JP2018015781A - Secondary cooling method and secondary cooling device of continuous casting - Google Patents

Secondary cooling method and secondary cooling device of continuous casting Download PDF

Info

Publication number
JP2018015781A
JP2018015781A JP2016148071A JP2016148071A JP2018015781A JP 2018015781 A JP2018015781 A JP 2018015781A JP 2016148071 A JP2016148071 A JP 2016148071A JP 2016148071 A JP2016148071 A JP 2016148071A JP 2018015781 A JP2018015781 A JP 2018015781A
Authority
JP
Japan
Prior art keywords
slab
cooling
gap
continuous casting
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016148071A
Other languages
Japanese (ja)
Other versions
JP6747142B2 (en
Inventor
祐輝 ▲桑▼内
祐輝 ▲桑▼内
Yuki Kuwauchi
林 聡
Satoshi Hayashi
聡 林
仁志 舟金
Hitoshi Funagane
仁志 舟金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016148071A priority Critical patent/JP6747142B2/en
Publication of JP2018015781A publication Critical patent/JP2018015781A/en
Application granted granted Critical
Publication of JP6747142B2 publication Critical patent/JP6747142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To cope with acceleration of casting speed by improving cooling capacity of secondary cooling in a continuous casting machine without increasing the quantity of water or without elongating a machine length of the continuous casting machine.SOLUTION: In a secondary cooling method of continuous casting, a cooling device 31 is provided in a clearance between each support roll 10 for conveying a cast slab H. The cooling device 31 includes a coolant guide plate 32 installed approximately in parallel to the cast slab H with a clearance 34 for forming a coolant passage between itself and the surface of the cast slab H, and a refrigerant pipe (water supply pipe 33) for supplying the coolant into the clearance 34, to thereby achieve cooling so that the coolant has a contact with the cast slab H in a non-boiling or nuclear-boiling region.SELECTED DRAWING: Figure 8

Description

本発明は、連続鋳造機で鋳片の連続鋳造を行う際の二次冷却方法及び二次冷却装置に関するものである。   The present invention relates to a secondary cooling method and a secondary cooling device when performing continuous casting of a slab with a continuous casting machine.

鉄鋼業の連続鋳造において、鋳片を二次冷却する方法として、従来、スプレー方式の冷却が広く行われている。この二次冷却方法は、鋳片を搬送する支持ロール間にスプレーノズルを配置し、冷却水をスプレー状にして鋳片の表面に吹き付けて冷却するものである。   In the continuous casting of the steel industry, spray-type cooling has been widely performed as a method for secondary cooling of a slab. In this secondary cooling method, a spray nozzle is disposed between support rolls that convey a slab, and cooling water is sprayed onto the surface of the slab to cool it.

ところが、スプレー方式の場合、高温の鋳片に水を噴射することで水が飛散し、噴射した水が効率的に利用されないため、冷却能力に限界があった。そのため、将来、鋳造速度を上げて生産性を向上させるためには、給水量を大幅に増量するか、連続鋳造機の機長を延長して二次冷却区間を増やす必要がある。つまり、現状の連続鋳造機では対応できず、連続鋳造の高速化を図るためには、二次冷却における熱伝達係数の大幅な向上が望まれている。   However, in the case of the spray method, water is scattered by spraying water onto a high-temperature slab, and the sprayed water is not efficiently used, so that the cooling capacity is limited. Therefore, in order to increase the casting speed and improve the productivity in the future, it is necessary to increase the amount of water supply significantly or extend the length of the continuous casting machine to increase the secondary cooling section. That is, the current continuous casting machine cannot cope with it, and in order to increase the speed of continuous casting, a significant improvement in the heat transfer coefficient in secondary cooling is desired.

従来、二次冷却における温度ムラを低減して均一に冷却するため、例えば特許文献1には、鋳片表面温度を膜沸騰の領域に保持して冷却する二次冷却方法が開示され、ロール間に多孔板を配置して冷却水を噴出することが記載されている。   Conventionally, for example, Patent Document 1 discloses a secondary cooling method in which a slab surface temperature is maintained in a film boiling region in order to reduce temperature unevenness in secondary cooling and perform uniform cooling. Describes that a cooling plate is ejected by arranging a perforated plate.

また、二次冷却の冷却能力を向上させる方法として、例えば特許文献2には、ウェアプレートを用いたクーリンググリッド設備が開示されている。   Moreover, as a method for improving the cooling capacity of secondary cooling, for example, Patent Document 2 discloses a cooling grid facility using a wear plate.

また、特許文献3には、水膜流を利用して鋳片を冷却し、冷却能力を高める連続鋳片の二次冷却方法が開示されている。   Patent Document 3 discloses a secondary cooling method for a continuous slab that uses a water film flow to cool the slab and enhances the cooling capacity.

特許第5146006号公報Japanese Patent No. 5146006 特許第4453562号公報Japanese Patent No. 4453562 特開2002−086253号公報JP 2002-086253 A

しかしながら、特許文献1の場合、鋳片の長手方向に並んだ複数の噴出孔から冷却水を噴射させるため、冷却水同士の干渉やこれに伴う冷却水の滞留が起こりやすく、均一な冷却ができない。また、特許文献1は、過冷却にならないように膜沸騰の領域で冷却するものであり、冷却能力の大幅な向上は見込めない。   However, in the case of Patent Document 1, since cooling water is injected from a plurality of ejection holes arranged in the longitudinal direction of the slab, interference between the cooling waters and the accompanying retention of the cooling water easily occur, and uniform cooling cannot be performed. . Further, Patent Document 1 is for cooling in the region of film boiling so as not to overcool, and a significant improvement in cooling capacity cannot be expected.

また、特許文献2の場合は、ウェアプレートが鋳片と接触しているため、鋳片の表面に疵が発生し、品質上問題が生じる。   In the case of Patent Document 2, since the wear plate is in contact with the slab, wrinkles are generated on the surface of the slab, resulting in a quality problem.

また、特許文献3の場合、鋳片の引き抜き方向の反対方向へ連続的に移動する、例えばキャタピラー等を用いて駆動される水膜形成板と鋳片との間隙に、各水膜形成板に設けられた給水口から給水して、厚さ0.1〜2.5mmの水膜流を形成する連続鋳造の2次冷却方法が開示されているが、長手方向に並んだ複数の給水口から冷却水を給水するため、冷却水同士の干渉やこれに伴う冷却水の滞留が起こりやすく、均一な冷却ができない。   Further, in the case of Patent Document 3, each water film forming plate is moved in the gap between the water film forming plate and the slab that is continuously moved in the direction opposite to the drawing direction of the slab, for example, driven by a caterpillar. A secondary cooling method for continuous casting in which water is supplied from a provided water supply port to form a water film flow having a thickness of 0.1 to 2.5 mm is disclosed, but from a plurality of water supply ports arranged in the longitudinal direction. Since the cooling water is supplied, interference between the cooling waters and the stagnation of the cooling water accompanying this easily occur, and uniform cooling cannot be performed.

そこで、本発明は、連続鋳造機における二次冷却の冷却能力を向上させ、水量を大幅に増やしたり、連続鋳造機の機長を延長したりすることなく、鋳造速度の高速化に対応できる、連続鋳造の二次冷却方法及び二次冷却装置を提供することを目的とするものである。   Therefore, the present invention improves the cooling capacity of the secondary cooling in the continuous casting machine, can cope with a higher casting speed without significantly increasing the amount of water or extending the length of the continuous casting machine. An object of the present invention is to provide a secondary cooling method and secondary cooling device for casting.

上記課題を解決するため、本発明は、連続鋳造の二次冷却方法であって、鋳片を搬送する支持ロール同士の間隙に冷却装置を設け、前記冷却装置は、前記鋳片の表面との間に冷媒の流路を形成するための隙間をあけて前記鋳片と略平行に設置される冷媒ガイド板と、前記隙間に前記冷媒を供給する冷媒管を備え、前記隙間に供給された前記冷媒が非沸騰または核沸騰の領域で前記鋳片に接触して当該鋳片を冷却することを特徴とする、連続鋳造の二次冷却方法を提供する。なお、非沸騰または核沸騰とは、少なくとも一部の冷媒が液体の状態で鋳片表面に接触して鋳片を冷却する状態をいう。   In order to solve the above-mentioned problem, the present invention is a secondary cooling method for continuous casting, in which a cooling device is provided in a gap between support rolls that convey a slab, and the cooling device is connected to a surface of the slab. A refrigerant guide plate that is installed substantially parallel to the slab with a gap for forming a refrigerant flow path therebetween, and a refrigerant pipe that supplies the refrigerant to the gap, and is supplied to the gap Provided is a secondary cooling method for continuous casting, wherein the slab is cooled by contacting the slab in a region where the refrigerant is non-boiling or nucleate boiling. Note that non-boiling or nucleate boiling refers to a state in which at least a part of the refrigerant contacts the slab surface in a liquid state to cool the slab.

前記隙間を、0.5mmを超え、且つ下記式(1)を満たすdmm以下としてもよい。
=3.838×10−4×W0.48×(T+273)0.80 ・・・(1)
ここで、
(mm):水膜冷却とスプレー冷却の熱伝達係数が同等となる流路隙間間隔
W(L/min.m):水量密度
T(℃):評価温度
なお、水膜冷却とは本発明の冷却装置を用いた冷却であり、スプレー冷却とはスプレー状に噴射された冷媒を用いた冷却である。
The gap may be greater than 0.5 mm and not more than d 0 mm satisfying the following formula (1).
d 0 = 3.838 × 10 −4 × W 0.48 × (T + 273) 0.80 (1)
here,
d 0 (mm): Channel gap interval W (L / min.m 2 ) at which the heat transfer coefficients of water film cooling and spray cooling are equivalent: Water density T (° C.): Evaluation temperature In addition, what is water film cooling? It is cooling using the cooling device of the present invention, and spray cooling is cooling using a refrigerant sprayed in a spray form.

前記冷媒は、前記冷媒ガイド板に形成された供給口を介して前記隙間に供給され、前記供給口は、前記鋳片の幅方向に1列に並ぶ複数の孔、または、前記鋳片の幅方向を長手方向とするスリットであってもよい。   The refrigerant is supplied to the gap through a supply port formed in the refrigerant guide plate, and the supply port has a plurality of holes arranged in a line in the width direction of the slab, or the width of the slab. It may be a slit whose direction is the longitudinal direction.

また、本発明は、連続鋳造の二次冷却を行う冷却装置であって、鋳片を搬送する支持ロール同士の間隙に設けられ、前記鋳片の表面との間に冷媒の流路を形成するための隙間をあけて前記鋳片と略平行に設置される冷媒ガイド板と、前記隙間に前記冷媒を供給する冷媒管を備え、前記隙間を、0.5mmを超え、且つ下記式(1)を満たすdmm以下とし、前記隙間に供給された前記冷媒が非沸騰または核沸騰の領域で前記鋳片に接触して当該鋳片を冷却することを特徴とする、連続鋳造の二次冷却装置を提供する。
=3.838×10−4×W0.48×(T+273)0.80 ・・・(1)
ここで、
(mm):水膜冷却とスプレー冷却の熱伝達係数が同等となる流路隙間間隔
W(L/min.m):水量密度
T(℃):評価温度
Further, the present invention is a cooling device that performs secondary cooling of continuous casting, and is provided in a gap between support rolls that convey a slab, and forms a coolant channel between the surfaces of the slab. And a refrigerant guide plate installed substantially parallel to the slab with a gap for the purpose, and a refrigerant pipe for supplying the refrigerant to the gap. The gap exceeds 0.5 mm, and the following formula (1) D 0 mm or less that satisfies the above condition, and the coolant supplied to the gap contacts the slab in the non-boiling or nucleate boiling region to cool the slab, and the secondary cooling of continuous casting Providing equipment.
d 0 = 3.838 × 10 −4 × W 0.48 × (T + 273) 0.80 (1)
here,
d 0 (mm): Channel gap interval W (L / min.m 2 ) at which the heat transfer coefficients of water film cooling and spray cooling are equivalent: Water density T (° C.): Evaluation temperature

前記冷媒ガイド板に、前記冷媒を前記隙間に供給する供給口が形成され、前記供給口は、前記鋳片の幅方向に1列に並ぶ複数の孔、または、前記鋳片の幅方向を長手方向とするスリットであってもよい。   A supply port for supplying the refrigerant to the gap is formed in the refrigerant guide plate, and the supply port extends in a plurality of holes arranged in a line in the width direction of the slab or in the width direction of the slab. The slit may be a direction.

本発明によれば、連続鋳造の二次冷却の冷却効率を大幅に向上させることができるので、冷却水量を増加させることなく、鋳造速度の高速化にも対応できる。   According to the present invention, since the cooling efficiency of the secondary cooling of continuous casting can be greatly improved, the casting speed can be increased without increasing the amount of cooling water.

本発明の実施の形態にかかる連続鋳造機の概要を示す側面図である。It is a side view which shows the outline | summary of the continuous casting machine concerning embodiment of this invention. スプレー冷却の冷却能力を試験する実験装置の概略を示す断面図である。It is sectional drawing which shows the outline of the experimental apparatus which tests the cooling capacity of spray cooling. 鋳片温度が900℃、600℃の場合の、図2の実験装置によって測定されたスプレー冷却の熱伝達係数を水量密度に対して示したグラフである。It is the graph which showed the heat transfer coefficient of the spray cooling measured by the experimental apparatus of FIG. 2 with respect to the water density when the slab temperature is 900 ° C. and 600 ° C. 水膜冷却の冷却能力を試験する実験装置の概略を示す断面図である。It is sectional drawing which shows the outline of the experimental apparatus which tests the cooling capacity of water film cooling. 水膜冷却において、鋳片に接触する水の状態の変化を説明する図である。It is a figure explaining the change of the state of the water which contacts a slab in water film cooling. 鋳片温度が900℃の場合の、図4の実験装置によって測定された水膜冷却の熱伝達係数を、図2の実験装置によって測定されたスプレー冷却の熱伝達係数と比較して、水量密度に対して示したグラフである。When the slab temperature is 900 ° C., the water film cooling heat transfer coefficient measured by the experimental apparatus of FIG. 4 is compared with the heat transfer coefficient of spray cooling measured by the experimental apparatus of FIG. It is the graph shown with respect to. 鋳片温度が600℃の場合の、図4の実験装置によって測定された水膜冷却の熱伝達係数を、図2の実験装置によって測定されたスプレー冷却の熱伝達係数と比較して、水量密度に対して示したグラフである。When the slab temperature is 600 ° C., the heat transfer coefficient of water film cooling measured by the experimental apparatus of FIG. 4 is compared with the heat transfer coefficient of spray cooling measured by the experimental apparatus of FIG. It is the graph shown with respect to. 本発明の実施の形態にかかる冷却装置を備えた連続鋳造機の一部を示す側面図である。It is a side view which shows a part of continuous casting machine provided with the cooling device concerning embodiment of this invention. 図8を、鋳片表面に正対して見た図である。It is the figure which looked at FIG. 8 in front of the slab surface. 本発明の他の実施の形態にかかる冷却装置を備えた連続鋳造機の一部を示す側面図である。It is a side view which shows a part of continuous casting machine provided with the cooling device concerning other embodiment of this invention. 図10を、鋳片表面に正対して見た図である。It is the figure which looked at FIG. 10 in front of a slab surface.

以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかる連続鋳造機1の構成の概略を示す説明図である。   Embodiments of the present invention will be described below. FIG. 1 is an explanatory diagram showing an outline of the configuration of a continuous casting machine 1 according to the present embodiment.

連続鋳造機1は、図1に示すように、溶鋼を一時的に貯留するタンディッシュ2、タンディッシュ2の底部から鋳型3に溶鋼を注入する浸漬ノズル4、鋳型3から引き抜かれる鋳片Hを通過させる鋳片通路5、及び鋳片通路5を挟んで対向配置される一対のロール群6、7を備えている。   As shown in FIG. 1, the continuous casting machine 1 includes a tundish 2 for temporarily storing molten steel, an immersion nozzle 4 for injecting molten steel into the mold 3 from the bottom of the tundish 2, and a slab H pulled out from the mold 3. A slab passage 5 to be passed, and a pair of roll groups 6 and 7 arranged to face each other with the slab passage 5 interposed therebetween are provided.

一対のロール群6、7は、鋳片Hを鋳片通路5に沿った鋳造方向Dに案内するように、鋳片通路5の両面にそれぞれ設けられている。内周側のロール群6は、鋳片通路5内の鋳片Hの内周側を案内する複数の支持ロール10を有している。各支持ロール10は、その中心軸が鋳片Hの幅方向に向くように、鋳造方向Dに沿ってそれぞれ一列に並べて配置されている。また、外周側のロール群7は、鋳片通路5内の鋳片Hの外周側を案内する複数の支持ロール11を有している。各支持ロール11は、その中心軸が鋳片Hの幅方向に向くように、鋳造方向Dに沿ってそれぞれ一列に並べて配置されている。 A pair of rolls 6 and 7, so as to guide the slab H in the casting direction D 1 along the slab passage 5, are provided on both surfaces of the slab passage 5. The inner peripheral roll group 6 includes a plurality of support rolls 10 that guide the inner peripheral side of the slab H in the slab passage 5. Each supporting roll 10, the center axis thereof so as to face in the width direction of the slab H, are arranged in a row along the casting direction D 1. Further, the outer peripheral side roll group 7 has a plurality of support rolls 11 for guiding the outer peripheral side of the slab H in the slab passage 5. Each supporting roll 11 has its central axis so as to face in the width direction of the slab H, are arranged in a row along the casting direction D 1.

タンディッシュ2内の溶鋼は、浸漬ノズル4を介して鋳型3の上側から注入され、鋳型3で一次冷却されて鋳型3との接触面に凝固シェルを形成する。さらに、この凝固シェルを外殻とし、内部に未凝固溶鋼を有する鋳片Hは、鋳型3の下方において、各支持ロール10、11で挟み込まれた状態で二次冷却水によって冷却されながら連続的に引き抜かれ、やがて中心部までの凝固が完了した鋳片Hが生産される。   Molten steel in the tundish 2 is injected from the upper side of the mold 3 through the immersion nozzle 4 and is primarily cooled by the mold 3 to form a solidified shell on the contact surface with the mold 3. Further, the slab H having the solidified shell as the outer shell and having the unsolidified molten steel inside is continuously cooled by the secondary cooling water in the state sandwiched between the support rolls 10 and 11 below the mold 3. The slab H that has been drawn out and is finally solidified to the center is produced.

図2は、現在の連続鋳造機で一般的に用いられているスプレーノズル15について、その冷却能力を測定する実験装置を示したものである。所定の評価温度以上の温度にあらかじめ加熱した鋼片16の中央部上方から、種々のノズルを用いて冷却水を鋼片表面に噴射し、鋼片16を冷却した。冷却中の鋼片16の温度推移を測定し、その測定結果を用いて、鋼片表面の熱伝達係数を求めた。この際、鋼片表面のうち、スプレーノズル15からの冷却水のスプレー噴流17が直接衝突していない部分の温度推移も測定し、スプレーノズル15から吐出された冷却水のスプレー噴流17が鋼片表面に衝突して形成される楕円を内接円とする長方形の範囲にわたって平均した値を、該スプレーノズル15を用いたときの熱伝達係数として算出した。また、鋼片16の温度測定は、鋼片16の冷却面から厚さ方向に2mm内側の位置に熱電対を埋め込んで行った。   FIG. 2 shows an experimental apparatus for measuring the cooling capacity of the spray nozzle 15 generally used in the current continuous casting machine. Cooling water was sprayed onto the surface of the steel slab using various nozzles from above the center of the steel slab 16 preheated to a temperature equal to or higher than a predetermined evaluation temperature, thereby cooling the steel slab 16. The temperature transition of the steel slab 16 during cooling was measured, and the measurement result was used to obtain the heat transfer coefficient of the steel slab surface. At this time, the temperature transition of a portion of the steel slab surface where the spray jet 17 of the cooling water from the spray nozzle 15 does not directly collide is also measured, and the spray jet 17 of the cooling water discharged from the spray nozzle 15 becomes the steel slab. A value averaged over a rectangular range in which an ellipse formed by colliding with the surface is an inscribed circle was calculated as a heat transfer coefficient when the spray nozzle 15 was used. The temperature measurement of the steel slab 16 was performed by embedding a thermocouple at a position 2 mm inside from the cooling surface of the steel slab 16 in the thickness direction.

表1に、評価温度を900℃としたときの熱伝達係数の測定値を示す。また図3は、熱伝達係数を水量密度に対してプロットしたものである。ここで、水量密度は、スプレーノズルから噴射される冷却水の水量を、前記鋼片上の長方形の面積で除したものである。   Table 1 shows the measured values of the heat transfer coefficient when the evaluation temperature is 900 ° C. FIG. 3 is a plot of heat transfer coefficient versus water density. Here, the water amount density is obtained by dividing the amount of cooling water sprayed from the spray nozzle by the rectangular area on the steel piece.

表1および図3から、水量密度を増すにしたがって熱伝達係数が向上することが分かる。   It can be seen from Table 1 and FIG. 3 that the heat transfer coefficient improves as the water density increases.

また、表2は、評価温度を600℃としたときの熱伝達係数の測定値であり、評価温度600℃の場合も、水量密度を増すにしたがって熱伝達係数が向上することが分かる。600℃の測定値も図3に合わせて記載した。   Table 2 shows the measured values of the heat transfer coefficient when the evaluation temperature is 600 ° C. It can be seen that the heat transfer coefficient improves as the water density increases even at the evaluation temperature of 600 ° C. The measured value at 600 ° C. is also shown in FIG.

Figure 2018015781
Figure 2018015781

Figure 2018015781
Figure 2018015781

次に、水膜冷却の冷却効果の試験を行った。図4は、水膜冷却の冷却能力を試験するモデル装置21の概略を示す。鋼片22の表面から適宜間隔をあけて冷媒ガイド板23を設け、給水ノズル24から、鋼片22と冷媒ガイド板23との隙間25に向けて給水した。隙間25が水の流路となって鋼片22の表面に水膜が形成され、鋼片22が冷却される。水が流れる方向(X方向)における給水ノズル24からの距離による鋼片22の温度を測定し、冷却能力を調べた。鋼片22の温度測定は、鋼片22の冷却面から厚さ方向(Z方向)に1.5mm内側の位置に熱電対を埋め込んで行った。   Next, the cooling effect of water film cooling was tested. FIG. 4 shows an outline of a model device 21 for testing the cooling capacity of water film cooling. A coolant guide plate 23 was provided at an appropriate interval from the surface of the steel piece 22, and water was supplied from the water supply nozzle 24 toward the gap 25 between the steel piece 22 and the coolant guide plate 23. The gap 25 becomes a water flow path, a water film is formed on the surface of the steel piece 22, and the steel piece 22 is cooled. The temperature of the steel slab 22 according to the distance from the water supply nozzle 24 in the direction in which water flows (X direction) was measured, and the cooling capacity was examined. The temperature of the steel slab 22 was measured by embedding a thermocouple at a position 1.5 mm inside in the thickness direction (Z direction) from the cooling surface of the steel slab 22.

表3および表4に、それぞれ評価温度を900℃および600℃としたときの、水膜冷却による熱伝達係数の測定値を示す。水膜冷却の実験においては、鋼片表面上に水膜が形成されている範囲を評価対象面積とした。表3および表4より、水量密度を増加させると熱伝達係数が向上することに加え、同じ水量密度においても、流路隙間間隔を縮小することで熱伝達係数を向上できることが分かった。これは、流路隙間間隔を縮小すると、鋼片と冷媒ガイド板の間を流れる水膜の流速が上昇し、鋼片表面における蒸気膜の形成を抑制したためであると考えられる。なお、水量密度の定義は、水膜流を形成するために給水口から供給される冷却水の水量を、鋼片の面積で除したものである。   Tables 3 and 4 show the measured values of the heat transfer coefficient by water film cooling when the evaluation temperatures are 900 ° C. and 600 ° C., respectively. In the water film cooling experiment, the area in which the water film was formed on the surface of the steel slab was taken as the evaluation target area. From Tables 3 and 4, it was found that increasing the water density increases the heat transfer coefficient, and even at the same water density, the heat transfer coefficient can be improved by reducing the channel gap interval. This is considered to be because, when the gap between the flow paths is reduced, the flow rate of the water film flowing between the steel piece and the refrigerant guide plate is increased, and the formation of the vapor film on the steel piece surface is suppressed. The definition of the water amount density is obtained by dividing the amount of cooling water supplied from the water supply port to form a water film flow by the area of the steel slab.

水膜冷却を行う場合には、鋳片Hに接触する水の状態によって、鋳片Hに対する冷却能力が大きく異なることが考えられる。すなわち、図5に示すように、水は、給水箇所で熱い鋳片Hに接触し、順に、非沸騰(区間A)、核沸騰(区間B)、膜沸騰(区間C)、無水(区間D)の状態となる。冷却効果が大きいのは区間A〜Bであり、膜沸騰状態となる区間Cからは冷却効果が低下する。水膜冷却を行う際には、鋳片Hに接触する冷却水を非沸騰または核沸騰状態に保つことで、高い熱伝達係数を発揮できる。   When water film cooling is performed, it is conceivable that the cooling capacity for the slab H varies greatly depending on the state of water in contact with the slab H. That is, as shown in FIG. 5, water comes into contact with the hot slab H at the water supply point, and in sequence, non-boiling (section A), nucleate boiling (section B), film boiling (section C), and anhydrous (section D). ) State. The cooling effect is large in the sections A to B, and the cooling effect is reduced from the section C in which the film is in a boiling state. When water film cooling is performed, a high heat transfer coefficient can be exhibited by keeping the cooling water in contact with the slab H in a non-boiling or nucleate boiling state.

表3および表4に示したように、流路隙間間隔を0.5mmまで冷媒ガイド板と鋼片を近接させた水準では、鋼片を冷却することが不可能であり、熱伝達係数を測定することができなかった。これは、冷却により鋼片表面に発生したスケールや、冷却によって発生した鋼片の曲がりによって、冷却水の流路が閉塞したためと推定される。   As shown in Table 3 and Table 4, it is impossible to cool the steel slab at the level where the refrigerant guide plate and the steel slab are close to each other until the gap between the channels is 0.5 mm, and the heat transfer coefficient is measured. I couldn't. This is presumably because the flow path of the cooling water is blocked by the scale generated on the surface of the steel slab by cooling or the bending of the steel slab generated by cooling.

また、表3および表4に示したように、水膜冷却の実験における水量密度の最大値は1000L/min.mとした。これは、既存の連続鋳造機における冷却水ポンプの最大供給能力が1000L/min.m程度であり、これ以上の冷却水の供給を試みる場合、冷却水ポンプの新設が必要となるために設備投資額が過大となり、現実的ではないためである。 As shown in Tables 3 and 4, the maximum value of the water density in the water film cooling experiment was 1000 L / min. It was m 2. This is because the maximum supply capacity of the cooling water pump in the existing continuous casting machine is 1000 L / min. This is because when it is about m 2 and attempts to supply more cooling water than this, a new cooling water pump is required, so that the amount of capital investment becomes excessive, which is not realistic.

また、連続鋳造における支持ロールの間隔は約200mm〜250mmであり、支持ロール間に水膜冷却用の冷媒ガイド板を設置する場合、当該冷却ガイド板の長さは最大でも約200mmである。後述するように冷媒ガイド板の中心部から給水し、給水した冷却水のうち半分が上方(鋳型側)へ、残りの半分が下方に流れることを想定した。このため、本試験では水膜流の長さを100mmとした。   Moreover, the space | interval of the support roll in continuous casting is about 200 mm-250 mm, and when installing the coolant guide board for water film cooling between support rolls, the length of the said cooling guide board is about 200 mm at maximum. As will be described later, it was assumed that water was supplied from the center of the refrigerant guide plate, and half of the supplied cooling water flowed upward (on the mold side) and the other half downward. For this reason, in this test, the length of the water film flow was set to 100 mm.

図6は、評価温度900℃の場合の水膜冷却による熱伝達係数を、水量密度を横軸にプロットしたものである。各プロットの肩に記載した数値は、各条件の流路隙間の間隔を示している。また、図6中に示した実線は、評価温度900℃で実施したスプレー冷却による熱伝達係数の測定値である。図6より、例えば、水量密度600L/min.mのプロットを見ると、流路隙間間隔が0.6mmでは非常に大きな熱伝達係数が得られることが分かる。ここから、流路隙間間隔を増やしていくにしたがって熱伝達係数が低下し、流路隙間間隔が2.3mmのときにスプレー冷却と同じ熱伝達係数となることが分かる。すなわち、この点においては、スプレー冷却によっても、水膜冷却によっても同等の熱伝達係数となる。さらに、流路隙間間隔を増加させて4.0mmとした水準では、測定された熱伝達係数がスプレー冷却の値を下回っており、水膜冷却を導入してもスプレー冷却に比べて熱伝達係数が向上しないことを示している。これは、流路隙間間隔を拡大すると、鋼片と冷媒ガイド板の間を流れる水膜の流速が低下し、水膜冷却の効果である鋼片表面における蒸気膜の形成の抑制効果がなくなるためであると考えられる。以上のことより、評価温度900℃、水量密度600L/min.mの場合は、水膜冷却の流路隙間間隔は0.6mmから2.3mmの範囲に設定すべきであることが読み取れる。 FIG. 6 is a plot of the heat transfer coefficient by water film cooling when the evaluation temperature is 900 ° C. with the water density plotted on the horizontal axis. The numerical value indicated on the shoulder of each plot indicates the interval of the channel gap of each condition. Moreover, the continuous line shown in FIG. 6 is the measured value of the heat transfer coefficient by spray cooling implemented at the evaluation temperature of 900 degreeC. From FIG. 6, for example, the water density is 600 L / min. From the plot of m 2 , it can be seen that a very large heat transfer coefficient can be obtained when the gap distance between the channels is 0.6 mm. From this, it can be seen that the heat transfer coefficient decreases as the flow path gap interval increases, and the same heat transfer coefficient as spray cooling is obtained when the flow path gap interval is 2.3 mm. That is, in this respect, the same heat transfer coefficient is obtained by spray cooling and water film cooling. Furthermore, at the level where the gap between the channels is increased to 4.0 mm, the measured heat transfer coefficient is lower than the spray cooling value. Even if water film cooling is introduced, the heat transfer coefficient is smaller than that of spray cooling. Indicates that there is no improvement. This is because when the gap between the channels is enlarged, the flow rate of the water film flowing between the steel slab and the refrigerant guide plate is reduced, and the effect of suppressing the formation of the vapor film on the steel slab surface, which is the effect of water film cooling, is lost. it is conceivable that. From the above, the evaluation temperature is 900 ° C., the water density is 600 L / min. In the case of m 2 , it can be read that the channel gap interval of the water film cooling should be set in the range of 0.6 mm to 2.3 mm.

図7は、図6と同様に、評価温度600℃の場合の水膜冷却による熱伝達係数を、水量密度を横軸にプロットしたものである。図6のその他のプロットや図7の各プロットについても同様の検討を行うことで、各条件において実効性のある水膜冷却の流路隙間間隔を読み取ることができる。   FIG. 7 plots the heat transfer coefficient by cooling the water film when the evaluation temperature is 600 ° C., similarly to FIG. 6, with the water density plotted on the horizontal axis. By conducting the same study on the other plots in FIG. 6 and the plots in FIG. 7, it is possible to read the channel gap interval of the water film cooling that is effective in each condition.

すなわち、現にスプレーノズルで鋳片を二次冷却している部位を新たに水膜冷却に置き換える場合、スプレー冷却よりも大きな熱伝達係数を得るためには、設定できる水膜厚みに上限があることが分かった。   In other words, when the part where the slab is actually secondary cooled by the spray nozzle is replaced with water film cooling, there is an upper limit to the water film thickness that can be set in order to obtain a larger heat transfer coefficient than spray cooling. I understood.

また、評価温度900℃、600℃のいずれの条件においても、測定された熱伝達係数の値から推定して、水膜内の冷却水は、スプレー冷却よりも大きな熱伝達係数が得られる非沸騰または核沸騰の状態になっていると考えられる。   In addition, at any of the evaluation temperatures of 900 ° C. and 600 ° C., the cooling water in the water film estimated from the measured heat transfer coefficient value is non-boiling that provides a heat transfer coefficient larger than spray cooling. Or it is thought that it is in the state of nucleate boiling.

表3および表4に記載した全ての水準の実験結果について上記検討を行い、水膜冷却の熱伝達係数がスプレー冷却の熱伝達係数以上になる条件の水準に「○」印を、水膜冷却の熱伝達係数がスプレー冷却よりも小さくなるか水膜冷却では冷却が不可能な条件の水準に「×」印を、水膜冷却優位条件として表中に記入した。   The above results were examined for the experimental results at all levels listed in Tables 3 and 4, and “○” was marked as the condition level where the heat transfer coefficient for water film cooling was equal to or greater than the heat transfer coefficient for spray cooling. The heat transfer coefficient is smaller than that of spray cooling, or “×” is marked in the table as a preferential condition for water film cooling at the level of conditions where cooling by water film cooling is impossible.

発明者らは、水膜冷却とスプレー冷却のそれぞれの熱伝達係数の測定結果について、異なる評価温度および水量密度における実験結果を解析した。その結果、流路隙間間隔を求める数式を導出するに至った。ここで、水膜冷却とスプレー冷却の熱伝達係数が同等となる流路隙間間隔をd(mm)、水量密度をW(L/min.m)、評価温度をT(℃)と定義すると、dは以下の式(1)で表せる。
=3.838×10−4×W0.48×(T+273)0.80 ・・・式(1)
ここで、
(mm):水膜冷却とスプレー冷却の熱伝達係数が同等となる流路隙間間隔
W(L/min.m):水量密度
T(℃):評価温度
The inventors analyzed the experimental results at different evaluation temperatures and water density for the measurement results of the heat transfer coefficients of water film cooling and spray cooling. As a result, a mathematical formula for obtaining the channel gap interval has been derived. Here, the channel gap interval where the heat transfer coefficients of water film cooling and spray cooling are equivalent is defined as d 0 (mm), the water density is defined as W (L / min.m 2 ), and the evaluation temperature is defined as T (° C.). Then, d 0 can be expressed by the following formula (1).
d 0 = 3.838 × 10 −4 × W 0.48 × (T + 273) 0.80 Expression (1)
here,
d 0 (mm): Channel gap interval W (L / min.m 2 ) at which the heat transfer coefficients of water film cooling and spray cooling are equivalent: Water density T (° C.): Evaluation temperature

上記式(1)を導出するに際しては、水膜冷却とスプレー冷却の熱伝達係数が同等となる流路隙間間隔dを、下記式(2)に示すとおり水量密度Wと評価温度Tのべき乗の積で求められると仮定した。なお、水量密度Wは水が流れる長さ100mmで割っており、また評価温度Tは絶対温度に換算した上で873K(600℃)で割っている。そして、表3および表4に示した測定結果から、係数Aおよび乗数B、Cを求め、上記式(1)を導出するに至った。なお、発明者らは評価温度600℃〜900℃の範囲において、上記式(1)が成立すること確認している。
=A×(W/100)×{(T+273)/873} ・・・(2)
In deriving the above equation (1), the channel gap interval d 0 at which the heat transfer coefficients of the water film cooling and spray cooling are equivalent is set to the power of the water density W and the evaluation temperature T as shown in the following equation (2). It is assumed that it is obtained by the product of The water density W is divided by the length of 100 mm through which water flows, and the evaluation temperature T is divided by 873 K (600 ° C.) after being converted to an absolute temperature. Then, from the measurement results shown in Tables 3 and 4, the coefficient A and the multipliers B and C were obtained, and the above formula (1) was derived. In addition, the inventors have confirmed that the above formula (1) is established in the evaluation temperature range of 600 ° C to 900 ° C.
d 0 = A × (W / 100) B × {(T + 273) / 873} C (2)

Figure 2018015781
Figure 2018015781

Figure 2018015781
Figure 2018015781

(実施形態1)
図8、図9は、本発明の実施の形態を示し、水膜冷却を行う冷却装置31を備えた連続鋳造機1の一部分を示す。図8、図9に示すように、鋳片Hを搬送する支持ロール10の間隙に、冷却装置31が設けられている。冷却装置31は、鋳片Hの幅方向を長手方向とする冷媒ガイド板32と、冷媒管としての給水管33を有し、図示しない支持機構によって支持されている。冷媒ガイド板32は、鋳片Hの表面との間に冷却水の流路を形成するための隙間34をあけて、鋳片Hの表面と略平行に設置され、隙間34の厚みを調整できるように取り付けられている。また、冷媒ガイド板32には、給水管33から供給される冷却水の隙間34内への供給口である給水口35が形成されている。給水口35は、例えば図9に示すように、鋳片Hの幅方向に1列に並んだ複数のφ5mm程度の丸孔でもよいし、鋳片Hの幅方向を長手方向とする1つのスリットまたは幅方向に1列に並んだ複数のスリットでもよい。
(Embodiment 1)
8 and 9 show an embodiment of the present invention, and show a part of a continuous casting machine 1 provided with a cooling device 31 that performs water film cooling. As shown in FIGS. 8 and 9, a cooling device 31 is provided in the gap between the support rolls 10 that convey the slab H. The cooling device 31 has a refrigerant guide plate 32 whose longitudinal direction is the width direction of the slab H and a water supply pipe 33 as a refrigerant pipe, and is supported by a support mechanism (not shown). The refrigerant guide plate 32 is installed substantially parallel to the surface of the slab H with a gap 34 for forming a flow path of cooling water between the surface of the slab H and the thickness of the gap 34 can be adjusted. It is attached as follows. Further, the coolant guide plate 32 is formed with a water supply port 35 that is a supply port into the gap 34 of the cooling water supplied from the water supply pipe 33. For example, as shown in FIG. 9, the water supply port 35 may be a plurality of round holes of about φ5 mm arranged in a line in the width direction of the slab H, or one slit whose longitudinal direction is the width direction of the slab H Alternatively, a plurality of slits arranged in a line in the width direction may be used.

給水管33から隙間34に供給された水は、隙間34内で水膜流となって鋳片Hの表面を冷却し、隙間34内を流れた後、冷媒ガイド板32の端から排出される。   The water supplied from the water supply pipe 33 to the gap 34 becomes a water film flow in the gap 34, cools the surface of the slab H, flows through the gap 34, and then is discharged from the end of the refrigerant guide plate 32. .

(実施形態2)
次に、本発明の他の実施の形態について説明する。図10、図11は、他の実施の形態にかかる冷却装置31を備えた連続鋳造機1の一部分を示す。冷却装置31は、上記実施の形態と同様に、冷媒ガイド板32と給水管33を有している。冷却装置31では、給水管33を介して冷媒ガイド板32の中心部から給水され、給水された冷却水のうち半分が上方(鋳型側)へ、残りの半分が下方に流れる。なお、図示の例においては、連続鋳造機1の鉛直部または湾曲部に冷却装置31を設けた場合を示しているが、図8、図9に示したように冷却装置31を水平部に設けてもよい。
(Embodiment 2)
Next, another embodiment of the present invention will be described. 10 and 11 show a part of a continuous casting machine 1 including a cooling device 31 according to another embodiment. The cooling device 31 includes a refrigerant guide plate 32 and a water supply pipe 33 as in the above embodiment. In the cooling device 31, water is supplied from the central portion of the refrigerant guide plate 32 through the water supply pipe 33, and half of the supplied cooling water flows upward (mold side) and the other half flows downward. In the illustrated example, the cooling device 31 is provided in the vertical portion or the curved portion of the continuous casting machine 1, but the cooling device 31 is provided in the horizontal portion as shown in FIGS. May be.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

本発明は、鋳片や鋼板を冷媒で冷却する方法及び装置に適用できる。   The present invention can be applied to a method and an apparatus for cooling a slab or a steel plate with a refrigerant.

1 連続鋳造機
2 タンディッシュ
3 鋳型
4 浸漬ノズル
5 鋳片通路
6、7 ロール群
10、11 支持ロール
15 スプレーノズル
16 鋼片
17 冷却水のスプレー噴流
21 モデル装置
22 鋼片
23 冷媒ガイド板
24 給水ノズル
25 隙間
31 冷却装置
32 冷媒ガイド板
33 給水管
34 隙間
35 給水口
H 鋳片
DESCRIPTION OF SYMBOLS 1 Continuous casting machine 2 Tundish 3 Mold 4 Immersion nozzle 5 Slab passage 6, 7 Roll group 10, 11 Support roll 15 Spray nozzle 16 Steel slab 17 Cooling water spray jet 21 Model apparatus 22 Steel slab 23 Refrigerant guide plate 24 Water supply Nozzle 25 Crevice 31 Cooling device 32 Refrigerant guide plate 33 Water supply pipe 34 Crevice 35 Water supply port H Slab

Claims (5)

連続鋳造の二次冷却方法であって、
鋳片を搬送する支持ロール同士の間隙に冷却装置を設け、
前記冷却装置は、前記鋳片の表面との間に冷媒の流路を形成するための隙間をあけて前記鋳片と略平行に設置される冷媒ガイド板と、前記隙間に前記冷媒を供給する冷媒管を備え、
前記隙間に供給された前記冷媒が非沸騰または核沸騰の領域で前記鋳片に接触して当該鋳片を冷却することを特徴とする、連続鋳造の二次冷却方法。
A secondary cooling method for continuous casting,
A cooling device is provided in the gap between the support rolls that convey the slab,
The cooling device supplies a refrigerant guide plate installed substantially parallel to the slab with a gap for forming a refrigerant flow path between the slab and the surface of the slab, and supplies the refrigerant to the gap. With a refrigerant pipe,
A secondary cooling method for continuous casting, wherein the coolant supplied to the gap contacts the slab in a non-boiling or nucleate boiling region to cool the slab.
前記隙間を、0.5mmを超え、且つ下記式(1)を満たすdmm以下とすることを特徴とする、請求項1に記載の連続鋳造の二次冷却方法。
=3.838×10−4×W0.48×(T+273)0.80 ・・・(1)
ここで、
(mm):水膜冷却とスプレー冷却の熱伝達係数が同等となる流路隙間間隔
W(L/min.m):水量密度
T(℃):評価温度
The secondary cooling method for continuous casting according to claim 1, wherein the gap is 0.5 mm or more and d 0 mm or less satisfying the following formula (1).
d 0 = 3.838 × 10 −4 × W 0.48 × (T + 273) 0.80 (1)
here,
d 0 (mm): Channel gap interval W (L / min.m 2 ) at which the heat transfer coefficients of water film cooling and spray cooling are equivalent: Water density T (° C.): Evaluation temperature
前記冷媒は、前記冷媒ガイド板に形成された供給口を介して前記隙間に供給され、
前記供給口は、前記鋳片の幅方向に1列に並ぶ複数の孔、または、前記鋳片の幅方向を長手方向とするスリットであることを特徴とする、請求項1または2のいずれか一項に記載の連続鋳造の二次冷却方法。
The refrigerant is supplied to the gap through a supply port formed in the refrigerant guide plate.
3. The supply port according to claim 1, wherein the supply port is a plurality of holes arranged in a line in the width direction of the slab, or a slit whose longitudinal direction is the width direction of the slab. The secondary cooling method for continuous casting according to one item.
連続鋳造の二次冷却を行う冷却装置であって、
鋳片を搬送する支持ロール同士の間隙に設けられ、前記鋳片の表面との間に冷媒の流路を形成するための隙間をあけて前記鋳片と略平行に設置される冷媒ガイド板と、前記隙間に前記冷媒を供給する冷媒管を備え、
前記隙間を、0.5mmを超え、且つ下記式(1)を満たすdmm以下とし、前記隙間に供給された前記冷媒が非沸騰または核沸騰の領域で前記鋳片に接触して当該鋳片を冷却することを特徴とする、連続鋳造の二次冷却装置。
=3.838×10−4×W0.48×(T+273)0.80 ・・・(1)
ここで、
(mm):水膜冷却とスプレー冷却の熱伝達係数が同等となる流路隙間間隔
W(L/min.m):水量密度
T(℃):評価温度
A cooling device for performing secondary cooling of continuous casting,
A refrigerant guide plate provided in a gap between support rolls for conveying the slab, and provided substantially parallel to the slab with a gap for forming a refrigerant flow path between the slab and the surface of the slab A refrigerant pipe for supplying the refrigerant to the gap,
The gap exceeds 0.5 mm and is equal to or less than d 0 mm satisfying the following formula (1), and the coolant supplied to the gap comes into contact with the slab in a non-boiling or nucleate boiling region, and the casting A secondary cooling device for continuous casting, characterized by cooling a piece.
d 0 = 3.838 × 10 −4 × W 0.48 × (T + 273) 0.80 (1)
here,
d 0 (mm): Channel gap interval W (L / min.m 2 ) at which the heat transfer coefficients of water film cooling and spray cooling are equivalent: Water density T (° C.): Evaluation temperature
前記冷媒ガイド板に、前記冷媒を前記隙間に供給する供給口が形成され、
前記供給口は、前記鋳片の幅方向に1列に並ぶ複数の孔、または、前記鋳片の幅方向を長手方向とするスリットであることを特徴とする、請求項4に記載の連続鋳造の二次冷却装置。
A supply port for supplying the refrigerant to the gap is formed in the refrigerant guide plate,
5. The continuous casting according to claim 4, wherein the supply port is a plurality of holes arranged in a line in the width direction of the slab, or a slit whose longitudinal direction is the width direction of the slab. Secondary cooling device.
JP2016148071A 2016-07-28 2016-07-28 Secondary cooling method and secondary cooling device for continuous casting Active JP6747142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016148071A JP6747142B2 (en) 2016-07-28 2016-07-28 Secondary cooling method and secondary cooling device for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016148071A JP6747142B2 (en) 2016-07-28 2016-07-28 Secondary cooling method and secondary cooling device for continuous casting

Publications (2)

Publication Number Publication Date
JP2018015781A true JP2018015781A (en) 2018-02-01
JP6747142B2 JP6747142B2 (en) 2020-08-26

Family

ID=61075524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016148071A Active JP6747142B2 (en) 2016-07-28 2016-07-28 Secondary cooling method and secondary cooling device for continuous casting

Country Status (1)

Country Link
JP (1) JP6747142B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006254A1 (en) * 2019-07-11 2021-01-14 Jfeスチール株式会社 Secondary cooling method and device for continuously cast slab
WO2021006253A1 (en) * 2019-07-11 2021-01-14 Jfeスチール株式会社 Secondary cooling method and secondary cooling apparatus for continuous casting slab
WO2021085474A1 (en) 2019-10-29 2021-05-06 Jfeスチール株式会社 Secondary cooling method for continuous cast slab

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006254A1 (en) * 2019-07-11 2021-01-14 Jfeスチール株式会社 Secondary cooling method and device for continuously cast slab
WO2021006253A1 (en) * 2019-07-11 2021-01-14 Jfeスチール株式会社 Secondary cooling method and secondary cooling apparatus for continuous casting slab
JPWO2021006253A1 (en) * 2019-07-11 2021-12-02 Jfeスチール株式会社 Secondary cooling method and secondary cooling device for continuously cast slabs
JPWO2021006254A1 (en) * 2019-07-11 2021-12-16 Jfeスチール株式会社 Secondary cooling method and equipment for continuously cast slabs
TWI753486B (en) * 2019-07-11 2022-01-21 日商Jfe鋼鐵股份有限公司 Secondary cooling method and secondary cooling device for continuous casting slab
TWI753487B (en) * 2019-07-11 2022-01-21 日商Jfe鋼鐵股份有限公司 Secondary cooling method and device for continuous casting slab
CN114126782A (en) * 2019-07-11 2022-03-01 杰富意钢铁株式会社 Secondary cooling method and secondary cooling device for continuous casting of cast piece
JP7060164B2 (en) 2019-07-11 2022-04-26 Jfeスチール株式会社 Secondary cooling method and equipment for continuously cast slabs
CN114126782B (en) * 2019-07-11 2023-07-04 杰富意钢铁株式会社 Secondary cooling method and secondary cooling device for continuous casting cast sheet
WO2021085474A1 (en) 2019-10-29 2021-05-06 Jfeスチール株式会社 Secondary cooling method for continuous cast slab
KR20220069059A (en) 2019-10-29 2022-05-26 제이에프이 스틸 가부시키가이샤 Secondary cooling method of continuous casting slabs

Also Published As

Publication number Publication date
JP6747142B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
US10974316B2 (en) Secondary cooling method and secondary cooling device for casting product in continuous casting
WO2013073593A1 (en) Secondary cooling method and secondary cooling device for continuous casting machine
JP2018015781A (en) Secondary cooling method and secondary cooling device of continuous casting
KR20210133282A (en) Method of continuous casting of steel
JP6631554B2 (en) Secondary cooling method of slab and continuous casting method of steel in continuous casting
JP4453562B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
KR102245010B1 (en) Method for continuous casting of steel
TWI787589B (en) Continuous casting method of steel billet
JP5402678B2 (en) Steel continuous casting method
JP4882406B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JP4760303B2 (en) Secondary cooling method for continuous cast slabs
JP5556073B2 (en) Secondary cooling method in continuous casting
JP4506691B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
JP7052931B2 (en) Secondary cooling method for continuously cast slabs
WO2021006254A1 (en) Secondary cooling method and device for continuously cast slab
WO2020095932A1 (en) Mold for continuous steel casting and continuous steel casting method
JP2024000959A (en) Slab production method, secondary cooling apparatus and continuous casting machine
KR101630934B1 (en) Casting apparatus and casting method
JP6295813B2 (en) Secondary cooling device and secondary cooling method for continuous casting machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R151 Written notification of patent or utility model registration

Ref document number: 6747142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151