JPH0220645A - Mold for continuously casting steel - Google Patents

Mold for continuously casting steel

Info

Publication number
JPH0220645A
JPH0220645A JP17048288A JP17048288A JPH0220645A JP H0220645 A JPH0220645 A JP H0220645A JP 17048288 A JP17048288 A JP 17048288A JP 17048288 A JP17048288 A JP 17048288A JP H0220645 A JPH0220645 A JP H0220645A
Authority
JP
Japan
Prior art keywords
mold
solidified shell
grooves
lattice
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17048288A
Other languages
Japanese (ja)
Inventor
Hiroshi Murakami
洋 村上
Mikio Suzuki
幹雄 鈴木
Toru Kitagawa
北川 融
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP17048288A priority Critical patent/JPH0220645A/en
Publication of JPH0220645A publication Critical patent/JPH0220645A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Abstract

PURPOSE:To prevent longitudinal crack of solidified shell at initial stage in kind of steel executing hypo-peritectic solidification having 0.10-0.15% carbon content by arranging the specific lattice-like grooves on mold surface positioning near meniscus of molten steel. CONSTITUTION:In the copper-made mold for continuous casting, on the mold surface positioning gear the meniscus of the molten steel in the mold, the lattice- like grooves having 0.5-1.0mm depth and 0.5-1.0mm width are arranged at 5-10mm interval between the grooves. By this method, cooling degrees at grooving part and non-grooving part fiffer and the initial solidification is a little delayed at the grooving part, which is weak cooling part. Therefore, the liquid phase is remained at every fixed intervals and absorbs strain at the time of shrinking, and bending of the solidified shell at the initial stage is restrained and the solidified shell is locally separated from the mold. Therefore, heat conduction is made uniform and the solidified shell thickness is made uniform. In this result, as the local thin part in the solidified shell layer is eliminated by developing the solidified shrinkage and transformation stress at the time of transforming delta gamma, the stress is not concentrated at one point.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素含有量0.10〜0.15%の亜包晶凝
固する鋼種の初期の凝固シェル縦割れを防止するための
鋼の連続鋳造用鋳型に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to a method for preventing longitudinal cracking of the solidified shell in the initial stage of subperitectic solidifying steel with a carbon content of 0.10 to 0.15%. Concerning continuous casting molds.

[従来の技術] 近年、鋳片を製造するには垂直もしくは湾曲型の連続鋳
造機を使用した連続鋳造方法が不可欠となっている。こ
のような連続鋳造方法によってブルームやビレット等の
鋳片を製造しようとすると、鋳片表面に縦割れや横割れ
が発生することがある、第17図は従来の銅板鋳型を用
いて鋳造した時の、スラブの炭素含有量と表面割れ指数
との関係を示すグラフ図である。この図から明らかなよ
うに、炭素含有量が0.10〜0.15%の亜包晶凝固
する鋼種で表面割れが多く発生している。この理由は上
記の炭素含有量の鋼種が凝固する際、 L→δ+L→包晶反応(δ+L→γ) →δ+γ→γ という変態過程を経る。このうちδ相は体心立方(bc
c)、γ相は面心立方(fcc)の結晶構造を有し、δ
→γの変態時にはこの結晶構造差に起因した体積収縮が
起こり、大きな変態応力が発生する。又、このδ→γの
包晶反応時には液相が消滅していくため、収縮による歪
を吸収するものがなく、凝固シェルそのものが不均一な
凝固形態をとり、上記応力が凝固シェルの薄い部分に掛
かつて割れが発生するものと考えられる。従来は上記の
鋼種の表面割れを防止するには、モールドパウダーの種
類を試行錯誤によって選定し、割れ感受性の低いものに
変えて鋳造したり、鋳型抜熱量を落として低速鋳造を行
うことにより表面割れ防止を図っていた。
[Prior Art] In recent years, continuous casting methods using vertical or curved continuous casting machines have become indispensable for producing slabs. When attempting to manufacture slabs such as blooms and billets using such continuous casting methods, vertical and horizontal cracks may occur on the surface of the slab. Figure 17 shows the results of casting using a conventional copper plate mold. FIG. 2 is a graph showing the relationship between the carbon content of the slab and the surface crack index. As is clear from this figure, many surface cracks occur in steel types that undergo subperitectic solidification and have a carbon content of 0.10 to 0.15%. The reason for this is that when steel with the above carbon content solidifies, it undergoes a transformation process of L→δ+L→peritectic reaction (δ+L→γ) →δ+γ→γ. Among these, the δ phase is body-centered cubic (bc
c), the γ phase has a face-centered cubic (fcc) crystal structure, and the δ
→During the γ transformation, volumetric contraction occurs due to this crystal structure difference, and a large transformation stress is generated. In addition, during this peritectic reaction of δ→γ, the liquid phase disappears, so there is nothing to absorb the strain caused by contraction, and the solidified shell itself assumes a non-uniform solidified form, and the stress is applied to the thin part of the solidified shell. It is thought that cracks will occur once the material is applied. Conventionally, in order to prevent surface cracking of the above steel types, the type of mold powder was selected through trial and error, and the type of mold powder was changed to one with low cracking susceptibility before casting, or the amount of heat extracted from the mold was reduced and low-speed casting was performed. It was intended to prevent cracking.

[発明が解決しようとする課題] しかしながら表面割れ発生が抑制されるモールドパウダ
ーの選定に際しては、多くの鋳造条件をすべて満足させ
るモールドパウダーを選び出すことが困難であり、時間
と美大な費用がかかる。
[Problem to be solved by the invention] However, when selecting a mold powder that suppresses the occurrence of surface cracking, it is difficult to select a mold powder that satisfies all of the many casting conditions, and it takes time and a large amount of money. .

又、鋳型抜熱量を落として低速鋳造を行うと、直送圧延
(連続鋳造機から熱間圧延機まで鋳片を流し圧延する方
法)するために連続鋳造機から熱間圧延機と同期させる
のが困難となって、直送圧延やホットチャージ圧延がで
きなくなり一貫製造工程の省力化や省エネルギーの障害
となると同時に、製品の歩留も低下するという問題があ
った。
In addition, when low-speed casting is performed to reduce the amount of heat removed from the mold, it is difficult to synchronize the continuous casting machine with the hot rolling machine for direct rolling (a method of flowing slabs from the continuous casting machine to the hot rolling machine). As a result, direct rolling and hot charge rolling become impossible, which poses a problem in that it becomes an obstacle to labor and energy saving in the integrated manufacturing process, and at the same time, the yield of the product decreases.

本発明はかかる事情に鑑みてなされたものであって炭素
含有量0.10〜0.15%の亜包晶凝固する鋼種の初
期の凝固シェル縮開れを防止し、鋳片表面欠陥を防止す
るための連続鋳造用鋳型を提供することを目的としてい
る。
The present invention has been made in view of the above circumstances, and is intended to prevent the initial solidification shell coagulation of a steel with a carbon content of 0.10 to 0.15% that undergoes subperitectic solidification, thereby preventing surface defects in the slab. The purpose of this project is to provide a continuous casting mold for continuous casting.

