation is rarely over 50 ° C even if a bypass is installed without going through the cooling tower, and it is difficult to ensure 50 ° C especially in severely cold winter. is there. Therefore, in carrying out the present invention, in order to secure the temperature of the cooling water to be supplied at 50 ° C. or higher, a submerged heater or the like is installed in the scale pit, the sedimentation tank, the water tank, or the like, or steam is blown in. Etc. to ensure that the water temperature is 50 ° C. or higher.

また、本発明において、供給する冷却水の温度を50℃以上とする冷却ゾーンは、二次冷却水の給水設備を温度条件によらずに1つにまとめることができることから、全ての冷却ゾーンとすることが好ましいが、設備長の長い大型の連続鋳造機では二次冷却帯が広大で、水温を50℃以上に確保するための加熱器などの容量が大きくなりすぎる恐れがある。このような場合には、過冷却現象が生じ易い、鋳型直下から二次冷却帯全長の1/2の距離までの範囲の冷却ゾーン、或いは、冷却水量が100リットル/(m2・min)以上の冷却水量の多い冷却ゾーンだけで、供給する冷却水の水温を50℃以上としてもよい。このように、供給する冷却水の水温を50℃以上とする冷却ゾーンを特定の冷却ゾーンに限る場合には、給水経路に別途給水槽などを設け、水温を独立して制御することが必要となる。 Further, in the present invention, the cooling zone in which the temperature of the cooling water to be supplied is 50 ° C. or more can be integrated into one cooling water supply facility regardless of the temperature conditions. However, in a large continuous casting machine having a long equipment length, the secondary cooling zone is vast, and the capacity of a heater or the like for securing the water temperature at 50 ° C. or more may be too large. In such a case, a supercooling phenomenon is likely to occur, a cooling zone in the range from directly under the mold to half the distance of the secondary cooling zone, or the amount of cooling water is 100 liters / (m 2 · min) or more The temperature of the cooling water to be supplied may be 50 ° C. or higher only in the cooling zone having a large amount of cooling water. Thus, when the cooling zone in which the coolant temperature to be supplied is 50 ° C. or higher is limited to a specific cooling zone, it is necessary to separately provide a water tank or the like in the water supply path and control the water temperature independently. Become.

また、水スプレーノズルが配置された冷却ゾーンであっても、エアーミストスプレーノズルが配置された冷却ゾーンであっても、冷却水を使用する限り、本発明を適用することができる。   Further, the present invention can be applied to the cooling zone where the water spray nozzle is arranged or the cooling zone where the air mist spray nozzle is arranged as long as the cooling water is used.

このように、本発明によれば、水温が50℃以上の冷却水で連続鋳造中の鋳片を二次冷却するので、連続鋳造中の鋳片表面に二次冷却水の残留水が溜まったとしても残留水の温度は高く、残留水が多くなる鋳造速度を高めた条件下であっても鋳片表面は過冷却とならず、鋳片表面に温度ムラを発生させることなく均一に冷却することが実現される。   Thus, according to the present invention, since the slab during continuous casting is secondarily cooled with cooling water having a water temperature of 50 ° C. or higher, residual water of the secondary cooling water accumulates on the surface of the slab during continuous casting. Even if the temperature of the residual water is high and the casting speed at which the residual water is increased is increased, the slab surface is not overcooled, and the slab surface is uniformly cooled without causing temperature unevenness. Is realized.

