JP2019171435A - Method of continuous casting - Google Patents

Method of continuous casting Download PDF

Info

Publication number
JP2019171435A
JP2019171435A JP2018063376A JP2018063376A JP2019171435A JP 2019171435 A JP2019171435 A JP 2019171435A JP 2018063376 A JP2018063376 A JP 2018063376A JP 2018063376 A JP2018063376 A JP 2018063376A JP 2019171435 A JP2019171435 A JP 2019171435A
Authority
JP
Japan
Prior art keywords
mold
continuous casting
slab
metal filling
dissimilar metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018063376A
Other languages
Japanese (ja)
Other versions
JP6787359B2 (en
Inventor
孝平 古米
Kohei Furumai
孝平 古米
則親 荒牧
Norichika Aramaki
則親 荒牧
三木 祐司
Yuji Miki
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018063376A priority Critical patent/JP6787359B2/en
Publication of JP2019171435A publication Critical patent/JP2019171435A/en
Application granted granted Critical
Publication of JP6787359B2 publication Critical patent/JP6787359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

To provide a method of continuous casting adapted to prevent surface cracks of a billet resulting from uneven cooling of a solidified shell within a continuous casting mold.SOLUTION: A method of continuous casting in the present invention is for performing continuous casting using a mold that has dissimilar-metal filled portions 3 having a diameter of from 1.0 mm to 10.0 mm filled with a metal having a heat conductivity of 80% or lower or 120% or higher relative to a heat conductivity of a copper mold in a vicinity of a meniscus on an inner wall surface of the mold, and the dissimilar-metal filled portions adjacent to each other in a width direction of the mold are in contact with or parts thereof are overlapped with each other and that a center-to-center distance W of the dissimilar-metal filled portions adjacent to each other in the width direction of the mold satisfies a relationship of the following Expression (3) with respect to a diameter d of the dissimilar-metal filled portion and/or a center-to-center distance L of the dissimilar-metal filled portions adjacent to each other in a casting direction of the mold satisfies a relationship of the following Expression (4) with respect to the diameter d of the dissimilar-metal filled portions. 0.70<W/d≤1.00...(3) 0.70<L/d≤1.00...(4)SELECTED DRAWING: Figure 1

Description

本発明は、鋳型内での凝固シェルの不均一冷却に起因する鋳片表面割れを抑制して溶鋼を連続鋳造する、鋼の連続鋳造方法に関する。   The present invention relates to a continuous casting method for steel in which molten steel is continuously cast while suppressing slab surface cracks resulting from uneven cooling of a solidified shell in a mold.

鋼の連続鋳造では、鋳型内に注入された溶鋼は水冷式連続鋳造用鋳型によって冷却され、鋳型との接触面で溶鋼が凝固して凝固シェル(「凝固層」とも呼ぶ)が生成される。この凝固シェルを外殻とし、内部を未凝固層とする鋳片は、鋳型の下流側に設置された水スプレーや気水スプレーによって冷却されながら鋳型下方に連続的に引き抜かれる。鋳片は、水スプレーや気水スプレーによる冷却によって厚み中心部まで凝固し、その後、ガス切断機などによって切断されて、所定長さの鋳片が製造されている。   In continuous casting of steel, molten steel injected into a mold is cooled by a water-cooled continuous casting mold, and the molten steel is solidified at a contact surface with the mold to generate a solidified shell (also referred to as “solidified layer”). The slab having the solidified shell as an outer shell and the inside as an unsolidified layer is continuously drawn below the mold while being cooled by a water spray or an air / water spray installed on the downstream side of the mold. The slab is solidified to the center of thickness by cooling with water spray or air-water spray, and then cut by a gas cutter or the like to produce a slab of a predetermined length.

鋳型内における冷却が不均一になると、凝固シェルの厚みが鋳片の鋳造方向及び鋳型幅方向で不均一になる。凝固シェルには、凝固シェルの収縮や変形に起因する応力が作用し、凝固初期においては、この応力が凝固シェルの薄肉部に集中し、この応力によって凝固シェルの表面に割れが発生する。この割れは、その後の熱応力や連続鋳造機のロールによる曲げ応力及び矯正応力などの外力により拡大し、大きな表面割れとなる。鋳片に存在する割れは、次工程の熱間圧延工程で表面欠陥となることから、鋳造後の鋳片の段階において、鋳片の表面を手入れして表面割れを除去することが必要となる。   If the cooling in the mold becomes non-uniform, the thickness of the solidified shell becomes non-uniform in the casting direction of the slab and in the mold width direction. A stress caused by the shrinkage or deformation of the solidified shell acts on the solidified shell, and in the initial stage of solidification, this stress is concentrated on the thin portion of the solidified shell, and the stress causes cracks on the surface of the solidified shell. This crack expands due to subsequent external stresses such as thermal stress, bending stress due to the roll of a continuous casting machine, and straightening stress, resulting in a large surface crack. Since cracks present in the slab become surface defects in the subsequent hot rolling process, it is necessary to clean the surface of the slab and remove the surface cracks at the stage of the cast slab after casting. .

鋳型内の不均一凝固は、特に、炭素含有量が0.08〜0.17質量%の鋼(中炭素鋼という)で発生しやすい。炭素含有量が0.08〜0.17質量%の鋼では、凝固時に包晶反応が起こる。鋳型内の不均一凝固は、この包晶反応によるδ鉄(フェライト)からγ鉄(オーステナイト)への変態時の体積収縮による変態応力に起因すると考えられている。つまり、この変態応力に起因する歪みによって凝固シェルが変形し、この変形によって凝固シェルが鋳型内壁面から離れる。鋳型内壁面から離れた部位は鋳型による冷却が低下し、この鋳型内壁面から離れた部位(この鋳型内壁面から離れた部位を「デプレッション」という)の凝固シェル厚みが薄くなる。凝固シェル厚みが薄くなることで、この部分に上記応力が集中し、表面割れが発生すると考えられている。   Inhomogeneous solidification in the mold is likely to occur particularly in steel (referred to as medium carbon steel) having a carbon content of 0.08 to 0.17% by mass. In a steel having a carbon content of 0.08 to 0.17% by mass, a peritectic reaction occurs during solidification. It is believed that the inhomogeneous solidification in the mold is caused by transformation stress due to volume shrinkage during transformation from δ iron (ferrite) to γ iron (austenite) by this peritectic reaction. That is, the solidified shell is deformed by the strain caused by the transformation stress, and the solidified shell is separated from the inner wall surface of the mold by this deformation. The portion separated from the inner wall surface of the mold is cooled by the mold, and the thickness of the solidified shell at the portion away from the inner wall surface of the mold (the portion away from the inner wall surface of the mold is referred to as “depression”) is reduced. It is considered that the stress is concentrated on this portion and the surface cracks are generated by reducing the thickness of the solidified shell.

特に、鋳片引き抜き速度を増加した場合には、凝固シェルから鋳型への平均熱流束が増加する(凝固シェルが急速冷却される)のみならず、熱流束の分布が不規則で且つ不均一になることから、鋳片表面割れの発生が増加傾向となる。具体的には、鋳片厚みが200mm以上のスラブ連続鋳造機においては、鋳片引き抜き速度が1.5m/min以上になると表面割れが発生しやすくなる。   In particular, when the slab drawing speed is increased, not only the average heat flux from the solidified shell to the mold increases (the solidified shell is rapidly cooled), but also the heat flux distribution is irregular and non-uniform. Therefore, the occurrence of slab surface cracks tends to increase. Specifically, in a slab continuous casting machine having a slab thickness of 200 mm or more, surface cracks are likely to occur when the slab drawing speed is 1.5 m / min or more.

そこで、従来、表面割れが発生しやすい鋼種の表面割れ(特に縦割れ)を抑制するために、種々の手段が提案されている。   Therefore, conventionally, various means have been proposed in order to suppress surface cracks (particularly longitudinal cracks) in the steel types that are liable to generate surface cracks.

例えば、特許文献1には、結晶化しやすい組成のモールドパウダーを使用し、モールドパウダー層の熱抵抗を増大させて凝固シェルを緩冷却することが提案されている。これは、緩冷却によって凝固シェルに作用する応力を低下させて表面割れを抑制するという技術である。しかしながら、モールドパウダーによる緩冷却効果のみでは、不均一凝固を十分に改善するまでには至っておらず、特に凝固に伴う僅かな温度低下でδ鉄からγ鉄への変態が生じる中炭素鋼では、表面割れの発生を十分に抑制できないのが実情である。   For example, Patent Document 1 proposes using mold powder having a composition that is easily crystallized, and increasing the thermal resistance of the mold powder layer to slowly cool the solidified shell. This is a technique of suppressing surface cracking by reducing the stress acting on the solidified shell by slow cooling. However, only the slow cooling effect due to the mold powder has not sufficiently improved the non-uniform solidification, especially in the medium carbon steel in which transformation from δ iron to γ iron occurs due to a slight temperature drop accompanying solidification, The fact is that the occurrence of surface cracks cannot be sufficiently suppressed.

そこで、連続鋳造用鋳型の内壁面のメニスカス(「鋳型内溶鋼湯面」ともいう)近傍に、鋳型銅板よりも熱伝導率が低い、または、鋳型銅板よりも熱伝導率が高い金属を充填させた異種金属充填部を形成し、メニスカス近傍の凝固シェルに、規則的且つ周期的に増減する熱流束分布を強制的に与え、δ鉄からγ鉄への変態による応力や熱応力の凝固シェルへの負荷を軽減して鋳片の表面割れを防止する方法が提案されている。   Therefore, a metal having a thermal conductivity lower than that of the mold copper plate or higher than that of the mold copper plate is filled in the vicinity of the meniscus (also referred to as “molten steel surface in the mold”) of the inner wall surface of the continuous casting mold. In other words, the solidified shell near the meniscus is forcibly given a regular and periodic heat flux distribution to the solidified shell due to transformation from δ iron to γ iron or thermal stress. There has been proposed a method for reducing the load on the slab and preventing the surface crack of the slab.

例えば、特許文献2には、水冷式銅鋳型の内壁面のメニスカスよりも上方の任意の位置からメニスカスよりも20mm以上下方の位置までの内壁面の範囲に、銅の熱伝導率に対して30%以下の熱伝導率の金属が、前記内壁面に設けた円形凹溝または擬似円形凹溝の内部に充填されて形成された、直径2〜20mmまたは円相当径2〜20mmの複数個の異種金属充填部をそれぞれ独立して有し、且つ、前記異種金属充填部での前記金属の充填厚みが、0.5mm以上で且つ前記異種金属充填部の直径dまたは円相当径d以下である連続鋳造用鋳型が提案されている。   For example, Patent Document 2 discloses that the thermal conductivity of copper is within the range of an inner wall surface from an arbitrary position above the meniscus on the inner wall surface of the water-cooled copper mold to a position 20 mm or more below the meniscus. % Of a plurality of different kinds of metals having a diameter of 2 to 20 mm or equivalent circular diameters of 2 to 20 mm, which are formed by filling a metal having a thermal conductivity of less than or equal to% into the circular concave groove or pseudo circular concave groove provided on the inner wall surface. Continuously having a metal filling part independently, and a filling thickness of the metal in the different metal filling part being 0.5 mm or more and a diameter d of the different metal filling part or an equivalent circle diameter d or less. Casting molds have been proposed.

また、特許文献3には、水冷式銅鋳型の内壁面のメニスカスよりも上方の任意の位置からメニスカスよりも所定以上下方の位置までの内壁面の範囲に、鋳型銅板の熱伝導率に対して熱伝導率が80%以下または125%以上である金属が充填された異種金属充填部を有する連続鋳造用鋳型を用い、鋳造方向に隣会う異種金属充填部の中心間距離Lが、鋳型振動の振幅A及び振動数f並びに鋳片引き抜き速度Vcに対して、「A/2≦L≦1000×Vc/f」を満足するように、鋳型の振動条件及び鋳片引き抜き速度を制御する方法が提案されている。特許文献3は、オシレーションマークに起因する鋳片表面割れも軽減できるとしている。   Further, Patent Document 3 discloses that the thermal conductivity of the mold copper plate is within the range of the inner wall surface from a position above the meniscus on the inner wall surface of the water-cooled copper mold to a position below the meniscus by a predetermined distance or more. Using a continuous casting mold having a dissimilar metal filling portion filled with a metal having a thermal conductivity of 80% or less or 125% or more, the distance L between the centers of dissimilar metal filling portions adjacent to the casting direction is A method for controlling the vibration conditions of the mold and the slab drawing speed so as to satisfy “A / 2 ≦ L ≦ 1000 × Vc / f” with respect to the amplitude A, the frequency f, and the slab drawing speed Vc is proposed. Has been. Patent Document 3 states that slab surface cracks caused by oscillation marks can be reduced.

特開2005−297001号公報JP 2005-297001 A 国際公開第2014/002409号International Publication No. 2014/002409 特開2016−168610号公報Japanese Patent Laid-Open No. 2006-168610

特許文献2及び特許文献3により、中炭素鋼の表面割れは軽減されたが、鋳片引き抜き速度を2.0m/min以上とした場合には、鋳片に表面割れが散発し、未だ改善する余地がある。   According to Patent Document 2 and Patent Document 3, the surface cracks of the medium carbon steel were reduced, but when the slab drawing speed was 2.0 m / min or more, the surface cracks were scattered and still improved. There is room.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、連続鋳造用鋳型の内壁面に、銅鋳型よりも熱伝導率が低いまたは高い異種金属充填部を形成させ、これによって、メニスカス近傍の凝固シェルに、規則的且つ周期的に増減する熱流束分布を強制的に与え、δ鉄からγ鉄への変態による応力や熱応力の凝固シェルへの負荷を軽減して鋳片の表面割れを防止するにあたり、従来技術よりも更に、凝固初期の凝固シェルの不均一冷却よる表面割れ、及び、包晶反応を伴う中炭素鋼でのδ鉄からγ鉄への変態に起因する凝固シェル厚みの不均一による表面割れを防止することのできる鋼の連続鋳造方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is to form a dissimilar metal filling portion having a lower or higher thermal conductivity than the copper mold on the inner wall surface of the continuous casting mold, thereby The slab is made by forcibly giving a regular and periodic heat flux distribution to the solidified shell in the vicinity of the meniscus, reducing the stress due to transformation from δ iron to γ iron and the stress on the solidified shell. In order to prevent surface cracking of steel, it is caused by surface cracking due to non-uniform cooling of the solidified shell at the initial stage of solidification and transformation from δ iron to γ iron in a medium carbon steel with a peritectic reaction. It is an object of the present invention to provide a continuous casting method of steel capable of preventing surface cracking due to uneven thickness of a solidified shell.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]連続鋳造用鋳型内に溶鋼を注入しつつ、前記連続鋳造用鋳型を鋳造方向に振動させながら、前記溶鋼が冷却されて生成した凝固シェルを前記連続鋳造用鋳型から引き抜いて、鋳片を製造する鋼の連続鋳造方法であって、
前記連続鋳造用鋳型は、メニスカスよりも上方の任意の位置から、前記メニスカスよりも、鋳片引き抜き速度Vc(m/min)によって下記の(1)式で求まる長さR(mm)以上下方の位置までの、水冷式銅鋳型の内壁面の範囲に、銅鋳型の熱伝導率に対して熱伝導率が80%以下または120%以上である金属が、前記内壁面に直径を1.0mmから10.0mmの範囲内として加工された円形凹溝に充填されて形成された複数個の異種金属充填部を有し、
前記異種金属充填部の充填厚みH(mm)は、前記円形凹溝の直径d(mm)と下記の(2)式の関係を満たし、
前記連続鋳造用鋳型の幅方向に隣会う前記円形凹溝は接触するか、または、その一部同士が重なり合っていて、前記連続鋳造用鋳型の幅方向に隣会う前記異種金属充填部の中心間距離W(mm)は、前記円形凹溝の直径d(mm)と下記の(3)式の関係を満たし、及び/または、前記連続鋳造用鋳型の鋳造方向に隣会う前記異種金属充填部の中心間距離L(mm)は、前記円形凹溝の直径d(mm)と下記の(4)式の関係を満たす、鋼の連続鋳造方法。
=2×Vc×1000/60・・・(1)
0.5≦H≦d・・・(2)
0.70<W/d≦1.00・・・(3)
0.70<L/d≦1.00・・・(4)
[2]前記連続鋳造用鋳型の鋳造方向に隣会う前記異種金属充填部の中心間距離L(mm)は、前記連続鋳造用鋳型の鋳型振動の振幅A(mm)、鋳型振動の振動数f(回/min)及び鋳片引き抜き速度Vc(m/min)と下記の(5)式の関係を満たす、上記[1]に記載の鋼の連続鋳造方法。
A/2≦L≦1000×Vc/f・・・(5)
The gist of the present invention for solving the above problems is as follows.
[1] While injecting molten steel into the continuous casting mold and vibrating the continuous casting mold in the casting direction, the solidified shell formed by cooling the molten steel is pulled out from the continuous casting mold, A continuous casting method of steel,
The continuous casting mold is lower than the meniscus by a length R 0 (mm) or more determined by the following equation (1) based on the slab drawing speed Vc (m / min) from an arbitrary position above the meniscus. Up to the position of the inner wall surface of the water-cooled copper mold, a metal having a thermal conductivity of 80% or less or 120% or more with respect to the thermal conductivity of the copper mold has a diameter of 1.0 mm on the inner wall surface. A plurality of dissimilar metal filling portions formed by being filled in circular grooves processed as in the range of 10.0 mm to 10.0 mm,
The filling thickness H (mm) of the dissimilar metal filling portion satisfies the relationship of the diameter d (mm) of the circular groove and the following equation (2):
The circular grooves adjacent to each other in the width direction of the continuous casting mold are in contact with each other, or a part thereof overlaps between the centers of the different metal filling portions adjacent to each other in the width direction of the continuous casting mold. The distance W (mm) satisfies the relationship of the following formula (3) with the diameter d (mm) of the circular concave groove and / or the dissimilar metal filling portion adjacent to the casting direction of the continuous casting mold. The center-to-center distance L (mm) is a continuous casting method of steel that satisfies the relationship of the diameter d (mm) of the circular groove and the following equation (4).
R 0 = 2 × Vc × 1000/60 (1)
0.5 ≦ H ≦ d (2)
0.70 <W / d ≦ 1.00 (3)
0.70 <L / d ≦ 1.00 (4)
[2] The center-to-center distance L (mm) of the dissimilar metal filling portion adjacent to the casting direction of the continuous casting mold is the mold vibration amplitude A (mm) of the continuous casting mold and the frequency f of the mold vibration. (Times / min) and the slab drawing speed Vc (m / min) and the continuous casting method for steel according to the above [1], which satisfies the relationship of the following expression (5).
A / 2 ≦ L ≦ 1000 × Vc / f (5)

本発明によれば、鋳型幅方向の熱流束の分布周期または鋳造方向の熱流束の分布周期のうちの少なくともいずれか一方が不均一凝固の防止に対して適正であり、凝固初期の凝固シェルの不均一冷却よる表面割れ、及び、包晶反応を伴う中炭素鋼でのδ鉄からγ鉄への変態に起因する凝固シェル厚みの不均一による表面割れを従来技術よりも更に安定して防止することが実現される。また更に、(5)式の関係を満たす場合には、オシレーションマークに起因する鋳片の表面割れも軽減することができる。   According to the present invention, at least one of the distribution period of the heat flux in the mold width direction or the distribution period of the heat flux in the casting direction is appropriate for preventing uneven solidification, and Surface cracking due to non-uniform cooling and surface cracking due to non-uniform solidification shell thickness due to transformation from δ iron to γ iron in peritectic reaction is prevented more stably than in the prior art. Is realized. Furthermore, when the relationship of the formula (5) is satisfied, the surface crack of the slab caused by the oscillation mark can be reduced.

本発明で使用する水冷式連続鋳造用鋳型の一部を構成する鋳型長辺銅板を内壁面側から見た概略側面図である。It is the schematic side view which looked at the mold long side copper plate which comprises a part of mold for water cooling type continuous casting used by this invention from the inner wall surface side. 図1に示す鋳型長辺銅板1のX−X’断面図である。It is X-X 'sectional drawing of the casting_mold | template long side copper plate 1 shown in FIG. 異種金属充填部を有する鋳型長辺銅板の三箇所の位置における熱抵抗を、異種金属充填部の位置に対応して概念的に示す図である。It is a figure which shows notionally the thermal resistance in the position of three places of the casting_mold | template long side copper plate which has a different metal filling part corresponding to the position of a different metal filling part. 本発明における連続鋳造用鋳型の幅方向及び鋳造方向に隣会う異種金属充填部の配置の例を示す図で、W/d=0.80且つL/d=0.80の例を鋳型長辺銅板の内壁面側から見た概略側面図である。The figure which shows the example of arrangement | positioning of the dissimilar metal filling part which adjoins the width direction and casting direction of the casting_mold | template for continuous casting in this invention, and the example of long side of a mold is W / d = 0.80 and L / d = 0.80 It is the schematic side view seen from the inner wall surface side of a copper plate. 本発明における連続鋳造用鋳型の幅方向及び鋳造方向に隣会う異種金属充填部の配置の例を示す図で、W/d=0.90且つL/d=0.90の例を鋳型長辺銅板の内壁面側から見た概略側面図である。The figure which shows the example of arrangement | positioning of the dissimilar metal filling part which adjoins the width direction and casting direction of the casting_mold | template for continuous casting in this invention, and the long side of a mold is an example of W / d = 0.90 and L / d = 0.90 It is the schematic side view seen from the inner wall surface side of a copper plate. 本発明における連続鋳造用鋳型の幅方向及び鋳造方向に隣会う異種金属充填部の配置の例を示す図で、W/d=0.70且つL/d=1.00の例を鋳型長辺銅板の内壁面側から見た概略側面図である。The figure which shows the example of arrangement | positioning of the dissimilar metal filling part which adjoins the width direction and casting direction of the casting mold for continuous casting in this invention, W / d = 0.70 and L / d = 1.00 It is the schematic side view seen from the inner wall surface side of a copper plate. L/dを1.00として、W/dを0.10から2.00までの範囲で変化させ、W/dのスラブ鋳片の表面割れ個数密度への影響を調査した結果を示す図である。It is a figure which shows the result of having investigated L / d to 1.00, changing W / d in the range from 0.10 to 2.00, and having investigated the influence on the surface crack number density of slab slab of W / d. is there. W/dを1.00として、L/dを0.10から2.00までの範囲で変化させ、L/dのスラブ鋳片の表面割れ個数密度への影響を調査した結果を示す図である。It is a figure which shows the result of having investigated W / d as 1.00, changing L / d in the range from 0.10 to 2.00, and having investigated the influence on the surface crack number density of the slab slab of L / d. is there.

以下、発明の実施の形態を通じて本発明を具体的に説明する。図1は、本発明に係る鋼の連続鋳造方法で使用する水冷式連続鋳造用鋳型の一部を構成する鋳型長辺銅板1であって、水冷式銅鋳型の内壁面側に異種金属充填部3が形成された鋳型長辺銅板1を内壁面側から見た概略側面図である。また、図2は、図1に示す鋳型長辺銅板1のX−X’断面図である。   Hereinafter, the present invention will be specifically described through embodiments of the invention. FIG. 1 shows a mold long side copper plate 1 constituting a part of a water-cooled continuous casting mold used in the steel continuous casting method according to the present invention, and a dissimilar metal filling portion on the inner wall surface side of the water-cooled copper mold. It is the schematic side view which looked at the mold long side copper plate 1 in which 3 was formed from the inner wall surface side. FIG. 2 is a cross-sectional view taken along the line X-X ′ of the mold long-side copper plate 1 shown in FIG. 1.

図1に示す連続鋳造用鋳型は、スラブ鋳片を鋳造するための連続鋳造用鋳型の一例である。スラブ鋳片用の水冷式連続鋳造用鋳型は、一対の銅製または銅合金製の鋳型長辺銅板と一対の銅製または銅合金製の鋳型短辺銅板とを組み合わせて構成される。図1は、そのうちの鋳型長辺銅板1を示している。鋳型短辺銅板も鋳型長辺銅板1と同様に、その内壁面側に異種金属充填部3が形成されるとして、ここでは、鋳型短辺銅板についての説明は省略する。但し、スラブ鋳片においては、スラブ厚みに対してスラブ幅が極めて大きいという形状に起因して、鋳片長辺面側の凝固シェルで応力集中が起こりやすく、鋳片長辺面側で表面割れが発生しやすい。したがって、スラブ鋳片用の連続鋳造用鋳型の鋳型短辺銅板には、異種金属充填部3を設置しなくてもよい。   The continuous casting mold shown in FIG. 1 is an example of a continuous casting mold for casting a slab slab. A water-cooled continuous casting mold for a slab slab is configured by combining a pair of copper or copper alloy mold long side copper plates and a pair of copper or copper alloy mold short side copper plates. FIG. 1 shows the long-side copper plate 1 of the mold. Similarly to the long-side copper plate 1, the short-side copper plate is also formed with the dissimilar metal filling portion 3 on the inner wall surface side, and the description of the short-side copper plate is omitted here. However, in slab slabs, stress concentration is likely to occur in the solidified shell on the long side of the slab due to the shape of the slab width being extremely large relative to the slab thickness, and surface cracks occur on the long side of the slab It's easy to do. Therefore, the dissimilar metal filling part 3 does not need to be installed on the short side copper plate of the continuous casting mold for the slab slab.

図1に示すように、鋳型長辺銅板1における定常鋳造時のメニスカスの位置よりも長さQ(長さQは、ゼロより大きい任意の値)離れた上方の位置から、メニスカスよりも長さRだけ下方の位置までの鋳型長辺銅板1の内壁面の範囲には、複数個の異種金属充填部3が設置されている。ここで、「メニスカス」とは「鋳型内溶鋼湯面」であり、非鋳造中にはその位置は明確でないが、通常の鋼の連続鋳造操業では、メニスカス位置を鋳型銅板の上端から50mmないし200mm程度下方の任意の位置としている。したがって、メニスカス位置が鋳型長辺銅板1の上端から50mm下方の位置であっても、また、上端から200mm下方の位置であっても、長さQ及び長さRが、以下に説明する本発明の条件を満足するように、異種金属充填部3を配置すればよい。   As shown in FIG. 1, the length of the long side copper plate 1 is longer than the meniscus from a position above the length Q (length Q is an arbitrary value greater than zero) away from the position of the meniscus during steady casting. In the range of the inner wall surface of the mold long side copper plate 1 up to a position lower by R, a plurality of dissimilar metal filling portions 3 are installed. Here, “meniscus” is “molten steel surface in mold” and its position is not clear during non-casting, but in the normal continuous casting operation of steel, the meniscus position is 50 mm to 200 mm from the upper end of the mold copper plate. An arbitrary position below the degree is set. Accordingly, even if the meniscus position is a position 50 mm below the upper end of the long copper plate 1 and 200 mm below the upper end, the length Q and the length R are described below. What is necessary is just to arrange | position the dissimilar metal filling part 3 so that these conditions may be satisfied.

異種金属充填部3は、図2に示すように、鋳型長辺銅板1の内壁面側に加工された、直径をdとする開口形状が円形の凹溝2(以下、「円形凹溝2」と記す)の内部に、鍍金処理または溶射処理によって、鋳型長辺銅板1の熱伝導率λに対してその熱伝導率λが80%以下である金属(以下、「低熱伝導金属」と記す)、または、鋳型長辺銅板1の熱伝導率λに対してその熱伝導率λが120%以上である金属(以下、「高熱伝導金属」と記す)が充填されて形成されたものである。直径をdとする円形凹溝2の内部に充填される異種金属充填部3の直径もdとなる。ここで、図2における符号4は、鋳型長辺銅板1の背面側に設置された、鋳型冷却水の流路となるスリットであり、符号5は、鋳型長辺銅板1の背面と密着するバックプレートである。 As shown in FIG. 2, the dissimilar metal filling portion 3 is formed on the inner wall surface side of the long-side copper plate 1 and has a circular groove 2 with a diameter d (hereinafter, “circular groove 2”). And a metal having a thermal conductivity λ m of 80% or less with respect to the thermal conductivity λ c of the long copper plate 1 (hereinafter referred to as “low thermal conductivity metal”). Or a metal having a thermal conductivity λ m of 120% or more with respect to the thermal conductivity λ c of the long copper plate 1 (hereinafter referred to as “high thermal conductive metal”). Is. The diameter of the dissimilar metal filling portion 3 filled in the circular groove 2 having a diameter d is also d. Here, reference numeral 4 in FIG. 2 is a slit, which is a flow path for the mold cooling water, installed on the back side of the long mold copper plate 1, and reference numeral 5 is a back that is in close contact with the back of the long mold copper sheet 1. It is a plate.

図3に、円形凹溝2への充填金属として低熱伝導金属を使用した異種金属充填部3を有する鋳型長辺銅板1の三箇所の位置における熱抵抗を、異種金属充填部3の位置に対応して概念的に示す。図3に示すように、異種金属充填部3の設置位置では熱抵抗が相対的に高くなる。図3は、円形凹溝2への充填金属として低熱伝導金属を使用した例であり、円形凹溝2への充填金属として高熱伝導金属を使用した場合には、図3とは逆に、異種金属充填部3の設置位置で熱抵抗が相対的に低くなる。   In FIG. 3, the thermal resistance at three positions of the mold long side copper plate 1 having the dissimilar metal filling portion 3 using the low heat conductive metal as the filling metal in the circular groove 2 corresponds to the position of the dissimilar metal filling portion 3. Conceptually. As shown in FIG. 3, the thermal resistance is relatively high at the installation position of the dissimilar metal filling portion 3. FIG. 3 is an example in which a low heat conductive metal is used as the filling metal in the circular groove 2, and when a high heat conductive metal is used as the filling metal in the circular groove 2, contrary to FIG. The thermal resistance becomes relatively low at the installation position of the metal filling portion 3.

複数の異種金属充填部3を、メニスカス位置を含んでメニスカス近傍の連続鋳造用鋳型の幅方向及び鋳造方向に設置することにより、メニスカス近傍の鋳型幅方向及び鋳造方向における連続鋳造用鋳型の熱抵抗が周期的に増減する分布が形成される。これによって、メニスカス近傍、つまり、凝固初期での凝固シェルから連続鋳造用鋳型への熱流束が周期的に増減する分布が形成される。   By disposing a plurality of different metal filling portions 3 in the width direction and casting direction of the continuous casting mold near the meniscus including the meniscus position, the thermal resistance of the continuous casting mold in the mold width direction and casting direction near the meniscus A distribution is formed that periodically increases and decreases. This forms a distribution in which the heat flux from the solidified shell in the vicinity of the meniscus, that is, in the initial stage of solidification, to the continuous casting mold periodically increases and decreases.

この熱流束の周期的な増減により、δ鉄からγ鉄への変態(以下「δ/γ変態」と記す)によって凝固シェルに発生する応力や熱応力が低減し、これらの応力によって生じる凝固シェルの変形が小さくなる。凝固シェルの変形が小さくなることで、凝固シェルの変形に起因する不均一な熱流束分布が均一化され、且つ、発生する応力が分散されて個々の歪量が小さくなる。その結果、凝固シェル表面における表面割れの発生が抑制される。   Due to the periodic increase and decrease of the heat flux, the stress and thermal stress generated in the solidified shell due to the transformation from δ iron to γ iron (hereinafter referred to as “δ / γ transformation”) are reduced, and the solidified shell generated by these stresses The deformation of becomes smaller. By reducing the deformation of the solidified shell, the non-uniform heat flux distribution resulting from the deformation of the solidified shell is made uniform, and the generated stress is dispersed to reduce the amount of individual strain. As a result, the occurrence of surface cracks on the surface of the solidified shell is suppressed.

本発明において、鋳型長辺銅板1の熱伝導率λと、低熱伝導金属または高熱伝導金属の熱伝導率λとの比較は、常温(約20℃)でのそれぞれの熱伝導率の比較で定義する。銅、銅合金、低熱伝導金属及び高熱伝導金属の熱伝導率は、一般的に、高温になるほど小さくなるが、常温での鋳型長辺銅板1の熱伝導率λに対する常温での低熱伝導金属の熱伝導率λが80%以下である、または、常温での鋳型長辺銅板1の熱伝導率λに対する常温での高熱伝導金属の熱伝導率λが120%以上であれば、連続鋳造用鋳型としての使用温度(200〜350℃程度)であっても、異種金属充填部3を設置した部位の熱抵抗と、異種金属充填部3を設置していない部位の熱抵抗とに、十分な差を生じさせることができる。尚、円形凹溝2への充填金属としては、1つの連続鋳造用鋳型では、低熱伝導金属または高熱伝導金属のいずれか一方のみを使用する。 In the present invention, the comparison between the thermal conductivity λ c of the long-side copper plate 1 and the thermal conductivity λ m of the low thermal conductivity metal or the high thermal conductivity metal is made by comparing the thermal conductivities at room temperature (about 20 ° C.). Define in. The thermal conductivity of copper, a copper alloy, a low thermal conductivity metal, and a high thermal conductivity metal generally becomes smaller as the temperature becomes higher. However, the thermal conductivity metal at room temperature with respect to the thermal conductivity λ c of the mold long-side copper plate 1 at room temperature. 80% thermal conductivity lambda m is less than, or as long as the thermal conductivity lambda m the high thermal conductive metal at room temperature to the thermal conductivity lambda c of the mold long sides copper plate 1 at room temperature 120% or more, Even at the operating temperature (about 200 to 350 ° C.) as a casting mold for continuous casting, the thermal resistance of the part where the dissimilar metal filling part 3 is installed and the thermal resistance of the part where the dissimilar metal filling part 3 is not installed , Can make a sufficient difference. As a filling metal for the circular concave groove 2, only one of the low heat conductive metal and the high heat conductive metal is used in one continuous casting mold.

初期凝固への影響を勘案すれば、異種金属充填部3の設置位置は、定常鋳造時の鋳片引き抜き速度Vcに応じて、メニスカスよりも下記の(1)式で求められる長さR以上下方の位置までとする必要がある。つまり、図1に示す、メニスカス位置からの長さRは、(1)式から算出される長さR以上とする必要がある。 Considering the influence on the initial solidification, the dissimilar metal filling portion 3 is installed at a length R 0 or more determined by the following equation (1) from the meniscus according to the slab drawing speed Vc at the time of steady casting. It is necessary to reach the lower position. That is, the length R from the meniscus position shown in FIG. 1 needs to be not less than the length R 0 calculated from the equation (1).

=2×Vc×1000/60・・・(1)
ここで、(1)式において、Rは、長さ(mm)、Vcは、鋳片引き抜き速度(m/min)である。
R 0 = 2 × Vc × 1000/60 (1)
Here, in the formula (1), R 0 is the length (mm), and Vc is the slab drawing speed (m / min).

長さRは、凝固開始した後の鋳片が異種金属充填部3の設置された範囲を通過する時間に関係しており、鋳片の表面割れを抑制するためには、凝固開始後から少なくとも2秒間は、鋳片が異種金属充填部3の設置された範囲内に滞在する必要がある。鋳片が凝固開始後から少なくとも2秒間は異種金属充填部3の設置された範囲に存在するためには、長さRは(2)式を満たすことが必要となる。 The length R 0 is related to the time during which the slab after the start of solidification passes through the range where the dissimilar metal filling portion 3 is installed. For at least 2 seconds, the slab needs to stay within the range where the dissimilar metal filling portion 3 is installed. In order for the slab to exist in the range where the dissimilar metal filling portion 3 is installed for at least 2 seconds after the start of solidification, the length R 0 needs to satisfy the expression (2).

凝固開始した後の鋳片が異種金属充填部3の設置された範囲内に滞在する時間を2秒以上確保することで、異種金属充填部3による熱流束の周期的な変動の効果が十分に得られ、凝固シェルに表面割れの発生しやすい高速鋳造時や中炭素鋼の鋳造時に、鋳片の表面割れ抑制効果を高めることができる。   By securing the time for the cast slab after the start of solidification to stay in the range where the dissimilar metal filling part 3 is installed for 2 seconds or more, the effect of the periodic fluctuation of the heat flux by the dissimilar metal filling part 3 is sufficient. As a result, the effect of suppressing the surface cracking of the slab can be enhanced during high-speed casting in which surface cracks are likely to occur in the solidified shell or during casting of medium carbon steel.

異種金属充填部3による熱流束の周期的な変動の効果を安定して得るには、鋳片が異種金属充填部3の設置された範囲を通過する時間を4秒以上確保することが、より好ましい。一方、長さRに上限を定める必要はないが、異種金属充填部3を設置するための鋳型銅板表面の凹溝加工費用と鍍金処理費用または溶射処理費用とを抑える観点から、長さRの5倍以内とすることが好ましい。 In order to stably obtain the effect of the periodic fluctuation of the heat flux by the dissimilar metal filling part 3, it is more necessary to secure the time for the slab to pass through the range where the dissimilar metal filling part 3 is installed for 4 seconds or more. preferable. On the other hand, although it is not necessary to set an upper limit for the length R, the length R 0 is used from the viewpoint of suppressing the concave groove processing cost and the plating processing cost or the thermal spraying processing cost on the mold copper plate surface for installing the dissimilar metal filling portion 3. Is preferably within 5 times.

一方、異種金属充填部3の上端部の位置は、メニスカス位置よりも上方であればどこの位置であっても構わず、したがって、図1に示す長さQは、ゼロを超えた任意の値であればよい。但し、鋳造中にメニスカスは上下方向に変動するので、異種金属充填部3の上端部が常にメニスカスよりも上方位置となるように、異種金属充填部3の上端部を設定されるメニスカスよりも10mm程度上方位置とすることが好ましく、更に、異種金属充填部3の上端部を設定されるメニスカスよりも20mm〜50mm程度上方位置とすることがより好ましい。   On the other hand, the position of the upper end portion of the dissimilar metal filling portion 3 may be anywhere as long as it is above the meniscus position. Therefore, the length Q shown in FIG. 1 is an arbitrary value exceeding zero. If it is. However, since the meniscus fluctuates in the vertical direction during casting, the upper end portion of the dissimilar metal filling portion 3 is always positioned above the meniscus, so that the upper end portion of the dissimilar metal filling portion 3 is 10 mm from the meniscus set. Preferably, the upper position of the dissimilar metal filling portion 3 is more preferably about 20 mm to 50 mm above the set meniscus.

円形凹溝2の直径d、換言すれば、異種金属充填部3の直径dは、1.0mmから10.0mmの範囲とする。円形凹溝2の直径dを1.0mm以上とすることで、異種金属充填部3における熱流束の低下が十分となり、鋳片の表面割れ抑制効果を高めることができる。また、1.0mm以上とすることで、低熱伝導金属または高熱伝導金属を鍍金処理や溶射処理によって円形の円形凹溝2の内部に充填することが容易となる。一方、円形凹溝2の直径dを10.0mm以下とすることで、異種金属充填部3における熱流束の低下が抑制され、つまり、異種金属充填部3での凝固遅れが抑制されて、その位置での凝固シェルへの応力集中が防止され、凝固シェルでの表面割れ発生を抑制できる。即ち、直径dが10.0mmを超えると凝固シェルでの表面割れが増加する傾向があることから、円形凹溝2の直径dは10.0mm以下にする必要がある。   The diameter d of the circular concave groove 2, in other words, the diameter d of the dissimilar metal filling portion 3 is in the range of 1.0 mm to 10.0 mm. By setting the diameter d of the circular groove 2 to 1.0 mm or more, the heat flux in the dissimilar metal filling portion 3 is sufficiently lowered, and the effect of suppressing the surface cracking of the slab can be enhanced. Moreover, by setting it as 1.0 mm or more, it becomes easy to fill the inside of the circular circular ditch | groove 2 with a low heat conductive metal or a high heat conductive metal by a plating process or a thermal spraying process. On the other hand, by setting the diameter d of the circular groove 2 to 10.0 mm or less, a decrease in heat flux in the dissimilar metal filling part 3 is suppressed, that is, a solidification delay in the dissimilar metal filling part 3 is suppressed, Stress concentration on the solidified shell at the position is prevented, and the occurrence of surface cracks in the solidified shell can be suppressed. That is, when the diameter d exceeds 10.0 mm, surface cracks in the solidified shell tend to increase, and therefore the diameter d of the circular groove 2 needs to be 10.0 mm or less.

異種金属充填部3の充填厚みHは、0.5mm以上で、且つ、円形凹溝2の直径d(mm)と下記の(2)式の関係を満足する必要がある。ここで、(2)式において、Hは充填厚み(mm)、dは円形凹溝2の直径(mm)である。   The filling thickness H of the dissimilar metal filling portion 3 is 0.5 mm or more, and it is necessary to satisfy the relationship of the diameter d (mm) of the circular groove 2 and the following equation (2). Here, in the formula (2), H is the filling thickness (mm), and d is the diameter (mm) of the circular groove 2.

0.5≦H≦d・・・(2)
異種金属充填部3の充填厚みHを0.5mm以上とすることで、異種金属充填部3における熱流束の低下が十分となり、鋳片の表面割れ抑制効果を得ることができる。また、充填厚みHを円形凹溝2の直径dと同等、またはそれらよりも小さくすることで、鍍金処理や溶射処理による円形凹溝2への低熱伝導金属及び高熱伝導金属の充填が容易となり、且つ、充填した低熱伝導金属及び高熱伝導金属と鋳型銅板との間に隙間や割れが生じることもない。低熱伝導金属及び高熱伝導金属と鋳型銅板との間に隙間や割れが生じた場合には、充填した低熱伝導金属及び高熱伝導金属の亀裂や剥離が生じ、鋳型寿命の低下、鋳片の割れ、更には拘束性ブレークアウトの原因となる。
0.5 ≦ H ≦ d (2)
By setting the filling thickness H of the dissimilar metal filling portion 3 to 0.5 mm or more, the heat flux in the dissimilar metal filling portion 3 is sufficiently lowered, and the effect of suppressing the surface cracking of the slab can be obtained. Further, by making the filling thickness H equal to or smaller than the diameter d of the circular groove 2, it becomes easy to fill the circular groove 2 with the low heat conductive metal and the high heat conductive metal by the plating process or the thermal spraying process. In addition, no gaps or cracks occur between the filled low heat conductive metal and high heat conductive metal and the mold copper plate. When gaps or cracks occur between the low thermal conductivity metal and the high thermal conductivity metal and the mold copper plate, cracks and peeling of the filled low thermal conductivity metal and the high thermal conductivity metal occur, reducing the mold life, cracking the slab, Furthermore, it causes a restrictive breakout.

本発明においては、連続鋳造用鋳型の幅方向に隣会う異種金属充填部3の中心間距離W(mm)及び連続鋳造用鋳型の鋳造方向に隣会う異種金属充填部3の中心間距離L(mm)のうちの少なくとも一方は、円形凹溝2の直径dに対して、下記の(3)式または下記の(4)式を満足する必要がある。   In the present invention, the center-to-center distance W (mm) of the dissimilar metal filling portion 3 adjacent to the width direction of the continuous casting mold and the center-to-center distance L (of the dissimilar metal filling portion 3 adjacent to the casting direction of the continuous casting mold. mm) is required to satisfy the following formula (3) or the following formula (4) with respect to the diameter d of the circular groove 2.

0.70<W/d≦1.00・・・(3)
0.70<L/d≦1.00・・・(4)
即ち、連続鋳造用鋳型の幅方向に隣会う異種金属充填部同士または連続鋳造用鋳型の鋳造方向に隣会う異種金属充填部同士のうちの少なくともいずれか一方は、お互いに接触しているか、またはその一部同士が重なり合っている必要がある。図1及び図2は、連続鋳造用鋳型の幅方向に隣会う異種金属充填部同士及び連続鋳造用鋳型の鋳造方向に隣会う異種金属充填部同士の双方が接触した状態(W/d=1.00、且つ、L/d=1.00)を示している。
0.70 <W / d ≦ 1.00 (3)
0.70 <L / d ≦ 1.00 (4)
That is, at least one of the dissimilar metal fillers adjacent to each other in the width direction of the continuous casting mold or the dissimilar metal fillers adjacent to each other in the casting direction of the continuous casting mold are in contact with each other, or Some of them need to overlap. FIG. 1 and FIG. 2 show a state in which both dissimilar metal filling portions adjacent in the width direction of the continuous casting mold and dissimilar metal filling portions adjacent in the casting direction of the continuous casting mold are in contact (W / d = 1). .00 and L / d = 1.00).

図4〜図6に、本発明における連続鋳造用鋳型の幅方向及び鋳造方向に隣会う異種金属充填部3の配置の例を示す。図4〜図6は、鋳型長辺銅板1の一部分を内壁面側から見た概略側面図である。   FIG. 4 to FIG. 6 show examples of disposition of the dissimilar metal filling portions 3 adjacent to each other in the width direction and the casting direction of the continuous casting mold in the present invention. 4-6 is the schematic side view which looked at a part of casting_mold | template long side copper plate 1 from the inner wall surface side.

図4は、円形凹溝2の直径dを5.0mmとし、鋳型幅方向に隣会う異種金属充填部3の中心間距離W(mm)及び鋳造方向に隣会う異種金属充填部3の中心間距離L(mm)がともに4.0mmの例(W/d=0.80、L/d=0.80)である。   FIG. 4 shows that the diameter d of the circular groove 2 is 5.0 mm, the distance W (mm) between the centers of the dissimilar metal fillers 3 adjacent in the mold width direction, and the center of the dissimilar metal fillers 3 adjacent in the casting direction. In this example, both distances L (mm) are 4.0 mm (W / d = 0.80, L / d = 0.80).

図5は、円形凹溝2の直径dを5.0mmとし、鋳型幅方向に隣会う異種金属充填部3の中心間距離W(mm)及び鋳造方向に隣会う異種金属充填部3の中心間距離L(mm)がともに4.5mmの例(W/d=0.90、L/d=0.90)である。   FIG. 5 shows that the diameter d of the circular concave groove 2 is 5.0 mm, the distance W (mm) between the centers of the dissimilar metal filling portions 3 adjacent to each other in the mold width direction, and the distance between the centers of the dissimilar metal filling portions 3 adjacent to each other in the casting direction. In this example, both distances L (mm) are 4.5 mm (W / d = 0.90, L / d = 0.90).

図6は、円形凹溝2の直径dを5.0mmとし、鋳型幅方向に隣会う異種金属充填部3の中心間距離W(mm)を3.5mmとし、鋳造方向に隣会う異種金属充填部3の中心間距離L(mm)を5.0mmとする例(W/d=0.70、L/d=1.00)である。   FIG. 6 shows that the diameter d of the circular groove 2 is 5.0 mm, the distance W (mm) between the centers of the dissimilar metal filling portions 3 adjacent to each other in the mold width direction is 3.5 mm, and the dissimilar metal fillings adjacent to each other in the casting direction. This is an example in which the center-to-center distance L (mm) of the portion 3 is 5.0 mm (W / d = 0.70, L / d = 1.00).

本発明者らは、鋳型幅方向に隣会う異種金属充填部3の中心間距離W(mm)と円形凹溝2の直径d(mm)との比(W/d)がスラブ鋳片の表面割れに及ぼす影響を調査した。具体的には、円形凹溝2の直径dを5.0mmの一定とし、且つ、鋳造方向に隣会う異種金属充填部3の中心間距離L(mm)と円形凹溝2の直径d(mm)との比(L/d)を1.00の一定として、比(W/d)を0.10から2.00までの範囲で変化させ、スラブ鋳片の表面割れ個数密度を調査した。   The inventors of the present invention determined that the ratio (W / d) between the center-to-center distance W (mm) of the dissimilar metal filling portion 3 adjacent in the mold width direction and the diameter d (mm) of the circular groove 2 is the surface of the slab slab. The effect on cracking was investigated. Specifically, the diameter d of the circular groove 2 is constant at 5.0 mm, and the distance L (mm) between the centers of the dissimilar metal filling portions 3 adjacent to each other in the casting direction and the diameter d (mm) of the circular groove 2. ) And the ratio (W / d) was varied in the range from 0.10 to 2.00, and the surface crack number density of the slab slab was investigated.

調査結果を図7に示す。W/dが0.70超え1.00以下の場合に、スラブ鋳片の表面割れ個数密度が低下した。これは、W/dが0.70超え1.00以下の場合に、鋳型幅方向の熱流束の分布周期が不均一凝固の防止に対して適正であり、鋳片の表面割れ抑制効果が高まると考えられる。   The survey results are shown in FIG. When W / d was 0.70 or more and 1.00 or less, the surface crack number density of the slab cast was lowered. This is because when W / d is greater than 0.70 and less than or equal to 1.00, the distribution period of the heat flux in the mold width direction is appropriate for preventing uneven solidification, and the effect of suppressing the surface cracking of the slab is enhanced. it is conceivable that.

一方、W/dが0.70以下の場合、鋳型幅方向の熱流束周期が小さくなりすぎるため、不均一凝固の抑制効果が小さくなると考えられる。また、W/dが1.00を超えると、鋳型幅方向の熱流束周期が大きくなりすぎ、緩冷却領域において凝固遅れが大きくなり、不均一凝固の抑制効果が小さくなると考えられる。   On the other hand, when W / d is 0.70 or less, the heat flux period in the mold width direction becomes too small, and thus the effect of suppressing non-uniform solidification is considered to be small. On the other hand, if W / d exceeds 1.00, the heat flux period in the mold width direction becomes too large, the solidification delay increases in the slow cooling region, and the effect of suppressing non-uniform solidification becomes small.

また、上記と同様に、鋳型の鋳造方向に隣会う異種金属充填部3の中心間距離L(mm)と円形凹溝2の直径d(mm)との比(L/d)がスラブ鋳片の表面割れに及ぼす影響を調査した。具体的には、円形凹溝2の直径dを5.0mmの一定とし、且つ、鋳型幅方向に隣会う異種金属充填部3の中心間距離W(mm)と円形凹溝2の直径d(mm)との比(W/d)を1.00の一定として、比(L/d)を0.10から2.00までの範囲で変化させ、スラブ鋳片の表面割れ個数密度を調査した。   Similarly to the above, the ratio (L / d) between the center distance L (mm) of the dissimilar metal filling portion 3 adjacent to the casting direction of the mold and the diameter d (mm) of the circular groove 2 is slab cast. The effect of surface cracking on the surface was investigated. Specifically, the diameter d of the circular groove 2 is constant at 5.0 mm, and the distance W (mm) between the centers of the dissimilar metal filling portions 3 adjacent in the mold width direction and the diameter d ( mm) and the ratio (W / d) was kept constant at 1.00, the ratio (L / d) was varied in the range from 0.10 to 2.00, and the surface crack number density of the slab slab was investigated. .

調査結果を図8に示す。L/dが0.70超え1.00以下の場合に、スラブ鋳片の表面割れ個数密度が低下した。これは、L/dが0.70超え1.00以下の場合に、鋳造方向の熱流束の分布周期が不均一凝固の防止に対して適正であり、鋳片の表面割れ抑制効果が高まると考えられる。   The survey results are shown in FIG. When L / d was 0.70 or more and 1.00 or less, the surface crack number density of the slab slab was lowered. When L / d is 0.70 or more and 1.00 or less, the distribution cycle of the heat flux in the casting direction is appropriate for preventing uneven solidification, and the effect of suppressing the surface cracking of the slab is enhanced. Conceivable.

一方、L/dが0.70以下の場合、鋳造方向の熱流束周期が小さくなりすぎるため、不均一凝固の抑制効果が小さくなると考えられる。また、L/dが1.00を超えると、鋳造方向の熱流束周期が大きくなりすぎ、緩冷却領域において凝固遅れが大きくなり、不均一凝固の抑制効果が小さくなると考えられる。   On the other hand, when L / d is 0.70 or less, the heat flux period in the casting direction becomes too small, so that the effect of suppressing non-uniform solidification is considered to be small. On the other hand, if L / d exceeds 1.00, the heat flux period in the casting direction becomes too large, the solidification delay increases in the slow cooling region, and the effect of suppressing non-uniform solidification becomes small.

本発明において、円形凹溝2に充填して使用する低熱伝導金属の熱伝導率λは、鋳型長辺銅板1の熱伝導率λに対して80%以下である必要がある。また、円形凹溝2に充填して使用する高熱伝導金属の熱伝導率λは、鋳型長辺銅板1の熱伝導率λに対して120%以上である必要がある。熱伝導率λが鋳型長辺銅板1の熱伝導率λに対して80%以下の低熱伝導金属または120%以上の高熱伝導金属を使用することで、異種金属充填部3による熱流束の周期的な変動の効果が十分となり、鋳片に表面割れの発生しやすい高速鋳造時や中炭素鋼の鋳造時においても、鋳片の表面割れ抑制効果が十分に得られる。 In the present invention, the thermal conductivity λ m of the low thermal conductive metal used by filling the circular concave groove 2 needs to be 80% or less with respect to the thermal conductivity λ c of the mold long side copper plate 1. In addition, the thermal conductivity λ m of the high thermal conductivity metal used by filling the circular concave groove 2 needs to be 120% or more with respect to the thermal conductivity λ c of the mold long side copper plate 1. By using a low thermal conductivity metal having a thermal conductivity λ m of 80% or less or a high thermal conductivity metal of 120% or more with respect to the thermal conductivity λ c of the long-side copper plate 1 of the mold, The effect of periodic fluctuation is sufficient, and the effect of suppressing the surface cracking of the slab can be sufficiently obtained even at the time of high-speed casting in which surface cracks are likely to occur in the slab and casting of medium carbon steel.

使用する低熱伝導金属としては、鍍金処理や溶射処理によって容易に充填することができることから、ニッケル(Ni、熱伝導率;90W/(m×K))、ニッケル系合金、クロム(Cr、熱伝導率;67W/(m×K))、コバルト(Co、熱伝導率;70W/(m×K))などが好適である。尚、本明細書に記載する熱伝導率の数値は、常温(約20℃)における熱伝導率である。   As the low heat conductive metal to be used, nickel (Ni, thermal conductivity: 90 W / (mxK)), nickel alloy, chromium (Cr, thermal conductivity) can be easily filled by plating or thermal spraying. (Rate: 67 W / (m × K)), cobalt (Co, thermal conductivity: 70 W / (m × K)) and the like are suitable. In addition, the numerical value of the thermal conductivity described in this specification is the thermal conductivity at normal temperature (about 20 ° C.).

また、鋳型銅板として使用する銅合金としては、一般的に連続鋳造用鋳型として使用されている、クロムやジルコニウム(Zr)などを微量添加した銅合金を用いればよい。もちろん、純銅を鋳型銅板として使用してもよい。   Moreover, as a copper alloy used as a mold copper plate, a copper alloy that is generally used as a casting mold for continuous casting and to which a small amount of chromium, zirconium (Zr), or the like is added may be used. Of course, pure copper may be used as the mold copper plate.

近年では、鋳型内の凝固の均一化または溶鋼中介在物の凝固シェルへの捕捉を防止するために、連続鋳造用鋳型には、鋳型内の溶鋼を攪拌する電磁攪拌装置が設置されていることが一般的である。この場合は、電磁コイルから溶鋼への磁場強度の減衰を抑制するために、導電率を低減した銅合金が用いられている。銅合金は、その導電率の低下に応じて熱伝導率も低減し、したがって、近年では、純銅の1/2前後の熱伝導率の銅合金製の鋳型銅板も使用されている。尚、純銅の熱伝導率は約385W/(m×K)である。   In recent years, an electromagnetic stirrer that stirs molten steel in the mold has been installed in the continuous casting mold in order to homogenize the solidification in the mold or prevent the inclusion of inclusions in the molten steel in the solidified shell. Is common. In this case, in order to suppress the attenuation of the magnetic field strength from the electromagnetic coil to the molten steel, a copper alloy with reduced conductivity is used. The copper alloy has a reduced thermal conductivity in accordance with a decrease in its conductivity. Therefore, in recent years, a copper alloy mold copper plate having a thermal conductivity of about 1/2 that of pure copper is also used. Incidentally, the thermal conductivity of pure copper is about 385 W / (m × K).

このように、熱伝導率の低い銅合金を鋳型銅板とした連続鋳造用鋳型では、円形凹溝2に充填して使用する高熱伝導金属として、純銅や合金成分の含有量が少ない熱伝導率の高い銅合金を使用することができる。   As described above, in a continuous casting mold using a copper alloy having a low thermal conductivity as a mold copper plate, as a high thermal conductive metal to be used by filling the circular concave groove 2, the thermal conductivity having a small content of pure copper or an alloy component is used. High copper alloys can be used.

また、本発明においては、オシレーションマークに起因する鋳片表面割れを防止するために、連続鋳造用鋳型の鋳型振動の振幅A(mm)及び振動数f(回/min)を、連続鋳造用鋳型の鋳造方向に隣会う異種金属充填部3の中心間距離L(mm)及び鋳片引き抜き速度Vc(m/min)に応じて設定することが好ましい。   Further, in the present invention, in order to prevent slab surface cracks due to the oscillation mark, the mold vibration amplitude A (mm) and frequency f (times / min) of the continuous casting mold are used for continuous casting. It is preferable to set according to the distance L (mm) between the centers of the dissimilar metal filling portions 3 adjacent to the casting direction of the mold and the slab drawing speed Vc (m / min).

ここで、鋳型の振動波形を、例えば正弦波形とした場合には、鋳型の振動による変位yは「y=Asin(2πft)、但し、A;振幅(mm)、f;振動数(回/min)、t;時間(min)」で表される。つまり、鋳型振動の振幅Aとは、振動の上死点−下死点間の距離(ストローク)の1/2である。   Here, when the vibration waveform of the mold is a sine waveform, for example, the displacement y due to the vibration of the mold is “y = Asin (2πft), where A: amplitude (mm), f: frequency (times / min. ), T; time (min) ". That is, the amplitude A of the mold vibration is ½ of the distance (stroke) between the top dead center and the bottom dead center of the vibration.

鋳片のオシレーションマークは、鋳型振動の1周期(サイクル)毎に形成される。したがって、鋳片に形成されるオシレーションマークの間隔SD(mm)は、下記の(6)式で算出される。   The oscillation mark of the slab is formed for each cycle of the mold vibration. Therefore, the interval SD (mm) between the oscillation marks formed on the slab is calculated by the following equation (6).

間隔SD=1000×Vc/f・・・(6)
凝固シェルが、鋳造方向下方に間隔SDの距離を進む間に、異種金属充填部3及び鋳型銅板の両方に接すれば、間隔SD内の凝固シェルは、ほぼ均等に周期的な熱流束変動を受けるので、その部位での不均一凝固が改善される。これにより、オシレーションマークの頂部と谷部との冷却の差が低減され、鋳片でのオシレーションマークに起因する表面割れの発生が抑えられる。
Interval SD = 1000 × Vc / f (6)
If the solidified shell is in contact with both the dissimilar metal filling portion 3 and the mold copper plate while the solidified shell advances the distance SD at the lower side in the casting direction, the solidified shell in the interval SD is subjected to the heat flux fluctuation almost evenly. Therefore, uneven solidification at the site is improved. Thereby, the difference in cooling between the top and valley of the oscillation mark is reduced, and the occurrence of surface cracks due to the oscillation mark in the slab is suppressed.

即ち、下記の(7)式に示すように、鋳造方向に隣会う異種金属充填部3の中心間距離L(mm)が間隔SD(mm)以下となれば、鋳型振動の1周期の間に、間隔SD内の凝固シェルの全てが異種金属充填部3及び鋳型銅板の両方に確実に接することになり、鋳片でのオシレーションマークに起因する表面割れの発生が抑えられる。   That is, as shown in the following formula (7), if the distance L (mm) between the centers of the dissimilar metal filling portions 3 adjacent to each other in the casting direction is equal to or less than the interval SD (mm), during one cycle of mold vibration. All the solidified shells in the interval SD are surely in contact with both the dissimilar metal filling portion 3 and the mold copper plate, and the occurrence of surface cracks due to the oscillation mark in the slab is suppressed.

L≦間隔SD=1000×Vc/f・・・(7)
一方、鋳造方向に隣会う異種金属充填部3の中心間距離L(mm)が振幅A(mm)の半分よりも小さくなると、オシレーションの1周期の間で、凝固シェルが常に低熱伝導金属部3または鋳型銅板のいずれかに接することになり、その結果、オシレーションマーク間の凸部における抜熱は周期的な熱流束の変動を受けず、凝固シェルは、周期的な熱流束の変動を受けくい状態で冷却されることになる。つまり、オシレーションマークの頂部と谷部との差を低減する効果が生じにくくなる。したがって、鋳造方向に隣会う異種金属充填部3の中心間距離L(mm)は、振幅A(mm)の半分以上となる必要があり、下記の(5)式が導かれる。
L ≦ interval SD = 1000 × Vc / f (7)
On the other hand, when the center-to-center distance L (mm) of the dissimilar metal filling portion 3 adjacent to the casting direction becomes smaller than half of the amplitude A (mm), the solidified shell always has a low heat conduction metal portion during one period of oscillation. 3 or the mold copper plate, and as a result, the heat removal at the protrusion between the oscillation marks is not subject to periodic heat flux fluctuations, and the solidified shell is subject to periodic heat flux fluctuations. It will be cooled in an unacceptable state. That is, the effect of reducing the difference between the top and valley of the oscillation mark is less likely to occur. Therefore, the center-to-center distance L (mm) of the dissimilar metal filling portion 3 adjacent to the casting direction needs to be at least half of the amplitude A (mm), and the following equation (5) is derived.

A/2≦L≦1000×Vc/f・・・(5)
即ち、本発明においては、オシレーションマークに起因する鋳片表面割れを防止するために、異種金属充填部の中心間距離L(mm)は、連続鋳造用鋳型の鋳型振動の振幅A(mm)、鋳型振動の振動数f(回/min)及び鋳片引き抜き速度Vc(m/min)と上記の(5)式の関係を満たすことが好ましい。
A / 2 ≦ L ≦ 1000 × Vc / f (5)
That is, in the present invention, in order to prevent slab surface cracking due to the oscillation mark, the distance L (mm) between the centers of the dissimilar metal filling portions is the mold vibration amplitude A (mm) of the continuous casting mold. It is preferable to satisfy the relationship of the above formula (5) with the frequency f (times / min) of the mold vibration and the slab drawing speed Vc (m / min).

異種金属充填部3の配列は、図1では異種金属充填部3の中心が鋳造方向に並んでいるが、鋳造方向で異種金属充填部3の中心位置をずらしてもよい。また、異種金属充填部3は、連続鋳造用鋳型の長辺鋳型銅板と短辺鋳型銅板の双方に設置することを基本とするが、スラブ鋳片のように鋳片短辺長さに対して鋳片長辺長さが著しく大きい場合には、鋳片の長辺側に表面割れが発生する傾向があり、異種金属充填部3を長辺鋳型銅板のみに設置しても、鋳片の表面割れ抑制効果を得ることができる。   In FIG. 1, the dissimilar metal filling part 3 is arranged in such a manner that the centers of the dissimilar metal filling parts 3 are aligned in the casting direction, but the center position of the dissimilar metal filling part 3 may be shifted in the casting direction. The dissimilar metal filling portion 3 is basically installed on both the long-side mold copper plate and the short-side mold copper plate of the continuous casting mold, but with respect to the short-side length of the slab like a slab slab. When the slab long side length is remarkably large, surface cracks tend to occur on the long side of the slab, and even if the dissimilar metal filling portion 3 is installed only on the long side mold copper plate, An inhibitory effect can be obtained.

このようにして構成される連続鋳造用鋳型内に溶鋼を注入しつつ、前記連続鋳造用鋳型を鋳造方向に振動させながら、前記溶鋼が冷却されて生成した凝固シェルを前記連続鋳造用鋳型から引き抜いて、鋳片を製造する。このような構成の連続鋳造用鋳型は、特に、表面割れ感受性が高い、炭素含有量が0.08〜0.17質量%の中炭素鋼のスラブ鋳片(厚み;200mm以上)を連続鋳造する際に使用することが好ましい。従来、中炭素鋼のスラブ鋳片を連続鋳造する場合は、鋳片の表面割れを抑制するために、鋳片引き抜き速度を低速化することが一般的であるが、上記構成の連続鋳造用鋳型を使用することで鋳片表面割れが抑制できるので、1.5m/min以上の鋳片引き抜き速度であっても、表面割れのない、または表面割れの著しく少ない鋳片を連続鋳造することが実現される。連続鋳造の際には、(5)式を満たすように、鋳型の振動条件及び鋳片引き抜き速度を制御することが好ましい。   While injecting molten steel into the continuous casting mold constructed as described above, the solidified shell formed by cooling the molten steel is pulled out from the continuous casting mold while vibrating the continuous casting mold in the casting direction. The slab is manufactured. The continuous casting mold having such a structure continuously casts a slab slab (thickness: 200 mm or more) of medium carbon steel having a high surface cracking sensitivity and a carbon content of 0.08 to 0.17% by mass. It is preferable to use it. Conventionally, when continuously casting a slab slab of medium carbon steel, it is common to reduce the slab drawing speed in order to suppress surface cracking of the slab. Because it is possible to suppress slab surface cracks by using, it is possible to continuously cast slabs with no surface cracks or very few surface cracks even at slab drawing speeds of 1.5 m / min or more. Is done. During continuous casting, it is preferable to control the vibration conditions of the mold and the slab drawing speed so as to satisfy the expression (5).

以上説明したように、本発明によれば、鋳型幅方向の周期的な熱流束分布周期または鋳造方向の周期的な熱流束分布周期のうちの少なくともいずれか一方が不均一凝固の防止に対して適正であり、凝固初期の凝固シェルの不均一冷却よる表面割れ、及び、包晶反応を伴う中炭素鋼でのδ鉄からγ鉄への変態に起因する凝固シェル厚みの不均一による表面割れを従来技術よりも更に安定して防止することが実現される。   As described above, according to the present invention, at least one of the periodic heat flux distribution period in the mold width direction and the periodic heat flux distribution period in the casting direction is used to prevent uneven solidification. Appropriate surface cracks due to non-uniform cooling of the solidified shell at the initial stage of solidification, and surface cracks due to non-uniform solidified shell thickness due to transformation from δ iron to γ iron in a medium carbon steel with peritectic reaction It is possible to prevent more stably than in the prior art.

尚、上記説明はスラブ鋳片の連続鋳造に関して行ったが、本発明はスラブ鋳片の連続鋳造に限定されるものではなく、ブルーム鋳片やビレット鋳片の連続鋳造においても上記に沿って適用することができる。   In addition, although the said description was performed regarding the continuous casting of a slab slab, this invention is not limited to the continuous casting of a slab slab, and it is applied along with the above also in the continuous casting of a bloom slab or a billet slab. can do.

中炭素鋼(化学成分、C;0.08〜0.17質量%、Si;0.10〜0.30質量%、Mn;0.50〜1.20質量%、P;0.010〜0.030質量%、S;0.005〜0.015質量%、Al;0.020〜0.040質量%)を、銅合金製の鋳型長辺銅板の内壁面に種々の条件で低熱伝導金属充填部が設置された水冷銅鋳型を用いて鋳造し、鋳造後の鋳片の表面割れを調査する試験を行った(本発明例1〜7、比較例1〜5)。用いた水冷銅鋳型は、鋳片長辺幅が1500〜2450mm、鋳片厚みが260mmのスラブ鋳片鋳造用の鋳型である。また、比較のために、低熱伝導金属充填部を有していない水冷式銅合金製連続鋳造用鋳型を使用した試験も行った(従来例)。   Medium carbon steel (chemical component, C; 0.08 to 0.17% by mass, Si; 0.10 to 0.30% by mass, Mn; 0.50 to 1.20% by mass, P; 0.010 to 0) 0.030 mass%, S; 0.005 to 0.015 mass%, Al; 0.020 to 0.040 mass%) on the inner wall surface of a copper alloy long mold copper plate under various conditions It cast using the water-cooled copper mold in which the filling part was installed, and the test which investigates the surface crack of the cast piece after casting was done (invention example 1-7, comparative examples 1-5). The water-cooled copper mold used is a mold for casting a slab slab having a slab long side width of 1500 to 2450 mm and a slab thickness of 260 mm. For comparison, a test using a water-cooled copper alloy continuous casting mold that does not have a low heat conductive metal filling part was also performed (conventional example).

使用した水冷式銅合金製連続鋳造用鋳型の上端から下端までの長さは950mmであり、定常鋳造時のメニスカス(鋳型内溶鋼湯面)の位置を、鋳型上端から100mm下方位置に設定した。鋳型上端から60mm下方の位置から、鋳型上端から200mm下方の位置までの範囲の鋳型銅板内壁面に円形凹溝の切削加工を施し(長さR=100mm)、その後、電気鍍金処理によって円形凹溝に低熱伝導金属を充填させた。電気鍍金処理を施した後、表面研削を行って円形凹溝以外の部位に付着した低熱伝導金属を除去し、再度、電気鍍金処理を施す工程を複数回繰り返して低熱伝導金属を円形凹溝に完全に充填させ、低熱伝導金属充填部を形成した。この場合、低熱伝導金属充填部とその周囲の銅合金部(低熱伝導金属充填部が形成されていない部位)とは段差のない平滑面に形成した。   The length from the upper end to the lower end of the water-cooled copper alloy continuous casting mold used was 950 mm, and the position of the meniscus (molten steel surface in the mold) during steady casting was set at a position 100 mm below the upper end of the mold. A circular concave groove is cut on the inner wall surface of the mold copper plate in a range from a position 60 mm below the upper end of the mold to a position 200 mm below the upper end of the mold (length R = 100 mm). Was filled with a low thermal conductive metal. After the electroplating treatment, surface grinding is performed to remove the low heat conductive metal adhering to the portion other than the circular groove, and the process of electroplating is repeated a plurality of times to make the low heat conductive metal into the circular groove. Completely filled to form a low thermal conductive metal filling. In this case, the low thermal conductive metal filling portion and the surrounding copper alloy portion (portions where the low thermal conductive metal filling portion is not formed) were formed on a smooth surface having no step.

鋳型銅板としては、熱伝導率が298.5W/(m×K)の銅合金を用い、充填用の低熱伝導金属(以下、「充填金属」とも記す)としては、純ニッケル(熱伝導率;90.5W/(m×K))を使用した。   As the mold copper plate, a copper alloy having a thermal conductivity of 298.5 W / (m × K) is used, and as the low thermal conductive metal for filling (hereinafter also referred to as “filled metal”), pure nickel (thermal conductivity; 90.5 W / (m × K)) was used.

連続鋳造操業においては、モールドパウダーとして、塩基度((質量%CaO)/(質量%SiO))が1.0〜1.5で、1300℃における粘度が0.05〜0.20Pa・sのモールドパウダーを使用した。連続鋳造終了後、鋳片表面の割れ発生状況を染色浸透探傷検査によって調査した。浸透探傷検査によって検出した2mm以上の長さの表面割れの個数を測定し、その総和を、表面割れを調査した鋳片の表面積(m)で除した値(個/m)を表面割れ個数密度として定義し、この表面割れ個数密度を用いて表面割れの発生状況を評価した。 In the continuous casting operation, the basicity ((mass% CaO) / (mass% SiO 2 )) is 1.0 to 1.5 and the viscosity at 1300 ° C. is 0.05 to 0.20 Pa · s as the mold powder. The mold powder was used. After continuous casting was completed, the state of cracking on the surface of the slab was investigated by dye penetration testing. The number of surface cracks of a length of more than 2mm detected by penetrant inspection measures, and the sum, surface cracks and a value obtained by dividing (number / m 2) by the surface area of the slab of the examination of surface cracks (m 2) It was defined as the number density, and the occurrence of surface cracks was evaluated using this surface crack number density.

表1に、各試験における定常鋳造時の鋳片引き抜き速度Vc、鋳型振動条件、低熱伝導金属充填部設置条件及び鋳片表面検査結果を示す。   Table 1 shows the slab drawing speed Vc, mold vibration conditions, low heat conductive metal filling portion installation conditions, and slab surface inspection results during steady casting in each test.

本発明例1〜7は、鋳片の表面割れ個数密度が低位であり、鋳片の表面割れが抑制されることが確認できた。   In Invention Examples 1 to 7, the surface crack number density of the slab was low, and it was confirmed that the surface crack of the slab was suppressed.

これに対して、比較例1は、W/d及びL/dが大きすぎ、低熱伝導金属充填部を設置したことによる鋳型幅方向及び鋳造方向の周期的な熱流束分布周期が不均一凝固の防止に有効に作用せず、鋳片の表面割れ個数密度は本発明例の1.7倍以上であった。   On the other hand, in Comparative Example 1, W / d and L / d are too large, and the periodic heat flux distribution period in the mold width direction and the casting direction due to the installation of the low heat conductive metal filling portion is unevenly solidified. It did not act effectively for prevention, and the surface crack number density of the slab was 1.7 times or more that of the example of the present invention.

比較例2は、円形凹溝の直径dが小さすぎて、異種金属充填部における熱流束の低下が不十分であり、また、W/dが大きすぎ、且つ、L/dが小さすぎることから、低熱伝導金属充填部を設置したことによる鋳型幅方向及び鋳造方向の周期的な熱流束分布周期が不均一凝固の防止に有効に作用せず、鋳片の表面割れ個数密度は本発明例の1.9倍以上であった。   In Comparative Example 2, since the diameter d of the circular groove is too small, the heat flux in the dissimilar metal filling portion is not sufficiently lowered, W / d is too large, and L / d is too small. In addition, the periodic heat flux distribution period in the mold width direction and the casting direction due to the installation of the low heat conductive metal filling portion does not effectively work to prevent non-uniform solidification, and the surface crack number density of the slab is in the example of the present invention. It was 1.9 times or more.

比較例3は、円形凹溝の直径dが大きすぎて、異種金属充填部での凝固遅れが起こり、また、W/d及びL/dが大きすぎ、これらにより、低熱伝導金属充填部を設置したことによる鋳型幅方向及び鋳造方向の周期的な熱流束分布周期が不均一凝固の防止に有効に作用せず、鋳片の表面割れ個数密度は本発明例の2.1倍以上であった。   In Comparative Example 3, since the diameter d of the circular groove is too large, solidification delay occurs in the dissimilar metal filling part, and W / d and L / d are too large, thereby installing a low heat conductive metal filling part. Thus, the periodic heat flux distribution period in the mold width direction and the casting direction did not work effectively to prevent non-uniform solidification, and the surface crack number density of the slab was 2.1 times or more that of the present invention example. .

比較例4は、W/dが小さすぎて、且つ、L/dが大きすぎ、これらにより、低熱伝導金属充填部を設置したことによる鋳型幅方向及び鋳造方向の周期的な熱流束分布周期が不均一凝固の防止に有効に作用せず、鋳片の表面割れ個数密度は本発明例の1.2倍以上であった。   In Comparative Example 4, W / d is too small and L / d is too large. Accordingly, the periodic heat flux distribution period in the mold width direction and the casting direction due to the installation of the low heat conductive metal filling portion is obtained. It did not work effectively to prevent uneven solidification, and the number density of surface cracks in the slab was 1.2 times or more that of the present invention.

比較例5は、円形凹溝の直径dが大きすぎて、異種金属充填部での凝固遅れが起こり、また、W/dが小さすぎて、且つ、L/dが大きすぎ、これらにより、低熱伝導金属充填部を設置したことによる鋳型幅方向及び鋳造方向の周期的な熱流束分布周期が不均一凝固の防止に有効に作用せず、鋳片の表面割れ個数密度は本発明例の1.3倍以上であった。   In Comparative Example 5, the diameter d of the circular concave groove is too large, the solidification delay occurs in the dissimilar metal filling portion, the W / d is too small, and the L / d is too large. The periodic heat flux distribution period in the mold width direction and the casting direction due to the installation of the conductive metal filling portion does not work effectively to prevent non-uniform solidification, and the surface crack number density of the slab is 1. It was more than 3 times.

従来例では、鋳片の表面割れ個数密度は本発明例の約5倍以上であり、多数の鋳片表面割れが発生した。   In the conventional example, the surface crack number density of the slab was about 5 times or more that of the example of the present invention, and many slab surface cracks occurred.

1 鋳型長辺銅板
2 円形凹溝
3 異種金属充填部
4 スリット(鋳型冷却水流路)
5 バックプレート
1 Mold long side copper plate 2 Circular groove 3 Dissimilar metal filling part 4 Slit (mold cooling water flow path)
5 Back plate

Claims (2)

連続鋳造用鋳型内に溶鋼を注入しつつ、前記連続鋳造用鋳型を鋳造方向に振動させながら、前記溶鋼が冷却されて生成した凝固シェルを前記連続鋳造用鋳型から引き抜いて、鋳片を製造する鋼の連続鋳造方法であって、
前記連続鋳造用鋳型は、メニスカスよりも上方の任意の位置から、前記メニスカスよりも、鋳片引き抜き速度Vc(m/min)によって下記の(1)式で求まる長さR(mm)以上下方の位置までの、水冷式銅鋳型の内壁面の範囲に、銅鋳型の熱伝導率に対して熱伝導率が80%以下または120%以上である金属が、前記内壁面に直径を1.0mmから10.0mmの範囲内として加工された円形凹溝に充填されて形成された複数個の異種金属充填部を有し、
前記異種金属充填部の充填厚みH(mm)は、前記円形凹溝の直径d(mm)と下記の(2)式の関係を満たし、
前記連続鋳造用鋳型の幅方向に隣会う前記円形凹溝は接触するか、または、その一部同士が重なり合っていて、前記連続鋳造用鋳型の幅方向に隣会う前記異種金属充填部の中心間距離W(mm)は、前記円形凹溝の直径d(mm)と下記の(3)式の関係を満たし、及び/または、前記連続鋳造用鋳型の鋳造方向に隣会う前記異種金属充填部の中心間距離L(mm)は、前記円形凹溝の直径d(mm)と下記の(4)式の関係を満たす、鋼の連続鋳造方法。
=2×Vc×1000/60・・・(1)
0.5≦H≦d・・・(2)
0.70<W/d≦1.00・・・(3)
0.70<L/d≦1.00・・・(4)
While injecting molten steel into a continuous casting mold, vibrating the continuous casting mold in the casting direction, drawing the solidified shell formed by cooling the molten steel from the continuous casting mold to produce a slab A continuous casting method of steel,
The continuous casting mold is lower than the meniscus by a length R 0 (mm) or more determined by the following equation (1) based on the slab drawing speed Vc (m / min) from an arbitrary position above the meniscus. Up to the position of the inner wall surface of the water-cooled copper mold, a metal having a thermal conductivity of 80% or less or 120% or more with respect to the thermal conductivity of the copper mold has a diameter of 1.0 mm on the inner wall surface. A plurality of dissimilar metal filling portions formed by being filled in circular grooves processed as in the range of 10.0 mm to 10.0 mm,
The filling thickness H (mm) of the dissimilar metal filling portion satisfies the relationship of the diameter d (mm) of the circular groove and the following equation (2):
The circular grooves adjacent to each other in the width direction of the continuous casting mold are in contact with each other, or a part thereof overlaps between the centers of the different metal filling portions adjacent to each other in the width direction of the continuous casting mold. The distance W (mm) satisfies the relationship of the following formula (3) with the diameter d (mm) of the circular concave groove and / or the dissimilar metal filling portion adjacent to the casting direction of the continuous casting mold. The center-to-center distance L (mm) is a continuous casting method of steel that satisfies the relationship of the diameter d (mm) of the circular groove and the following equation (4).
R 0 = 2 × Vc × 1000/60 (1)
0.5 ≦ H ≦ d (2)
0.70 <W / d ≦ 1.00 (3)
0.70 <L / d ≦ 1.00 (4)
前記連続鋳造用鋳型の鋳造方向に隣会う前記異種金属充填部の中心間距離L(mm)は、前記連続鋳造用鋳型の鋳型振動の振幅A(mm)、鋳型振動の振動数f(回/min)及び鋳片引き抜き速度Vc(m/min)と下記の(5)式の関係を満たす、請求項1に記載の鋼の連続鋳造方法。
A/2≦L≦1000×Vc/f・・・(5)
The center-to-center distance L (mm) of the dissimilar metal filling portion adjacent to the casting direction of the continuous casting mold is the mold vibration amplitude A (mm) of the continuous casting mold and the frequency f (times / times) of the mold vibration. min) and the slab drawing speed Vc (m / min) and the following formula (5):
A / 2 ≦ L ≦ 1000 × Vc / f (5)
JP2018063376A 2018-03-29 2018-03-29 Continuous steel casting method Active JP6787359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018063376A JP6787359B2 (en) 2018-03-29 2018-03-29 Continuous steel casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018063376A JP6787359B2 (en) 2018-03-29 2018-03-29 Continuous steel casting method

Publications (2)

Publication Number Publication Date
JP2019171435A true JP2019171435A (en) 2019-10-10
JP6787359B2 JP6787359B2 (en) 2020-11-18

Family

ID=68167927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018063376A Active JP6787359B2 (en) 2018-03-29 2018-03-29 Continuous steel casting method

Country Status (1)

Country Link
JP (1) JP6787359B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113600795A (en) * 2021-06-30 2021-11-05 上海航天精密机械研究所 Casting method for refining investment casting structure
CN113828746A (en) * 2021-09-22 2021-12-24 日照钢铁控股集团有限公司 Method for evaluating crystallizer flow field by utilizing vibration trace distribution of casting blank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113600795A (en) * 2021-06-30 2021-11-05 上海航天精密机械研究所 Casting method for refining investment casting structure
CN113600795B (en) * 2021-06-30 2023-07-14 上海航天精密机械研究所 Casting method for refining investment casting structure
CN113828746A (en) * 2021-09-22 2021-12-24 日照钢铁控股集团有限公司 Method for evaluating crystallizer flow field by utilizing vibration trace distribution of casting blank

Also Published As

Publication number Publication date
JP6787359B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP5692451B2 (en) Continuous casting mold and steel continuous casting method
JP6439762B2 (en) Steel continuous casting method
JP6003851B2 (en) Continuous casting mold and steel continuous casting method
JP6003850B2 (en) Manufacturing method of continuous casting mold and continuous casting method of steel
JP6256627B2 (en) Continuous casting mold and steel continuous casting method
JP5962733B2 (en) Steel continuous casting method
JP2019171435A (en) Method of continuous casting
JP6044614B2 (en) Steel continuous casting method
JP6365604B2 (en) Steel continuous casting method
JP6947737B2 (en) Continuous steel casting method
JP6402750B2 (en) Steel continuous casting method
KR102245013B1 (en) Continuous casting method of molds and steels for continuous casting
WO2018056322A1 (en) Continuous steel casting method
JP6740924B2 (en) Continuous casting mold and steel continuous casting method
KR102319205B1 (en) Molds for continuous casting and methods for continuous casting of steel
JP6428721B2 (en) Continuous casting mold and steel continuous casting method
WO2020095932A1 (en) Mold for continuous steel casting and continuous steel casting method
JP2018149602A (en) Method for continuously casting steel
JP2007237279A (en) Continuous casting mold and continuous casting method
JP2016168610A (en) Steel continuous casting method
JP2024035081A (en) Mold for continuous casting

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R150 Certificate of patent or registration of utility model

Ref document number: 6787359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250