JP3389449B2 - Continuous casting method of square billet - Google Patents

Continuous casting method of square billet

Info

Publication number
JP3389449B2
JP3389449B2 JP09864397A JP9864397A JP3389449B2 JP 3389449 B2 JP3389449 B2 JP 3389449B2 JP 09864397 A JP09864397 A JP 09864397A JP 9864397 A JP9864397 A JP 9864397A JP 3389449 B2 JP3389449 B2 JP 3389449B2
Authority
JP
Japan
Prior art keywords
mold
casting
continuous casting
billet
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09864397A
Other languages
Japanese (ja)
Other versions
JPH10286652A (en
Inventor
規之 鈴木
寛 原田
輝夫 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09864397A priority Critical patent/JP3389449B2/en
Publication of JPH10286652A publication Critical patent/JPH10286652A/en
Application granted granted Critical
Publication of JP3389449B2 publication Critical patent/JP3389449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、角型ビレットの連
続鋳造方法およびその連続鋳造用鋳型に関し、特に、中
炭素鋼の連続鋳造の際に発生する、ビレット断面内の不
均一凝固を防止する、角型ビレットの連続鋳造方法およ
びその連続鋳造用鋳型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting a square billet and a casting mold for the same, and particularly to prevent uneven solidification in a billet cross section which occurs during continuous casting of medium carbon steel. The present invention relates to a continuous casting method for square billets and a mold for continuous casting.

【0002】[0002]

【従来の技術】従来の角型ビレットの連続鋳造において
は、ストランド断面内で、凝固の不均一が発生し、菱形
変形、凹み(デプレッション)、割れといった欠陥が発
生し易かった。特に、中炭素鋼の鋳造においては、鋳造
速度を上げるとこれらの欠陥が多発するため、鋳造速度
を上げることができず、生産性が低いという問題があっ
た。
2. Description of the Related Art In the conventional continuous casting of square billets, uneven solidification occurs in the cross section of the strand, and defects such as rhombic deformation, depression (depression), and cracking are likely to occur. In particular, in the casting of medium carbon steel, these defects frequently occur when the casting speed is increased, so that there is a problem that the casting speed cannot be increased and the productivity is low.

【0003】このため、凝固を均一化させる方法とし
て、例えば、連続鋳造用パウダーの粘度を下げて、鋳型
〜ストランド間のパウダー流入を促進する方法や、ある
いは、電磁力により溶融金属を鋳型内で撹拌する方法等
が、一般に用いられてきた。しかしながら、パウダーの
粘度を調節する方法では、断面内で、パウダー流入量の
分布を制御することが困難である。また、電磁力による
撹拌は、大がかりな装置が必要であり、また強撹拌を行
うと、メニスカス形状に不均一な盛り上がりが発生し、
凝固が不均一になる等の問題がある。
Therefore, as a method for making the solidification uniform, for example, a method of lowering the viscosity of the powder for continuous casting to promote the powder inflow between the mold and the strand, or a method of electromagnetically applying the molten metal in the mold Methods such as stirring have been commonly used. However, it is difficult to control the distribution of the powder inflow amount in the cross section by the method of adjusting the powder viscosity. Further, stirring by electromagnetic force requires a large-scale device, and when strong stirring is performed, uneven swelling occurs in the meniscus shape,
There are problems such as non-uniform coagulation.

【0004】また、特公昭59−39220号公報に
は、鋳型の上部に多重テ−パ部を設け、凝固シェルの収
縮率に応じて、鋳型内溶湯レベルを変化させる方法が開
示されている。しかし、この方法では、溶湯の収縮形態
は、鋳造方向で、また断面内でも一様ではないため、適
切なテーパ形状を設定することは困難である。
Japanese Patent Publication No. 59-39220 discloses a method in which a multiple taper portion is provided on the upper part of a mold and the molten metal level in the mold is changed according to the shrinkage ratio of the solidified shell. However, in this method, the shrinkage form of the molten metal is not uniform in the casting direction and in the cross section, so it is difficult to set an appropriate tapered shape.