図4に示すスラブ連続鋳造機における本発明の実施例を説明する。図4において、符号1は、垂直曲げ型のスラブ連続鋳造機、2は、取鍋から供給される溶鋼を鋳型に中継供給するためのタンディッシュ、3は、鋳型への溶鋼流量調整用のスライディングノズル、4は、溶鋼を鋳型内に注入するための浸漬ノズル、5は、溶鋼を冷却して鋳片の外殻形状を形成するための鋳型、6は、鋳片を支持・案内するための鋳片支持ロール、7は、鋳造された鋳片を搬送するための搬送ロール、8は、鋳造された鋳片を所定長さに切断するためのガス切断機、9は溶鋼、10は鋳造されつつある鋳片、10aは切断された鋳片、11は凝固シェル、12は未凝固相である。   An embodiment of the present invention in the slab continuous casting machine shown in FIG. 4 will be described. In FIG. 4, reference numeral 1 is a vertical bending type slab continuous casting machine, 2 is a tundish for relaying and supplying molten steel supplied from a ladle to a mold, and 3 is a sliding for adjusting the flow rate of molten steel to the mold. Nozzle 4 is an immersion nozzle for injecting molten steel into the mold, 5 is a mold for cooling the molten steel to form the outer shell shape of the slab, and 6 is for supporting and guiding the slab. A slab support roll, 7 is a transport roll for transporting the cast slab, 8 is a gas cutter for cutting the cast slab into a predetermined length, 9 is molten steel, and 10 is cast. The cast slab 10a is a cut slab, 11 is a solidified shell, and 12 is an unsolidified phase.

使用したスラブ連続鋳造機1の設備長は45mであり、幅2000mmのスラブ鋳片の鋳造が可能な設備である。鋳型5の上端から鋳型5の下端までが1mであり、鋳型直下から機端までの44mの範囲が二次冷却帯であり、この二次冷却帯を、およそ11m毎に、鋳型直下側から機端側に向いて、第1冷却ゾーン、第2冷却ゾーン、第3冷却ゾーン、第4冷却ゾーンの4つの二次冷却ゾーンに分け、それぞれの二次冷却ゾーン毎に冷却条件を設定した。図4において、A−A’位置からB−B’位置直上の鋳片支持ロール6までの範囲が第1冷却ゾーン、B−B’位置からC−C’位置直上の鋳片支持ロール6までの範囲が第2冷却ゾーン、C−C’位置からD−D’位置直上の鋳片支持ロール6までの範囲が第3冷却ゾーン、D−D’位置から機端の鋳片支持ロール6までの範囲が第4冷却ゾーンである。二次冷却帯の各二次冷却ゾーンにはエアーミストスプレーノズル(図示せず)が配置されており、このエアーミストスプレーノズルから噴射されるエアーミストにより、鋳片10は冷却される。   The used slab continuous casting machine 1 has an equipment length of 45 m and is capable of casting a slab slab having a width of 2000 mm. The distance from the upper end of the mold 5 to the lower end of the mold 5 is 1 m, and the range of 44 m from the position immediately below the mold to the machine end is the secondary cooling zone. Toward the end side, it was divided into four secondary cooling zones, a first cooling zone, a second cooling zone, a third cooling zone, and a fourth cooling zone, and cooling conditions were set for each secondary cooling zone. In FIG. 4, the range from the AA ′ position to the slab support roll 6 immediately above the BB ′ position is the first cooling zone, and from the BB ′ position to the slab support roll 6 just above the CC ′ position. Is the second cooling zone, and the range from the CC ′ position to the slab support roll 6 immediately above the DD ′ position is the third cooling zone, from the DD ′ position to the slab support roll 6 at the end of the machine. Is the fourth cooling zone. An air mist spray nozzle (not shown) is disposed in each secondary cooling zone of the secondary cooling zone, and the slab 10 is cooled by the air mist sprayed from the air mist spray nozzle.

この構成のスラブ連続鋳造機1を用い、供給する二次冷却水の水温を30℃に制御し、二次冷却帯の第3冷却ゾーンと第4冷却ゾーンとの境界の鋳片上面側に設置した、赤外線カメラからなる表面温度プロフィール計(図示せず)で鋳片表面温度を測定しながら、厚み250mm、幅2000mmのスラブ鋳片を1.5m/minの鋳造速度(Vc)で鋳造開始した。   Using the slab continuous casting machine 1 having this configuration, the temperature of the secondary cooling water to be supplied is controlled to 30 ° C. and installed on the upper surface side of the slab at the boundary between the third cooling zone and the fourth cooling zone of the secondary cooling zone. The slab slab having a thickness of 250 mm and a width of 2000 mm was cast at a casting speed (Vc) of 1.5 m / min while measuring the slab surface temperature with a surface temperature profile meter (not shown) comprising an infrared camera. .