[課題を解決するための手段] 上記の目的を達成するために、本発明の鋼の連続鋳造用
鋳型は、鋳型内溶鋼のメニスカス近傍に位置する鋳型表
面に、深さ0.5〜1.0mm、幅0.5〜1.0mm
の格子状の溝を設け、前記格子状の溝の間隔を5〜10
mmとする。
[Means for Solving the Problems] In order to achieve the above object, the mold for continuous casting of steel of the present invention has a depth of 0.5 to 1.5 mm on the mold surface located near the meniscus of molten steel in the mold. 0mm, width 0.5-1.0mm
lattice-shaped grooves are provided, and the intervals between the lattice-shaped grooves are 5 to 10.
Let it be mm.

又、より好ましい結果を得るために、前記格子状の溝内
に、Ni、Cr等、鋳型材質である銅に対する異種金属
又はBN、A!2N、ZrO2等のセラミックを熱抵抗
比りが1.5以上となる深さまで充填する。
In addition, in order to obtain more preferable results, a metal dissimilar to the mold material copper, such as Ni or Cr, or a metal such as BN, A! A ceramic such as 2N or ZrO2 is filled to a depth where the thermal resistance ratio is 1.5 or more.

[作用コ 本発明に係わる鋼の連続鋳造用鋳型では、鋳型の表面に
格子状の清を設けることにより、溝部分とそうでない部
分とで冷却の強弱が付き弱冷部である溝部分では初期の
凝固シェルの凝固がわずかに遅れる。このため一定間隔
毎に液相が残り、この液相部が収縮時の歪を吸収して初
期の凝固シェルの曲がりを抑え、局部的に鋳型と凝固シ
ェルが離れることがない、従って抜熱量が均一となり、
凝固シェル厚が均一に成長する0本発明の鋳型を用いる
ことによって、初期の凝固シェル厚みが極めて均一に形
成するため、凝固収縮やδ→γ変態時の変態応力が発生
しても局所的な凝固シェル厚の薄い部分がないため、−
点に応力が集中することがない、格子状の溝の形状を深
さ0.5〜1.0mm、幅0.5〜1.0+amとし、
渭を5〜101m間隔の格子状に配置した理由は、この
範囲以外では凝固シェル厚の不均一度が大きくなるから
である。
[Function] In the mold for continuous casting of steel according to the present invention, by providing a lattice-like groove on the surface of the mold, the strength of cooling is varied between the groove portion and the other portion, and the initial cooling temperature is lowered in the groove portion which is the weakly cooled portion. The solidification of the solidified shell is slightly delayed. For this reason, a liquid phase remains at regular intervals, and this liquid phase absorbs the strain caused by contraction, suppressing the initial bending of the solidified shell, and preventing the mold from separating from the solidified shell locally.Therefore, the amount of heat removed is reduced. becomes uniform,
Solidified shell thickness grows uniformly 0 By using the mold of the present invention, the initial solidified shell thickness is extremely uniform, so even if solidification shrinkage or transformation stress occurs during δ→γ transformation, localized Since there is no thin part of the solidified shell, −
The shape of the grid-like groove is 0.5 to 1.0 mm in depth and 0.5 to 1.0 + am in width so that stress does not concentrate at a point,
The reason why the wires are arranged in a lattice shape with intervals of 5 to 101 m is that the non-uniformity of the solidified shell thickness becomes large outside this range.

又、格子状の溝に異種金属又はセラミックを充填する理
由は、単に溝を設けただけでは、鋳造中にモールドパウ
ダーが溝の中に侵入して熱バランスが崩れ、スラブ表面
割れが起こる虞があるためである。
In addition, the reason why the lattice-shaped grooves are filled with dissimilar metals or ceramics is that if the grooves are simply provided, there is a risk that mold powder will enter the grooves during casting, disrupting the heat balance and causing cracks on the slab surface. This is because there is.

[実施例] 以下、本発明の一実施例について説明する。[Example] An embodiment of the present invention will be described below.

亜包晶凝固する鋼種では初期凝固シェルが形成すると熱
歪とδ→γ変態による変態応力により凝固シェルが曲げ
られ、局部的に凝固シェルと鋳型壁との間に空隙が形成
され、これによって局部的に凝固シェル厚が不均一に成
長する。ここで本発明者らは本発明に至るまでの過程に
おいて、表面割れは凝固シェル厚の薄いところで発生し
ており、不均一凝固を防ぐことが表面割れを防止できる
という知見を得た。
In steel types that undergo subperitectic solidification, when an initial solidified shell is formed, the solidified shell is bent by thermal strain and transformation stress due to δ→γ transformation, and a void is locally formed between the solidified shell and the mold wall, which causes local As a result, the solidified shell thickness grows non-uniformly. In the process leading up to the present invention, the present inventors have found that surface cracks occur where the thickness of the solidified shell is thin, and that surface cracks can be prevented by preventing uneven solidification.

この知見に基づいて、凝固シェル厚が不均一になる原因
を調査するため実験を行った。実験は、100mmX 
360mmの浸漬体(水冷した平板=浸漬体の冷却水は
904 / min >を100 kgの溶解炉直上か
らエアーシリンダーを用いて溶鋼中に浸漬させ、一定時
間保持し、凝固シェルの凹凸度(″a固シェル不均一度
Δd/lで表す。Δd:隣り合う凹凸の厚み差d凸−d
凹、j:隣り合う凹凸間の距離)を調べた。第6図は凝
固シェル不均一度を測定する方法を示す図である。
Based on this knowledge, we conducted an experiment to investigate the cause of nonuniform solidified shell thickness. The experiment was carried out at 100mm
A 360 mm immersed body (water-cooled flat plate = cooling water of the immersed body is 904/min) is immersed in molten steel from directly above a 100 kg melting furnace using an air cylinder, held for a certain period of time, and the roughness of the solidified shell ('' a Solid shell heterogeneity expressed as Δd/l. Δd: Thickness difference between adjacent asperities d Convexity - d
Concavity, j: distance between adjacent concavities and convexities) was investigated. FIG. 6 is a diagram showing a method for measuring solidified shell non-uniformity.

即も溶鋼中に浸漬させ、一定時間保持した浸漬体の表面
に生成した凝固シェル11を浸漬体から剥離して、平板
上に置き、隣り合う凹凸間の凝固シェル11厚(ここで
は凸はd2凹はdt、d3)と隣り合う凹凸間の距離(
!I)を測定し、隣り合う凹凸間の凝固シェル11厚の
差(例えばΔd=dz  dt)と隣り合う凹゛凸間の
距離(例えばll1)との比(Δd/!2)の積分値を
測定個数で割った値を平均凝固シェル不均一度とした。
Immediately, the solidified shell 11 generated on the surface of the immersed body was immersed in molten steel and held for a certain period of time. The solidified shell 11 generated on the surface of the immersed body was peeled off from the immersed body and placed on a flat plate. The concavity is dt, d3) and the distance between adjacent concavities and convexities (
! I), and calculate the integral value of the ratio (Δd/!2) between the difference in the thickness of the solidified shell 11 between adjacent asperities (for example, Δd=dz dt) and the distance between adjacent concave and convex portions (for example, ll1). The value divided by the number of measured pieces was taken as the average solidified shell heterogeneity.

平均凝固シェル不均一度=Δd/ff1=(Σld+ 
 dt−11/ !;II)/n1鱒l 実験条件としては、溶鋼中の炭素含有量および浸漬体の
表面性状を変更した。溶鋼中の炭素含有量は0.01〜
0.50%の範囲で変化させた。
Average solidified shell heterogeneity = Δd/ff1 = (Σld+
dt-11/! ;II)/n1 trout As the experimental conditions, the carbon content in the molten steel and the surface texture of the immersed body were changed. Carbon content in molten steel is 0.01~
It was varied within a range of 0.50%.

この時 Si:0.20%、Mn:0.60% P:0.O15% S:0.010%。At this time Si: 0.20%, Mn: 0.60% P:0. O15% S: 0.010%.

5oJAjl : 0.02〜0.15%でほぼ一定に
保った。
5oJAjl: kept almost constant at 0.02-0.15%.

第7図は溶鋼中の炭素含有量と平均凝固シェル不均一度
の関係を示すグラフ図である。この図は、平板の銅製の
浸漬体く厚みは10mm)を用いて、8〜9秒間浸漬し
た後、浸漬体を引き上げて浸漬体の表面に形成した凝固
シェルの平均凝固シェル不均一度を測定した結果である
。縦方向の直線部は平均凝固シェル不均一度のバラツキ
を示し、・印はその平均値を示す、この図から明らかな
ように同一凝固時間では溶鋼中の炭素含有量が0.10
〜0.15%の範囲の時には平均凝固シェル不均一度は
大きく、凹凸の激しい凝固シェルを形成している。上記
溶鋼中の炭素含有量が0.10〜0.15%の範囲の鋼
種では特徴的に初期凝固シェル表面(浸漬体側の表面)
に亀甲状の凹凸模様が観察される。この亀甲状の凹凸模
様は中央部が高く周辺が溝状に凹んでいる。また、炭素
含有量が0.15以上の過包晶凝固する鋼種では、0.
10〜0.15%の亜包晶凝固する鋼種と同様、δ→γ
変態するにもかかわらず凝固シェル表面浸漬体側に亀甲
状の凹凸模様が観察されない。これは、過包晶凝固する
鋼種ではδ→γ変態の際にも液相が残っているためであ
り、δ→γ変態の際の大きな変態応力を液相部分で吸収
できるためである。
FIG. 7 is a graph showing the relationship between the carbon content in molten steel and the average degree of solidification shell heterogeneity. This figure shows a flat copper immersed body (thickness: 10 mm) that is immersed for 8 to 9 seconds, then pulled up and the average solidified shell non-uniformity of the solidified shell formed on the surface of the immersed body. This is the result. The straight line in the vertical direction indicates the variation in the average solidification shell heterogeneity, and the mark . indicates the average value.As is clear from this figure, at the same solidification time, the carbon content in the molten steel is 0.10.
When it is in the range of ~0.15%, the average degree of non-uniformity of the solidified shell is large, forming a solidified shell with severe irregularities. In the steel types mentioned above where the carbon content in the molten steel is in the range of 0.10 to 0.15%, the initial solidification shell surface (surface on the side of the immersed body) is characteristically
A tortoiseshell-like uneven pattern is observed. This tortoise-shell-like uneven pattern has a high center and groove-like depressions around the periphery. In addition, for steel types that undergo hyperperitectic solidification with a carbon content of 0.15 or more, 0.
Similar to steel types with subperitectic solidification of 10 to 0.15%, δ→γ
Despite the transformation, no tortoiseshell-like uneven pattern is observed on the surface of the solidified shell on the side of the immersed body. This is because in steel types that undergo hyperperitectic solidification, a liquid phase remains even during the δ→γ transformation, and the large transformation stress during the δ→γ transformation can be absorbed by the liquid phase portion.

第8図は、凝固時間と初期凝固シェル溶鋼側の凹凸の大
きさ(隣り合う凹−開開の距離=+nm)及び初期凝固
シェル浸漬体側(亀甲状)凹凸の大きさ(円相当径=m
m)の関係を示すグラフ図である。浸漬体は第7区と同
一のものを使用した。
Figure 8 shows the solidification time, the size of the unevenness on the molten steel side of the initial solidified shell (distance between adjacent depressions and openings = + nm), and the size of the unevenness on the immersed body side (tortoise shell) of the initial solidified shell (equivalent circle diameter = m).
It is a graph figure showing the relationship of (m). The same immersion body as in Section 7 was used.

・印のシェル浸漬体側の凹凸の大きさ(凝固シェル浸漬
体側の亀甲状凹凸模様の凹−開開の距離=!;IP)は
凝固初期にできたまま浸漬時間に対して変化しないが、
O印の凝固シェル溶鋼側の凹凸の大きさ(凝固シェル溶
鋼側の凸−5間の距離−ρM)は凝固が進むにつれて大
きくなっている。
・The size of the irregularities on the side of the shell immersed body (distance between concavities and openings of the tortoise-concave pattern on the side of the solidified shell immersed body =!; IP) remains formed at the early stage of solidification and does not change with the immersion time, but
The size of the unevenness on the solidified shell molten steel side marked O (distance between protrusions -5 on the solidified shell molten steel side - ρM) increases as solidification progresses.

第9図は浸漬体に緻密な縦溝を入れたときの凝固時間と
凝固シェル側の亀甲状凹凸模様の大きさ(円相当径=m
m)の関係を示すグラフ図である。
Figure 9 shows the solidification time and the size of the tortoise-concave pattern on the solidified shell side (equivalent circle diameter = m
It is a graph figure showing the relationship of (m).

この実験に用いた浸漬体は、銅の平板、銅板に縦溝Aを
設けたもの、銅板に縦IB設けたものの3種類を使用し
、縦溝Aは浸漬体12の表面に縦の溝13を付け、溝1
3は深さ0.5mm、幅0.5■、渭13の間隔は0.
711mである。縦溝Bは、渭13の深0.5mm、幅
0.5mm、溝13の間隔は1.0++mである。この
図から明らかなように、凝固シェル浸漬体側の亀甲模様
の大きさは、浸漬体12の表面に溝13を緻密に配置し
た場合には、溝を入れない平板の時と変わらず約10〜
15mmの大きさであった。これらの知見から、炭素含
有量0.10〜0.15%の亜包晶凝固する鋼種では、
初期凝固シェルが形成する際に、熱歪とδ→γ変態によ
る変態応力により凝固シェルが曲げられ、局部的に凝固
シェルと鋳型壁との間に空隙が生じる。これが亀甲状凹
凸模様となって凝固シェル浸漬体側表面にi察され、こ
の凹凸模様は一旦形成されるとその後ずっと残る。この
空隙のために凝固シェルの抜熱量の低下と凝固シェル不
均一成長がおこる。従って、上記鋼種の凝固シェル不均
一を抑えるには、初期凝固の際の凝固シェル表面浸漬体
側の亀甲状の凹凸模様を形成させないようにするか、あ
るいは限りなく小さくし、浸漬体12の表面と凝固シェ
ルの間に空隙を形成させないようにすれば良い。但し、
第9図に示したように、浸漬体12に付ける溝13の間
隔を0.7mmとか1.0mmにして緻密にしても、凝
固シェル浸漬体側表面の亀甲状凹凸模様の大きさは変わ
らない、そこで本発明者等は亀甲状凹凸模様よりも小さ
い範囲で不均一の抜熱させるように、銅製の浸漬体表面
の溝を格子状に付は実験を試みた。
Three types of immersed bodies were used in this experiment: a flat copper plate, a copper plate with vertical grooves A, and a copper plate with vertical IBs. and groove 1
3 has a depth of 0.5 mm, a width of 0.5 mm, and an interval of 13.
It is 711m. The vertical groove B has a depth of 0.5 mm on the edge 13, a width of 0.5 mm, and an interval between the grooves 13 of 1.0++ m. As is clear from this figure, when the grooves 13 are densely arranged on the surface of the immersed body 12, the size of the hexagonal pattern on the side of the solidified shell immersed body is about 10~
The size was 15 mm. From these findings, for subperitectic solidifying steels with a carbon content of 0.10 to 0.15%,
When the initial solidified shell is formed, the solidified shell is bent due to thermal strain and transformation stress due to δ→γ transformation, and voids are locally created between the solidified shell and the mold wall. This becomes a tortoiseshell-like uneven pattern that can be observed on the surface of the solidified shell immersed body, and once this uneven pattern is formed, it remains forever thereafter. These voids cause a decrease in the amount of heat removed from the solidified shell and non-uniform growth of the solidified shell. Therefore, in order to suppress the non-uniformity of the solidified shell of the above-mentioned steel types, it is necessary to prevent the formation of the tortoise-shell-like uneven pattern on the surface of the solidified shell on the immersed body side during initial solidification, or to make it as small as possible so that it does not overlap with the surface of the immersed body 12. It is sufficient to prevent the formation of voids between the solidified shells. however,
As shown in FIG. 9, even if the intervals of the grooves 13 formed on the immersed body 12 are made denser by setting them to 0.7 mm or 1.0 mm, the size of the hexagonal uneven pattern on the surface of the solidified shell immersed body does not change. Therefore, the present inventors attempted an experiment in which grooves were formed on the surface of the copper immersion body in a lattice pattern so that heat could be removed unevenly in an area smaller than the hexagonal uneven pattern.

第10図は浸漬時間と平均凝固シェル不均一度の関係を
示すグラフ図である。この図で、・印は、厚み8III
+、冷却水量が90 (1/ amの銅の平板の浸漬体
を使用した場合、○印は、銅板の表面に格子状の溝を付
け、溝の深さ0.5mm、幅0.5mm、格子溝の間隔
が5mmの浸漬体を使用した場合を示す。直線部は平均
凝固シェル不均一度のバラツキを示す。この図から明ら
かなように、銅板の表面に格子状の溝を付けた浸漬体の
方が、銅平板の浸漬体より平均凝固シェル不均一度は小
さくなり、バラツキも小さい。
FIG. 10 is a graph showing the relationship between immersion time and average solidified shell non-uniformity. In this figure, the mark is thickness 8III
+, When using a copper flat plate immersion body with a cooling water volume of 90 (1/am), ○ indicates a grid-like groove on the surface of the copper plate, the groove depth is 0.5 mm, the width is 0.5 mm, The figure shows the case where an immersion body with grid grooves with a spacing of 5 mm is used.The straight line section shows the variation in the average solidified shell non-uniformity.As is clear from this figure, the immersion body with grid grooves on the surface of the copper plate is used. The average solidified shell non-uniformity is smaller in the solid copper plate than in the immersed copper plate, and the variation is also smaller.

又、第11図は凝固シェル厚と浸漬体の浸漬時間の関係
を示すグラフ図である。O印は銅平板の浸漬体を使用し
た場合、・印は銅板の表面に格子状の溝を付け、溝の深
さ0.5mm、幅0.5n+a。
FIG. 11 is a graph showing the relationship between the solidified shell thickness and the immersion time of the immersed body. O mark indicates when a copper flat plate immersion body is used; * mark indicates that a grid-like groove is formed on the surface of the copper plate, and the groove depth is 0.5 mm and the width is 0.5 n+a.

格子溝の間隔が5mmの浸漬体使用した場合である。ま
た、ム印は銅板の表面に格子溝の溝を付け、溝の深さ0
.5mm、幅0.5mm、格子溝の間隔が10mmの浸
漬体使用した場合である。この図から明らかなように、
格子溝があることによって緩冷却となり凝固シェル厚が
薄くなることはない。従って、格子溝を入れた鋳型を用
いることによって凝固シェル厚の不均一度が小さくなる
ため、上記鋼種の表面割れは低減でき、緩冷却ではない
ため鋳造速度を下げる必要もないので、直送圧延ができ
る。
This is a case where an immersion body with a grid groove interval of 5 mm is used. In addition, the Mu mark has lattice grooves on the surface of the copper plate, and the depth of the grooves is 0.
.. This is a case where an immersion body with a diameter of 5 mm, a width of 0.5 mm, and a grid groove interval of 10 mm is used. As is clear from this figure,
Due to the presence of the lattice grooves, slow cooling occurs and the solidified shell thickness does not become thinner. Therefore, by using a mold with lattice grooves, the non-uniformity of the solidified shell thickness can be reduced, which can reduce the surface cracking of the steel types mentioned above, and since slow cooling is not required, there is no need to reduce the casting speed, so direct rolling is possible. can.

次に、表面割れ低減のための格子溝の最適条件を調査し
た。
Next, we investigated the optimal conditions for lattice grooves to reduce surface cracks.

(1)格子溝の間隔の影響 第12図は格子溝の間隔と平均凝固シェル不均一度の関
係を示すグラフ図である。この図は、浸漬体の浸漬時間
を8〜9秒にし、溝の深さ0.5ml11、幅0.5m
m、格子溝の間隔がo〜3omffl(0,5,10,
15,30mm)の浸漬体を使用した場合の結果である
。この図から明、らがなように、格子溝の間隔は第8図
に示す銅の平板でできた亀甲模様の凹凸間より小さくす
ることにより、平均凝固シェル不均一度の改善に大きな
効果を発揮する。逆にあまり小さすぎると加工も複雑に
なり、全体的な抜熱も低下し緩冷却となって、熱間直送
圧延に必要な鋳造速度を確保できないため、5〜10m
mの溝間隔が最適である。
(1) Effect of lattice groove spacing FIG. 12 is a graph showing the relationship between lattice groove spacing and average solidified shell non-uniformity. In this figure, the immersion time of the immersed body is 8 to 9 seconds, the depth of the groove is 0.5 ml11, and the width is 0.5 m.
m, the spacing of the lattice grooves is o~3omffl (0, 5, 10,
These are the results when using immersed bodies (15, 30 mm). As can be clearly seen from this figure, by making the spacing between the lattice grooves smaller than the unevenness of the tortoise-shell pattern made of flat copper plates shown in Figure 8, a large effect was achieved in improving the average solidified shell non-uniformity. Demonstrate. On the other hand, if it is too small, the processing will be complicated, the overall heat removal will be reduced, and the cooling will be slow, making it impossible to secure the casting speed required for hot direct rolling.
A groove spacing of m is optimal.

(2)格子溝の形状の影響 第13図は格子溝の形状と平均凝固シェル不均一度の関
係を示すグラフ図である。この図は、浸漬体の浸漬時間
を8〜9秒にし、溝の深さを0、5mm、  1.0m
m、  1.5mm、溝の幅を0.5mm、1.0mm
、  1.5mm、格子溝の間隔を5mmにした浸漬体
を使用した場合の結果である。格子溝の断面形状は、第
13区に示すようにV型、U型、角型の3種類である。
(2) Effect of the shape of the lattice grooves FIG. 13 is a graph showing the relationship between the shape of the lattice grooves and the average solidified shell non-uniformity. In this figure, the immersion time of the immersed body is 8 to 9 seconds, and the groove depth is 0, 5 mm, and 1.0 m.
m, 1.5mm, groove width 0.5mm, 1.0mm
, 1.5 mm, and the results were obtained using an immersion body with a grid groove interval of 5 mm. There are three types of cross-sectional shapes of the lattice grooves: V-shape, U-shape, and square shape, as shown in Section 13.

この図から明らかなように、溝の深さが1.5mmで幅
も1.5mmの場合には平均凝固シェル不均一度は0.
1以上であり、又、溶鋼の差し込みが認められた。清の
深さは1.0mm以下、幅は1.0mm以下の場合は、
格子溝の断面形状にかかわらず、どれも平均凝固シェル
不均一度は改善されている。
As is clear from this figure, when the groove depth is 1.5 mm and the width is 1.5 mm, the average solidified shell non-uniformity is 0.
1 or more, and insertion of molten steel was observed. If the depth of the clearing is 1.0mm or less and the width is 1.0mm or less,
Regardless of the cross-sectional shape of the lattice grooves, the average solidified shell non-uniformity is improved in all cases.

(3)溝内部の異物雪塊め込みの影響 次に、溝の中に熱伝導率の異なる物質を埋め込んだ時の
平均凝固シェル不均一度を調査した。ここで、胴部分と
溝部分での局部的な熱抵抗値の比をhとし、浸漬体の平
均−抜熟度として評価した。第14図は浸漬体の平均−
抜熟度を示す説明図である。
(3) Influence of snow particles embedded in the grooves Next, we investigated the average solidification shell non-uniformity when materials with different thermal conductivities were embedded in the grooves. Here, the ratio of the local thermal resistance values in the body portion and the groove portion was defined as h, and was evaluated as the average minus ripening degree of the immersed body. Figure 14 shows the average of the immersed body.
It is an explanatory diagram showing the degree of ripening.

浸漬体12の銅平板部の熱抵抗Rcuは、Rcll=d
au/λ。1 d cu:浸漬体の銅平板部の厚み(m)λ。U=浸漬
体の銅平板部の熱伝導率 (Kcal/m−Hr・℃) 一方、銅と熱伝導率の異なる異種金属またはセラミック
6を埋め込んだ溝部分の熱抵抗R,は、R1,=dal
I′/λ。、+d6/λ。
The thermal resistance Rcu of the copper flat plate portion of the immersion body 12 is Rcll=d
au/λ. 1 d cu: Thickness (m) λ of the copper flat plate portion of the immersed body. U=Thermal conductivity of the copper flat plate part of the immersed body (Kcal/m-Hr・℃) On the other hand, the thermal resistance R of the groove part in which a dissimilar metal or ceramic 6 having a different thermal conductivity than copper is embedded is R1,= dal
I′/λ. , +d6/λ.

dcu’:溝の底部から冷却水面までの厚み(m) dc :溝の深さ(m) ^C:埋め込み物質の熱伝導 (Kcal/m−Hr・’C) これから熱抵抗比りは、h=Ro/Ro、とした。dcu’: Thickness from the bottom of the groove to the cooling water surface (m) dc: Groove depth (m) ^C: Heat conduction of embedded material (Kcal/m-Hr・’C) From this, the thermal resistance ratio was set as h=Ro/Ro.

第15図は各種熱伝導率の異なる埋め込み物質と平均凝
固シェル不均一度の関係を示すグラフ図である。実験条
件は、溝の幅0.5mm、格子溝の間隔5mm、形状が
V型で、溝には異種金属又はセラミック(Ni、Cr、
BN、ZrO2)6を埋め込んで熱抵抗比りを1,5に
した浸漬体を使用し、浸漬体の浸漬時間は8〜9秒とし
た。この図から明らかなように、溝に埋め込んだ物質量
の差、すなわち金属(Ni、Cr)、セラミック(BN
、Zr02)の間における平均凝固シェル不均一度の差
は認められなかった。
FIG. 15 is a graph showing the relationship between various embedded materials having different thermal conductivities and the average solidified shell non-uniformity. The experimental conditions were a groove width of 0.5 mm, a lattice groove interval of 5 mm, a V-shape, and the grooves were made of different metals or ceramics (Ni, Cr,
An immersed body in which BN and ZrO2)6 were embedded to give a thermal resistance ratio of 1.5 was used, and the immersion time of the immersed body was 8 to 9 seconds. As is clear from this figure, there is a difference in the amount of materials embedded in the grooves, namely metals (Ni, Cr) and ceramics (BN).
, Zr02), no difference in average solidified shell heterogeneity was observed.

第16図は熱抵抗比りと平均凝固シェル不均一度の関係
を示すグラフ図である。実験条件は、幅0.5mm、格
子の間隔が5mm、形状がv型で、異種金属又はセラミ
ックとしてはNiを埋め込んだ浸漬体を使用し、浸漬体
の浸漬時間は8〜9秒とした。この図から明らかなよう
に、熱抵抗比りが1.5以上の場合は平均凝固シェル不
均一度は改善される。ここで熱抵抗比りを1,5以上に
保つためには、10mmの銅板にNiを埋め込んだ場合
、その深さを1.8mm以上確保する必要がある。
FIG. 16 is a graph showing the relationship between the thermal resistance ratio and the average solidified shell non-uniformity. The experimental conditions were as follows: a width of 0.5 mm, a grid interval of 5 mm, a v-shape, an immersion body in which Ni was embedded as the dissimilar metal or ceramic, and the immersion time of the immersion body was 8 to 9 seconds. As is clear from this figure, when the thermal resistance ratio is 1.5 or more, the average solidified shell non-uniformity is improved. In order to maintain the thermal resistance ratio at 1.5 or more, when Ni is embedded in a 10 mm copper plate, it is necessary to ensure a depth of 1.8 mm or more.

(4)格子溝を設ける位置 前述したように不均一凝固を防止するためには、凝固シ
ェルの浸漬体側表面に亀甲状凹凸模様を形成させないこ
とが必要である。これは第8図に示すように凝固初期に
凝固シェル浸漬体側に亀甲状凹凸模様が形成し、この大
きさは凝固シェル成長とともに変化しない。これに対し
て、溶鋼側の凹凸は凝固初期には凝固シェル表面浸漬体
側亀甲状凹凸模様に対応した大きさで、凝固シェルの成
長とともにその間隔は大きくなる。従って、溶鋼側の凹
凸は浸漬体側の凹凸模様さえできなければ凝固初期から
生成せず、均一な凝固シェルに成長する。つまり凝固初
期に浸漬体側の凹凸模様の形成さえ防げば、その後は不
均一成長は完全に防止される。
(4) Location of providing lattice grooves As mentioned above, in order to prevent uneven solidification, it is necessary to avoid forming a hexagonal pattern on the surface of the solidified shell facing the immersion body. This is because, as shown in FIG. 8, a hexagonal pattern is formed on the side of the solidified shell immersed body in the initial stage of solidification, and the size of this pattern does not change as the solidified shell grows. On the other hand, the unevenness on the molten steel side has a size corresponding to the hexagonal uneven pattern on the surface of the solidified shell on the side of the immersed body at the initial stage of solidification, and the interval between them increases as the solidified shell grows. Therefore, the unevenness on the molten steel side will not be generated from the initial stage of solidification unless the uneven pattern on the immersed body side is formed, and will grow into a uniform solidified shell. In other words, if the formation of uneven patterns on the immersed body side is prevented at the initial stage of solidification, non-uniform growth can be completely prevented thereafter.

従って、凹凸を抑えるためには格子溝は、凝固初期にお
ける溶鋼のメニスカス直下近傍のみにあればよく、溶鋼
のメニスカスから601!1Ifi程度の範囲でよいが
、溶鋼湯面の変動を考慮し、実際には鋳型上端から30
0 mm付近までの範囲に設けるのがよい。
Therefore, in order to suppress unevenness, the lattice grooves only need to be located just below the meniscus of the molten steel at the early stage of solidification, and may be within a range of about 601!1 Ifi from the meniscus of the molten steel. 30mm from the top of the mold
It is preferable to provide it in a range up to around 0 mm.

第1図は本発明の実施例に係わる鋳型上部の模式図で、
(a)は正面図、(b)は(a)のA−A断面図である
。1は鋳型、2は溝、3は冷却水用スリットで、溝2は
格子状に配置されている。4は鋳型の溶鋼表面側、5は
鋳型の冷却面であり、この面に冷却水用スリットが配置
されているので、鋳型1が冷却される。
FIG. 1 is a schematic diagram of the upper part of a mold according to an embodiment of the present invention.
(a) is a front view, and (b) is a sectional view taken along line AA in (a). 1 is a mold, 2 is a groove, 3 is a cooling water slit, and the grooves 2 are arranged in a grid pattern. 4 is the molten steel surface side of the mold, and 5 is a cooling surface of the mold, and since a cooling water slit is arranged on this surface, the mold 1 is cooled.

(実施例1) 第2図は本発明の一実施例に係わる鋳型上部の模式図で
、(a)は正面図、(b)は(a)のAA断面図、(c
)は(b)の溝部の拡大図である。第2図に示すように
、溝は、鋳型1の溶鋼表面側4の上端から50〜300
 mm、幅の中央から両端に向かってそれぞれ1001
00O合わせて2000mm)の範囲に設けた。そして
、溝2は、■型で、深さ0.5mm、幅0.5mm、間
隔10mmにして格子状に配置した。
(Example 1) FIG. 2 is a schematic diagram of the upper part of a mold according to an example of the present invention, in which (a) is a front view, (b) is an AA sectional view of (a), and (c
) is an enlarged view of the groove portion in (b). As shown in FIG.
mm, 1001 mm from the center of the width to both ends
000, a total of 2000 mm). The grooves 2 were shaped like a square, and were arranged in a grid pattern with a depth of 0.5 mm, a width of 0.5 mm, and an interval of 10 mm.

この鋳型を使用し、実際に炭素含有量0.10〜0.1
5%の鋼種を鋳造した。第3図はこの発明の一実施例に
係わるスラブ表面割れ指数と鋳造速度の関係を示すグラ
フ図である。Φ印は従来技術の鋳型を使用した場合、○
印は本発明の一実施例の鋳型を使用した場合である。こ
の図から明らかなように、本実施例は従来技術と比較し
てスラブ表面割れ指数は改善されており、高速鋳造時(
1,5m/min以上)でもスラブ表面割れ指数は改善
されている。
Using this mold, the actual carbon content is 0.10-0.1
A 5% steel grade was cast. FIG. 3 is a graph showing the relationship between slab surface cracking index and casting speed according to an embodiment of the present invention. The Φ mark indicates ○ when using the conventional mold.
The marks are when a mold according to an embodiment of the present invention was used. As is clear from this figure, the slab surface cracking index of this example is improved compared to the conventional technology, and during high-speed casting (
1.5 m/min or more), the slab surface cracking index is improved.

(実施例2) 第4図は本発明の他の実施例に係わる鋳型上部の模式図
で、(a)は正面図、(b)は(a)のA−A断面図、
(c)は(b)の溝部の拡大図である。第4図に示すよ
うに、講2は、鋳型1の溶鋼表面側4の上端から50〜
3001、幅の中央から両端に向かってそれぞれtoo
ommく合わせて2000+nm)の範囲に設けた。そ
して、溝2は、角型で、深さ3.5mm、幅0.5mm
、間隔10mmにして格子状に配置した。さらに、溝2
の中に異種金属6としてNiを充填した。Niの充填深
さは熱抵抗比が1.5になるようにし、19mmの銅製
鋳型1の表面から3.5mmにした。鋳型1は鋳込み方
向に長さ950IIII!l、幅2320mm、厚さ4
0mmであり、冷却水用スリット3の深さは21mmで
ある。
(Example 2) FIG. 4 is a schematic diagram of the upper part of a mold according to another example of the present invention, in which (a) is a front view, (b) is a sectional view taken along line AA in (a),
(c) is an enlarged view of the groove in (b). As shown in FIG.
3001, too from the center of the width to both ends
It was set in a range of 2000+nm). Groove 2 is square and has a depth of 3.5 mm and a width of 0.5 mm.
, were arranged in a grid pattern with an interval of 10 mm. Furthermore, groove 2
Ni was filled in as a dissimilar metal 6. The Ni filling depth was set to have a thermal resistance ratio of 1.5, and was set to be 3.5 mm from the surface of the 19 mm copper mold 1. Mold 1 has a length of 950III in the casting direction! l, width 2320mm, thickness 4
0 mm, and the depth of the cooling water slit 3 is 21 mm.

この鋳型を使用し、実際に炭素含有量0.10〜0.1
5%の鋼種を鋳造した。第5図は本発明の他の実施例に
係わるスラブ表面割れ指数と鋳造速度の関係を示すグラ
フ図である。・印は従来技術による鋳を使用した場合、
O印は本発明の他の実施例の鋳型を使用した場合である
。この図から明らかなように、本実施例は従来技術と比
較してスラブ表面割れ指数は改善されており、高速鋳造
時(1,5m/mix以上)においてもスラブ表面割れ
指数は改善されている。
Using this mold, the actual carbon content is 0.10-0.1
A 5% steel grade was cast. FIG. 5 is a graph showing the relationship between slab surface cracking index and casting speed according to another embodiment of the present invention.・The mark indicates when casting using conventional technology is used.
The O mark indicates the case where a mold of another embodiment of the present invention was used. As is clear from this figure, the slab surface cracking index of this example is improved compared to the conventional technology, and the slab surface cracking index is improved even during high-speed casting (1.5 m/mix or higher). .

そして、本実施例におけるスラブ表面割れ指数は、溝の
みを設けた鋳型を使用した実施例1の場合よりも、さら
に改善されている。実施例1と実施例2の結果の相違に
ついて考察すると、溝を設けただけの場合には、鋳造中
、鋳型の振動によってモールドパウダーが溝に侵入して
熱抵抗比りを下げ、平均凝固シェル不均一度が、異種金
属又はセラミック(Ni、Cr、BN、Zr02)を埋
め込んだ場合よりも低値になるものと考えられる。
The slab surface cracking index in this example is further improved than in Example 1, which uses a mold provided with only grooves. Considering the difference between the results of Example 1 and Example 2, if only grooves were provided, mold powder would enter the grooves due to the vibration of the mold during casting, lowering the thermal resistance ratio, and increasing the average solidified shell. It is considered that the degree of non-uniformity is lower than that when dissimilar metals or ceramics (Ni, Cr, BN, Zr02) are embedded.

このように、スラブ表面割れ指数をより好ましい値にす
るためには、溝を設け、さらにこの溝内に異種金属又は
セラミックを埋め込んだ鋳型を使用することが望ましい
In this way, in order to make the slab surface crack index a more preferable value, it is desirable to use a mold in which grooves are provided and dissimilar metals or ceramics are embedded in the grooves.

[発明の効果コ 本発明は以上のように構成されているので、(1)溶鋼
中の炭素含有量が0.10〜0.15%の亜包晶凝固す
る鋼種の不均一凝固を改善することができる。
[Effects of the Invention] Since the present invention is configured as described above, (1) it improves the uneven solidification of steel types that undergo subperitectic solidification where the carbon content in the molten steel is 0.10 to 0.15%; be able to.

(2)スラブ表面割れ指数が改善された。更に、格子状
の溝に異種金属又はセラミックを充填することにより、
スラブ表面割れ指数が更に改善される。
(2) The slab surface cracking index was improved. Furthermore, by filling the grid-like grooves with dissimilar metals or ceramics,
The slab surface cracking index is further improved.

(3)この鋼種の高速鋳造が可能となり、直送圧延がで
きるので、生産性が向上する。
(3) High-speed casting of this steel type is possible and direct rolling is possible, improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係わる鋳型上部の模式図、第
2図は本発明の一実施例に係わる鋳型上部の模式図、第
3図は本発明の一実施例に係わるスラブ表面割れ指数と
鋳造速度の関係を示すグラフ図、第4図は本発明の他の
実施例に係わる鋳型上部の模式図、第5図は本発明の他
の実施例に係わるスラブ表面割れ指数と鋳造速度の関係
を示すグラフ図、第6図は凝固シェル不均一度を測定す
る方法を示す図、第7図は溶鋼中の炭素含有量と平均凝
固シェル不均一度の関係を示すグラフ図、第8図は凝固
時間と亀甲状凹凸の大きさの関係を示すグラフ図、第9
図は溝の種類と亀甲模様の大きさの関係を示すグラフ図
、第10図は浸漬時間と平均凝固シェル不均一度の関係
を示すグラフ図、第11図は凝固シェル厚と浸漬体の浸
漬時間の関係を示すグラフ図、第12図は格子溝の間隔
と平均凝固シェル不均一度の関係を示すグラフ図、第1
3図は格子溝の形状と平均凝固シェル不均一度の関係を
示すグラフ図、第14図は浸漬体の不拘−抜熟度を示す
説明図、第15図は各種熱伝導率の異なる埋め込み物質
と平均凝固シェル不均一度の関係を示すグラフ図、第1
6図は熱抵抗比りと平均凝固シェル不均一度の関係を示
すグラフ図、第17図は従来の銅板鋳型の炭素含有量と
表面割れ指数との関係を示すグラフ図である。 1・・・鋳型、2・・・溝、3・・・冷却水用スリット
、4・・・鋳型の溶鋼面、5・・・鋳型の冷却面、6・
・・異種金属又はセラミック。
Fig. 1 is a schematic diagram of the upper part of a mold according to an embodiment of the present invention, Fig. 2 is a schematic diagram of the upper part of a mold according to an embodiment of the present invention, and Fig. 3 is a schematic diagram of a slab surface crack according to an embodiment of the present invention. A graph showing the relationship between index and casting speed, FIG. 4 is a schematic diagram of the upper part of the mold according to another embodiment of the present invention, and FIG. 5 is a graph showing the slab surface crack index and casting speed according to another embodiment of the present invention. Fig. 6 is a graph showing the method of measuring solidified shell heterogeneity; Fig. 7 is a graph showing the relationship between the carbon content in molten steel and the average solidified shell heterogeneity; Fig. 8 The figure is a graph showing the relationship between coagulation time and the size of hexagonal irregularities.
The figure is a graph showing the relationship between the type of groove and the size of the hexagonal pattern, Figure 10 is a graph showing the relationship between immersion time and average solidified shell non-uniformity, and Figure 11 is a graph showing the relationship between the solidified shell thickness and the immersion of the immersed body. Figure 12 is a graph showing the relationship between lattice grooves and average solidified shell heterogeneity.
Figure 3 is a graph showing the relationship between the shape of the lattice grooves and the average degree of solidification shell non-uniformity, Figure 14 is an explanatory diagram showing the degree of unrestrictedness and unripeness of the immersed body, and Figure 15 shows various embedded materials with different thermal conductivities. Graph diagram showing the relationship between and the average solidified shell heterogeneity, 1st
FIG. 6 is a graph showing the relationship between the thermal resistance ratio and the average solidified shell non-uniformity, and FIG. 17 is a graph showing the relationship between the carbon content and surface cracking index of a conventional copper plate mold. DESCRIPTION OF SYMBOLS 1... Mold, 2... Groove, 3... Slit for cooling water, 4... Molten steel surface of the mold, 5... Cooling surface of the mold, 6...
...Dissimilar metals or ceramics.

Claims (2)

【特許請求の範囲】[Claims] (1)銅製の連続鋳造用鋳型において、鋳型内溶鋼のメ
ニスカス近傍に位置する鋳型表面に、深さ0.5〜1.
0mm、幅0.5〜1.0mmの格子状の溝を設け、前
記格子状の溝の間隔を5〜10mmとしたことを特徴と
する鋼の連続鋳造用鋳型。
(1) In a continuous casting mold made of copper, a depth of 0.5 to 1.
A mold for continuous casting of steel, characterized in that lattice-shaped grooves with a diameter of 0 mm and a width of 0.5 to 1.0 mm are provided, and the intervals between the lattice grooves are 5 to 10 mm.
(2)請求項1記載の鋼の連続鋳造用鋳型において、格
子状の溝内に異種金属又はセラミックを、下記に定義す
る熱抵抗比hが1.5以上となる深さまで充填したこと
を特徴とする鋼の連続鋳造用鋳型。 熱抵抗比:h=R_c/R_c_u R_c_u:銅板部の熱抵抗=D_c_u/λ_c_u R_c:異種物質埋め込み部の熱抵抗=D_c_u′/
λ_c_u+D_c/λ_c 但し D_c_u:鋳型の銅板の厚み(m) λ_c_u:銅板の熱伝導率(Kcal/m・Hr・℃
) D_c_u′:異種物質埋め込み部の底部から冷却水面
までの厚み(m) D_c:異種物質埋め込み部での埋め込み厚み(m) λ_c:異種物質の熱伝導率(Kcal/m・Hr・℃
(2) The mold for continuous casting of steel according to claim 1, characterized in that the lattice-shaped grooves are filled with dissimilar metals or ceramics to a depth such that the heat resistance ratio h defined below is 1.5 or more. A mold for continuous casting of steel. Thermal resistance ratio: h = R_c/R_c_u R_c_u: Thermal resistance of the copper plate portion = D_c_u/λ_c_u R_c: Thermal resistance of the dissimilar material embedded portion = D_c_u'/
λ_c_u+D_c/λ_c where D_c_u: Thickness of the copper plate of the mold (m) λ_c_u: Thermal conductivity of the copper plate (Kcal/m・Hr・℃
) D_c_u′: Thickness from the bottom of the dissimilar material embedded part to the cooling water surface (m) D_c: Embedded thickness of the dissimilar material embedded part (m) λ_c: Thermal conductivity of the dissimilar material (Kcal/m・Hr・℃)
)
JP17048288A 1988-07-08 1988-07-08 Mold for continuously casting steel Pending JPH0220645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17048288A JPH0220645A (en) 1988-07-08 1988-07-08 Mold for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17048288A JPH0220645A (en) 1988-07-08 1988-07-08 Mold for continuously casting steel

Publications (1)

Publication Number Publication Date
JPH0220645A true JPH0220645A (en) 1990-01-24

Family

ID=15905770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17048288A Pending JPH0220645A (en) 1988-07-08 1988-07-08 Mold for continuously casting steel

Country Status (1)

Country Link
JP (1) JPH0220645A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020054A1 (en) * 1994-12-28 1996-07-04 Nippon Steel Corporation Method of continuous casting of billet and casting mold therefor
EP1099496A1 (en) * 1999-11-10 2001-05-16 SMS Demag AG Method and device for reducing heat dissipation of a continuous casting mould
JP2008532767A (en) * 2005-03-10 2008-08-21 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method for producing continuous casting mold and continuous casting mold
JP2013501622A (en) * 2009-08-14 2013-01-17 ケイエムイー・ジャーマニー・アクチエンゲゼルシャフト・ウント・コンパニー・コマンディトゲゼルシャフト template
KR102033639B1 (en) * 2018-06-29 2019-11-08 주식회사 포스코 Mold for casting
DE102005023745B4 (en) 2005-03-10 2022-02-10 Sms Group Gmbh Process for producing a continuous casting mold and continuous casting mold

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020054A1 (en) * 1994-12-28 1996-07-04 Nippon Steel Corporation Method of continuous casting of billet and casting mold therefor
US6024162A (en) * 1994-12-28 2000-02-15 Nippon Steel Corporation Continuous casting method for billet
KR100253135B1 (en) * 1994-12-28 2000-04-15 아사무라 타카싯 Method of continuous casting of billet and casting mold therefor
US6112805A (en) * 1994-12-28 2000-09-05 Nippon Steel Corporation Continuous casting mold for billet
CN1077818C (en) * 1994-12-28 2002-01-16 新日本制铁株式会社 Method of continuous casting billet and casting mold thereof
EP1099496A1 (en) * 1999-11-10 2001-05-16 SMS Demag AG Method and device for reducing heat dissipation of a continuous casting mould
JP2008532767A (en) * 2005-03-10 2008-08-21 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method for producing continuous casting mold and continuous casting mold
DE102005023745B4 (en) 2005-03-10 2022-02-10 Sms Group Gmbh Process for producing a continuous casting mold and continuous casting mold
JP2013501622A (en) * 2009-08-14 2013-01-17 ケイエムイー・ジャーマニー・アクチエンゲゼルシャフト・ウント・コンパニー・コマンディトゲゼルシャフト template
KR102033639B1 (en) * 2018-06-29 2019-11-08 주식회사 포스코 Mold for casting

Similar Documents

Publication Publication Date Title
CA1320333C (en) Cooling drum for continuous-casting machines for manufacturing thin metallic strip
JPH01170550A (en) Mold for continuously casting steel
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
JPH0220645A (en) Mold for continuously casting steel
JP6947737B2 (en) Continuous steel casting method
JPH026037A (en) Method for continuously casting steel
JPH01289542A (en) Casting mold for continuous casting of steel
CN113688470B (en) Continuous casting crystallizer copper plate design method for improving electromagnetic stirring efficiency
JPH026038A (en) Mold for continuously casting steel
JPS5847255B2 (en) Steel ingot making method
JP2950152B2 (en) Continuous casting mold for slab
JP3389449B2 (en) Continuous casting method of square billet
JPS609553A (en) Stopping down type continuous casting machine
RU2325969C1 (en) Liner high-speed continuous-casting crystalliser
JPH02104445A (en) Mold for continuously casting steel and continuous casting method
JPH0270357A (en) Mold for continuous casting for steel
JPH01170551A (en) Mold for continuously casting steel
SU899238A1 (en) Hollow ingot production method
JPS58157552A (en) Continuous casting method of metallic material
JP2621978B2 (en) Cooling drum for thin slab casting
JPS6124105B2 (en)
JPS62292244A (en) Production of ingot
RU2262411C1 (en) Permanent casting mold
RU2087247C1 (en) Conical casing for continuous vertical metal casting crystallizer
JP2024035081A (en) Continuous casting mold