【0005】また、特開昭54−116330号公報に
は、断面の偏倚の度合により、鋳型後方の2次冷却にお
いて、ストランドの鈍角部及び鋭角部に所定の冷却を施
す方法が開示されている。
Further, Japanese Patent Application Laid-Open No. 54-116330 discloses a method of subjecting the obtuse angle portion and the acute angle portion of the strand to predetermined cooling in the secondary cooling behind the mold, depending on the degree of deviation of the cross section. .

【0006】しかしながら、鋳型の後方では、凝固シェ
ルが発達し表面温度が低下して剛性が高いため、冷却の
調整では断面形状を変化させることが困難であること、
また、凝固シェルがある程度厚くなった段階で断面の形
状を強制的に変形させると、凝固シェル内部に内部割れ
が発生し、品質上の問題となること、また2次冷却にお
いて、コーナー部のみ冷却を制御するためには大がかり
な装置が必要であり、設備コスト、ランニングコストが
増大することなどの問題がある。
However, behind the mold, the solidified shell develops, the surface temperature decreases, and the rigidity is high, making it difficult to change the cross-sectional shape by adjusting cooling.
Also, if the shape of the cross section is forcibly deformed when the solidified shell becomes thick to some extent, internal cracks will occur inside the solidified shell, which will cause quality problems. Also, in the secondary cooling, only the corners will be cooled. A large-scale device is required to control the temperature, and there is a problem that equipment cost and running cost increase.

【0007】また、特開平6−31401号公報には、
ビレツト入り側の鋳型開孔部断面形状と出側の断面形状
を異なるものとして、その間を連続的に変化させる方法
が開示されている。この方法では、鋳造速度や品種の異
なった条件で鋳造する場合に、適切な形状を予め一つに
決定することが困難であり、また複雑な鋳型形状のた
め、加工が困難で、設備コストが増大するという問題が
ある。
Further, Japanese Patent Application Laid-Open No. 6-31401 discloses that
A method is disclosed in which the cross-sectional shape of the mold opening on the billet-entry side and the cross-sectional shape on the exit side are different, and the interval between them is continuously changed. In this method, when casting under different conditions of casting speed and product type, it is difficult to determine an appropriate shape in advance, and because of the complicated mold shape, it is difficult to process and the equipment cost is high. There is a problem of increasing.

【0008】これらいずれの方法も、大がかりな装置が
必要であり、また適切な条件を見出すことが困難である
ため、簡易な方法で、鋳型断面内の凝固を調整できる鋳
型の開発が望まれている。
Since any of these methods requires a large-scale apparatus and it is difficult to find out appropriate conditions, it is desired to develop a mold capable of adjusting solidification in the mold cross section by a simple method. There is.

【0009】[0009]

【発明が解決しようとする課題】そこで、本発明は、角
型ビレットの連続鋳造において、鋳型内の冷却を適切に
することで、凝固シェルの変形、割れ等を防止できる、
角型ビレットの連続鋳造方法およびその連続鋳造用鋳型
を提供することを目的とするものである。
Therefore, in the present invention, in the continuous casting of a square billet, by appropriately cooling the inside of the mold, it is possible to prevent the solidified shell from being deformed or cracked.
An object of the present invention is to provide a method for continuously casting a square billet and a mold for the continuous casting.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成する本
発明の要旨は、下記の通りである。
The gist of the present invention for achieving the above object is as follows.