鋳片表面温度プロフィール計で測定された鋳片幅方向の表面温度分布を図5に示す。鋳造速度が1.5m/minの場合には、鋳片表面温度プロフィール計で測定される鋳片幅方向の表面温度分布は、温度偏差が約40℃以下であり、ほぼ均一に冷却されていた。   FIG. 5 shows the surface temperature distribution in the slab width direction measured by the slab surface temperature profile meter. When the casting speed was 1.5 m / min, the surface temperature distribution in the slab width direction measured with a slab surface temperature profile meter had a temperature deviation of about 40 ° C. or less and was cooled substantially uniformly. .

その後、鋳造速度を2.0m/minに増速し、二次冷却水量を鋳造速度に比例して増加したところ、ロールチョックの部位に相当する鋳片表面部位で過冷却が発生し、図5に示すように、鋳片表面温度の偏差は250℃以上に拡大した。そこで、供給する二次冷却水の水温を50℃に昇温した。供給する冷却水の水温を50℃としてから約5分後に鋳片表面温度の偏差が小さくなり始め、約10分後には、図5に示すように鋳片表面温度の偏差は40℃以内となった。   Thereafter, the casting speed was increased to 2.0 m / min, and the amount of secondary cooling water was increased in proportion to the casting speed. As a result, supercooling occurred at the slab surface corresponding to the roll chock, and FIG. As shown, the deviation of the slab surface temperature increased to 250 ° C. or more. Therefore, the temperature of the secondary cooling water to be supplied was raised to 50 ° C. The deviation of the slab surface temperature starts to decrease after about 5 minutes after the temperature of the cooling water to be supplied is 50 ° C., and after about 10 minutes, the deviation of the slab surface temperature is within 40 ° C. as shown in FIG. It was.

図4に示すスラブ連続鋳造機を用い、供給する二次冷却水の水温を30℃に制御し、二次冷却帯の第3冷却ゾーンと第4冷却ゾーンとの境界の鋳片上面側に設置した、赤外線カメラからなる表面温度プロフィール計で鋳片表面温度を測定しながら、厚み250mm、幅2000mmのスラブ鋳片を1.5m/minの鋳造速度(Vc)で鋳造開始した。   Using the slab continuous casting machine shown in FIG. 4, the water temperature of the secondary cooling water to be supplied is controlled to 30 ° C. and installed on the upper surface side of the slab at the boundary between the third cooling zone and the fourth cooling zone of the secondary cooling zone. The slab slab having a thickness of 250 mm and a width of 2000 mm was cast at a casting speed (Vc) of 1.5 m / min while measuring the slab surface temperature with a surface temperature profile meter comprising an infrared camera.

鋳片表面温度プロフィール計で測定された鋳片幅方向の表面温度分布を図6に示す。鋳造速度が1.5m/minの場合には、鋳片表面温度プロフィール計で測定される鋳片幅方向の表面温度分布は、温度偏差が約40℃以下であり、ほぼ均一に冷却されていた。   FIG. 6 shows the surface temperature distribution in the slab width direction measured by the slab surface temperature profile meter. When the casting speed was 1.5 m / min, the surface temperature distribution in the slab width direction measured with a slab surface temperature profile meter had a temperature deviation of about 40 ° C. or less and was cooled substantially uniformly. .

