JPS62292244A - Production of ingot - Google Patents

Production of ingot

Info

Publication number
JPS62292244A
JPS62292244A JP13645886A JP13645886A JPS62292244A JP S62292244 A JPS62292244 A JP S62292244A JP 13645886 A JP13645886 A JP 13645886A JP 13645886 A JP13645886 A JP 13645886A JP S62292244 A JPS62292244 A JP S62292244A
Authority
JP
Japan
Prior art keywords
mold
ingot
bottom wall
molten metal
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13645886A
Other languages
Japanese (ja)
Other versions
JPH0790334B2 (en
Inventor
Tadatoshi Ogura
小倉 忠利
Makoto Hiraoka
誠 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP61136458A priority Critical patent/JPH0790334B2/en
Publication of JPS62292244A publication Critical patent/JPS62292244A/en
Publication of JPH0790334B2 publication Critical patent/JPH0790334B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0602Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a casting wheel and belt, e.g. Properzi-process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/068Accessories therefor for cooling the cast product during its passage through the mould surfaces
    • B22D11/0682Accessories therefor for cooling the cast product during its passage through the mould surfaces by cooling the casting wheel

Abstract

PURPOSE:To obtain an ingot having no blowhole and no segregation of impurities or their overconcentration at the end part thereof by solidifying molten metal as differing solidifying progress at least one of surface in the surface of molten metal in a mold from the solidifying progress at the remaining surface. CONSTITUTION:The molten metal is solidified by water cooling only at the surface contacting with a bottom wall 1a of the mold 1 among the surface of mold 1 by flowing water along only the bottom wall 1a of mold 1. In this case, the water is not flowed along both side walls 1b of the mold 1 and upper part 2a of steel belt 2, but these parts are cooled naturally. As a result, most parts of heat of molten metal (for example, copper) poured into the mold 1 is radiated from the bottom wall 1a of the mold 1 as shown by the arrow mark in the attached drawing. Therefore, crystals of the molten copper don't uniformly grow from four direction in the drawing, but rapidly grow toward the upper part of mold 1 from the surface contacting with the bottom wall 1a. Reversely, the growth of crystals from the upper part of molten copper toward the bottom wall 1a is slow and the crystals from the surface contacting with the side wall 1a grows toward the upper part of molten copper and the finishing solidified range comes to the top end part of the ingot 3. Therefore, the blowhole and segregation of impurities 4 in the inner part of ingot 3 is not developed.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は鋳塊、たとえば鋳造圧延による荒引金属線(た
とえば、荒引銅線、荒引アルミニウム線など)の製造用
として使用される鋳塊の製造方法に関する。さらに詳し
くは、本発明は当該金属鋳塊の製造方法において、鋳型
内の湯を凝固させる際の改良に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to the production of ingots, such as rough drawn metal wires (for example, rough drawn copper wires, rough drawn aluminum wires, etc.) by casting and rolling. The present invention relates to a method for producing an ingot used for production. More specifically, the present invention relates to an improvement in solidifying the hot water in the mold in the method for manufacturing the metal ingot.

〔従来の技術〕[Conventional technology]

銅、アルミニウムなどの金属を溶解・鋳造・圧延して荒
引w4締、荒引アルミニウム線などを製造する方式とし
ては、SCR% Properzj及びContiro
dなどの方法が周知であり、特にSCR方法は近年、世
界中の電線及び荒引綱線製造業者の注目を浴びている。
SCR% Properzz and Contiro are methods of melting, casting, and rolling metals such as copper and aluminum to produce rough-drawn w4 tightening, rough-drawn aluminum wire, etc.
Methods such as d are well known, and in particular, the SCR method has recently attracted the attention of electric wire and rough wire manufacturers around the world.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような公知方法において、鋳造鋳型に注湯された
金属、たとえば銅を凝固させて銅の鋳塊を製造するに際
しては、第5図に示したように、鋳型1 (一般に銅製
)の両側壁1bと底壁1a及びスチールベルト2の上面
2aを流水冷却する方法が採用されている。この方法に
おいては、鋳型lとスチールベルト2との間に注湯され
た銅の熱は4方向(矢印方向)からほぼ均等に放散する
ので、凝固は4方向から均等に溶鋼の中心部に向かって
進行し、最終凝固領域はほぼ金属鋳塊の中心部に位置す
ることになる。しかして、凝固後の鋳塊3内では4方向
から成長した結晶の互いの境界付近、即ち最終凝固領域
にガスや不純物が捕捉され易いので、当該方法の如く溶
鋼が4方向から均等に凝固した場合には、最終的に凝固
した鋳塊3の中心近傍に気孔または不純物偏析4が発生
する。
In the above-mentioned known method, when producing a copper ingot by solidifying metal, such as copper, poured into a casting mold, both sides of the mold 1 (generally made of copper) are A method is adopted in which the wall 1b, the bottom wall 1a, and the upper surface 2a of the steel belt 2 are cooled with running water. In this method, the heat of the copper poured between the mold 1 and the steel belt 2 is dissipated almost equally from four directions (in the direction of the arrow), so solidification is evenly directed toward the center of the molten steel from the four directions. The final solidification region will be located approximately at the center of the metal ingot. However, in the ingot 3 after solidification, gas and impurities are likely to be trapped near the boundaries between the crystals grown from four directions, that is, in the final solidification region. In this case, pores or impurity segregation 4 occur near the center of the finally solidified ingot 3.

この気孔・不純物偏析4が中心近傍に存在する鋳塊3を
そのままその後の熱闘圧延や冷間伸線に用いると、当該
気孔・不純物偏析4において割れや断線などの欠陥が生
じ易い。すなわち、気孔・不純物偏析4の発生した鋳塊
3を引き続いて熱間圧延して荒引線とした後に、さらに
冷間伸線して線材にする際、鋳塊3内部に存在していた
気孔・不純物偏析4の部分に割れが生じて、ついには線
材が破断することがあり、金属線製造の作業性や生産性
を大きく損なうという問題点がある。特に、細線用に際
して、この点がより顕著に現れてくる。
If the ingot 3 in which the pores and impurity segregation 4 exist near the center is used as it is for subsequent hot-strength rolling or cold wire drawing, defects such as cracks and wire breaks are likely to occur in the pores and impurity segregation 4. That is, when the ingot 3 in which pores and impurity segregation 4 have occurred is successively hot-rolled to make a rough drawn wire, and then further cold-drawn to make a wire rod, the pores and impurities present inside the ingot 3 are removed. Cracks may occur in the area of impurity segregation 4 and the wire may eventually break, which poses a problem in that the workability and productivity of metal wire manufacturing are greatly impaired. In particular, this point becomes more noticeable when using thin wires.

従って、かかる気孔・不純物偏析4の存在しない鋳塊を
使用すれば良好な金属線を製造することができるし、ま
た、仮に気孔・不純物偏析4が存在しても、それが鋳塊
3の端部に偏在すれば、当該気孔・不純物偏析4を除去
することができるので、上述の問題点のない金属線を製
造することができる。
Therefore, if an ingot without such pores and impurity segregation 4 is used, it is possible to produce a good metal wire, and even if pores and impurity segregation 4 exist, it is possible to produce metal wires at the ends of the ingot 3. Since the pores/impurity segregation 4 can be removed if the pores and impurities are unevenly distributed in the area, a metal wire without the above-mentioned problems can be manufactured.

従って本発明は、気孔や不純物偏析が存在しないか、ま
たは存在してもそれが鋳塊の端部に偏在する鋳塊の製造
方法を提供することを目的とするものである。
Accordingly, an object of the present invention is to provide a method for producing an ingot in which pores and impurity segregation do not exist, or even if they do exist, they are unevenly distributed at the ends of the ingot.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的は本発明、即ち鋳型を使用する鋳塊の製造にお
いて、鋳型内の湯の凝固を、当該湯の表面のうちの少な
くとも1つの表面からの凝固進度を、残りの表面からの
凝固進度と相違させて行うことを特徴とする鋳塊の製造
方法により達成される。
The above object is the present invention, that is, in the production of an ingot using a mold, the solidification of the molten metal in the mold is determined by the solidification progress from at least one surface of the molten metal and the solidification progress from the remaining surfaces. This is achieved by a method for manufacturing an ingot, which is characterized in that the steps are performed in different ways.

当該方法によって製造された鋳塊は、最終凝固領域が鋳
塊端部に偏在しているので、凝固領域に発生した気孔や
不純物偏析を容易に除去することができるものである。
In the ingot produced by this method, the final solidification region is unevenly distributed at the end of the ingot, so that pores and impurity segregation generated in the solidification region can be easily removed.

その除去方法としては、たとえば切削、切除、皮むきな
ど、凝固領域内の気孔や不純物偏析を取り除くことが可
能ならば特に制限はない。
There is no particular restriction on the method of removing it, such as cutting, excision, peeling, etc., as long as it is possible to remove pores and impurity segregation within the coagulation region.

〔作用〕[Effect]

本発明の製造方法においては、湯の表面のうちの少なく
とも1つの表面からの凝固進度を、残りの表面からの凝
固進度と相違させるものであるが、かかる凝固方法の具
体的な態様としては、たとえば次の如き手段が例示され
る。即ち、鋳型の一面を残して他の面の少なくとも一つ
を強制的に冷却する方法、鋳型の一面を残して他の面の
少なくとも一つを加熱する方法が挙げられる。冷却及び
加熱は、任意の手段にて行えばよい。
In the production method of the present invention, the rate of solidification from at least one of the surfaces of the hot water is made to be different from the rate of solidification from the remaining surfaces.Specific embodiments of this solidification method include: For example, the following means are exemplified. Namely, examples include a method of forcibly cooling one surface of the mold while leaving at least one of the other surfaces, and a method of heating at least one of the other surfaces of the mold while leaving one surface of the mold. Cooling and heating may be performed by any means.

次に本発明の方法をより具体的に説明する。Next, the method of the present invention will be explained in more detail.

第1図に示した鋳型内の湯の凝固方法は、バッチ方式鋳
造に適用するものであり、鋳型lの底壁1aだけに沿う
流水(鋳型10両側壁1b及びスチールベルト2の上面
2aに沿っては流水させない)により鋳型l内の湯の表
面のうち鋳型1の底壁1aに接する表面だけを水冷する
ことによって湯を凝固させるものである。この場合、湯
は鋳型1の底壁1aに接する表面以外の表面(鋳型1の
各側壁1bに接する表面とスチールベルト2に接する表
面)は自然冷却されるものである。
The method of solidifying the hot water in the mold shown in FIG. 1 is applied to batch casting. The hot water is solidified by cooling only the surface of the hot water in the mold 1 that is in contact with the bottom wall 1a of the mold 1 with water. In this case, the surfaces of the mold 1 other than the surface in contact with the bottom wall 1a (the surface in contact with each side wall 1b of the mold 1 and the surface in contact with the steel belt 2) are naturally cooled.

なお、水冷は既知の手段にて行えばよい。Note that water cooling may be performed by known means.

この態様によれば、鋳型l内に注湯された金属(たとえ
ば、銅)の熱は矢印で示す如く鋳型1の底壁1aから最
もよく放散するので、溶鋼の結晶が4方向から均一に成
長せず、図からも明らかなように、結晶は鋳型1の底壁
1aに接する表面から鋳型lの上部(溶鋼の上部)に向
かって早く成長し、逆に溶鋼の上部から鋳型lの底壁1
aに向かう結晶の成長は遅く、鋳型1の側壁1bに接す
る表面からの結晶は溶鋼の上部に向かって成長すること
になり、最終凝固領域は鋳塊の上端部となる。そのため
、凝固後の鋳塊3の内部には、気孔・不純物偏析4が鋳
塊3の中心部ではなく上部に偏って発生することになり
、また結晶の成長度合によっては気孔または不純物偏析
4が生じないこともあり得る。上部に偏って発生した気
孔・不純物偏析4は、必要ならば冷却終了後にこの鋳塊
3の状態で図に示した点線よりも上の部分をたとえば面
切削して除去するか、或いは第2図に示すように熱間圧
延後の荒引1i!5の表面を厚さdだけ薄く皮むきして
除去すればよい。凝固後の鋳塊内に気孔や不純物偏析4
が発生しなかった場合には取り除く必要はない。
According to this aspect, the heat of the metal (for example, copper) poured into the mold 1 is best dissipated from the bottom wall 1a of the mold 1 as shown by the arrow, so that crystals of molten steel grow uniformly from four directions. As is clear from the figure, crystals grow quickly from the surface in contact with the bottom wall 1a of mold 1 toward the top of mold 1 (the top of the molten steel), and conversely from the top of the molten steel to the bottom wall of mold 1. 1
The growth of crystals toward the direction a is slow, and the crystals from the surface in contact with the side wall 1b of the mold 1 grow toward the top of the molten steel, and the final solidified region becomes the top end of the ingot. Therefore, inside the ingot 3 after solidification, pores and impurity segregation 4 will occur in the upper part of the ingot 3 rather than in the center, and depending on the degree of crystal growth, pores and impurity segregation 4 will occur. It may not occur. If necessary, the pores and impurity segregation 4 that occur unevenly in the upper part can be removed by, for example, surface cutting the part above the dotted line shown in the figure in the ingot 3 after cooling, or as shown in Figure 2. As shown in the figure, rough rolling 1i after hot rolling! 5 can be removed by peeling the surface to a thickness of d. Pores and impurity segregation in the ingot after solidification4
If this does not occur, there is no need to remove it.

別の例としては、水冷は前述と同様に鋳型1の底壁1a
に沿った方向のみに流水して行うが、鋳型1の両側壁1
b及びスチールベルト2の上面2aは高温、たとえば約
200℃に保持する方法がある。この場合には、溶鋼の
鋳型lの両側壁1bに接する表面及びスチールベルト2
に接する表面からの結晶の成長は自然冷却の時よりもさ
らに遅くなるので、最終凝固領域はさらに鋳塊の上端部
に偏在することになる。その結果、気孔・不純物偏析4
は溶鋼の上部の表面付近に生じることになる。
As another example, the water cooling may be performed on the bottom wall 1a of the mold 1 as described above.
This is done by running water only in the direction along the side walls 1 of the mold 1.
b and the upper surface 2a of the steel belt 2 can be maintained at a high temperature, for example, about 200°C. In this case, the surface in contact with both side walls 1b of the molten steel mold l and the steel belt 2
Since the growth of crystals from the surface in contact with the ingot is even slower than during natural cooling, the final solidification region is even more unevenly distributed at the upper end of the ingot. As a result, pore/impurity segregation 4
will occur near the upper surface of the molten steel.

第3図に示した例では、鋳型1の両側壁1bを側壁1b
に沿って設けた加熱体7によって加熱し、鋳型lの底壁
1aを水冷するものである。しかして、結晶の成長に伴
って加熱体7を、たとえば矢印イに示したように上方に
移動させることによって、より確実に鋳塊3の最終凝固
領域を上方に変移させることができ、これによって気孔
・不純物偏析4を鋳塊3のより上端部に発生させること
ができる。この際、側壁1bに沿って設けた加熱体7に
上部に行くにしたがって高温度となるように温度勾配を
つけることによって、加熱体7を移動することなく上述
の如く気孔・不純物偏析4を鋳塊3の上端部に確実に偏
在させることができる。
In the example shown in FIG. 3, both side walls 1b of the mold 1 are
The bottom wall 1a of the mold 1 is cooled by water. By moving the heating element 7 upward, for example, as shown by arrow A, as the crystals grow, the final solidification region of the ingot 3 can be moved upward more reliably. Pore/impurity segregation 4 can be generated at the upper end of the ingot 3. At this time, by creating a temperature gradient in the heating element 7 provided along the side wall 1b so that the temperature increases toward the top, the pores and impurity segregation 4 can be removed as described above without moving the heating element 7. It can be reliably unevenly distributed at the upper end of the mass 3.

さらに別の態様として、第4図に示した如く、加熱体7
を鋳型1の両側壁lb内に埋設させ、かつ当該加熱体7
に上部に行くにしたがって高温度となるような温度勾配
をつけることによって鋳塊3の最終凝固領域を上方に変
移させ、ひいては気孔・不純物偏析4を鋳塊3の上端部
に偏在させることができる。
In still another embodiment, as shown in FIG.
are buried in both side walls lb of the mold 1, and the heating body 7
By creating a temperature gradient in which the temperature increases toward the top, the final solidification region of the ingot 3 can be shifted upward, and pores and impurity segregation 4 can be unevenly distributed at the upper end of the ingot 3. .

上記の例では、本発明の鋳塊の製造方法をバッチ方式鋳
造に基づいて説明したが、本発明が連続鋳造にも適用で
きることは明白であり、また本発明の鋳塊の製造方法は
、上述の例に限定されることはなく、気孔・不純物偏析
を鋳塊の中央部に生じさせないという本発明の精神を逸
脱しない限りにおいて種々の方法を採用することができ
る。
In the above example, the ingot manufacturing method of the present invention was explained based on batch casting, but it is obvious that the present invention can also be applied to continuous casting. The present invention is not limited to this example, and various methods may be employed as long as they do not depart from the spirit of the present invention, which is to prevent pores and impurity segregation from occurring in the center of the ingot.

〔実施例〕〔Example〕

実施例1 第1図に示した装置を用い、鋳型1の底壁1aに沿って
のみに約30℃の水を流し、鋳型10両側壁1b及びス
チールベルト2の上面2aは自然放冷して、底辺3 c
 ml %高さ3cI1)、上辺4C1)%長さ50c
mの銅鋳塊を製造した。
Example 1 Using the apparatus shown in FIG. 1, water at about 30°C was flowed only along the bottom wall 1a of the mold 1, and both side walls 1b of the mold 10 and the top surface 2a of the steel belt 2 were allowed to cool naturally. , base 3 c
ml %Height 3cI1), Top side 4C1)%Length 50c
m copper ingots were produced.

かくして製造された銅鋳塊は上面から約6N下方の位置
に気孔・不純物が偏在していた。
The thus produced copper ingot had pores and impurities unevenly distributed at a position approximately 6N below the top surface.

実施例2 第1図に示した装置を用い、鋳型1の底壁1aのみに約
30℃の水を流し、鋳型10両側壁1b及びスチールベ
ルト2の上面2aは200 ’t:に保持して実施例1
と同様の銅鋳塊を製造した。
Example 2 Using the apparatus shown in Fig. 1, water at about 30°C was poured only on the bottom wall 1a of the mold 1, and both side walls 1b of the mold 10 and the top surface 2a of the steel belt 2 were maintained at 200°C. Example 1
A similar copper ingot was produced.

かくして製造された銅鋳塊は上面から約3鰭下方の位置
に気孔・不純物が偏在していた。
The thus produced copper ingot had pores and impurities unevenly distributed at a position approximately three fins below the top surface.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の鋳塊の製造方法は、鋳型
内の湯の凝固を、その湯の表面のうち少な(とも1つの
表面からの凝固進度を残りの表面からの凝固進度と相違
させて行うごとにより、従来は鋳塊の中心部分に発生し
ていた気孔や不純物偏析を、鋳塊の中心部分から鋳塊の
表面または表面付近に偏在させることができるものであ
り、場合によっては気孔や不純物偏析が生じないことも
あり、品質の良い鋳塊を製造することが可能である。ま
た、たとえ気孔や不純物偏析が生じても必要ならば鋳塊
の製造後に容易に取り除くことができ、冷間伸線による
線材の製造中の断線問題を解消することができる。
As explained above, the method for producing an ingot of the present invention allows the solidification of the molten metal in the mold to be performed on a small portion of the surface of the molten metal (in other words, the solidification progress from one surface is different from the solidification progress from the remaining surfaces). By doing this, the pores and impurity segregation that conventionally occurred in the center of the ingot can be unevenly distributed from the center of the ingot to the surface or near the surface of the ingot. Since pores and impurity segregation do not occur, it is possible to produce ingots of good quality.Also, even if pores and impurity segregation occur, they can be easily removed after producing the ingot, if necessary. , it is possible to solve the problem of wire breakage during the manufacture of wire rods by cold wire drawing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の鋳塊の製造方法の一実施例を示す断面
図、第2図は第1図に示した方法によって製造された鋳
塊を熱間圧延した後の荒引線の断面図、第3図は本発明
の鋳塊の製造方法の別の実施例を示す断面図、第4図は
本発明の鋳塊の製造方法のさらに別の実施例を示す断面
図、第5図は従来の鋳塊の製造方法を示す断面図である
。 1      :鋳型 2      ニスチールベルト 3      :鋳塊 4      :気孔または不純物偏析5      
:荒引線 7      :加熱体
FIG. 1 is a cross-sectional view showing an embodiment of the ingot manufacturing method of the present invention, and FIG. 2 is a cross-sectional view of a rough drawing line after hot rolling the ingot manufactured by the method shown in FIG. 1. , FIG. 3 is a cross-sectional view showing another embodiment of the ingot manufacturing method of the present invention, FIG. 4 is a cross-sectional view showing still another embodiment of the ingot manufacturing method of the present invention, and FIG. FIG. 2 is a cross-sectional view showing a conventional ingot manufacturing method. 1: Mold 2 Steel belt 3: Ingot 4: Pore or impurity segregation 5
: Rough line 7 : Heating element

Claims (2)

【特許請求の範囲】[Claims] (1)鋳型を使用する鋳塊の製造において、鋳型内の湯
の凝固を、当該湯の表面のうちの少なくとも1つの表面
からの凝固進度を、残りの表面からの凝固進度と相違さ
せて行うことを特徴とする鋳塊の製造方法。
(1) When manufacturing an ingot using a mold, the solidification of the molten metal in the mold is performed by making the rate of solidification from at least one of the surfaces of the molten metal different from the rate of solidification from the remaining surfaces. A method for manufacturing an ingot, characterized by the following.
(2)前記鋳型内の湯の凝固を、湯の表面のうち1つの
表面だけを加冷し、残りの表面を自然冷却させることに
よって行うことを特徴とする特許請求の範囲第(1)項
記載の鋳塊の製造方法。
(2) The solidification of the hot water in the mold is performed by cooling only one surface of the hot water and allowing the remaining surfaces to cool naturally. The method for producing the described ingot.
JP61136458A 1986-06-12 1986-06-12 Production method for rough wire Expired - Lifetime JPH0790334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61136458A JPH0790334B2 (en) 1986-06-12 1986-06-12 Production method for rough wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61136458A JPH0790334B2 (en) 1986-06-12 1986-06-12 Production method for rough wire

Publications (2)

Publication Number Publication Date
JPS62292244A true JPS62292244A (en) 1987-12-18
JPH0790334B2 JPH0790334B2 (en) 1995-10-04

Family

ID=15175583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61136458A Expired - Lifetime JPH0790334B2 (en) 1986-06-12 1986-06-12 Production method for rough wire

Country Status (1)

Country Link
JP (1) JPH0790334B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182347A (en) * 1989-01-07 1990-07-17 Nippon Steel Corp Steel material having sound center part and production thereof
JP2006150450A (en) * 2004-10-27 2006-06-15 Showa Denko Kk Continuous casting method, cast material, metal work piece and continuous casting apparatus
US7681626B2 (en) 2003-07-23 2010-03-23 Showa Denko K.K. Continuous casting method, cast member, metal worked article, and continuous casting apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182347A (en) * 1989-01-07 1990-07-17 Nippon Steel Corp Steel material having sound center part and production thereof
US7681626B2 (en) 2003-07-23 2010-03-23 Showa Denko K.K. Continuous casting method, cast member, metal worked article, and continuous casting apparatus
JP2006150450A (en) * 2004-10-27 2006-06-15 Showa Denko Kk Continuous casting method, cast material, metal work piece and continuous casting apparatus

Also Published As

Publication number Publication date
JPH0790334B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
JPH02205232A (en) Method and apparatus for drawing-up continuous casting
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
JPS62292244A (en) Production of ingot
JPH07113142B2 (en) Manufacturing method of phosphor bronze sheet
CN100406161C (en) Oriented freezing cast method
US1868099A (en) Method of casting molten metals
US5236033A (en) Method for producing a body from a material susceptible to thermal cracking and casting mold for executing the method
JPS5847255B2 (en) Steel ingot making method
JP3000371B2 (en) Continuous casting method
JPS58103941A (en) Production of metallic material having specular surface
JPS62292242A (en) Method and apparatus for continuous casting of metallic material
JPH0220645A (en) Mold for continuously casting steel
JP4672203B2 (en) Method for producing ingot for gold bonding wire
JPH0711352A (en) Method for continuously melting and casting high melting point active metal
JPH08253830A (en) Production of single-crystal ni-base alloy casting having high single-crystallization ratio
JPH05147918A (en) Refining method for metal silicon
JPH0112579B2 (en)
JPS58157552A (en) Continuous casting method of metallic material
JPS63293124A (en) Method for refining copper
KR0185285B1 (en) Method of manufacturing ingot having unidirectional freezing or single crystal organism
JPS62137147A (en) Apparatus for producing bar-shaped ingot
JPH0243569B2 (en)
JPH06226406A (en) Continuous casting apparatus and continuous casting method
Kim et al. Operating parameters for the continuous unidirectional solidification of the Al-1wt.% Si alloy drawn to fine wire
JPS61279354A (en) Production of unidirectionally solidified ingot