【0011】 (1)角型ビレットの連続鋳造方法において、凝固開始
点から鋳造方向への距離が等しい位置での鋳型コーナー
部の抜熱流束と鋳型面部の抜熱流束の割合を特定の範囲
とし、該割合に応じて、引き抜き速度および/または電
磁攪拌流速を変更させることを特徴とする角型ビレット
の連続鋳造方法、 (2)前記抜熱流束の割合を、鋳型コーナー部の抜熱流
束を鋳型面部の抜熱流束の30〜70%とすることを特
徴とする請求項1に記載の角型ビレットの連続鋳造方
法、である。
(1) In the continuous casting method for a square billet, the ratio of the heat removal flux of the mold corner portion to the heat removal flux of the mold surface portion at a position where the distance from the solidification start point to the casting direction is the same is within a specific range. A method for continuously casting a rectangular billet characterized by changing the drawing speed and / or the electromagnetic stirring flow rate according to the ratio, (2) the ratio of the heat removal flux to the heat removal flux at the corners of the mold It is 30-70% of the heat removal flux of a mold surface part, It is the continuous casting method of the square billet of Claim 1 characterized by the above-mentioned.

【0012】[0012]

【発明の実施の形態】本発明は、角型ビレットの連続鋳
造における、コーナー部と面部の抜熱流束を適切に設定
することによって、凝固シェルの変形の極めて少ない、
高品質なビレットの連続鋳造が可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention, in continuous casting of a rectangular billet, by appropriately setting the heat removal flux of the corner portion and the surface portion, the deformation of the solidified shell is extremely small.
It enables continuous casting of high quality billets.

【0013】図1に、本発明方法で用いる角型ビレット
の連続鋳造用鋳型を示す。先ず、図1(a)は、鋳型1
の縦断面を示す図であり、鋳型筒内に熱電対2が埋め込
まれており、溶融金属3は、鋳型1で冷却されて凝固シ
ェル4を形成させながら、連続的に引き抜かれる。ま
た、図1(b)は、図1(a)のA−A断面図であり、
この例においては、各面部中央、および各コーナー部に
熱電対2が埋め込まれており、凝固開始点5から等距離
にある面部とコーナー部の鋳型温度が同時に測定できる
ものである。
FIG. 1 shows a mold for continuous casting of a square billet used in the method of the present invention. First, FIG. 1A shows a mold 1
FIG. 3 is a view showing a vertical section of FIG. 1, in which a thermocouple 2 is embedded in a mold cylinder, and the molten metal 3 is continuously drawn out while being cooled by the mold 1 to form a solidified shell 4. Further, FIG. 1B is a cross-sectional view taken along the line AA of FIG.
In this example, thermocouples 2 are embedded at the center of each surface and at each corner, and the mold temperatures of the surface and the corner equidistant from the solidification start point 5 can be measured simultaneously.

【0014】図2に、図1の鋳型を用いた本発明の角型
ビレットの連続鋳造方法を示す。凝固開始点5から等距
離にある鋳型1の面部とコーナー部に埋め込まれた、熱
電対2に発生する起電力を変換器7により、鋳型温度デ
ータに変換し、演算装置8により、面部熱流束qfおよ
びコーナー部熱流束qcを次式のように計算する。
FIG. 2 shows a method for continuously casting a square billet of the present invention using the mold of FIG. The electromotive force generated in the thermocouple 2 embedded in the surface portion and the corner portion of the mold 1 equidistant from the solidification start point 5 is converted into mold temperature data by the converter 7, and the surface heat flux is calculated by the arithmetic unit 8. The qf and the corner heat flux qc are calculated by the following equations.

【0015】 qf=kf×(Tf−Tw) ・・・(1) qc=kc×(Tc−Tw) ・・・(2) ここで、kfおよびkcは予め、例えば、熱伝導計算に
より求めた、面部およびコーナー部の総括熱伝達係数
(W/m2 K)であり、TfおよびTcは、面部および
コーナー部に埋め込まれた熱電対の温度(K)であり、
Twは、冷却水温度(K)である。
Qf = kf × (Tf−Tw) (1) qc = kc × (Tc−Tw) (2) Here, kf and kc are obtained in advance by, for example, heat conduction calculation. a overall heat transfer coefficient of the surface portion and the corner portion (W / m 2 K), Tf and Tc are the surface portion and the corner portion embedded thermocouple temperature (K),
Tw is the cooling water temperature (K).

