JPH026037A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JPH026037A
JPH026037A JP15888388A JP15888388A JPH026037A JP H026037 A JPH026037 A JP H026037A JP 15888388 A JP15888388 A JP 15888388A JP 15888388 A JP15888388 A JP 15888388A JP H026037 A JPH026037 A JP H026037A
Authority
JP
Japan
Prior art keywords
mold
solidified shell
grooves
casting
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15888388A
Other languages
Japanese (ja)
Inventor
Hiroshi Murakami
洋 村上
Mikio Suzuki
幹雄 鈴木
Toru Kitagawa
北川 融
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP15888388A priority Critical patent/JPH026037A/en
Publication of JPH026037A publication Critical patent/JPH026037A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Abstract

PURPOSE:To prevent uneven solidification in continuous casting for the specific steel by arranging notched parts having the specific size and arrangement at near meniscus of molten steel in a copper-made mold and specifying relation between casting velocity and oscillation cycle of the mold. CONSTITUTION:Grooves (the notched parts) 2 having 0.5-1.0mm depth and 0.3-1.0mm width are arranged on the surface of the copper-made mold 1 for continuous casting at near the meniscus of the molten steel in the mold. The grooves 2 are set at each 5-10mm interval as parallel with drawing direction of a cast slab. Further, the relation between the casting velocity (Vc) and the oscillation cycle of the mold (f) is made to satisfy the inequality I. Different kind of metal (Ni, Cr) or ceramic (BN, AlN, ZrO2) is filled up into the notched parts to the prescribed depth. By this method, the uneven solidification in the steel kind having hypo-peritectic solidification, such as 0.10-0.15% carbon content in the molten steel can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素含有量0.10〜0.15%の亜包晶凝
固する鋼種の初期の凝固シェル縦割れを防止するための
鋼の連続鋳造方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to a method for preventing longitudinal cracking of the solidified shell in the initial stage of subperitectic solidifying steel with a carbon content of 0.10 to 0.15%. Concerning continuous casting method.

[従来の技術] 近年、鋳片を製造するには垂直もしくは湾曲型の連続鋳
造機を使用した連続鋳造工程が不可欠となっている。こ
のような連続鋳造法によってブルームやビレット等の鋳
片を製造しようとすると、鋳片表面に縦割れや横割れが
発生することがある。第19図は従来の鋳型銅板を用い
て鋳造した時の、スラブの炭素含有量と表面割れ指数と
の関係を示すグラフ図である。この図がら明らかなよう
に、炭素含有量が0.10〜0.15%の亜包晶凝固す
る鋼種で表面割れが多く発生している。この理由は上記
の炭素含有量の鋼種が凝固する際、L→δ十L→し晶反
応(δ+L→γ)→δ+γ→γという変態過程を経る。
[Prior Art] In recent years, a continuous casting process using a vertical or curved continuous casting machine has become essential for producing slabs. When attempting to manufacture slabs such as blooms and billets using such a continuous casting method, vertical cracks and horizontal cracks may occur on the surface of the slab. FIG. 19 is a graph showing the relationship between the carbon content of a slab and the surface crack index when the slab is cast using a conventional copper plate mold. As is clear from this figure, many surface cracks occur in steel types that undergo subperitectic solidification and have a carbon content of 0.10 to 0.15%. The reason for this is that when a steel type with the above carbon content solidifies, it undergoes a transformation process of L→δ+L→crystalline reaction (δ+L→γ)→δ+γ→γ.

このうちδ相は体心立方(bcc)、γ相は面心立方(
fcc)の結晶構造を有し、δ→γの変態時にはこの結
晶構造差に起因した体積収縮が起こり大きな変態応力が
発生する。又、このδ→γの包晶反応時には液相が消滅
していくため収縮による歪を吸収してくれるものがなく
、凝固シェルそのものが不均一な凝固形態をとり、上記
応力が凝固シェルの薄い部分にかかって割れが発生する
と考えられる。従来は上記の鋼種の表面割れを防止する
には、 ■モールドパウダーをtrial and error
により割れ感受性の低いものに変えて鋳造したり、■鋳
型抜熱を落として低速鋳造を行うことにより表面割れ防
止を図っていた。
Of these, the δ phase is body-centered cubic (bcc), and the γ phase is face-centered cubic (
fcc), and during the transformation from δ to γ, volume shrinks due to this crystal structure difference and a large transformation stress is generated. In addition, during this peritectic reaction of δ→γ, the liquid phase disappears, so there is nothing to absorb the strain caused by contraction, and the solidified shell itself assumes a non-uniform solidification form, and the above stress is applied to the thin solidified shell. It is thought that cracks may occur in some parts. Conventionally, in order to prevent surface cracking of the above steel types, ■ trial and error mold powder was used.
Therefore, attempts were made to prevent surface cracking by changing the casting to a material with lower cracking susceptibility, and (2) reducing the amount of heat removed from the mold and performing slow casting.

[発明が解決しようとする課題] しかしながら表面割れ発生を防止するための、■モール
ドパウダーの最適化は多くの鋳造条件をすべて満足させ
るモールドパウダーを選び出すことが困難で、時間と費
用が美大にかかる。
[Problem to be solved by the invention] However, in order to prevent the occurrence of surface cracks, it is difficult to select a mold powder that satisfies all of the many casting conditions, and the time and cost are high. It takes.

■鋳型抜熱を落として低速鋳造を行うと、熱間圧延機と
同期させるのが困難となって、熱間直送圧延やホットチ
ャージ圧延ができなくなり鉄鋼製造プロセスの省力化や
省エネルギーの障害となると同時に、製品の歩留も低下
する という問題があった。
■When low-speed casting is performed with reduced heat removal from the mold, it becomes difficult to synchronize with the hot rolling mill, making it impossible to perform direct hot rolling or hot charge rolling, which becomes an obstacle to labor-saving and energy-saving steel manufacturing processes. At the same time, there was a problem in that the yield of the product also decreased.

この発明はかかる事情に鑑みてなされたものであって炭
素含有JL0.10〜0.15%の亜包晶凝因する鋼種
の初期の凝固シェル縦割れを防止し、鋳片表面欠陥を防
止するための連続鋳造方法を提供することを目的として
いる。
This invention has been made in view of the above circumstances, and is intended to prevent longitudinal cracking of the solidified shell in the initial stage of steel types with subperitectic coagulation with a carbon content of JL of 0.10 to 0.15%, and to prevent surface defects in the slab. The purpose is to provide a continuous casting method for

[課題を解決するための手段] この発明の鋼の連続鋳造方法は、銅製の連続鋳造用鋳型
表面の鋳型内溶鋼のメニスカス近傍に、深さ0.5〜1
.Omm、幅0.3〜1.Ommの切り欠き部を設け、
前記切り欠き部を鋳片引き抜き方向と平行に5〜10m
mの間隔で配置し、且つ、鋳造時の鋳造速度(Vc)と
鋳型振動周期(f)との関係を下式を満足することを特
徴とする。
[Means for Solving the Problems] The method for continuous casting of steel of the present invention provides a method for continuously casting steel in the vicinity of the meniscus of molten steel in the mold on the surface of a copper continuous casting mold to a depth of 0.5 to 1.
.. Omm, width 0.3~1. Provide a notch of Omm,
The said notch is 5 to 10 m parallel to the direction of slab withdrawal.
They are arranged at intervals of m, and the relationship between the casting speed (Vc) during casting and the mold vibration period (f) satisfies the following formula.

10 > V c / f X 1000但し、Vc:
鋳造速度   (m / mm >f :鋳型振動周期
 (1/ mix )更に、切り欠き部に異種金属(N
i、Cr)、もしくはセラミック(BN、AJN、Zr
02)を熱抵抗比が1.5以上となる深さまで充填する
こともできる。
10 > V c / f X 1000 However, Vc:
Casting speed (m/mm > f: mold vibration period (1/mix)) Furthermore, a dissimilar metal (N
i, Cr) or ceramic (BN, AJN, Zr
02) can also be filled to a depth where the thermal resistance ratio is 1.5 or more.

但し、熱抵抗比: h=Rc/R,。However, thermal resistance ratio: h=Rc/R.

RcU:銅板部の熱抵抗=Dcu/λcuRc:異種物
質埋め込み部の熱抵抗= Dcu’/λcu+Dc/^に こで、Dc、:鋳型の銅板の厚み(m>λcu:銅板の
熱伝導率(Kcal/m−H+”C)Dcu  :異種
物質埋め込み部の底部から冷却水面までの厚み(m) Dc:異種物質埋め込み部での埋め込み厚み(m) λC:異種物質の熱伝導率 (Kcal/m・H+”C) [作用] この発明に係わる鋼の連続鋳造方法は、鋳型の表面に施
した鋳造方向と平行の切り欠き部と鋳型振動に伴う鋳造
方向に垂直なオシレーションマークにより、切り欠き部
とオシレーション部とそうでない部分とで冷却の強弱が
っき弱冷部である切り欠き部とオシレーション部では初
期シェルの凝固がわずかに遅れる。このため一定間隔毎
に液相が残り、この液相部が収縮時の歪を吸収して初期
の凝固シェルの曲がりを抑え、局部的に鋳型と凝固シェ
ルが離れることがない。従って抜熱が均一となり、凝固
シェル厚が均一に成長する。本発明の方法を実施するこ
とによって、初期の凝固シェル厚みが極めて均一に形成
するため、凝固収縮やδ→γ変態時の変態応力が発生し
ても局所的な凝固シェル厚の薄い部分がないため、−点
に応力が集中することがない、切り欠き部の形状を深さ
0.5〜1.Omm、幅0.5〜1.Ommとし、切り
欠き間隔を5〜10mmとし、これに伴う鋳造時の鋳造
速度(Vc)と鋳型振動周期(f)を前記の式のように
限定した理由は、これ以外のでは凝固シェル厚の不均一
度が大きくなるからである。
RcU: Thermal resistance of the copper plate = Dcu/λcuRc: Thermal resistance of the dissimilar material embedded part = Dcu'/λcu+Dc/^Nikode, Dc,: Thickness of the copper plate of the mold (m>λcu: Thermal conductivity of the copper plate (Kcal) /m-H+”C) Dcu: Thickness from the bottom of the dissimilar material embedded part to the cooling water surface (m) Dc: Embedded thickness of the dissimilar material embedded part (m) λC: Thermal conductivity of the dissimilar material (Kcal/m・H+”C) [Function] The continuous steel casting method according to the present invention has a cutout portion parallel to the casting direction made on the surface of the mold and an oscillation mark perpendicular to the casting direction due to mold vibration. The cooling strength differs between the oscillation area and the non-oscillation area.In the notch area and the oscillation area, which are the weakly cooled areas, the initial shell solidification is slightly delayed.For this reason, a liquid phase remains at regular intervals, and this The liquid phase absorbs the strain caused by contraction and suppresses the initial bending of the solidified shell, preventing the mold from separating from the solidified shell locally.Therefore, heat is removed uniformly, and the thickness of the solidified shell grows uniformly. By carrying out the method of the present invention, the initial solidified shell thickness is extremely uniform, so even if solidification shrinkage or transformation stress occurs during δ→γ transformation, there will be no local areas where the solidified shell thickness is thin. Therefore, the shape of the cutout part is set to have a depth of 0.5 to 1.0 mm, a width of 0.5 to 1.0 mm, and a notch interval of 5 to 10 mm, so that stress does not concentrate at the - point. The reason why the casting speed (Vc) and the mold vibration period (f) during casting are limited as shown in the above equations is that the non-uniformity of the solidified shell thickness becomes large if the casting speed is otherwise determined.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

亜包晶凝固する鋼種では初期凝固シェルが形成すると熱
歪とδ→γ変態による変態応力により凝固シェルが曲げ
られ、局部的に凝固シェルと鋳型壁との間に空隙が形成
され、これにより抜熱の低下が起こり、凝固シェル厚が
不均一に成長する。ここで本発明者らは本発明に至るま
での過程において、表面割れは凝固シェル厚の薄いとこ
ろで発生しており、平均・−凝固を防ぐことが表面割れ
を防止できるという知見を得た。
In steel types that undergo subperitectic solidification, when an initial solidified shell is formed, the solidified shell is bent due to thermal strain and transformation stress due to δ→γ transformation, and a gap is locally formed between the solidified shell and the mold wall, which causes the extraction process. A decrease in heat occurs and the solidified shell thickness grows non-uniformly. In the process leading up to the present invention, the present inventors have found that surface cracks occur where the thickness of the solidified shell is thin, and that surface cracks can be prevented by preventing average -solidification.

この知見に基づいて、凝固シェル厚の不均一性の原因を
調査するため、100mmX 360mmの浸漬体(水
冷した平板=浸漬体の冷却水は90(1/mm )を1
00 kgの溶解炉直上からエアーシリンダーを用いて
溶鋼中に浸漬させ、一定時間保持し、凝固シェルの凹凸
度(凝固シェル厚不均一度をΔd/、&で表す。Δd:
隣り合う凹凸の厚み差d凸−d凹、p:隣り合う凹凸間
の距離)を調べた。第6図は凝固シェル厚不均一度を測
定する方法を示す図である。即ち溶鋼中に浸漬させ、一
定時間保持した浸漬体の表面に生成した凝固シェル11
を浸漬体より剥離して、平板上に置き隣り合う凹凸間の
凝固シェル11厚(ここでは凸はd2凹はd+、ds)
と隣り合う凹凸間の距離(ffl >を測定し、隣り合
う凹凸間の凝固シェル11厚の差〈例えばΔd=d2 
 cl+)と隣り合う凹凸間の距離(例えばρl)との
比(Δd/ρ)の積分値を測定個数で割った値を平均凝
固シェル厚不均一度とした。
Based on this knowledge, in order to investigate the cause of the non-uniformity of the solidified shell thickness, we prepared a 100 mm x 360 mm immersed body (water-cooled flat plate = cooling water of the immersed body at a rate of 90 (1/mm)).
It is immersed in molten steel using an air cylinder from directly above a 00 kg melting furnace and held for a certain period of time to determine the unevenness of the solidified shell (solidified shell thickness non-uniformity is expressed as Δd/, &. Δd:
The thickness difference (d protrusion - d concavity) between adjacent asperities (p: distance between adjacent asperities) was investigated. FIG. 6 is a diagram showing a method for measuring solidified shell thickness non-uniformity. That is, the solidified shell 11 generated on the surface of the immersed body that is immersed in molten steel and held for a certain period of time.
Peel it from the immersed body, place it on a flat plate, and solidify the shell 11 thick between adjacent concavities and convexities (here, convexity is d2, concaveness is d+, ds).
The distance between adjacent asperities (ffl >
The value obtained by dividing the integral value of the ratio (Δd/ρ) between the distance between adjacent asperities (for example, ρl) by the number of measurements was taken as the average solidified shell thickness non-uniformity.

平均凝固シェル厚平均−度一 実験条件としては溶鋼中の炭素含有量と浸漬体の表面性
状とを変更した。溶鋼中の炭素含有量は0.01〜0.
50%の範囲で変化させた。
Average solidified shell thickness Average - degree - As for the experimental conditions, the carbon content in the molten steel and the surface texture of the immersed body were changed. The carbon content in molten steel is 0.01 to 0.
It was varied within a range of 50%.

この時Si:0620%、Mn:0.60%。At this time, Si: 0620%, Mn: 0.60%.

Pro、015%、S:0.010%。Pro, 015%, S: 0.010%.

So!;IAJ2 : 0.10〜0.30%でほぼ一
定に保った。
So! ; IAJ2: kept almost constant at 0.10-0.30%.

第7図は溶鋼中の炭素含有量と平均凝固シェル厚不均一
度の関係を示すグラフ図である。平板の銅製の浸漬体く
厚みは10Ilffl)を用いて、8〜9秒間浸漬した
後銅製の浸漬体を引き上げて銅製の浸漬体の表面に形成
した凝固シェルの平均凝固シェル厚不均一度を測定した
。直線部は平均凝固シェル厚不均一度のバラツキを示し
、・印はその平均値を示す。
FIG. 7 is a graph showing the relationship between the carbon content in molten steel and the average solidified shell thickness non-uniformity. Using a flat copper immersed body (thickness: 10 lffl), after immersing it for 8 to 9 seconds, the copper immersion body was pulled up and the average solidified shell thickness non-uniformity of the solidified shell formed on the surface of the copper immersion body was measured. did. The straight line portion indicates the variation in the average solidified shell thickness non-uniformity, and the mark . indicates the average value.

この図から明らかなように同一凝固時間では溶鋼中の炭
素含有量が0.10〜0.15%の範囲の時には平均凝
固シェル不均一度は大きく、凹凸の激しい凝固シェルが
形成していることを示している。
As is clear from this figure, when the carbon content in the molten steel is in the range of 0.10 to 0.15% at the same solidification time, the average degree of non-uniformity of the solidified shell is large, and a solidified shell with severe irregularities is formed. It shows.

上記溶鋼中の炭素含有量が0.10〜0.15%の範囲
の鋼種では特徴的に初期凝固シェル表面(浸漬体側の表
面)に亀甲状の凹凸模様が観察される。この亀甲状の凹
凸模様は中央部が高く周辺が溝状に凹んでいる。
In steel types in which the carbon content in the molten steel is in the range of 0.10 to 0.15%, a hexagonal pattern of irregularities is characteristically observed on the surface of the initial solidified shell (surface on the side of the immersed body). This tortoise-shell-like uneven pattern has a high center and groove-like depressions around the periphery.

また、炭素含有量が0.15%以上の過包晶凝固する鋼
種では 0.10〜0.15%の亜包晶凝固する鋼種と
同様、δ→γ変態するにもかかわらず凝固シェル表面浸
漬体側に亀甲状の凹凸模様が観察されない。これは、過
包晶凝固する鋼種ではδ→γ変態の際にも液相が残って
いるためであり、δ→γ変態の際の大きな変態応力を液
相部分で吸収できるためである。
In addition, in steel types that undergo hyperperitectic solidification with a carbon content of 0.15% or more, the surface of the solidified shell is immersed despite the δ → γ transformation, similar to steel types that undergo subperitectic solidification with a carbon content of 0.10 to 0.15%. No tortoiseshell-like uneven pattern is observed on the side of the body. This is because in steel types that undergo hyperperitectic solidification, a liquid phase remains even during the δ→γ transformation, and the large transformation stress during the δ→γ transformation can be absorbed by the liquid phase portion.

第8図は、凝固時間と初期凝固シェル溶鋼側の凹凸の大
きさく隣り合う凹−口開の距離=mm)及び初期凝固シ
ェル浸漬体側(亀甲状)凹凸の大きさ(円相当径=mm
)の関係を示すグラフ図である。浸漬体は第7図と同一
のものを使用した。
Figure 8 shows the solidification time, the size of the irregularities on the molten steel side of the initial solidified shell (distance between adjacent recesses and openings = mm), and the size of the irregularities on the immersed body side (tortoiseshell shape) of the initial solidified shell (equivalent circle diameter = mm).
) is a graph diagram showing the relationship between. The same immersion body as in FIG. 7 was used.

・印のシェル浸漬体側の凹凸の大きさく凝固シェル浸漬
体側の亀甲状凹凸模様の凹−開開の距離=lip)は凝
固初期にできたまま凝固時間に対して変化しないが、O
印の凝固シェル溶鋼側の凹凸の大きさく凝固シェル溶鋼
側の凸−6間の距離−、&M)は凝固が進むにつれて大
きくなっている。
・The size of the irregularities on the side of the shell immersed body (marked) The distance between concavities and openings of the tortoise-concave pattern on the side of the solidified shell immersed body (lip) remains formed at the early stage of solidification and does not change with the solidification time, but O
The size of the unevenness on the molten steel side of the solidified shell (the distance between the protrusions 6 on the molten steel side of the solidified shell, &M) becomes larger as solidification progresses.

第9図は浸漬体に緻密な縦溝を入れたときの講の種類と
凝固シェル側の亀甲状凹凸模様の大きさ(円相当径−m
m)の関係を示すグラフ図である。
Figure 9 shows the type of groove and the size of the tortoise-concave pattern on the solidified shell side (equivalent circle diameter - m
It is a graph figure showing the relationship of (m).

講の種類は銅の平板、銅の縦溝A、銅の縦溝Bの3種類
で、縦溝Aは浸漬体12の表面に縦の講13を付け、講
13の深さは0.5mm、1福は0.5m+++、講1
3の間隔は0.7mmである。縦溝Bは講13の深さが
0.5mm、幅が0.5mm、溝13の間隔が1.0m
mである。この図かられかるように凝固シェル浸漬体側
の亀甲模様の大きさは浸漬体12の表面に緻密な講】3
を入れた場合には、溝を入れない平板の時と変わらず約
10〜15m+nの大きさであった。これらの知見から
炭素大有量0.10〜0.15%の亜包晶凝固する鋼種
では初期凝固シェルが形成の際に、熱歪とδ→γ変態に
よる変態応力により凝固シェルが曲げられ、局部的に凝
固シェルと鋳型壁との間に空隙が生じる。これが亀甲状
凹凸模様となって凝固シェル浸漬体側表面にR察され、
この凹凸模様は一旦形成されるとその後ずっと残る。こ
の空隙のために凝固シェルの抜熱の低下と凝固シェル不
均一成長が起こる。従って、上記鋼種の凝固シェル不均
一成長を抑えるには、初期凝固の際の凝固シェル表面浸
漬体側の亀甲状の凹凸模様を形成させないか、あるいは
限りなく小さくし、浸漬体の表面と凝固シェルの間に空
隙を形成させないようにすれば良い。但し、第9図に示
したように溝13の間隔が0.7mmとか1.0mmの
緻密な縦溝を浸漬体12に付けても凝固シェル浸漬体側
表面の亀甲状凹凸模様の大きさは変わらない、そこで本
発明者等は亀甲状凹凸模様よりも小さい範囲で不均一抜
熱させるように、銅製の浸漬体表面の溝を格子状に付は
実験を試みた。第10図は浸漬時間と平均凝固シェル厚
不均一度の関係を示すグラフ図である。この図で、・印
は厚みが8mm、冷却水量が90ρ/ minの銅の平
板の浸漬体で、○印は銅板の表面に格子状の溝を付けた
浸漬体で、溝の深さは0.5mm、幅は0..5mm、
格子状の間隔は5mmである。直線部は平均凝固シェル
厚不均一度のバラツキを示す。この図から明らかなよう
に、銅板の表面に格子状の講を付けた浸漬体の方が、銅
平板の浸漬体より平均凝固シェル不均一度は小さくなり
、バラツキも小さい。又、第11図は凝固シェル厚と浸
漬体の浸漬時間の関係を示すグラフ図である。○印は銅
平板の浸漬体で、・印は銅板の表面に格子状の溝を付け
た浸漬体で、溝の深さは0.5mm、幅は0.5mm、
格子溝の間隔は5mmである。ム印は銅板の表面に格子
溝を付けた浸漬体で、溝の深さは0.5n+m、幅は0
.5mm、格子溝の間隔は10IIlffiである。こ
の図から明らかなように、格子溝があることによって緩
冷却となり凝固シェル厚が薄くなることはない。従って
、格子溝を入れた鋳型を用いることによって凝固シェル
厚の不均一度が小さくなるため、上記鋼種の表面割れは
低減でき1M冷却ではないため鋳造速度を下げる必要も
ない。
There are three types of grooves: copper flat plate, copper vertical groove A, and copper vertical groove B. The vertical groove A has a vertical groove 13 on the surface of the immersion body 12, and the depth of the groove 13 is 0.5 mm. , 1 fortune is 0.5m +++, Ko 1
3 is 0.7 mm apart. Vertical groove B has a depth of 13 of 0.5 mm, a width of 0.5 mm, and an interval of 1.0 m between grooves 13.
It is m. As can be seen from this figure, the size of the hexagonal pattern on the side of the solidified shell immersed body is due to the detailed pattern on the surface of the immersed body 12.
When grooves were inserted, the size was about 10 to 15 m+n, which was the same as when the flat plate was not grooved. From these findings, in steel types that undergo subperitectic solidification with a large carbon content of 0.10 to 0.15%, when the initial solidification shell is formed, the solidification shell is bent due to thermal strain and transformation stress due to δ→γ transformation. Voids locally form between the solidified shell and the mold wall. This becomes a tortoise-like uneven pattern and is observed as R on the surface of the solidified shell immersed body.
Once this uneven pattern is formed, it remains forever. These voids cause a decrease in heat removal from the solidified shell and non-uniform growth of the solidified shell. Therefore, in order to suppress the uneven growth of the solidified shell of the above-mentioned steel types, the formation of a tortoise-shell pattern on the surface of the solidified shell on the side of the immersed body during initial solidification should be prevented or minimized, and the surface of the solidified shell and the solidified shell should be made as small as possible. It is sufficient to avoid forming a void between them. However, as shown in FIG. 9, even if dense vertical grooves with grooves 13 of 0.7 mm or 1.0 mm are formed on the immersed body 12, the size of the tortoiseshell pattern on the surface of the solidified shell immersed body will not change. Therefore, the inventors of the present invention attempted an experiment in which grooves were formed on the surface of the copper immersion body in a lattice pattern in order to allow non-uniform heat removal in an area smaller than the hexagonal uneven pattern. FIG. 10 is a graph showing the relationship between immersion time and average solidified shell thickness non-uniformity. In this figure, the * mark is an immersed flat copper plate with a thickness of 8 mm and a cooling water flow rate of 90 ρ/min, and the ○ mark is an immersed body with grid-like grooves on the surface of the copper plate, and the depth of the grooves is 0. .5mm, width is 0. .. 5mm,
The grid spacing is 5 mm. The straight line portion indicates the variation in the average solidified shell thickness non-uniformity. As is clear from this figure, the average solidified shell non-uniformity of the immersed body with a grid-like pattern on the surface of the copper plate is smaller than that of the immersed body of a flat copper plate, and the variation is also smaller. FIG. 11 is a graph showing the relationship between the solidified shell thickness and the immersion time of the immersed body. The mark ○ is a dipping body of a flat copper plate, and the mark ・ is a dipping body with grid-like grooves on the surface of the copper plate, the depth of the grooves is 0.5 mm, the width is 0.5 mm,
The interval between the lattice grooves is 5 mm. The mark is an immersion body with grid grooves on the surface of a copper plate, the depth of the grooves is 0.5n+m, and the width is 0.
.. 5 mm, and the interval between the grating grooves is 10 IIlffi. As is clear from this figure, the presence of the lattice grooves results in slow cooling, and the solidified shell thickness does not become thinner. Therefore, by using a mold with lattice grooves, the non-uniformity of the solidified shell thickness is reduced, so the surface cracking of the steel type mentioned above can be reduced and there is no need to reduce the casting speed since the cooling is not 1M.

次に、表面割れ低減のための格子溝の最適条件を調査し
た。
Next, we investigated the optimal conditions for lattice grooves to reduce surface cracks.

(1)格子溝の間隔の影響 第12図は格子溝の間隔と平均凝固シェル厚不均一度の
関係を示すグラフ図である。浸漬体の浸漬時間は8〜9
秒で、溝の深さは0.5mm、幅は0.5mmで、格子
溝の間隔は0〜30mm(0゜5.1.0,1.5.3
0mm>である。この図から明らかなように、格子溝の
間隔は第9図に示す銅の平板でできた亀甲模様の凹凸間
より小さくすることにより、平均凝固シェル厚不均一度
の改善に大きな効果を発揮する。逆にあまり小さすぎる
と加工も複雑になり、全体的な抜熱も低下し緩冷却とな
るので、必要な鋳造速度を確保できないため、5〜10
mmの溝間隔が最適である。
(1) Effect of lattice groove spacing FIG. 12 is a graph showing the relationship between lattice groove spacing and average solidified shell thickness nonuniformity. The soaking time of the soaked body is 8-9
seconds, the depth of the groove is 0.5mm, the width is 0.5mm, and the interval of the grating groove is 0~30mm (0°5.1.0, 1.5.3
0 mm>. As is clear from this figure, by making the spacing between the lattice grooves smaller than the unevenness of the hexagonal pattern made of flat copper plates shown in Figure 9, it has a great effect on improving the non-uniformity of the average solidified shell thickness. . On the other hand, if it is too small, the processing will be complicated, and the overall heat removal will be reduced, resulting in slow cooling, making it impossible to secure the necessary casting speed.
A groove spacing of mm is optimal.

(2)格子溝の形状の影響 第13図は格子溝の形状と平均凝固シェル厚不均一度の
関係を示すグラフ図である。浸漬体の浸漬時間は8〜9
秒で、溝の深さは0.5mm1 、0mm、  1 、
5m+++、幅は0.5mm、  1.0mm。
(2) Effect of the shape of the lattice grooves FIG. 13 is a graph showing the relationship between the shape of the lattice grooves and the non-uniformity of the average solidified shell thickness. The soaking time of the soaked body is 8 to 9
In seconds, the depth of the groove is 0.5 mm1, 0 mm, 1,
5m+++, width 0.5mm, 1.0mm.

1.5mmで、格子溝の間隔は5mmである。格子溝の
断面形状は、第13図に示すようにV型U型、角型の3
種類である。
1.5 mm, and the interval between the grating grooves is 5 mm. The cross-sectional shapes of the grating grooves are V-shaped, U-shaped, and square, as shown in Figure 13.
It is a kind.

この図から明らかなように、溝の深さか1.5mm、幅
が1.5ml11の場合は平均凝固シェル厚不均一度は
061以上であり、又、溶鋼の差し込みが認められた。
As is clear from this figure, when the depth of the groove was 1.5 mm and the width was 1.5 ml11, the average solidified shell thickness nonuniformity was 061 or more, and insertion of molten steel was observed.

溝の深さは1.0mm以下、幅は1.0mm以下の場合
は、格子溝の断面形状にかかわらず、どれも平均凝固シ
ェル厚不均一度は改善されている。
When the depth of the groove is 1.0 mm or less and the width is 1.0 mm or less, the average solidified shell thickness non-uniformity is improved regardless of the cross-sectional shape of the lattice groove.

(3)溝内部の異物質埋め込みの影響 次に、溝の中に熱伝導率の異なる物質を埋め込んだ時の
平均凝固シェル厚不均一度を調査した。
(3) Influence of embedding foreign substances inside the groove Next, we investigated the degree of non-uniformity of the average solidified shell thickness when substances with different thermal conductivities were embedded in the groove.

ここで、胴部分と溝部分での局部的な熱抵抗値の比をh
とし、浸漬体の不拘−抜熟度として評価した。第14図
は浸漬体の不拘−抜熟度を示す説明図である。
Here, the ratio of local thermal resistance values in the body part and the groove part is h
It was evaluated as the degree of unripeness of the immersed body. FIG. 14 is an explanatory diagram showing the degree of unrestricted ripening of the immersed body.

浸漬体12の銅平板部の熱抵抗R6Uは、Rou−dc
u/λ。
The thermal resistance R6U of the copper flat plate portion of the immersed body 12 is Rou-dc
u/λ.

d cu:浸漬体の銅平板部の厚み(m)λ。U:浸漬
体の銅平板部の熱伝導率 (Kcal/m−Hr−C) 一方、銅と熱伝導率の異なる物質6を埋め込んだ溝部分
の熱抵抗R6は、 Ro−dcu′/λcu+dc/λ。
d cu: Thickness (m) λ of the copper flat plate portion of the immersed body. U: Thermal conductivity of the copper flat plate part of the immersed body (Kcal/m-Hr-C) On the other hand, the thermal resistance R6 of the groove part filled with the substance 6 whose thermal conductivity differs from that of copper is Ro-dcu'/λcu+dc/ λ.

d’cu’:講の底部から冷却水面までの厚み(m)d
、:溝の深さ(m) λ。  :埋め込み物質の熱伝導率 (Kcal/m−Hr ・ ’C) これから熱抵抗比りは、h=Rc/Rcuとした。
d'cu': Thickness from the bottom of the tube to the cooling water surface (m) d
, : Groove depth (m) λ. :Thermal conductivity of the embedded material (Kcal/m-Hr·'C) From this, the thermal resistance ratio is set as h=Rc/Rcu.

第15図は各種熱伝導率の異なる埋め込み物質と平均凝
固シェル厚不均一度の関係を示すグラフ図である。実験
条件は溝の深さが0.5mm、幅は0.5+nm、格子
の幅が5mm、溝の形状がV型で、熱抵抗比hG、t1
.5、埋め込み物質6は金属(NL、Cr)−セラミッ
ク(BN、Zr02)、浸漬体の浸漬時間は8〜9秒と
しな。この図から明らかなように、埋め込み物質6は金
属(Ni。
FIG. 15 is a graph showing the relationship between various embedded materials having different thermal conductivities and the non-uniformity of the average solidified shell thickness. The experimental conditions were that the groove depth was 0.5 mm, the width was 0.5 + nm, the grating width was 5 mm, the groove shape was V-shaped, and the thermal resistance ratio hG, t1.
.. 5. The embedding material 6 is metal (NL, Cr)-ceramic (BN, Zr02), and the immersion time of the immersion body is 8 to 9 seconds. As is clear from this figure, the buried material 6 is metal (Ni.

Cr)、セラミック(BN、Zr02)とも、平均凝固
シェル厚不均一度に及ぼす影響は改善されており、埋め
込み物質6による差はなかった。又、講のみと溝部に異
種物質を埋め込んだものでは、平均凝固シェル不均一度
には差はなかった。
Cr) and ceramics (BN, Zr02) had improved effects on the average solidified shell thickness nonuniformity, and there was no difference depending on the filling material 6. Furthermore, there was no difference in the average solidified shell heterogeneity between the groove and the groove.

第16図は熱抵抗比りと平均凝固シェル厚不均一度の関
係を示すグラフ図である。実験条件は溝の深さが0.5
mm、幅が0.5mm、格子の間隔が’5mm、形状は
V型で、埋め込み物質はNi金属、浸漬体の浸漬時間は
8〜9秒とした。この図から明らかなように、熱抵抗比
りが1.5以上の場合は平均凝固シェル厚不均一度は改
善される。ここで熱抵抗比りを1,5以上に保つために
は、10mmの銅板にNiを埋め込んだ場合、その深さ
を1.8+n+u以上確保する必要がある。
FIG. 16 is a graph showing the relationship between the thermal resistance ratio and the average solidified shell thickness non-uniformity. The experimental conditions were a groove depth of 0.5
mm, the width was 0.5 mm, the grid spacing was 5 mm, the shape was V-shaped, the filling material was Ni metal, and the immersion time of the immersion body was 8 to 9 seconds. As is clear from this figure, when the thermal resistance ratio is 1.5 or more, the average solidified shell thickness non-uniformity is improved. In order to maintain the thermal resistance ratio at 1.5 or more, when Ni is embedded in a 10 mm copper plate, it is necessary to ensure a depth of 1.8+n+u or more.

(4)格子溝の範囲 前述したように、不均一凝固を防止するためには、凝固
シェル浸漬体側表面に発生する亀甲状凹凸模様を形成さ
せないことが必要である。これは第8図に示すように凝
固初期に凝固シェル浸漬体側に亀甲状凹凸模様が形成し
、この大きさは凝固シェル成長とともに変化しない。こ
れに対して、溶鋼側の凹凸は凝固初期は凝固シェル表面
浸漬体側亀甲状凹凸模様に対応した大きさで、凝固シェ
ル成長とともにその間隔は大きくなる。従って、溶鋼側
の凹凸は浸漬体側の凹凸模様さえできなければ凝固初・
期から生成せず、均一な凝固シェル成長となる。つまり
凝固初期に浸漬体側の凹凸模様の形成さえ防げば、その
後は不均一成長は完全に防止される。
(4) Range of lattice grooves As mentioned above, in order to prevent uneven solidification, it is necessary to prevent the formation of the hexagonal pattern that occurs on the surface of the immersed solidified shell. This is because, as shown in FIG. 8, a hexagonal pattern is formed on the side of the solidified shell immersed body in the initial stage of solidification, and the size of this pattern does not change as the solidified shell grows. On the other hand, the unevenness on the molten steel side has a size corresponding to the hexagonal uneven pattern on the surface of the solidified shell on the side of the immersed body at the initial stage of solidification, and the interval between them increases as the solidified shell grows. Therefore, if the uneven pattern on the molten steel side is not even formed on the immersed body side, the unevenness will occur at the beginning of solidification.
It does not form from the initial stage, resulting in uniform solidified shell growth. In other words, if the formation of uneven patterns on the immersed body side is prevented at the initial stage of solidification, non-uniform growth can be completely prevented thereafter.

従って、凹凸を抑えるためには格子溝の範囲は、凝固初
期のメニスカス直下のみ必要で、メニスカスより60m
mまでの範囲でよいが、溶鋼湯面の変動を考慮して実際
には鋳型上面から300 mm付近までの範囲が良い。
Therefore, in order to suppress unevenness, the range of the lattice grooves needs to be only directly below the meniscus at the initial stage of solidification, and the range is 60 m from the meniscus.
The range may be up to 300 mm, but considering fluctuations in the molten steel level, it is actually preferable to range up to about 300 mm from the top of the mold.

次に、本発明者らは連続鋳造には鋳型振動によるオシレ
ーションマークが発生し、既に格子溝の内の横溝は付与
されていると考え、銅板には5mm間隔の縦溝だけ付与
した鋳型を使い、オシレーションマークの間隔を5mm
になるように鋳造速度(Vc)と鋳型振動周期(f)を
調整して小型連続鋳造機により鋳造試験を行った。
Next, the inventors thought that oscillation marks occur due to mold vibration in continuous casting, and that the horizontal grooves in the lattice grooves have already been provided, so we created a mold with only vertical grooves at 5 mm intervals on the copper plate. The interval between the oscillation marks is 5mm.
A casting test was conducted using a small continuous casting machine by adjusting the casting speed (Vc) and mold vibration period (f) so that the following results were obtained.

第17図は清の深さが0.5mm、幅が0.5mm、格
子の間隔が5mm間隔に付与し、縦溝の範囲を鋳型の表
面上端から300 mmとした。そして、鋳造速度(V
 c )と鋳型振動周期(f)を変えて鋳造試験した時
の平均凝固シェル厚不均一度との関係を示すグラフ図で
ある。鋳造速度(Vc)と鋳型振動周期(f)で表した
値、V c / f X 1000が10より小さい時
に平均凝固シェル厚不均一度が小さくなった。このV 
c / f X 1000は鋳片にできたオシレーショ
ンマークの間隔を表しており、これが10mm以下のと
き格子溝のうちの横溝分同じ働きをするため、平均凝固
シェル厚不均一度が小さくなっている。
In FIG. 17, the depth of the groove was 0.5 mm, the width was 0.5 mm, the grid spacing was 5 mm, and the range of the vertical grooves was 300 mm from the upper end of the mold surface. Then, the casting speed (V
It is a graph figure which shows the relationship between the degree of non-uniformity of the average solidified shell thickness when a casting test was carried out by changing the mold vibration period (f) and the mold vibration period (f). When the value expressed by the casting speed (Vc) and the mold vibration period (f), Vc/f x 1000, was smaller than 10, the average solidified shell thickness non-uniformity became small. This V
c / f There is.

従って、実機での連続鋳造においては、鋳型の溝は縦溝
だけでよく、横溝は鋳造速度に合わせて鋳型振動周期を
変えることによりオシレーションマークで代用できる。
Therefore, in continuous casting using an actual machine, the mold only needs to have vertical grooves, and the horizontal grooves can be replaced by oscillation marks by changing the mold vibration cycle in accordance with the casting speed.

第18図は5mm間隔で鋳型に格子溝を付与したものと
、5mm間隔で鋳型にW溝を付与したものの、鋳造速度
(Vc)と鋳型振動周期(f)を調整して5InI11
のオシレーションマークを生成させたときの平均凝固シ
ェル厚不均一度を比較した。両者の平均凝固シェル厚不
均一度には差はなく、従来法に比較して平均凝固シェル
厚不均一度は著しく改善された。
Figure 18 shows a mold with lattice grooves at 5 mm intervals and a mold with W grooves at 5 mm intervals, with the casting speed (Vc) and mold vibration period (f) adjusted.
The average solidified shell thickness nonuniformity was compared when oscillation marks were generated. There was no difference in the non-uniformity of the average solidified shell thickness between the two methods, and the non-uniformity of the average solidified shell thickness was significantly improved compared to the conventional method.

第1表に5mm間隔で鋳型に格子溝を付与したものと、
5mm間隔で鋳型に縦溝だけ付与したものとの実生産に
おける鋳型加工コストの比較を行った。5mm間隔で鋳
型に格子溝を付与したものは、5mm間隔で鋳型に縦溝
だけ付与したものと比較して、鋳型加工コストは約1.
5倍のコストアップとなる。
Table 1 shows molds with lattice grooves at 5mm intervals,
The mold machining cost in actual production was compared with a mold in which only vertical grooves were provided at 5 mm intervals. The mold processing cost for a mold with lattice grooves at 5 mm intervals is about 1.0% compared to a mold with only vertical grooves at 5 mm intervals.
The cost will increase five times.

第1表 この計算例は、300X2000mm鋳型の加工面積の
例である。
Table 1 This calculation example is an example of the machining area of a 300 x 2000 mm mold.

この発明は以上の知見に基づいてなされたものである。This invention has been made based on the above findings.

第1図はこの発明の一実施例に係わる鋳型上部の模式図
で、(a)は正面図で、(b)は(a>のA−A’断面
図である。1は鋳型、2は講、3は冷却水用スリットで
、溝2は格子状に配置されている。4は鋳型の溶鋼面で
、5は鋳型の冷却面で、この部分に冷却水用スリットが
配置されているので、鋳型1が冷却される。
FIG. 1 is a schematic diagram of the upper part of a mold according to an embodiment of the present invention, (a) is a front view, and (b) is a sectional view taken along line AA' of (a>. 1 is a mold, 2 is a 3 is the slit for cooling water, and the grooves 2 are arranged in a grid pattern. 4 is the molten steel surface of the mold, and 5 is the cooling surface of the mold, and the slit for cooling water is placed in this part. , the mold 1 is cooled.

(実施例1) 第2図はこの発明の一実施例に係わる鋳型上部の模式図
で、(a)は正面図で、(b)は(a)のA−A’断面
図、(c)は(b)の溝2部の拡大図である。第2図に
示すように鋳型lの溶鋼表面4側の上端から50〜30
0ml11で、幅中央より1000m+++づつ幅方向
に2000 mmの長さの範囲に、深さ0.5mm、幅
0.5mmのV型の溝2を10mm間隔で引き抜き方向
に平行に配置した鋳型1を使用した。
(Example 1) Fig. 2 is a schematic diagram of the upper part of a mold according to an embodiment of the present invention, (a) is a front view, (b) is a sectional view taken along line AA' in (a), and (c) is an enlarged view of part 2 of the groove in (b). As shown in Figure 2, 50 to 30 mm from the upper end of the molten steel surface 4 side of the mold l.
A mold 1 with a volume of 0 ml11 has V-shaped grooves 2 with a depth of 0.5 mm and a width of 0.5 mm arranged parallel to the drawing direction at 10 mm intervals in a length range of 2000 mm in the width direction by 1000 m +++ from the center of the width. used.

この鋳型で実際に、炭素含有量0.10〜0.15%の
鋼種を鋳造した。この時鋳造速度に合わせて鋳型振動周
期を変更し、オシレーションマークの間隔を常に8II
II11になるようにした。第3図はこの発明の一実施
例に係わるスラブ表面割れ指数と鋳造速度の関係を示す
グラフ図である。
A steel type with a carbon content of 0.10 to 0.15% was actually cast using this mold. At this time, change the mold vibration period according to the casting speed, and always keep the oscillation mark intervals at 8II.
I made it to be II11. FIG. 3 is a graph showing the relationship between slab surface cracking index and casting speed according to an embodiment of the present invention.

・印は従来法で、O印はこの発明の一実施例である。こ
の図から明らかなように、この実施例は従来法に比較し
てスラブ表面割れ指数は改善されており、高速鋳造時(
1,5m/min以上)でもスラブ表面割れ指数は改善
されている。
・The symbol indicates a conventional method, and the O symbol indicates an embodiment of the present invention. As is clear from this figure, this example has an improved slab surface cracking index compared to the conventional method, and during high-speed casting (
1.5 m/min or more), the slab surface cracking index is improved.

(実施例2) 第4図はこの発明の他の実施例に係わる鋳型上部の模式
図で、(a)は正面図で、(b)は(a>のA−A’断
面図、(c)は(b)の溝2部の拡大図である。第4図
に示すように鋳型1の溶鋼表面4側の上端から50〜3
00 mmで、幅中央より1000mmづつ幅方向に2
000 mmの長さの範囲に、深さ3.5mm、幅0.
5mmの角型の溝2を10mm間隔で引き抜き方向に平
行に配置し、その溝2の中に異種金属6としてNi金属
を使用した。Ni金属の深さは熱抵抗比が、1.5にな
るように、19mmの銅製鋳型1の表面から3.5nu
nとした。鋳型1は鋳込み方向に長さ950mm、幅2
320mm、厚さ40mmで冷却水用スリット3の深さ
は21+nmである。
(Example 2) FIG. 4 is a schematic diagram of the upper part of a mold according to another example of the present invention, in which (a) is a front view, (b) is a sectional view taken along line AA' of (a>, and (c ) is an enlarged view of the groove 2 part in (b).As shown in FIG.
00 mm, 2 in the width direction by 1000 mm from the center of the width.
000 mm length, 3.5 mm depth and 0.00 mm width.
5 mm square grooves 2 were arranged parallel to the drawing direction at 10 mm intervals, and Ni metal was used as the dissimilar metal 6 in the grooves 2. The depth of the Ni metal is 3.5 nu from the surface of the 19 mm copper mold 1 so that the thermal resistance ratio is 1.5.
It was set as n. Mold 1 has a length of 950 mm in the casting direction and a width of 2
The diameter of the cooling water slit 3 is 320 mm, the thickness is 40 mm, and the depth of the cooling water slit 3 is 21+ nm.

この鋳型で実際に、炭素含有量0.10〜0.15%の
鋼種を鋳造した。この時鋳造速度に合わせて鋳型振動周
期を変更し、オシレーションマークの間隔を常に8mm
になるようにした。第5図はこの発明の他の実施例に係
わるスラブ表面割れ指数と鋳造速度の関係を示すグラフ
図である。
A steel type with a carbon content of 0.10 to 0.15% was actually cast using this mold. At this time, change the mold vibration period according to the casting speed, and keep the oscillation mark interval at 8 mm.
I made it so that FIG. 5 is a graph showing the relationship between slab surface cracking index and casting speed according to another embodiment of the present invention.

・印は従来法で、○印はこの発明の他の実施例である。- The mark indicates the conventional method, and the mark ○ indicates another embodiment of the present invention.

この図から明らかなように、この実施例は従来法に比較
してスラブ表面割れ指数は改善されており、高速鋳造時
< 1 、5 m/min以上)でもスラブ表面割れ指
数は改善されている。この結果直送圧延が可能となり、
生産性も向上した。
As is clear from this figure, the slab surface cracking index in this example is improved compared to the conventional method, and the slab surface cracking index is improved even during high-speed casting (< 1, 5 m/min or higher). . As a result, direct rolling becomes possible,
Productivity has also improved.

ここで異種金属として、Ni、の場合で説明したが、C
r、及びセラミック(BN、AfflN。
Here, we have explained the case of Ni as the dissimilar metal, but C
r, and ceramics (BN, AfflN.

Zr02)でも、同様な効果が得られた。Similar effects were obtained with Zr02).

[発明の効果] この発明は以上のように構成されているので、(1)溶
鋼中の炭素含有量が0.10〜0.15%の亜包晶凝固
する鋼種の不均一凝固を改善することができる。
[Effects of the Invention] Since the present invention is configured as described above, (1) it improves the uneven solidification of steel types that undergo subperitectic solidification where the carbon content in the molten steel is 0.10 to 0.15%; be able to.

(2)上記鋼種の高速鋳造が可能となり、スラブ表面欠
陥も改善された。
(2) High-speed casting of the above steel types has become possible, and slab surface defects have been improved.

(3)直送圧延が可能となり生産性が向上した。(3) Direct rolling became possible, improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係わる鋳型上部の模式図、
第2図はこの発明の一実施例に係わる鋳型上部の模式図
、第3図はこの発明の一実施例に係わるスラブ表面割れ
指数と鋳造速度の関係を示すグラフ図、第4図はこの発
明の他の実施例に係わる鋳型上部の模式図、第5図はこ
の発明の他の実施例に係わるスラブ表面割れ指数と鋳造
速度の関係を示すグラフ図、第6図は凝固シェル不均一
度を測定する方法を示す図、第7図は溶鋼中の炭素含有
量と平均凝固シェル不均一度の関係を示すグラフ図、第
8図は凝固時間と亀甲状凹凸の大きさの関係を示すグラ
フ図、第9図は溝の種類と亀甲模様の大きさの関係を示
すグラフ図、第10図は浸漬時間と平均凝固シェル不均
一度の関係を示すグラフ図、第11図は凝固シェル厚と
浸漬体の浸漬時間の関係を示すグラフ図、第12図は格
子溝の間隔と平均凝固シェル不均一度の関係を示すグラ
フ図、第13図は格子溝の形状と平均凝固シェル不均一
度の関係を示すグラフ図、第14図は浸漬体の不拘−抜
熟度を示す説明図、第15図は各種熱伝導率の異なる埋
め込み物質と平均凝固シェル不均一度の関係を示すグラ
フ図、第16図は熱抵抗比と平均凝固シェル不均一度の
関係を示すグラフ図、第17図は本発明の一実施例を示
す鋳造速度(Vc)と鋳型振動周期(f)を変えて鋳造
試験した時の平均凝固シェル厚不均一度との関係を示す
グラフ図、第18図は本発明の他の実施例を示す鋳造速
度(Vc)と鋳型振動周期(f)を調整して5+n+n
のオシレーションマークを生成させたときの平均凝固シ
ェル厚不均一度との関係を示すグラフ図、第19図は従
来の鋳型銅板の炭素含有量と表面割れ指数との関係を示
すグラフ図である。 1・・・鋳型、2・・・溝、3・・・冷却水用スリット
、4・・・鋳型の溶鋼面、5・・・鋳型の冷却面、6・
・・異種金属。
FIG. 1 is a schematic diagram of the upper part of a mold according to an embodiment of the present invention;
Figure 2 is a schematic diagram of the upper part of the mold according to an embodiment of the present invention, Figure 3 is a graph showing the relationship between slab surface crack index and casting speed according to an embodiment of the present invention, and Figure 4 is a diagram of the invention. FIG. 5 is a graph showing the relationship between the slab surface crack index and casting speed according to another embodiment of the present invention, and FIG. 6 is a diagram showing the solidified shell non-uniformity. A diagram showing the measurement method, Figure 7 is a graph showing the relationship between the carbon content in molten steel and the average degree of solidification shell heterogeneity, and Figure 8 is a graph showing the relationship between solidification time and the size of hexagonal irregularities. , Figure 9 is a graph showing the relationship between groove type and hexagonal pattern size, Figure 10 is a graph showing the relationship between immersion time and average solidified shell non-uniformity, and Figure 11 is a graph showing the relationship between solidified shell thickness and immersion. Figure 12 is a graph showing the relationship between the immersion time of the body, Figure 12 is a graph showing the relationship between the spacing of the lattice grooves and the average solidified shell heterogeneity, and Figure 13 is the relationship between the shape of the lattice grooves and the average solidified shell heterogeneity. FIG. 14 is an explanatory diagram showing the degree of unrestricted ripening of the immersed body. FIG. 15 is a graph diagram showing the relationship between various embedded materials with different thermal conductivities and the average degree of solidification shell heterogeneity. The figure is a graph showing the relationship between the thermal resistance ratio and the average solidified shell non-uniformity, and Figure 17 shows an example of the present invention when a casting test was conducted by changing the casting speed (Vc) and mold vibration period (f). Fig. 18 is a graph showing the relationship between average solidified shell thickness non-uniformity and Fig. 18 shows another embodiment of the present invention.
Figure 19 is a graph showing the relationship between the average solidified shell thickness non-uniformity when oscillation marks are generated, and Figure 19 is a graph showing the relationship between the carbon content and surface cracking index of a conventional molded copper plate. . DESCRIPTION OF SYMBOLS 1... Mold, 2... Groove, 3... Slit for cooling water, 4... Molten steel surface of the mold, 5... Cooling surface of the mold, 6...
...Dissimilar metals.

Claims (2)

【特許請求の範囲】[Claims] (1)銅製の連続鋳造において、銅製の連続鋳造用鋳型
表面の鋳型内溶鋼のメニスカス近傍に、深さ0.5〜1
.0mm、幅0.3〜1.0mmの切り欠き部を設け、
前記切り欠き部を鋳片引き抜き方向と平行に5〜10m
mの間隔で配置し、且つ、鋳造時の鋳造速度(V_c)
と鋳型振動周期(f)との関係を下式を満足することを
特徴とする鋼の連続鋳造方法。 10>V_c/f×1000 但し、V_c:鋳造速度(m/min) f:鋳型振動周期(1/min)
(1) In copper continuous casting, a depth of 0.5 to 1.
.. Provide a notch with a width of 0 mm and a width of 0.3 to 1.0 mm,
The said notch is 5 to 10 m parallel to the direction of slab withdrawal.
Arranged at intervals of m, and casting speed (V_c) during casting
A continuous casting method for steel, characterized in that the relationship between and the mold vibration period (f) satisfies the following formula. 10>V_c/f×1000 However, V_c: Casting speed (m/min) f: Mold vibration period (1/min)
(2)切り欠き部に異種金属(Ni、Cr)、もしくは
セラミック(BN、AlN、ZrO_2)を熱抵抗比が
1.5以上となる深さまで充填したことを特徴とする請
求項1記載の鋼の連続鋳造方法。 但し、熱抵抗比:h=R_c/R_c_u R_c_u:銅板部の熱抵抗=D_c_u/λ_c_u R_c:異種物質埋め込み部の熱抵抗= D_c_u_′/λ_c_u+D_c/λ_cここで、 D_c_u:鋳型の銅板の厚み(m) λ_c_u:銅板の熱伝導率(Kcal/m・Hr・℃
) D_c_u′:異種物質埋め込み部の底部から冷却水面
までの厚み(m) D_c:異種物質埋め込み部での埋め込み厚み(m) λ_c:異種物質の熱伝導率(Kcal/m・Hr・℃
(2) The steel according to claim 1, characterized in that the notch portion is filled with dissimilar metals (Ni, Cr) or ceramics (BN, AlN, ZrO_2) to a depth such that the heat resistance ratio is 1.5 or more. Continuous casting method. However, thermal resistance ratio: h=R_c/R_c_u R_c_u: Thermal resistance of the copper plate part=D_c_u/λ_c_u R_c: Thermal resistance of the dissimilar material embedded part=D_c_u_'/λ_c_u+D_c/λ_cwhere, D_c_u: Thickness of the copper plate of the mold (m ) λ_c_u: Thermal conductivity of copper plate (Kcal/m・Hr・℃
) D_c_u′: Thickness from the bottom of the dissimilar material embedded part to the cooling water surface (m) D_c: Embedded thickness of the dissimilar material embedded part (m) λ_c: Thermal conductivity of the dissimilar material (Kcal/m・Hr・℃)
)
JP15888388A 1988-06-27 1988-06-27 Method for continuously casting steel Pending JPH026037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15888388A JPH026037A (en) 1988-06-27 1988-06-27 Method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15888388A JPH026037A (en) 1988-06-27 1988-06-27 Method for continuously casting steel

Publications (1)

Publication Number Publication Date
JPH026037A true JPH026037A (en) 1990-01-10

Family

ID=15681469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15888388A Pending JPH026037A (en) 1988-06-27 1988-06-27 Method for continuously casting steel

Country Status (1)

Country Link
JP (1) JPH026037A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658440A3 (en) * 1990-02-22 1991-08-23 Siderurgie Fse Inst Rech Ingot mould for the continuous casting of liquid metal, such as steel
EP1688198A1 (en) * 2003-09-24 2006-08-09 Sumitomo Metal Industries, Ltd. Continuous casting mold and method of continuous casting for copper alloy
JP2007160347A (en) * 2005-12-13 2007-06-28 Mishima Kosan Co Ltd Continuous casting method, and casting mold for continuous casting using the method
WO2014002409A1 (en) 2012-06-27 2014-01-03 Jfeスチール株式会社 Continuous casting mold and method for continuous casting of steel
JP2017024078A (en) * 2015-07-22 2017-02-02 Jfeスチール株式会社 Continuous casting mold and continuous casting method for steel
WO2018016101A1 (en) 2015-07-22 2018-01-25 Jfeスチール株式会社 Continuous casting mold and method for continuous casting of steel
WO2018074406A1 (en) 2016-10-19 2018-04-26 Jfeスチール株式会社 Continuous casting mold and method for continuous casting of steel
KR102033639B1 (en) * 2018-06-29 2019-11-08 주식회사 포스코 Mold for casting
US11331716B2 (en) 2014-10-28 2022-05-17 Jfe Steel Corporation Continuous casting mold and method for continuous casting of steel (as amended)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658440A3 (en) * 1990-02-22 1991-08-23 Siderurgie Fse Inst Rech Ingot mould for the continuous casting of liquid metal, such as steel
EP1688198A1 (en) * 2003-09-24 2006-08-09 Sumitomo Metal Industries, Ltd. Continuous casting mold and method of continuous casting for copper alloy
EP1688198A4 (en) * 2003-09-24 2007-03-21 Sumitomo Metal Ind Continuous casting mold and method of continuous casting for copper alloy
JP2007160347A (en) * 2005-12-13 2007-06-28 Mishima Kosan Co Ltd Continuous casting method, and casting mold for continuous casting using the method
US10792729B2 (en) 2012-06-27 2020-10-06 Jfe Steel Corporation Continuous casting mold and method for continuous casting of steel
WO2014002409A1 (en) 2012-06-27 2014-01-03 Jfeスチール株式会社 Continuous casting mold and method for continuous casting of steel
CN104395015A (en) * 2012-06-27 2015-03-04 杰富意钢铁株式会社 Continuous casting mold and method for continuous casting of steel
EP2839901A4 (en) * 2012-06-27 2015-06-03 Jfe Steel Corp Continuous casting mold and method for continuous casting of steel
US11331716B2 (en) 2014-10-28 2022-05-17 Jfe Steel Corporation Continuous casting mold and method for continuous casting of steel (as amended)
WO2018016101A1 (en) 2015-07-22 2018-01-25 Jfeスチール株式会社 Continuous casting mold and method for continuous casting of steel
TWI630962B (en) * 2015-07-22 2018-08-01 Jfe鋼鐵股份有限公司 Continuous casting mold and steel continuous casting method
KR20190017978A (en) * 2015-07-22 2019-02-20 제이에프이 스틸 가부시키가이샤 Continuous casting method for continuous casting molds and steel
CN109475930A (en) * 2015-07-22 2019-03-15 杰富意钢铁株式会社 The continuous casing of continuous casting mold and steel
EP3795274A1 (en) 2015-07-22 2021-03-24 Jfe Steel Corporation Continuous casting mold and method for continuous casting of steel
JP2017024078A (en) * 2015-07-22 2017-02-02 Jfeスチール株式会社 Continuous casting mold and continuous casting method for steel
WO2018074406A1 (en) 2016-10-19 2018-04-26 Jfeスチール株式会社 Continuous casting mold and method for continuous casting of steel
US11020794B2 (en) 2016-10-19 2021-06-01 Jfe Steel Corporation Continuous casting mold and method for continuously casting steel
KR102033639B1 (en) * 2018-06-29 2019-11-08 주식회사 포스코 Mold for casting

Similar Documents

Publication Publication Date Title
JPH01170550A (en) Mold for continuously casting steel
JPH026037A (en) Method for continuously casting steel
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
JP6947737B2 (en) Continuous steel casting method
JPH01289542A (en) Casting mold for continuous casting of steel
JPH0220645A (en) Mold for continuously casting steel
JPH09276994A (en) Mold for continuous casting
JPH026038A (en) Mold for continuously casting steel
JP2950152B2 (en) Continuous casting mold for slab
JPS58103941A (en) Production of metallic material having specular surface
JPS5847255B2 (en) Steel ingot making method
RU2733525C1 (en) Crystallizer for continuous casting and continuous casting method
CN201922005U (en) Continuous casting crystallizer capable of realizing uniform heat transfer in metal initial solidification areas
JPH08132184A (en) Mold for continuous casting round cast billet and continuous casting method using same
JPS609553A (en) Stopping down type continuous casting machine
JPS61162256A (en) Improvement of surface characteristic of continuous casting steel ingot
JPH02104445A (en) Mold for continuously casting steel and continuous casting method
JP2024035081A (en) Continuous casting mold
JPH01501455A (en) Apparatus and method for continuously casting steel slabs
JPH0122061B2 (en)
JPH0631418A (en) Continuous casting method
JP3283746B2 (en) Continuous casting mold
JPH0270357A (en) Mold for continuous casting for steel
JP3100541B2 (en) Continuous casting method of round billet and mold used in the method
JPS58157552A (en) Continuous casting method of metallic material