その後、鋳造速度を2.0m/minに増速し、二次冷却水量を鋳造速度に比例して増加したところ、ロールチョックの部位に相当する鋳片表面部位で過冷却が発生し、図6に示すように、鋳片表面温度の偏差は250℃以上に拡大した。そこで、第3冷却ゾーン及び第4冷却ゾーンに供給する二次冷却水の水温を50℃に昇温した。しかしながら、供給する冷却水の水温を50℃としてから10分間経過しても温度差はほとんど縮小しなかった。その後、第1冷却ゾーン及び第2冷却ゾーンに供給する二次冷却水の水温のみを50℃に昇温した。第1冷却ゾーン及び第2冷却ゾーンに供給する冷却水の水温を50℃としてから約5分後に鋳片表面温度の偏差が小さくなり始め、約10分後には、図6に示すように鋳片表面温度の偏差は40℃以内となった。   Thereafter, the casting speed was increased to 2.0 m / min, and the amount of secondary cooling water was increased in proportion to the casting speed. As a result, supercooling occurred at the slab surface portion corresponding to the roll chock portion. As shown, the deviation of the slab surface temperature increased to 250 ° C. or more. Therefore, the temperature of the secondary cooling water supplied to the third cooling zone and the fourth cooling zone was raised to 50 ° C. However, the temperature difference hardly reduced even after 10 minutes had passed since the temperature of the cooling water to be supplied was 50 ° C. Thereafter, only the temperature of the secondary cooling water supplied to the first cooling zone and the second cooling zone was raised to 50 ° C. About 5 minutes after the temperature of the cooling water supplied to the first cooling zone and the second cooling zone is 50 ° C., the deviation of the slab surface temperature starts to decrease, and after about 10 minutes, the slab is slab as shown in FIG. The deviation of the surface temperature was within 40 ° C.

図4に示すスラブ連続鋳造機を用い、供給する二次冷却水の水温を30℃に制御し、二次冷却帯の第3冷却ゾーンと第4冷却ゾーンとの境界の鋳片上面側に設置した、赤外線カメラからなる表面温度プロフィール計で鋳片表面温度を測定しながら、厚み250mm、幅2000mmのスラブ鋳片を1.5m/minの鋳造速度(Vc)で鋳造開始した。   Using the slab continuous casting machine shown in FIG. 4, the water temperature of the secondary cooling water to be supplied is controlled to 30 ° C. and installed on the upper surface side of the slab at the boundary between the third cooling zone and the fourth cooling zone of the secondary cooling zone. The slab slab having a thickness of 250 mm and a width of 2000 mm was cast at a casting speed (Vc) of 1.5 m / min while measuring the slab surface temperature with a surface temperature profile meter comprising an infrared camera.

鋳造速度が1.5m/minにおける二次冷却水量は、第1冷却ゾーンは93リットル/(m2・min)、第2冷却ゾーンは77リットル/(m2・min)、第3冷却ゾーンは60リットル/(m2・min)、第4冷却ゾーンは43リットル/(m2・min)であった。 The secondary cooling water amount at a casting speed of 1.5 m / min is 93 liters / (m 2 · min) in the first cooling zone, 77 liters / (m 2 · min) in the second cooling zone, It was 60 liters / (m 2 · min), and the fourth cooling zone was 43 liters / (m 2 · min).

鋳片表面温度プロフィール計で測定された鋳片幅方向の表面温度分布を図7に示す。鋳造速度が1.5m/minの場合には、鋳片表面温度プロフィール計で測定される鋳片幅方向の表面温度分布は、温度偏差が約40℃以下であり、ほぼ均一に冷却されていた。   FIG. 7 shows the surface temperature distribution in the slab width direction measured by the slab surface temperature profile meter. When the casting speed was 1.5 m / min, the surface temperature distribution in the slab width direction measured with a slab surface temperature profile meter had a temperature deviation of about 40 ° C. or less and was cooled substantially uniformly. .

その後、鋳造速度を2.0m/minに増速し、二次冷却水量を鋳造速度の増速に応じて増加した。鋳造速度が2.0m/minにおける二次冷却水量は、第1冷却ゾーンは127リットル/(m2・min)、第2冷却ゾーンは110リットル/(m2・min)、第3冷却ゾーンは93リットル/(m2・min)、第4冷却ゾーンは77リットル/(m2・min)であった。 Thereafter, the casting speed was increased to 2.0 m / min, and the amount of secondary cooling water was increased in accordance with the increased casting speed. The amount of secondary cooling water at a casting speed of 2.0 m / min is 127 liters / (m 2 · min) in the first cooling zone, 110 liters / (m 2 · min) in the second cooling zone, 93 liters / (m 2 · min), the fourth cooling zone was 77 liters / (m 2 · min).

鋳造速度を2.0m/minに増速したところ、ロールチョックの部位に相当する鋳片表面部位で過冷却が発生し、図7に示すように、鋳片表面温度の偏差は250℃以上に拡大した。そこで、冷却水量が100リットル/(m2・min)以上である第1冷却ゾーン及び第2冷却ゾーンに供給する二次冷却水の水温を50℃に昇温した。第1冷却ゾーン及び第2冷却ゾーンに供給する冷却水の水温を50℃としてから約5分後に鋳片表面温度の偏差が小さくなり始め、約10分後には、図7に示すように鋳片表面温度の偏差は40℃以内となった。 When the casting speed was increased to 2.0 m / min, supercooling occurred at the slab surface part corresponding to the roll chock part, and the deviation of the slab surface temperature increased to 250 ° C. or more as shown in FIG. did. Therefore, the temperature of the secondary cooling water supplied to the first cooling zone and the second cooling zone in which the cooling water amount is 100 liters / (m 2 · min) or more was raised to 50 ° C. About 5 minutes after the temperature of the cooling water supplied to the first cooling zone and the second cooling zone is 50 ° C., the deviation of the slab surface temperature starts to decrease, and after about 10 minutes, the slab is slab as shown in FIG. The deviation of the surface temperature was within 40 ° C.

1 スラブ連続鋳造機
2 タンディッシュ
3 スライディングノズル
4 浸漬ノズル
5 鋳型
6 鋳片支持ロール
7 搬送ロール
8 ガス切断機
9 溶鋼
10 鋳片
11 凝固シェル
12 未凝固相
13 厚鋼板
14 遮蔽箱
15 水供給管
DESCRIPTION OF SYMBOLS 1 Slab continuous casting machine 2 Tundish 3 Sliding nozzle 4 Immersion nozzle 5 Mold 6 Casting piece support roll 7 Conveyance roll 8 Gas cutting machine 9 Molten steel 10 Cast piece 11 Solidified shell 12 Unsolidified phase 13 Thick steel plate 14 Shielding box 15 Water supply pipe

Claims (4)

分割型鋳片支持ロールが設置された連続鋳造機で鋳造されている鋳片を、前記分割型鋳片支持ロールで支持しながら鋳型の下方に設けた複数の冷却ゾーンからなる二次冷却帯にて冷却水または冷却水と気体との混合体を用いて二次冷却するに際し、前記冷却水の水温を50℃以上として鋳片を二次冷却し、前記分割型鋳片支持ロールのロールチョックの間隙を通って流下する前記冷却水の残留水による鋳片表面の過冷却を防止することを特徴とする、連続鋳造における二次冷却方法。 A slab cast by a continuous casting machine provided with a split mold slab support roll is supported by the split slab support roll while being a secondary cooling zone comprising a plurality of cooling zones provided below the mold. When performing secondary cooling using cooling water or a mixture of cooling water and gas, the cooling water is cooled to a temperature of 50 ° C. or higher to secondarily cool the slab, and the gap between the roll chock of the split type slab support roll A secondary cooling method in continuous casting, wherein overcooling of a slab surface by residual water of the cooling water flowing down through the slab is prevented . 二次冷却帯の全ての冷却ゾーンで、前記冷却水の水温を50℃以上とすることを特徴とする、請求項1に記載の連続鋳造における二次冷却方法。   2. The secondary cooling method in continuous casting according to claim 1, wherein the temperature of the cooling water is set to 50 ° C. or higher in all cooling zones of the secondary cooling zone. 鋳型直下から少なくとも二次冷却帯全長の1/2の距離までの範囲の二次冷却帯の冷却ゾーンで、前記冷却水の水温を50℃以上とすることを特徴とする、請求項1に記載の連続鋳造における二次冷却方法。   2. The water temperature of the cooling water is set to 50 ° C. or more in a cooling zone of a secondary cooling zone in a range from a position immediately below the mold to at least a half of the total length of the secondary cooling zone. Secondary cooling method in continuous casting of steel. 冷却水量が100リットル/(m2・min)以上の二次冷却帯の冷却ゾーンで、前記冷却水の水温を50℃以上とすることを特徴とする、請求項1に記載の連続鋳造における二次冷却方法。 2. The continuous casting according to claim 1, wherein the temperature of the cooling water is 50 ° C. or more in a cooling zone of a secondary cooling zone having a cooling water amount of 100 liters / (m 2 · min) or more. Next cooling method.
JP2009166384A 2009-07-15 2009-07-15 Secondary cooling method in continuous casting Expired - Fee Related JP5556073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009166384A JP5556073B2 (en) 2009-07-15 2009-07-15 Secondary cooling method in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166384A JP5556073B2 (en) 2009-07-15 2009-07-15 Secondary cooling method in continuous casting

Publications (2)

Publication Number Publication Date
JP2011020138A JP2011020138A (en) 2011-02-03
JP5556073B2 true JP5556073B2 (en) 2014-07-23

Family

ID=43630651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166384A Expired - Fee Related JP5556073B2 (en) 2009-07-15 2009-07-15 Secondary cooling method in continuous casting

Country Status (1)

Country Link
JP (1) JP5556073B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102264780B1 (en) * 2020-06-08 2021-06-11 주식회사 포스코 Cooling apparatus for continuous casting
CN111992686B (en) * 2020-09-03 2021-12-17 福建三钢闽光股份有限公司 Aerial fog full-water combined cooling high-carbon steel continuous casting production method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174763U (en) * 1986-04-21 1987-11-06
JP3455034B2 (en) * 1996-11-11 2003-10-06 Jfeスチール株式会社 Continuous casting method for high carbon special steel
JPH10263751A (en) * 1997-03-27 1998-10-06 Kawasaki Steel Corp Method for continuously casting high carbon steel
JP4019476B2 (en) * 1997-12-08 2007-12-12 Jfeスチール株式会社 Slab cooling method in continuous casting
JP4407481B2 (en) * 2004-11-09 2010-02-03 Jfeスチール株式会社 Continuous casting method for medium carbon steel
JP4786473B2 (en) * 2006-08-30 2011-10-05 新日本製鐵株式会社 Manufacturing method of slabs with excellent surface quality
JP5094154B2 (en) * 2007-02-19 2012-12-12 株式会社神戸製鋼所 Slab cooling method in continuous casting machine
JP2010069496A (en) * 2008-09-17 2010-04-02 Kobe Steel Ltd Secondary cooling apparatus and method in continuous casting

Also Published As

Publication number Publication date
JP2011020138A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP2010110813A (en) Secondary cooling method and apparatus for continuously cast slab
CN108472718B (en) Secondary cooling method and secondary cooling device for continuous casting blank
JP2010253529A (en) Secondary cooling method for continuous casting
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
JP5402215B2 (en) Secondary cooling method in continuous casting
JP4453562B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JP5556073B2 (en) Secondary cooling method in continuous casting
JP2010082637A (en) Secondary cooling method in continuous casting
TWI787589B (en) Continuous casting method of steel billet
JP6747142B2 (en) Secondary cooling method and secondary cooling device for continuous casting
JP5609199B2 (en) Secondary cooling method in continuous casting
JP2008254062A (en) Secondary cooling device for continuous casting machine, and secondary cooling method therefor
JP2008100253A (en) Cast slab draining device in continuous casting machine
JP5094154B2 (en) Slab cooling method in continuous casting machine
JP5402678B2 (en) Steel continuous casting method
CN114096362B (en) Method and apparatus for secondary cooling of continuously cast slabs
JP2013094828A (en) Secondary cooling method in continuous casting
JP5121039B2 (en) Billet water cooling method
JP5515440B2 (en) Thick steel plate cooling equipment and cooling method thereof
JP7052931B2 (en) Secondary cooling method for continuously cast slabs
JP2007111772A (en) Cooling grid facility for continuous caster and method for producing continuously cast slab
JP2011200892A (en) Secondary cooling method in continuous casting
WO2023248632A1 (en) Cast slab continuous casting equipment and cast slab continuous casting method
JP4506691B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JP2006281220A (en) Facilities and method for cooling h-section steel

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees