JP2016140912A - Continuous casting equipment for molten steel of high carbon steel and continuous casting method for molten steel of high carbon steel using the same - Google Patents

Continuous casting equipment for molten steel of high carbon steel and continuous casting method for molten steel of high carbon steel using the same Download PDF

Info

Publication number
JP2016140912A
JP2016140912A JP2015021298A JP2015021298A JP2016140912A JP 2016140912 A JP2016140912 A JP 2016140912A JP 2015021298 A JP2015021298 A JP 2015021298A JP 2015021298 A JP2015021298 A JP 2015021298A JP 2016140912 A JP2016140912 A JP 2016140912A
Authority
JP
Japan
Prior art keywords
high carbon
molten steel
carbon steel
continuous casting
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015021298A
Other languages
Japanese (ja)
Inventor
修 筒江
Osamu Tsutsue
修 筒江
直子 廣門
Naoko Hirokado
直子 廣門
健也 末長
Kenya Suenaga
健也 末長
裕介 上手
Yusuke Kamite
裕介 上手
福永 新一
Shinichi Fukunaga
新一 福永
武士 大川
Takeshi Okawa
武士 大川
卓巳 五所
Takumi Gosho
卓巳 五所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Nippon Steel Corp
Original Assignee
Mishima Kosan Co Ltd
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd, Nippon Steel and Sumitomo Metal Corp filed Critical Mishima Kosan Co Ltd
Priority to JP2015021298A priority Critical patent/JP2016140912A/en
Publication of JP2016140912A publication Critical patent/JP2016140912A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide continuous casting equipment for molten steel of high carbon steel which can produce a product with preferable productivity and preferable work efficiency, and a continuous casting method for molten steel of high carbon steel using the same.SOLUTION: Continuous casting equipment 10 for molten steel of high carbon steel is provided that comprises a plurality of casting molds 11 to 13 arranged for one tundish. Each of the casting molds 11 to 13 has a casting mold space part 20 formed with short edges 16, 17 and long edges 18, 19, and receives and cools the molten steel for the high carbon steel containing 0.6 mass% of carbon poured into the casting mold space part 20 to produce cast metal. A width of the casting mold space part 20 on the short edge 16, 17 side is set to be 300 to 500 mm and a width on the long edge 18, 19 side is set to be 360 to 650 mm, and an inclination part formed in such a way that the interval thereof becomes gradually narrower in a cast metal pulling direction and in accordance with a solidification shrinkage amount of a cast metal shell is formed in each of the opposite surfaces of the short edges 16, 17 and in each of the opposite surfaces of the long edges 18, 19. The continuous casting method for the molten steel of the high carbon steel is also provided in which the cast metal is produced while a casting time is set to be 24 h or more and a casting speed is set to be 0.8 m/min to 1.2 m/min.SELECTED DRAWING: Figure 1

Description

本発明は、高炭素鋼用溶鋼の連続鋳造設備及びこれを用いた高炭素鋼用溶鋼の連続鋳造方法に関する。   The present invention relates to a continuous casting facility for molten steel for high carbon steel and a continuous casting method for molten steel for high carbon steel using the same.

従来、軌条(レール)は、所定の化学組成に調整した高炭素鋼用溶鋼を鋳型で連続鋳造し、得られた鋳片を熱間圧延することで、製造している(例えば、特許文献1、2参照)。   Conventionally, a rail (rail) is manufactured by continuously casting molten steel for high carbon steel adjusted to a predetermined chemical composition with a mold, and hot rolling the obtained slab (for example, Patent Document 1). 2).

特開2014−101583号公報JP 2014-101583 A 特開2008−50684号公報JP 2008-50684 A

しかしながら、製造した軌条(製品)には、疵が発生する場合があった。
この疵は、連続鋳造で発生した鋳片の微細な内部割れに起因するものであり、この内部割れが発生した場合は、例えば、突発的に鋳型の交換を行ったり、鋳造速度を現状より遅くしたりして、軌条への疵の発生を防止していた。なお、鋳片の内部割れは、主として鋳片のコーナ部近傍で、例えば、鋳片の表面から5mmまでの範囲に、発生していた。
このため、鋳片の微細な内部割れの発生は、生産性の低下や作業性の悪化を招いていた。
However, wrinkles may occur in the manufactured rail (product).
This flaw is caused by fine internal cracks in the slab that occurred during continuous casting. When this internal crack occurs, for example, the mold is suddenly replaced, or the casting speed is made slower than the current state. To prevent the occurrence of wrinkles on the rail. In addition, the internal crack of the slab has occurred mainly in the vicinity of the corner portion of the slab, for example, in the range from the surface of the slab to 5 mm.
For this reason, generation | occurrence | production of the fine internal crack of slab invited the fall of productivity and the deterioration of workability | operativity.

本発明はかかる事情に鑑みてなされたもので、生産性よく、かつ、作業性よく、製品の製造が可能な高炭素鋼用溶鋼の連続鋳造設備及びこれを用いた高炭素鋼用溶鋼の連続鋳造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and is a continuous casting facility for molten steel for high carbon steel capable of producing products with good productivity and good workability, and continuous molten steel for high carbon steel using the same. An object is to provide a casting method.

前記目的に沿う第1の発明に係る高炭素鋼用溶鋼の連続鋳造設備は、間隔を有して対向配置される一対の短辺と、該短辺を幅方向両側から挟み込んだ状態で対向配置される一対の長辺とによって形成された鋳型空間部に、炭素量が0.6質量%以上の高炭素鋼用溶鋼をタンディッシュから注入して冷却し、鋳片を製造する鋳型を備えた高炭素鋼用溶鋼の連続鋳造設備において、
前記鋳型空間部の前記短辺側の幅を300mm以上500mm以下とし、かつ、前記鋳型空間部の前記長辺側の幅を360mm以上650mm以下とし、しかも、対向する前記一対の短辺の各対向面及び前記一対の長辺の各対向面にそれぞれ、前記鋳片が引き抜かれる方向に鋳片シェルの凝固収縮量に追従して間隔が徐々に狭まる傾斜部を形成した前記鋳型が、1つの前記タンディッシュに対して複数配置されている。
The continuous casting equipment for molten steel for high carbon steel according to the first invention in accordance with the above object has a pair of short sides arranged to face each other with a gap between them and the short sides sandwiched from both sides in the width direction. A mold for producing a slab was prepared by injecting molten steel for high carbon steel having a carbon content of 0.6% by mass or more from a tundish into a mold space formed by a pair of long sides to be cooled. In continuous casting equipment for molten steel for high carbon steel,
The width of the short side of the mold space is 300 mm or more and 500 mm or less, and the width of the long side of the mold space is 360 mm or more and 650 mm or less, and each of the opposed short sides of the pair of short sides Each of the molds formed on each of the surfaces and the opposing surfaces of the pair of long sides has inclined portions whose intervals gradually narrow in accordance with the amount of solidification shrinkage of the slab shell in the direction in which the slab is pulled out. A plurality of tundishes are arranged.

前記目的に沿う第2の発明に係る高炭素鋼用溶鋼の連続鋳造方法は、第1の発明に係る高炭素鋼用溶鋼の連続鋳造設備を用いた高炭素鋼用溶鋼の連続鋳造方法であって、前記鋳型による高炭素鋼用溶鋼の鋳造速度を0.8m/分以上1.2m/分以下にして、前記鋳片を製造する。   The continuous casting method for molten steel for high carbon steel according to the second invention in accordance with the above object is a continuous casting method for molten steel for high carbon steel using the continuous casting equipment for molten steel for high carbon steel according to the first invention. Then, the casting slab is manufactured at a casting speed of the molten steel for high carbon steel by the mold of 0.8 m / min to 1.2 m / min.

前記目的に沿う第3の発明に係る高炭素鋼用溶鋼の連続鋳造方法は、第1の発明に係る高炭素鋼用溶鋼の連続鋳造設備を用いた高炭素鋼用溶鋼の連続鋳造方法であって、前記鋳型による高炭素鋼用溶鋼の鋳造時間を24時間以上にして、前記鋳片を製造する。   The continuous casting method for molten steel for high carbon steel according to the third aspect of the invention that meets the above object is a continuous casting method for molten steel for high carbon steel using the continuous casting equipment for molten steel for high carbon steel according to the first aspect. Then, the slab is manufactured by setting the casting time of the molten steel for high carbon steel by the mold to 24 hours or more.

本発明に係る高炭素鋼用溶鋼の連続鋳造設備及びこれを用いた高炭素鋼用溶鋼の連続鋳造方法は、所定寸法の鋳型空間部を形成する一対の短辺と一対の長辺の各対向面に、鋳片シェルの凝固収縮量に追従して間隔が徐々に狭まる傾斜部を形成した鋳型を用いて、高炭素鋼用溶鋼を鋳造するので、鋳型内面と、鋳型内で形成される鋳片シェルとの接触状態を、良好にできる。これにより、鋳片シェルの周方向に渡って略均一な冷却が行われ、コーナ部近傍の凝固遅れが改善されるため、鋳片の微細な内部割れの発生を抑制でき、また、たとえ発生したとしても、その発生場所を表面から内部(製品の表面に疵が発生しない位置)へ移動させる(深くする)ことができる。
従って、このような鋳型を、1つのタンディッシュに対して複数配置することで、疵の発生のない良好な品質の製品を、生産性よく、かつ、作業性よく、製造できる。
The continuous casting equipment for molten steel for high carbon steel according to the present invention and the continuous casting method for molten steel for high carbon steel using the same, each of a pair of short sides and a pair of long sides forming a mold space portion of a predetermined dimension Since the molten steel for high carbon steel is cast on the surface using a mold in which an inclined portion whose interval gradually narrows following the amount of solidification shrinkage of the slab shell is cast, the inner surface of the mold and the casting formed in the mold are cast. The contact state with the one shell can be improved. Thereby, substantially uniform cooling is performed over the circumferential direction of the slab shell, and the solidification delay in the vicinity of the corner portion is improved, so that the occurrence of fine internal cracks in the slab can be suppressed, and even if it occurs However, the generation location can be moved (deepened) from the surface to the inside (a position where wrinkles are not generated on the surface of the product).
Therefore, by arranging a plurality of such molds for one tundish, it is possible to manufacture a product of good quality free from wrinkles with good productivity and good workability.

特に、上記した構成の鋳型を備える高炭素鋼用溶鋼の連続鋳造設備を用いることで、例えば、突発的な鋳型の交換を行うことなく、また、鋳造速度を低下させることなく、鋳造を実施できる。これにより、鋳造速度を0.8m/分以上1.2m/分以下にして、また、鋳造時間を24時間以上にして、鋳片を安定に製造できる。   In particular, by using the continuous casting equipment for molten steel for high carbon steel including the mold having the above-described configuration, for example, casting can be performed without suddenly changing the mold and without reducing the casting speed. . Accordingly, the slab can be stably manufactured by setting the casting speed to 0.8 m / min or more and 1.2 m / min or less and casting time to 24 hours or more.

本発明の一実施の形態に係る高炭素鋼用溶鋼の連続鋳造設備の平面図である。It is a top view of the continuous casting equipment of the molten steel for high carbon steel which concerns on one embodiment of this invention.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施の形態に係る高炭素鋼用溶鋼の連続鋳造設備(以下、単に連続鋳造設備ともいう)10は、炭素量が0.6質量%以上の高炭素鋼用溶鋼(以下、単に溶鋼ともいう)をタンディッシュ(図示しない)からそれぞれ注入して冷却し、鋳片を製造する3つ(複数)の鋳型11〜13を備え、疵の発生のない良好な品質の製品を、生産性よく、かつ、作業性よく、製造できるものである。ここで、製品とは、高炭素鋼用溶鋼を鋳造して得られる鋳片を圧延して得られるものであり、例えば、軌条(鉄道用のレール)があるが、これに限定されるものではない。
以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, a continuous casting facility (hereinafter also simply referred to as a continuous casting facility) 10 for molten steel for high carbon steel according to an embodiment of the present invention has a carbon content of 0.6% by mass or more. It is equipped with three (multiple) molds 11 to 13 for injecting molten steel for steel (hereinafter, also simply referred to as molten steel) from a tundish (not shown) and cooling them to produce cast pieces, and good without flaws Products of high quality can be manufactured with good productivity and good workability. Here, the product is obtained by rolling a slab obtained by casting molten steel for high carbon steel. For example, there is a rail (rail for rail), but it is not limited to this. Absent.
This will be described in detail below.

3つの鋳型11〜13は、同一構成のものである。
これら鋳型11〜13は、間隔を有して並べて配置され、対向配置される一対のバックプレート(フレーム)14、15に、挟み込まれた状態で取付け固定されることで、その位置決めがなされている。なお、バックプレート14、15は、ステンレス又は鋼で構成されている。
これにより、1つのタンディッシュに対して3つの鋳型11〜13を配置でき、1つのタンディッシュから各鋳型11〜13へ、同時に溶鋼を注入(供給)できる。
The three molds 11 to 13 have the same configuration.
These molds 11 to 13 are arranged side by side with a space therebetween, and are positioned and fixed by being attached and fixed to a pair of opposed back plates (frames) 14 and 15 while being sandwiched therebetween. . The back plates 14 and 15 are made of stainless steel or steel.
Thereby, three molds 11-13 can be arranged to one tundish, and molten steel can be poured (supplied) from one tundish to each mold 11-13 simultaneously.

鋳型11(鋳型12、13も同様)は、間隔を有して対向配置される一対の短辺16、17と、この短辺16、17を幅方向両側から挟み込んだ状態で対向配置される一対の長辺18、19とを有し、この一対の短辺16、17と一対の長辺18、19によって断面四角形の鋳型空間部20が形成されている。なお、短辺16、17と長辺18、19はそれぞれ、銅又は銅合金で構成され、その表面(溶鋼接触面側)には、鋳型11の使用用途(溶鋼の種類)に応じて、めっき層や溶射皮膜が形成されている。   The mold 11 (the same applies to the molds 12 and 13) includes a pair of short sides 16 and 17 disposed to face each other with a gap therebetween, and a pair disposed to face each other with the short sides 16 and 17 sandwiched from both sides in the width direction. The pair of short sides 16 and 17 and the pair of long sides 18 and 19 form a square-shaped mold space 20. In addition, each of the short sides 16 and 17 and the long sides 18 and 19 is made of copper or a copper alloy, and the surface (molten steel contact surface side) is plated in accordance with the use application (type of molten steel) of the mold 11. Layers and sprayed coatings are formed.

この短辺16、17と長辺18、19の裏面側にはそれぞれ、多数の導水溝(図示しない)が、幅方向に所定のピッチで、鋳造方向(鋳片が引き抜かれる方向)に設けられている。なお、短辺16、17の裏面にはそれぞれ、バックプレート(図示しない)が取付け固定され、また、長辺18、19の裏面はそれぞれ、バックプレート14、15に取付け固定されている。
これにより、導水溝に冷却水を流すことで、連続鋳造時における短辺16、17と長辺18、19の冷却を実施できる。
On the back side of the short sides 16 and 17 and the long sides 18 and 19, a large number of water guide grooves (not shown) are provided in the casting direction (the direction in which the slab is pulled out) at a predetermined pitch in the width direction. ing. A back plate (not shown) is attached and fixed to the back surfaces of the short sides 16 and 17, and the back surfaces of the long sides 18 and 19 are attached and fixed to the back plates 14 and 15, respectively.
Thereby, cooling of the short sides 16 and 17 and the long sides 18 and 19 at the time of continuous casting can be implemented by flowing cooling water through the water guide groove.

短辺16、17は、厚みが10mm以上100mm以下程度、幅(鋳型空間部20の短辺16、17側の幅)が300mm以上500mm以下、鋳造方向の長さが600mm以上1200mm以下程度である。この短辺16、17は、鏡面対称で同じ構成となっている。
また、長辺18、19はそれぞれ、厚みが10mm以上100mm以下程度、対向配置される一対の短辺16、17の間隔(鋳型空間部20の長辺18、19側の幅)が360mm以上650mm以下、鋳造方向の長さが短辺16、17と同程度である。
The short sides 16 and 17 have a thickness of about 10 mm to 100 mm, a width (a width on the short side 16 and 17 side of the mold space 20) of 300 mm to 500 mm, and a length in the casting direction of about 600 mm to 1200 mm. . The short sides 16 and 17 are mirror-symmetric and have the same configuration.
The long sides 18 and 19 each have a thickness of about 10 mm or more and 100 mm or less, and the distance between the pair of opposed short sides 16 and 17 (the width on the long side 18 and 19 side of the mold space 20) is 360 mm or more and 650 mm. Hereinafter, the length in the casting direction is about the same as the short sides 16 and 17.

ここで、短辺16、17の幅を300mm以上500mm以下(特には、400mm以下)とし、対向配置される一対の短辺16、17の間隔を360mm以上650mm以下(特には、500mm以下)としたのは、高炭素鋼の製品(特に、軌条)を製造するために必要な大きさの鋳片を得るためであり、この幅と間隔で、炭素量が0.6質量%以上の高炭素鋼用溶鋼(特に、軌条用溶鋼)を鋳造した場合に、鋳片のコーナ部近傍に微細な内部割れが発生し易いことによる。
そこで、鋳型11(鋳型12、13も同様)の形状を、以下の形状にする。
Here, the width of the short sides 16 and 17 is 300 mm or more and 500 mm or less (particularly 400 mm or less), and the distance between the pair of opposed short sides 16 and 17 is 360 mm or more and 650 mm or less (particularly 500 mm or less). The reason for this is to obtain a slab of a size necessary for producing a high carbon steel product (especially a rail), and with this width and interval, the carbon content is 0.6% by mass or more. This is because when molten steel for steel (particularly, molten steel for rails) is cast, fine internal cracks are likely to occur near the corner of the slab.
Therefore, the shape of the mold 11 (same for the molds 12 and 13) is changed to the following shape.

一対の短辺16、17の各対向面(鋳片接触面)と一対の長辺18、19の各対向面(鋳片接触面)にそれぞれ、メニスカス位置から鋳型出口まで、鋳造方向に鋳片シェル(凝固シェル)の凝固収縮量に追従して間隔が徐々に狭まる傾斜部を形成する(鋳型空間部20をテーパ状(先細り形状)とする)。
傾斜部の表面形状(内側断面形状)は、その幅方向に渡って略同一形状となっており、メニスカス位置から下方への距離の増加に伴って、テーパ率の増加率が小さくなる形状、即ち、マルチテーパとなっている。
A slab in the casting direction from the meniscus position to the mold outlet on each of the opposing surfaces (slab contact surface) of the pair of short sides 16 and 17 and each of the opposing surfaces (slab contact surface) of the pair of long sides 18 and 19 An inclined portion whose interval is gradually narrowed is formed following the amount of solidification shrinkage of the shell (solidified shell) (the mold space 20 is tapered (tapered)).
The surface shape (inner cross-sectional shape) of the inclined portion is substantially the same shape in the width direction, and the shape in which the increase rate of the taper rate decreases with increasing distance from the meniscus position, that is, Multi-taper.

このマルチテーパとは、鋳型内(メニスカス位置(湯面)から鋳型出口まで)での鋳片の凝固収縮プロフィールを、曲線(複数の関数で規定)及び複数の直線のいずれか一方又は双方を使用して近似し、それを傾斜部の表面形状に適用したものである。
また、テーパ率とは、短辺及び長辺をそれぞれ平面視した際に、その内側表面(鋳片接触面)の上端位置と下端位置の差を、鉛直方向の長さで除し、「%」で示した値である。なお、ここでは、例えば、0.9%/m以上2.0%/m以下程度、である。
This multitaper uses the curve (specified by multiple functions) and / or multiple straight lines for the solidification shrinkage profile of the slab in the mold (from the meniscus position (metal surface) to the mold outlet). It is approximated and applied to the surface shape of the inclined portion.
In addition, the taper ratio is obtained by dividing the difference between the upper end position and the lower end position of the inner surface (slab contact surface) by the length in the vertical direction when the short side and the long side are respectively viewed in plan. It is the value shown by. Here, for example, it is about 0.9% / m or more and 2.0% / m or less.

以下、マルチテーパの決定方法について、簡単に説明する。
マルチテーパは、下記に示す条件を考慮したり、また実際に測定した結果を基にして、3次元の鋳片の凝固収縮及び鋳型の熱変形を考慮したFEM解析(有限要素法を用いた解析、以下同様)により求めている。具体的には、鋳片の形状、鋳片のサイズ、鋳込み条件(例えば、鋳込み温度、引抜き速度、鋳型冷却条件等)、鋳込み鋼種の成分に由来する物理量(例えば、液相温度、固相温度、変態温度、線膨張率、剛性値等)、鋳型と鋳片との間の接触熱移動量(鋳片の収縮量は、この量に大きく影響される)等を用いる。
Hereinafter, the multitaper determination method will be briefly described.
Multi-taper is based on FEM analysis (analysis using finite element method) considering solidification shrinkage of 3D slab and thermal deformation of mold based on the following measured conditions and actual measurement results. The same shall apply hereinafter. Specifically, the shape of the slab, the size of the slab, casting conditions (for example, casting temperature, drawing speed, mold cooling conditions, etc.), physical quantities derived from the components of the cast steel type (for example, liquidus temperature, solid phase temperature) , Transformation temperature, linear expansion coefficient, rigidity value, etc.), the amount of contact heat transfer between the mold and the slab (the amount of shrinkage of the slab is greatly influenced by this amount), and the like.

なお、上記した接触熱移動量は、例えば、鋳造時に使用する潤滑材の種類や鋳片の表面形状(鋼種、オシレーション条件、潤滑材種類に依存)の違いに大きく影響される。
従って、各鋳込み条件ごとの実績の接触熱移動量をできるだけ正確に把握することが、マルチテーパの決定には必要とされる。
また、複数の鋳型11〜13の形状を上記形状に加工するに際しては、バックプレート14に各鋳型11〜13の長辺18となる部材を取付け固定した状態で、一度に加工することが好ましい。これにより、同一形状の長辺18を効率よく製造できると共に、マルチテーパの形状も精度よく加工できる(バックプレート15と長辺19についても同様)。
The amount of contact heat transfer described above is greatly influenced by, for example, the type of lubricant used during casting and the surface shape of the slab (depending on the steel type, oscillation conditions, and lubricant type).
Therefore, it is necessary for determining the multitaper to grasp the actual amount of contact heat transfer for each casting condition as accurately as possible.
Moreover, when processing the shape of the some casting_mold | templates 11-13 to the said shape, it is preferable to process at once, in the state which attached and fixed the member used as the long side 18 of each casting_mold | template 11-13 to the backplate 14. FIG. Accordingly, the long side 18 having the same shape can be efficiently manufactured, and the multitaper shape can be processed with high precision (the same applies to the back plate 15 and the long side 19).

続いて、本発明の一実施の形態に係る高炭素鋼用溶鋼の連続鋳造方法について、前記した高炭素鋼用溶鋼の連続鋳造設備10を用いて説明する。
まず、転炉や電気炉等の通常使用される溶解炉を用いて、所定の化学組成に調整した、炭素量が0.6質量%以上(上限は、例えば、1.2質量%)の高炭素鋼用溶鋼を製造する。
次に、この溶鋼をタンディッシュへ供給した後、タンディッシュから各鋳型11〜13へ注入し冷却して、鋳片を製造する。
Then, the continuous casting method of the molten steel for high carbon steel which concerns on one embodiment of this invention is demonstrated using the above-mentioned continuous casting equipment 10 of molten steel for high carbon steel.
First, the amount of carbon adjusted to a predetermined chemical composition using a commonly used melting furnace such as a converter or an electric furnace is 0.6 mass% or more (the upper limit is, for example, 1.2 mass%). Manufactures molten steel for carbon steel.
Next, after supplying this molten steel to a tundish, it inject | pours into each casting_mold | templates 11-13 from a tundish, and cools and manufactures a slab.

このように、前記した構成の鋳型11(鋳型12、13も同様)を用いて溶鋼の鋳造を行うことで、鋳型11内面と、鋳型11内で形成される鋳片シェルとの接触状態を、良好にできる。これにより、コーナ部近傍における凝固遅れが改善されるため、鋳型11内においては、鋳片シェルのコーナ部近傍の厚みを、他の部分(辺部)の厚みと略同程度にできる。   Thus, by casting molten steel using the mold 11 having the above-described configuration (the same applies to the molds 12 and 13), the contact state between the inner surface of the mold 11 and the slab shell formed in the mold 11 is as follows. Can be good. Thereby, since the solidification delay in the vicinity of the corner portion is improved, the thickness in the vicinity of the corner portion of the slab shell can be made substantially equal to the thickness of the other portion (side portion) in the mold 11.

なお、前記した大きさの鋳片の連続鋳造においては、鋳型11〜13による溶鋼の鋳造速度を、0.8m/分以上1.2m/分以下(好ましくは、下限を0.9m/分、上限を1.0m/分)にしている。
ここで、鋳造速度が0.8m/分未満の場合、鋳造速度が遅過ぎて、生産性の低下を招くおそれがある。一方、鋳造速度が1.2m/分超の場合、鋳造速度が速過ぎて、鋳型内のコーナ部において不均一凝固が発生し、これが微細割れやブリードの原因となり、最悪の場合、ブレークアウト等のトラブルを招くおそれがある。
In the continuous casting of the slab of the size described above, the casting speed of the molten steel by the molds 11 to 13 is 0.8 m / min or more and 1.2 m / min or less (preferably, the lower limit is 0.9 m / min, The upper limit is 1.0 m / min.
Here, when the casting speed is less than 0.8 m / min, the casting speed is too slow, and the productivity may be lowered. On the other hand, when the casting speed is over 1.2 m / min, the casting speed is too high and non-uniform solidification occurs at the corners in the mold, which causes fine cracks and bleeds. May cause trouble.

また、鋳片の連続鋳造においては、鋳造時間を24時間以上(好ましくは26時間以上、更に好ましくは28時間以上、上限は、例えば、36時間程度)にしている。
このように、24時間以上連続して鋳造を行うことで、鋳片の生産性を高めることができる。また、鋳型11(鋳型12、13も同様)を用いることで、上記したように、コーナ部近傍における凝固遅れが改善されるため、24時間以上の長時間の連続鋳造を、鋳型のトラブルを抑制、更には防止しながら、安定して実施できる。
In continuous casting of a slab, the casting time is 24 hours or longer (preferably 26 hours or longer, more preferably 28 hours or longer, and the upper limit is, for example, about 36 hours).
Thus, by continuously casting for 24 hours or more, the productivity of the slab can be increased. In addition, by using the mold 11 (same for the molds 12 and 13), as described above, the solidification delay in the vicinity of the corner portion is improved. Further, it can be carried out stably while preventing.

上記した方法で得られた鋳片は、鋳片の微細な内部割れの発生を抑制でき、また、たとえ発生したとしても、その発生場所を表面から内部(例えば、表面から5mm以上の厚み位置)へ移動させることができる。
このため、上記した鋳片を更に熱間圧延した場合においても、疵のない製品を製造できる。
The slab obtained by the above-described method can suppress the occurrence of fine internal cracks in the slab, and even if it occurs, the generation location is from the surface to the inside (for example, a thickness position of 5 mm or more from the surface). Can be moved to.
For this reason, even when the above-described slab is further hot-rolled, a product free from defects can be produced.

なお、ここでは、製品の生産性を高めるため、連続鋳造設備10には、1つのタンディッシュに対して3つの鋳型11〜13を配置しているが、仮に製品に疵が発生する場合は、前記したように、例えば、突発的に鋳型の交換を行ったり、鋳造速度を現状より遅くしたりする必要がある。このような作業を、複数の鋳型11〜13について行う場合、作業が複雑になると共に、生産性の低下を招くことになる。
以上のことから、本発明の高炭素鋼用溶鋼の連続鋳造設備10及びこれを用いた高炭素鋼用溶鋼の連続鋳造方法を用いることで、生産性よく、かつ、作業性よく、高炭素鋼の製品(特に、軌条)を製造できる。
Here, in order to increase the productivity of the product, in the continuous casting facility 10, three molds 11 to 13 are arranged for one tundish. However, if wrinkles occur in the product, As described above, for example, it is necessary to change the mold suddenly or to make the casting speed slower than the current state. When such an operation is performed for a plurality of molds 11 to 13, the operation becomes complicated and the productivity is reduced.
From the above, by using the continuous casting equipment 10 for molten steel for high carbon steel of the present invention and the continuous casting method for molten steel for high carbon steel using the same, the high carbon steel has good productivity and good workability. Products (especially rails) can be manufactured.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の高炭素鋼用溶鋼の連続鋳造設備及びこれを用いた高炭素鋼用溶鋼の連続鋳造方法を構成する場合も本発明の権利範囲に含まれる。
前記実施の形態においては、1つのタンディッシュに対して、3つの鋳型を配置した場合について説明したが、複数であればよく、例えば2つでもよく、また、4つ以上でもよい。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, in the case where the continuous casting equipment for molten steel for high carbon steel of the present invention and the continuous casting method for molten steel for high carbon steel using the same are configured by combining some or all of the above-described embodiments and modifications. Is also included in the scope of rights of the present invention.
In the above-described embodiment, the case where three molds are arranged for one tundish has been described. However, a plurality of molds may be used, for example, two, or four or more.

また、前記実施の形態においては、1つのタンディッシュに配置した3つの鋳型の鋳型空間部(内断面形状)を、同一形状としたが、鋳型空間部の内幅が前記した寸法範囲内にあり、かつ、鋳型を構成する短辺と長辺の各対向面に前記した構成の傾斜部が形成されていれば、異なる形状にすることもできる。
ここで、異なる形状とは、例えば、傾斜部(マルチテーパ)の形状が異なる場合や、また、各鋳型で鋳造する鋳片の断面寸法が異なる場合、等がある。
Moreover, in the said embodiment, although the mold space part (inner cross-sectional shape) of the three casting_mold | templates arrange | positioned at one tundish was made into the same shape, the inner width of a mold space part exists in the above-mentioned size range. And if the inclined part of the above-mentioned structure is formed in each opposing surface of the short side and long side which comprise a casting_mold | template, it can also be set as a different shape.
Here, the different shape includes, for example, a case where the shape of the inclined portion (multi-taper) is different, or a case where the cross-sectional dimensions of the cast pieces cast in each mold are different.

10:高炭素鋼用溶鋼の連続鋳造設備、11〜13:鋳型、14、15:バックプレート、16、17:短辺、18、19:長辺、20:鋳型空間部 10: Continuous casting equipment for molten steel for high carbon steel, 11-13: Mold, 14, 15: Back plate, 16, 17: Short side, 18, 19: Long side, 20: Mold space

Claims (3)

間隔を有して対向配置される一対の短辺と、該短辺を幅方向両側から挟み込んだ状態で対向配置される一対の長辺とによって形成された鋳型空間部に、炭素量が0.6質量%以上の高炭素鋼用溶鋼をタンディッシュから注入して冷却し、鋳片を製造する鋳型を備えた高炭素鋼用溶鋼の連続鋳造設備において、
前記鋳型空間部の前記短辺側の幅を300mm以上500mm以下とし、かつ、前記鋳型空間部の前記長辺側の幅を360mm以上650mm以下とし、しかも、対向する前記一対の短辺の各対向面及び前記一対の長辺の各対向面にそれぞれ、前記鋳片が引き抜かれる方向に鋳片シェルの凝固収縮量に追従して間隔が徐々に狭まる傾斜部を形成した前記鋳型が、1つの前記タンディッシュに対して複数配置されたことを特徴とする高炭素鋼用溶鋼の連続鋳造設備。
In a template space formed by a pair of short sides opposed to each other with an interval and a pair of long sides opposed to each other with the short sides sandwiched from both sides in the width direction, the carbon content is 0. In a continuous casting facility for molten steel for high carbon steel equipped with a mold for injecting molten steel for high carbon steel of 6% by mass or more from a tundish and cooling it,
The width of the short side of the mold space is 300 mm or more and 500 mm or less, and the width of the long side of the mold space is 360 mm or more and 650 mm or less, and each of the opposed short sides of the pair of short sides Each of the molds formed on each of the surfaces and the opposing surfaces of the pair of long sides has inclined portions whose intervals gradually narrow in accordance with the amount of solidification shrinkage of the slab shell in the direction in which the slab is pulled out. A continuous casting facility for molten steel for high carbon steel, characterized in that a plurality of tundishes are arranged.
請求項1記載の高炭素鋼用溶鋼の連続鋳造設備を用いた高炭素鋼用溶鋼の連続鋳造方法であって、前記鋳型による高炭素鋼用溶鋼の鋳造速度を0.8m/分以上1.2m/分以下にして、前記鋳片を製造することを特徴とする高炭素鋼用溶鋼の連続鋳造方法。   A method for continuously casting molten steel for high carbon steel using the continuous casting equipment for molten steel for high carbon steel according to claim 1, wherein the casting speed of the molten steel for high carbon steel by the mold is 0.8 m / min or more. A continuous casting method for molten steel for high carbon steel, characterized in that the slab is produced at a rate of 2 m / min or less. 請求項1記載の高炭素鋼用溶鋼の連続鋳造設備を用いた高炭素鋼用溶鋼の連続鋳造方法であって、前記鋳型による高炭素鋼用溶鋼の鋳造時間を24時間以上にして、前記鋳片を製造することを特徴とする高炭素鋼用溶鋼の連続鋳造方法。   A continuous casting method for molten steel for high carbon steel using the continuous casting equipment for molten steel for high carbon steel according to claim 1, wherein the casting time of the molten steel for high carbon steel by the mold is 24 hours or longer. A continuous casting method for molten steel for high carbon steel, characterized by producing pieces.
JP2015021298A 2015-02-05 2015-02-05 Continuous casting equipment for molten steel of high carbon steel and continuous casting method for molten steel of high carbon steel using the same Pending JP2016140912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015021298A JP2016140912A (en) 2015-02-05 2015-02-05 Continuous casting equipment for molten steel of high carbon steel and continuous casting method for molten steel of high carbon steel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021298A JP2016140912A (en) 2015-02-05 2015-02-05 Continuous casting equipment for molten steel of high carbon steel and continuous casting method for molten steel of high carbon steel using the same

Publications (1)

Publication Number Publication Date
JP2016140912A true JP2016140912A (en) 2016-08-08

Family

ID=56568131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021298A Pending JP2016140912A (en) 2015-02-05 2015-02-05 Continuous casting equipment for molten steel of high carbon steel and continuous casting method for molten steel of high carbon steel using the same

Country Status (1)

Country Link
JP (1) JP2016140912A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663705A (en) * 1992-08-19 1994-03-08 Nippon Steel Corp Method for casting small lot in tundish
JPH09253703A (en) * 1996-03-19 1997-09-30 Nippon Steel Corp Production of high strength rail
JPH1080749A (en) * 1996-09-07 1998-03-31 Nippon Steel Corp Method for continuously casting high carbon steel
JP2007160346A (en) * 2005-12-13 2007-06-28 Mishima Kosan Co Ltd Casting mold for continuous casting
JP2008149379A (en) * 2008-03-12 2008-07-03 Nippon Steel Corp Cast slab with excellent solidification structure
JP2008238244A (en) * 2007-03-28 2008-10-09 Sanyo Special Steel Co Ltd Method for manufacturing cast slab having sound internal structure by strand-to-strand control of specific flow rate of secondary cooling water for continuous casting
JP2013136081A (en) * 2011-12-28 2013-07-11 Mishima Kosan Co Ltd Continuous casting mold

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663705A (en) * 1992-08-19 1994-03-08 Nippon Steel Corp Method for casting small lot in tundish
JPH09253703A (en) * 1996-03-19 1997-09-30 Nippon Steel Corp Production of high strength rail
JPH1080749A (en) * 1996-09-07 1998-03-31 Nippon Steel Corp Method for continuously casting high carbon steel
JP2007160346A (en) * 2005-12-13 2007-06-28 Mishima Kosan Co Ltd Casting mold for continuous casting
JP2008238244A (en) * 2007-03-28 2008-10-09 Sanyo Special Steel Co Ltd Method for manufacturing cast slab having sound internal structure by strand-to-strand control of specific flow rate of secondary cooling water for continuous casting
JP2008149379A (en) * 2008-03-12 2008-07-03 Nippon Steel Corp Cast slab with excellent solidification structure
JP2013136081A (en) * 2011-12-28 2013-07-11 Mishima Kosan Co Ltd Continuous casting mold

Similar Documents

Publication Publication Date Title
JP5673149B2 (en) Mold for continuous casting of steel and method for continuous casting of steel
JP2008049385A (en) Continuous casting mold
JP6358178B2 (en) Continuous casting method and mold cooling water control device
TWI765006B (en) Production method of austenitic stainless steel slab
JP6085571B2 (en) Continuous casting mold
KR102245010B1 (en) Method for continuous casting of steel
WO2020179698A1 (en) Method for continuous casting of slab
JP6747142B2 (en) Secondary cooling method and secondary cooling device for continuous casting
JP6365604B2 (en) Steel continuous casting method
JP2016140912A (en) Continuous casting equipment for molten steel of high carbon steel and continuous casting method for molten steel of high carbon steel using the same
JP2019171435A (en) Method of continuous casting
WO2018056322A1 (en) Continuous steel casting method
JPH09276994A (en) Mold for continuous casting
JP2008260044A (en) Continuous casting method of steel slab for preventing breakout caused by solidification delay
JP4451798B2 (en) Continuous casting method
JP6520272B2 (en) Continuous casting mold and continuous casting method
JP2020121329A (en) Mold and method for steel continuous casting
JP5689434B2 (en) Continuous casting mold
JP2018044820A (en) Molten layer thickness measurement device and method, and steel manufacturing method
EP2461924A1 (en) Mould for continuous casting of long or flat products, cooling jacket designed to cooperate with such a mould and assembly comprising such a mould and such a cooling jacket
JP6100707B2 (en) Pull-up continuous casting equipment
JP6000198B2 (en) Continuous casting method
JP2024004032A (en) Continuous casting method
JP2024035081A (en) Continuous casting mold
CN113015587A (en) Mold for continuous casting of steel and method for continuous casting of steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170801