【0016】ここで、凝固開始点5から等距離にある複
数の面部およびコーナー部に、熱電対2を埋め込んでも
よく、例えば、図1(b)に示すように、角型ビレット
鋳型の各面および各コーナー部で、測温した場合には、
各面の熱流束の最大値max(qf)および最小値mi
n(qf)、各コーナーの熱流束の最大値max(q
c)および最小値min(qc)を計算し、次に、熱流
束比(qc/qf)の最大値max、最小値minを、
次のように、計算する。
Here, the thermocouples 2 may be embedded in a plurality of surface portions and corner portions that are equidistant from the solidification starting point 5. For example, as shown in FIG. 1 (b), each surface of the square billet mold may be embedded. And when measuring temperature at each corner,
Maximum value max (qf) and minimum value mi of heat flux on each surface
n (qf), maximum value of heat flux max (q
c) and the minimum value min (qc), and then the maximum value max and the minimum value min of the heat flux ratio (qc / qf) are
Calculate as follows.

【0017】 max(qc/qf)=max(qc)/min(qf) ・・・(3) min(qc/qf)=min(qc)/max(qf) ・・・(4) 次に、計算された熱流束比が、許容最小値Cmin(=
0.3)と許容最大値Cmax(=0.7)の間にある
かどうかを判定し、許容範囲内にあれば、現状の操業条
件のまま鋳造を続行し、許容範囲を越えた場合には、引
き抜き速度を低下させパウダー流入を促進させるか、あ
るいは、電磁撹拌装置6を使用している場合には、電磁
攪拌流速を低減させて湯面の盛り上がりを低減させるこ
とにより、凝固の均一性を回復させる。
Max (qc / qf) = max (qc) / min (qf) ... (3) min (qc / qf) = min (qc) / max (qf) ... (4) The calculated heat flux ratio is the minimum allowable value Cmin (=
0.3) and the maximum allowable value Cmax (= 0.7), and if it is within the allowable range, casting is continued under the current operating conditions, and if the allowable range is exceeded, Reduces the extraction speed to promote powder inflow, or, if an electromagnetic stirrer 6 is used, reduces the electromagnetic stirrer flow rate to reduce swelling of the molten metal surface, thereby increasing the uniformity of solidification. To recover.

【0018】これらの操業条件変更は、単独で実施して
もよく、あるいは、これらを組み合わせて実施してもよ
い。ここで、熱流束比が許容最小値(0.3)より小さ
くなると、コーナー部の凝固が極端に遅れ、内部の割れ
や、凝固シェルが破れブレークアウトの危険性が急激に
増大する。また、逆に熱流束比が許容最大値(0.7)
よりも大きくなると、コーナー部の剛性が大きくなり、
面部の凹みや、菱形変形が発生する危険性が増大する。
These changes in operating conditions may be carried out alone or in combination. Here, if the heat flux ratio becomes smaller than the allowable minimum value (0.3), the solidification of the corner portion is extremely delayed, and the risk of internal cracking or breakage of the solidified shell rapidly increases. On the contrary, the heat flux ratio is the maximum allowable value (0.7)
If it is larger than this, the rigidity of the corner part will increase,
The risk of dents on the surface and diamond deformation increases.

【0019】図3には、コーナー部にR加工を施した筒
型に成形された、角型ビレットの連続鋳造用鋳型1の、
コーナー部の肉厚を面部の肉厚よりも厚くした、本発明
の鋳型の断面図を示す。ここで、面部の板厚をt1、コ
ーナー部の板厚をt2、内半径をRとすると、t2は、
次のような範囲にするのが望ましい。
FIG. 3 shows a mold 1 for continuous casting of a square billet, which is formed into a cylindrical shape with a corner portion having a rounded shape.
FIG. 3 is a cross-sectional view of the mold of the present invention in which the thickness of the corner portion is larger than the thickness of the surface portion. Here, if the plate thickness of the surface portion is t1, the plate thickness of the corner portion is t2, and the inner radius is R, then t2 is
The following ranges are desirable.

【0020】 √2×t1≦t2≦(√2−1)R+√2×t1 ・・・(5) 図4には、面部の冷却水路側に、鋳造方向に複数本の溝
加工を施した、本発明の角型ビレットの連続鋳造用鋳型
1の断面図を示す。ここで、溝9の深さd、溝の幅w、
溝の周期Lとすれば、鋳型の強度から、d<0.5×t
1とするのが望ましく、鋳型内面の温度を均一にするた
めに、L<w+t1−dとするのが望ましい。
√2 × t1 ≦ t2 ≦ (√2-1) R + √2 × t1 (5) In FIG. 4, a plurality of grooves are machined in the casting direction on the cooling water channel side of the surface portion. 1 shows a sectional view of a mold 1 for continuous casting of a rectangular billet of the present invention. Here, the depth d of the groove 9, the width w of the groove,
If the groove period is L, then from the strength of the mold, d <0.5 × t
It is desirable to set to 1 and it is desirable to set to L <w + t1-d in order to make the temperature of the inner surface of the mold uniform.

【0021】[0021]

【実施例】次に、本発明の角型ビレットの連続鋳造方法
およびCu製の連続鋳造用鋳型を用いて、中炭素鋼の連
続鋳造を実施した例について説明する。鋳造条件は、次
の通りである。
EXAMPLES Next, examples of continuous casting of medium carbon steel using the method for continuously casting square billets and the continuous casting mold made of Cu according to the present invention will be described. The casting conditions are as follows.

【0022】 ・鋳片寸法:180×180mm断面、コーナーR=1
0mm ・鋳型肉厚:10mm(面部、コーナー共同一) ・鋼種:中炭素鋼([C]=0.1wt%) 図5および図6には、各種鋳造条件、すなわち鋳造速
度、電磁撹拌装置のコイル電流を変化させた場合の、熱
流束比と割れ、ブレークアウト、凹み、および菱形変形
(鋳片断面が菱形に変形)の発生回数を示す。
-Slab size: 180 x 180 mm cross section, corner R = 1
0 mm ・ Mold thickness: 10 mm (one surface and corner joint) ・ Steel type: Medium carbon steel ([C] = 0.1 wt%) In FIG. 5 and FIG. 6, various casting conditions, that is, casting speed, electromagnetic stirrer The heat flux ratio and the number of times of occurrence of cracks, breakouts, dents, and rhombus deformation (the slab cross section is transformed into a rhombus) when the coil current is changed are shown.

【0023】図5に示すように、熱流束比が0.3より
低下すると割れやブレークアウトの発生が増加し、図6
に示すように、熱流束比が0.7より増加すると、凹み
や菱形変形の発生が増大している。熱流束比を0.3以
上、0.7以下に維持することで、欠陥の無い高品質な
鋳片の製造が可能である。
As shown in FIG. 5, when the heat flux ratio is lower than 0.3, cracks and breakouts increase, and FIG.
As shown in (1), when the heat flux ratio increases from 0.7, the occurrence of dents and rhombus deformation increases. By maintaining the heat flux ratio at 0.3 or more and 0.7 or less, it is possible to manufacture a high quality slab without defects.

【0024】次に、本発明の連続鋳造用鋳型を用いて鋳
造した場合の実施例を示す。前述した、鋳片条件の中
で、以下の項目を変更した。 本発明例1:コーナー部鋳型肉厚=14.1mm(鋳型
外面コーナーR=10mm)。 本発明例2:面部のみ冷却溝加工(鋳型全長、幅方向1
42mmにわたり、幅2.0mm、深さ3.0mm、溝
底R=1.0mm、ピッチ4.0mmの溝を各面、36
本/面加工)。
Next, examples of casting using the continuous casting mold of the present invention will be shown. The following items were changed in the above-mentioned casting condition. Invention Example 1: Corner mold thickness = 14.1 mm (mold outer surface corner R = 10 mm). Inventive Example 2: Cooling groove processing only on the surface portion (mold length, width direction 1
A groove having a width of 2.0 mm, a depth of 3.0 mm, a groove bottom R of 1.0 mm, and a pitch of 4.0 mm is formed on each surface of 42 mm.
Book / surface processing).

【0025】図7には、本発明の鋳型を用いて鋳造した
際の、平均鋳造速度(同鋼種1カ月平均)を示す。従来
の鋳型では、前述した熱流束比が特定範囲を越えた場合
に、鋳造速度を低下させて、適切な熱流束比になるよう
操業していた。それに対して、本発明の鋳型を用いて鋳
造した場合には、熱流束比が特定範囲を越えることが、
大幅に減少したため、鋳造速度を落とすことなく製造が
可能となった。
FIG. 7 shows the average casting speed (one month average of the same steel type) when casting was performed using the mold of the present invention. In the conventional mold, when the above-mentioned heat flux ratio exceeds a specific range, the casting speed is reduced to operate so that the heat flux ratio becomes appropriate. On the other hand, when cast using the mold of the present invention, the heat flux ratio may exceed a specific range,
The significant reduction has made it possible to manufacture without slowing down the casting speed.

【0026】図8には、本発明の鋳型を用いて鋳造した
際の、鋳片の表面介在物個数を調べた結果を示す。従来
の鋳型では、前述した熱流束比が特定範囲を越えた場合
に、電磁撹拌を低減させることで、適切な熱流束比にな
るよう操業していたため、表面介在物が多く、品質上問
題となっていた。それに対して、本発明の鋳型を用いて
鋳造した場合には、熱流束比が特定範囲を越えることが
大幅に減少したため、電磁撹拌を低減させることなく鋳
造が可能となり、介在物は大幅に低減した。
FIG. 8 shows the results of examining the number of surface inclusions in a cast piece when casting was performed using the mold of the present invention. In the conventional mold, when the above-mentioned heat flux ratio exceeds a specific range, it was operated so as to have an appropriate heat flux ratio by reducing the electromagnetic stirring, so there were many surface inclusions, which caused quality problems. Was becoming. On the other hand, in the case of casting using the mold of the present invention, the heat flux ratio exceeding the specific range was significantly reduced, so that casting was possible without reducing electromagnetic stirring, and inclusions were significantly reduced. did.

【0027】[0027]

【発明の効果】以上詳述したように、本発明によれば、
角形ビレットの連続鋳造における、鋳片の割れ、ブレー
クアウト、凹みや変形を防止することを可能となるた
め、鋳造速度低下を防止し、生産性の向上が可能とな
り、また電磁撹拌電流の低減を防止し、品質の向上が期
待できる。
As described in detail above, according to the present invention,
Since it is possible to prevent cracks, breakouts, dents and deformations in the continuous casting of rectangular billets, it is possible to prevent lowering of casting speed, improve productivity, and reduce electromagnetic stirring current. Preventing and improving quality can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明方法の実施例に係わる角形ビレットの
連続鋳造用鋳型の断面図であり、a)は縦断面図、
(b)は横断面図(A−A断面)である。
FIG. 1 is a cross-sectional view of a mold for continuous casting of a rectangular billet according to an embodiment of the method of the present invention, in which a) is a vertical cross-sectional view,
(B) is a cross-sectional view (cross section AA).

【図2】本発明の実施例に係わる角形ビレットの連続鋳
造方法を示す概念図である。
FIG. 2 is a conceptual diagram showing a method of continuously casting a rectangular billet according to an embodiment of the present invention.

【図3】本発明の実施例に係わる角形ビレットの連続鋳
造用鋳型の横断面図である。
FIG. 3 is a cross-sectional view of a mold for continuous casting of a rectangular billet according to an embodiment of the present invention.

【図4】本発明の他の実施例に係わる角形ビレットの連
続鋳造用鋳型の横断面図である。
FIG. 4 is a cross-sectional view of a mold for continuous casting of a rectangular billet according to another embodiment of the present invention.

【図5】本実施例における熱流束比と割れとブレークア
ウトの発生回数との関係を示す図である。
FIG. 5 is a diagram showing the relationship between the heat flux ratio and the number of occurrences of cracks and breakouts in this example.

【図6】本実施例における熱流束比と凹みと菱形変形の
発生回数との関係を示す図である。
FIG. 6 is a diagram showing the relationship between the heat flux ratio and the number of occurrences of dents and rhomboid deformations in the present embodiment.

【図7】本発明の鋳型と従来技術の鋳型での平均鋳造速
度の比較の例を示す図である。
FIG. 7 is a diagram showing an example of comparison of average casting speeds of the mold of the present invention and the mold of the prior art.

【図8】本発明の鋳型と従来技術の鋳型での介在物個数
の比較の例を示す図である。
FIG. 8 is a diagram showing an example of comparison of the number of inclusions between the mold of the present invention and the mold of the prior art.

【符号の説明】[Explanation of symbols]

1 鋳型 2 熱電対 3 溶融金属 4 凝固シェル 5 メニスカス(凝固開始点) 6 電磁撹拌コイル 7 変換器 8 演算装置 9 溝 1 mold 2 thermocouple 3 Molten metal 4 solidification shell 5 Meniscus (starting point of solidification) 6 electromagnetic stirring coil 7 converter 8 arithmetic unit 9 grooves

フロントページの続き (56)参考文献 特開 平6−31418(JP,A) 特開 昭57−206555(JP,A) 特開 昭55−84253(JP,A) 特開 平7−88598(JP,A) 特開 昭58−97471(JP,A) 特開 平7−116783(JP,A) 特開 平6−320245(JP,A) 特開 昭58−151943(JP,A) 特開 昭58−41661(JP,A) 特開 平6−31401(JP,A) 特開 昭54−116330(JP,A) 特開 平9−262641(JP,A) 実開 昭64−38131(JP,U) 実開 平1−118845(JP,U) 実開 平5−93644(JP,U) 実開 昭61−36340(JP,U) 特公 昭59−39220(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B22D 11/055 B22D 11/04 311 B22D 11/20 B22D 11/22 Continuation of front page (56) Reference JP-A-6-31418 (JP, A) JP-A-57-206555 (JP, A) JP-A-55-84253 (JP, A) JP-A-7-88598 (JP , A) JP 58-97471 (JP, A) JP 7-116783 (JP, A) JP 6-320245 (JP, A) JP 58-151943 (JP, A) JP 58-41661 (JP, A) JP-A-6-31401 (JP, A) JP-A-54-116330 (JP, A) JP-A-9-262641 (JP, A) Practical application Sho-64-38131 (JP, A) U) Actual development 1-118845 (JP, U) Actual development 5-93644 (JP, U) Actual development 61-36340 (JP, U) Japanese public examination 59-39220 (JP, B2) (58) Survey Areas (Int.Cl. 7 , DB name) B22D 11/055 B22D 11/04 311 B22D 11/20 B22D 11/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 角型ビレットの連続鋳造方法において、
凝固開始点から鋳造方向への距離が等しい位置での鋳型
コーナー部の抜熱流束と鋳型面部の抜熱流束の割合を特
定の範囲とし、該割合に応じて、引き抜き速度および/
または電磁攪拌流速を変更させることを特徴とする角型
ビレットの連続鋳造方法。
1. A method of continuously casting a square billet, comprising:
The ratio between the heat removal flux of the mold corner portion and the heat removal flux of the mold surface portion at a position where the distance from the solidification start point to the casting direction is the same is set to a specific range, and the drawing speed and / or
Alternatively, a method for continuously casting a rectangular billet is characterized by changing the electromagnetic stirring flow rate.
【請求項2】 前記抜熱流束の割合を、鋳型コーナー部
の抜熱流束を鋳型面部の抜熱流束の30〜70%とする
ことを特徴とする請求項1に記載の角型ビレットの連続
鋳造方法。
The proportion of wherein said dissipation heat flux, continuous prismatic billet of claim 1, wherein the heat extraction flux of the mold corners, characterized in that 30 to 70% of the heat removal flux mold surface Casting method.
JP09864397A 1997-04-16 1997-04-16 Continuous casting method of square billet Expired - Fee Related JP3389449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09864397A JP3389449B2 (en) 1997-04-16 1997-04-16 Continuous casting method of square billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09864397A JP3389449B2 (en) 1997-04-16 1997-04-16 Continuous casting method of square billet

Publications (2)

Publication Number Publication Date
JPH10286652A JPH10286652A (en) 1998-10-27
JP3389449B2 true JP3389449B2 (en) 2003-03-24

Family

ID=14225193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09864397A Expired - Fee Related JP3389449B2 (en) 1997-04-16 1997-04-16 Continuous casting method of square billet

Country Status (1)

Country Link
JP (1) JP3389449B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3175938A1 (en) * 2015-12-02 2017-06-07 KWS South Wales Limited Temperature controlled casting process
US10265765B2 (en) 2015-12-02 2019-04-23 Kws South Wales Limited Temperature controlled casting process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399233B1 (en) * 1998-12-21 2004-02-05 주식회사 포스코 Casting Monitoring Method of Billet Continuous Casting Machine
JP5896811B2 (en) 2012-04-02 2016-03-30 株式会社神戸製鋼所 Mold for continuous casting of ingot made of titanium or titanium alloy and continuous casting apparatus provided with the same
CN110243489B (en) * 2019-07-01 2020-09-11 西北工业大学 Device and method for measuring three-dimensional temperature field in solidification process of electromagnetic suspension melt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3175938A1 (en) * 2015-12-02 2017-06-07 KWS South Wales Limited Temperature controlled casting process
US10265765B2 (en) 2015-12-02 2019-04-23 Kws South Wales Limited Temperature controlled casting process

Also Published As

Publication number Publication date
JPH10286652A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US4493363A (en) Method at continuous casting of steels and metal alloys with segregation tendency and apparatus for carrying out the method
JP3389449B2 (en) Continuous casting method of square billet
US6315030B1 (en) High speed continuous casting device and relative method
JP2683157B2 (en) Method for continuously casting metal, especially steel, on bloom and billet slabs
EP2054178B1 (en) Crystalliser
JP2950152B2 (en) Continuous casting mold for slab
WO1999012675A1 (en) Continuous casting of metal slabs
RU2203158C2 (en) Pipe of mold for continuous casting of steels, namely peritectic steels and mold with such pipe
RU2060098C1 (en) Continuous-cast beam billet and process of manufacture of beam profile
JPS6234461B2 (en)
JP3179069B2 (en) Mold for continuous casting of steel
JPH0220645A (en) Mold for continuously casting steel
JPH026038A (en) Mold for continuously casting steel
JPH11156511A (en) Steel slab continuous casting method
JP3465578B2 (en) Method of manufacturing rectangular slab by continuous casting
JP3233745B2 (en) Continuous casting mold
JPH0631418A (en) Continuous casting method
JPH0994634A (en) Water cooling mold for continuous casting
JPH09225593A (en) Mold for continuously casting square billet
JP3100541B2 (en) Continuous casting method of round billet and mold used in the method
JPH09239496A (en) Mold for continuously casting square billet
JP2867894B2 (en) Continuous casting method
JPH03453A (en) Continuous casting mold for restraining corner crack in casting billet
JP3267545B2 (en) Continuous casting method
JPH09136145A (en) Method for working recessed parts on peripheral surface for continuously casting cast strip

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees