JPH10286652A - Method for continuously casting square billet and mold for continuous casting - Google Patents

Method for continuously casting square billet and mold for continuous casting

Info

Publication number
JPH10286652A
JPH10286652A JP9864397A JP9864397A JPH10286652A JP H10286652 A JPH10286652 A JP H10286652A JP 9864397 A JP9864397 A JP 9864397A JP 9864397 A JP9864397 A JP 9864397A JP H10286652 A JPH10286652 A JP H10286652A
Authority
JP
Japan
Prior art keywords
mold
continuous casting
casting
ratio
corner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9864397A
Other languages
Japanese (ja)
Other versions
JP3389449B2 (en
Inventor
Noriyuki Suzuki
規之 鈴木
Hiroshi Harada
寛 原田
Teruo Kawabata
輝夫 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09864397A priority Critical patent/JP3389449B2/en
Publication of JPH10286652A publication Critical patent/JPH10286652A/en
Application granted granted Critical
Publication of JP3389449B2 publication Critical patent/JP3389449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the development of deformation, crack, etc., of solidified shell and to improve the billet quality by setting the ratio of take-out heat flow speed of corner parts and side surface parts of a mold at a specific range and changing drawing-out speed and/or electromagnetic stirring flow speed according to the heat conductive ratio. SOLUTION: Electromotive forces generated in thermocouples 2 embedded at the side surface parts and the corner parts of the mold 1 existing in the same distance from the solidified starting point 5 of poured molten steel, are converted into mold temp. data with a converter and through an arithmetic device, the heat flow speed qf at the side surface part and the heat flow speed qc at the corner part are obtd. with qf =Kf ×(Tf -Tw ) and qc ×(Tc -Tw ), respectively. Wherein, Kf , Kc and Tf , Tc are overall coefficient of heat transfers and temps. of thermocouples at the side surface part and the corner parts, respectively. This permissible range of the take-out heat flow speed ratio is made 30-70% and when the ratio exceeds the range, the drawing-out speed is lowered and the flowing-in of powder is promoted or the electromagnetic stirring flow speed is reduced and the molten metal surface is raised, and thereby the uniformity of the solidification is recovered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、角型ビレットの連
続鋳造方法およびその連続鋳造用鋳型に関し、特に、中
炭素鋼の連続鋳造の際に発生する、ビレット断面内の不
均一凝固を防止する、角型ビレットの連続鋳造方法およ
びその連続鋳造用鋳型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for a square billet and a casting mold for the continuous casting, and more particularly, to prevent uneven solidification in a cross section of the billet which occurs during continuous casting of medium carbon steel. The present invention relates to a continuous casting method of a square billet and a continuous casting mold thereof.

【0002】[0002]

【従来の技術】従来の角型ビレットの連続鋳造において
は、ストランド断面内で、凝固の不均一が発生し、菱形
変形、凹み(デプレッション)、割れといった欠陥が発
生し易かった。特に、中炭素鋼の鋳造においては、鋳造
速度を上げるとこれらの欠陥が多発するため、鋳造速度
を上げることができず、生産性が低いという問題があっ
た。
2. Description of the Related Art In conventional continuous casting of rectangular billets, uneven solidification occurs in the cross section of a strand, and defects such as rhombic deformation, dents (depression), and cracks are likely to occur. In particular, in the casting of medium carbon steel, when the casting speed is increased, these defects occur frequently, so that there was a problem that the casting speed could not be increased and the productivity was low.

【0003】このため、凝固を均一化させる方法とし
て、例えば、連続鋳造用パウダーの粘度を下げて、鋳型
〜ストランド間のパウダー流入を促進する方法や、ある
いは、電磁力により溶融金属を鋳型内で撹拌する方法等
が、一般に用いられてきた。しかしながら、パウダーの
粘度を調節する方法では、断面内で、パウダー流入量の
分布を制御することが困難である。また、電磁力による
撹拌は、大がかりな装置が必要であり、また強撹拌を行
うと、メニスカス形状に不均一な盛り上がりが発生し、
凝固が不均一になる等の問題がある。
[0003] For this reason, as a method of making the solidification uniform, for example, a method of lowering the viscosity of the powder for continuous casting to promote powder inflow between the mold and the strand, or a method of electromagnetically applying molten metal in the mold. Stirring methods and the like have been generally used. However, in the method of adjusting the viscosity of the powder, it is difficult to control the distribution of the powder inflow in the cross section. In addition, agitation by electromagnetic force requires a large-scale device, and when strong agitation is performed, uneven swelling occurs in the meniscus shape,
There are problems such as uneven coagulation.

【0004】また、特公昭59−39220号公報に
は、鋳型の上部に多重テ−パ部を設け、凝固シェルの収
縮率に応じて、鋳型内溶湯レベルを変化させる方法が開
示されている。しかし、この方法では、溶湯の収縮形態
は、鋳造方向で、また断面内でも一様ではないため、適
切なテーパ形状を設定することは困難である。
[0004] Japanese Patent Publication No. 59-39220 discloses a method in which a multiple taper portion is provided on the upper portion of a mold to change the level of molten metal in the mold according to the shrinkage ratio of the solidified shell. However, in this method, since the shrinkage form of the molten metal is not uniform in the casting direction and in the cross section, it is difficult to set an appropriate tapered shape.

【0005】また、特開昭54−116330号公報に
は、断面の偏倚の度合により、鋳型後方の2次冷却にお
いて、ストランドの鈍角部及び鋭角部に所定の冷却を施
す方法が開示されている。
Japanese Patent Application Laid-Open No. 54-116330 discloses a method in which predetermined cooling is applied to the obtuse and acute angles of the strand in the secondary cooling behind the mold, depending on the degree of cross section deviation. .

【0006】しかしながら、鋳型の後方では、凝固シェ
ルが発達し表面温度が低下して剛性が高いため、冷却の
調整では断面形状を変化させることが困難であること、
また、凝固シェルがある程度厚くなった段階で断面の形
状を強制的に変形させると、凝固シェル内部に内部割れ
が発生し、品質上の問題となること、また2次冷却にお
いて、コーナー部のみ冷却を制御するためには大がかり
な装置が必要であり、設備コスト、ランニングコストが
増大することなどの問題がある。
However, since the solidified shell develops behind the mold, the surface temperature decreases, and the rigidity is high, it is difficult to change the cross-sectional shape by adjusting the cooling.
Also, if the cross-sectional shape is forcibly deformed when the solidified shell becomes thicker to some extent, internal cracks will occur inside the solidified shell, causing quality problems. In the secondary cooling, only the corners are cooled. Requires a large-scale device, and there is a problem that equipment costs and running costs increase.

【0007】また、特開平6−31401号公報には、
ビレツト入り側の鋳型開孔部断面形状と出側の断面形状
を異なるものとして、その間を連続的に変化させる方法
が開示されている。この方法では、鋳造速度や品種の異
なった条件で鋳造する場合に、適切な形状を予め一つに
決定することが困難であり、また複雑な鋳型形状のた
め、加工が困難で、設備コストが増大するという問題が
ある。
[0007] Japanese Patent Application Laid-Open No. 6-31401 discloses that
A method is disclosed in which the cross-sectional shape of the mold opening on the inlet side of the billet is different from the cross-sectional shape on the outlet side, and the space between them is continuously changed. With this method, it is difficult to determine an appropriate shape in advance when casting under conditions with different casting speeds and types, and because of the complicated mold shape, processing is difficult, and equipment costs are reduced. There is a problem of increasing.

【0008】これらいずれの方法も、大がかりな装置が
必要であり、また適切な条件を見出すことが困難である
ため、簡易な方法で、鋳型断面内の凝固を調整できる鋳
型の開発が望まれている。
In any of these methods, a large-scale apparatus is required, and it is difficult to find appropriate conditions. Therefore, it is desired to develop a mold capable of adjusting solidification in a cross section of the mold by a simple method. I have.

【0009】[0009]

【発明が解決しようとする課題】そこで、本発明は、角
型ビレットの連続鋳造において、鋳型内の冷却を適切に
することで、凝固シェルの変形、割れ等を防止できる、
角型ビレットの連続鋳造方法およびその連続鋳造用鋳型
を提供することを目的とするものである。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a method for continuously casting a square billet, which can prevent deformation and cracking of a solidified shell by appropriately cooling a mold.
An object of the present invention is to provide a continuous casting method of a square billet and a continuous casting mold thereof.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成する本
発明の要旨は、下記の通りである。
The gist of the present invention to achieve the above object is as follows.

【0011】(1)角型ビレットの連続鋳造方法におい
て、凝固開始点から鋳造方向への距離が等しい位置での
鋳型コーナー部の抜熱流束と鋳型面部の抜熱流束の割合
を特定の範囲とすることを特徴とする角型ビレットの連
続鋳造方法、(2)前記抜熱流束の割合を、コーナー部
の抜熱流束を面部の抜熱流束の30〜70%とすること
を特徴とする上記(1)に記載の角型ビレットの連続鋳
造方法、(3)コーナー部の抜熱流束と面部の抜熱流束
の割合に応じて、引き抜き速度および/または電磁撹拌
流速を変更させることを特徴とする上記(1)または
(2)に記載の角型ビレットの連続鋳造方法、(4)R
加工を施されたコーナー部を有する筒型断面の角型ビレ
ットの連続鋳造用鋳型において、コーナー部の肉厚を面
部の肉厚よりも厚くすることを特徴とする角型ビレット
の連続鋳造用鋳型、(5)角型ビレットの連続鋳造用鋳
型において、鋳型の面部の冷却水路側に、鋳造方向に複
数本の溝を有することを特徴とする角型ビレットの連続
鋳造用鋳型、(6)鋳型の面部の冷却水路側に、鋳造方
向に複数本の溝を有することを特徴とする上記(4)に
記載の角型ビレットの連続鋳造用鋳型、である。
(1) In the continuous casting method of a square billet, the ratio of the heat flux at the mold corner to the heat flux at the mold face at a position where the distance from the solidification start point to the casting direction is equal is defined as a specific range. (2) The method of (2), wherein the ratio of the heat removal flux is such that the heat removal flux at the corner portion is 30 to 70% of the heat removal flux at the surface portion. (1) The continuous casting method of a square billet according to (1), (3) the drawing speed and / or the electromagnetic stirring flow rate is changed according to the ratio of the heat flux at the corner portion and the heat flux at the face portion. The continuous casting method of a square billet according to the above (1) or (2), (4) R
In a continuous casting mold for a square-shaped billet having a cylindrical cross section having a processed corner portion, the thickness of the corner portion is made thicker than the thickness of the surface portion. (5) A continuous casting mold for a square billet, comprising: a plurality of grooves in the casting direction on a cooling water channel side of a surface portion of the square billet; The mold for continuous casting of a square billet according to the above (4), wherein a plurality of grooves are provided in a casting direction on a cooling water channel side of the surface portion.

【0012】[0012]

【発明の実施の形態】本発明は、角型ビレットの連続鋳
造における、コーナー部と面部の抜熱流束を適切に設定
することによって、凝固シェルの変形の極めて少ない、
高品質なビレットの連続鋳造が可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the continuous casting of a square billet, the present invention is capable of reducing the deformation of the solidified shell by appropriately setting the heat flux at the corner and the face.
Continuous casting of high-quality billets becomes possible.

【0013】図1に、本発明方法で用いる角型ビレット
の連続鋳造用鋳型を示す。先ず、図1(a)は、鋳型1
の縦断面を示す図であり、鋳型筒内に熱電対2が埋め込
まれており、溶融金属3は、鋳型1で冷却されて凝固シ
ェル4を形成させながら、連続的に引き抜かれる。ま
た、図1(b)は、図1(a)のA−A断面図であり、
この例においては、各面部中央、および各コーナー部に
熱電対2が埋め込まれており、凝固開始点5から等距離
にある面部とコーナー部の鋳型温度が同時に測定できる
ものである。
FIG. 1 shows a mold for continuous casting of a square billet used in the method of the present invention. First, FIG.
FIG. 3 is a view showing a vertical cross section of the mold, in which a thermocouple 2 is embedded in a mold cylinder, and a molten metal 3 is continuously drawn out while being cooled by the mold 1 to form a solidified shell 4. FIG. 1B is a cross-sectional view taken along the line AA of FIG.
In this example, thermocouples 2 are embedded at the center of each face and at each corner, and the mold temperatures of the face and the corner at the same distance from the solidification start point 5 can be measured simultaneously.

【0014】図2に、図1の鋳型を用いた本発明の角型
ビレットの連続鋳造方法を示す。凝固開始点5から等距
離にある鋳型1の面部とコーナー部に埋め込まれた、熱
電対2に発生する起電力を変換器7により、鋳型温度デ
ータに変換し、演算装置8により、面部熱流束qfおよ
びコーナー部熱流束qcを次式のように計算する。
FIG. 2 shows a method of continuously casting a square billet of the present invention using the mold of FIG. The electromotive force generated in the thermocouple 2 embedded in the face portion and the corner portion of the mold 1 equidistant from the solidification start point 5 is converted into mold temperature data by the converter 7, and the face heat flux is calculated by the arithmetic unit 8. qf and the heat flux qc at the corner are calculated as follows.

【0015】 qf=kf×(Tf−Tw) ・・・(1) qc=kc×(Tc−Tw) ・・・(2) ここで、kfおよびkcは予め、例えば、熱伝導計算に
より求めた、面部およびコーナー部の総括熱伝達係数
(W/m2 K)であり、TfおよびTcは、面部および
コーナー部に埋め込まれた熱電対の温度(K)であり、
Twは、冷却水温度(K)である。
Qf = kf × (Tf−Tw) (1) qc = kc × (Tc−Tw) (2) Here, kf and kc are obtained in advance by, for example, heat conduction calculation. , Tf and Tc are the temperatures (K) of thermocouples embedded in the face and corners, respectively, and the total heat transfer coefficient (W / m 2 K) of the face and corners,
Tw is the cooling water temperature (K).

【0016】ここで、凝固開始点5から等距離にある複
数の面部およびコーナー部に、熱電対2を埋め込んでも
よく、例えば、図1(b)に示すように、角型ビレット
鋳型の各面および各コーナー部で、測温した場合には、
各面の熱流束の最大値max(qf)および最小値mi
n(qf)、各コーナーの熱流束の最大値max(q
c)および最小値min(qc)を計算し、次に、熱流
束比(qc/qf)の最大値max、最小値minを、
次のように、計算する。
Here, thermocouples 2 may be embedded in a plurality of faces and corners equidistant from the solidification starting point 5, for example, as shown in FIG. 1B, each face of a square billet mold. And when the temperature is measured at each corner,
The maximum value max (qf) and the minimum value mi of the heat flux of each surface
n (qf), the maximum value of the heat flux at each corner max (q
c) and a minimum value min (qc) are calculated, and then the maximum value max and the minimum value min of the heat flux ratio (qc / qf) are calculated as follows:
Calculate as follows:

【0017】 max(qc/qf)=max(qc)/min(qf) ・・・(3) min(qc/qf)=min(qc)/max(qf) ・・・(4) 次に、計算された熱流束比が、許容最小値Cmin(=
0.3)と許容最大値Cmax(=0.7)の間にある
かどうかを判定し、許容範囲内にあれば、現状の操業条
件のまま鋳造を続行し、許容範囲を越えた場合には、引
き抜き速度を低下させパウダー流入を促進させるか、あ
るいは、電磁撹拌装置6を使用している場合には、電磁
攪拌流速を低減させて湯面の盛り上がりを低減させるこ
とにより、凝固の均一性を回復させる。
Max (qc / qf) = max (qc) / min (qf) (3) min (qc / qf) = min (qc) / max (qf) (4) The calculated heat flux ratio is equal to the allowable minimum value Cmin (=
0.3) and the allowable maximum value Cmax (= 0.7), and if it is within the allowable range, the casting is continued under the current operating conditions. The uniformity of coagulation can be reduced by reducing the drawing speed to promote powder inflow, or, when using the electromagnetic stirrer 6, by reducing the electromagnetic stirring flow rate to reduce the rise of the molten metal surface. To recover.

【0018】これらの操業条件変更は、単独で実施して
もよく、あるいは、これらを組み合わせて実施してもよ
い。ここで、熱流束比が許容最小値(0.3)より小さ
くなると、コーナー部の凝固が極端に遅れ、内部の割れ
や、凝固シェルが破れブレークアウトの危険性が急激に
増大する。また、逆に熱流束比が許容最大値(0.7)
よりも大きくなると、コーナー部の剛性が大きくなり、
面部の凹みや、菱形変形が発生する危険性が増大する。
These operating condition changes may be carried out alone or in combination. Here, when the heat flux ratio is smaller than the allowable minimum value (0.3), the solidification of the corner portion is extremely delayed, and the risk of internal cracking, breakage of the solidified shell and breakout sharply increases. Conversely, the heat flux ratio is the maximum allowable value (0.7).
If it becomes larger, the rigidity of the corner part will increase,
The risk of dents in the surface and rhombic deformation increases.

【0019】図3には、コーナー部にR加工を施した筒
型に成形された、角型ビレットの連続鋳造用鋳型1の、
コーナー部の肉厚を面部の肉厚よりも厚くした、本発明
の鋳型の断面図を示す。ここで、面部の板厚をt1、コ
ーナー部の板厚をt2、内半径をRとすると、t2は、
次のような範囲にするのが望ましい。
FIG. 3 shows a mold 1 for continuous casting of a square billet, which is formed into a cylindrical shape having a rounded corner.
FIG. 3 shows a cross-sectional view of the mold of the present invention in which the thickness of the corner portion is larger than the thickness of the surface portion. Here, assuming that the thickness of the surface portion is t1, the thickness of the corner portion is t2, and the inner radius is R, t2 is:
It is desirable to set the following range.

【0020】 √2×t1≦t2≦(√2−1)R+√2×t1 ・・・(5) 図4には、面部の冷却水路側に、鋳造方向に複数本の溝
加工を施した、本発明の角型ビレットの連続鋳造用鋳型
1の断面図を示す。ここで、溝9の深さd、溝の幅w、
溝の周期Lとすれば、鋳型の強度から、d<0.5×t
1とするのが望ましく、鋳型内面の温度を均一にするた
めに、L<w+t1−dとするのが望ましい。
√2 × t1 ≦ t2 ≦ (√2-1) R + √2 × t1 (5) In FIG. 4, a plurality of grooves are formed on the cooling water channel side of the surface in the casting direction. 1 shows a sectional view of a continuous casting mold 1 for a square billet according to the present invention. Here, the depth d of the groove 9, the width w of the groove,
Assuming that the groove period is L, d <0.5 × t
It is desirable to set L <w + t1-d to make the temperature of the inner surface of the mold uniform.

【0021】[0021]

【実施例】次に、本発明の角型ビレットの連続鋳造方法
およびCu製の連続鋳造用鋳型を用いて、中炭素鋼の連
続鋳造を実施した例について説明する。鋳造条件は、次
の通りである。
Next, a description will be given of an example of continuous casting of medium carbon steel using the continuous casting method for a square billet of the present invention and a continuous casting mold made of Cu. The casting conditions are as follows.

【0022】 ・鋳片寸法:180×180mm断面、コーナーR=1
0mm ・鋳型肉厚:10mm(面部、コーナー共同一) ・鋼種:中炭素鋼([C]=0.1wt%) 図5および図6には、各種鋳造条件、すなわち鋳造速
度、電磁撹拌装置のコイル電流を変化させた場合の、熱
流束比と割れ、ブレークアウト、凹み、および菱形変形
(鋳片断面が菱形に変形)の発生回数を示す。
・ Slab size: 180 × 180 mm cross section, corner R = 1
0 mm ・ Mold thickness: 10 mm (one face and one corner) ・ Steel type: medium carbon steel ([C] = 0.1 wt%) FIGS. 5 and 6 show various casting conditions, that is, casting speed and electromagnetic stirring device. The figure shows the heat flux ratio and the number of occurrences of cracks, breakouts, dents, and rhombic deformation (the slab cross section deformed into a rhombic shape) when the coil current was changed.

【0023】図5に示すように、熱流束比が0.3より
低下すると割れやブレークアウトの発生が増加し、図6
に示すように、熱流束比が0.7より増加すると、凹み
や菱形変形の発生が増大している。熱流束比を0.3以
上、0.7以下に維持することで、欠陥の無い高品質な
鋳片の製造が可能である。
As shown in FIG. 5, when the heat flux ratio falls below 0.3, the occurrence of cracks and breakouts increases.
As shown in the figure, when the heat flux ratio is increased from 0.7, the occurrence of dents and rhombic deformation increases. By maintaining the heat flux ratio at 0.3 or more and 0.7 or less, it is possible to manufacture a high-quality slab without defects.

【0024】次に、本発明の連続鋳造用鋳型を用いて鋳
造した場合の実施例を示す。前述した、鋳片条件の中
で、以下の項目を変更した。 本発明例1:コーナー部鋳型肉厚=14.1mm(鋳型
外面コーナーR=10mm)。 本発明例2:面部のみ冷却溝加工(鋳型全長、幅方向1
42mmにわたり、幅2.0mm、深さ3.0mm、溝
底R=1.0mm、ピッチ4.0mmの溝を各面、36
本/面加工)。
Next, an embodiment in which casting is performed using the continuous casting mold of the present invention will be described. The following items were changed in the slab conditions described above. Inventive Example 1: Corner mold thickness = 14.1 mm (mold outer surface corner R = 10 mm). Invention Example 2: Processing of cooling grooves only on the surface (full length of mold, width direction 1)
A groove having a width of 2.0 mm, a depth of 3.0 mm, a groove bottom R of 1.0 mm, and a pitch of 4.0 mm was formed on each surface over 42 mm.
Book / surface processing).

【0025】図7には、本発明の鋳型を用いて鋳造した
際の、平均鋳造速度(同鋼種1カ月平均)を示す。従来
の鋳型では、前述した熱流束比が特定範囲を越えた場合
に、鋳造速度を低下させて、適切な熱流束比になるよう
操業していた。それに対して、本発明の鋳型を用いて鋳
造した場合には、熱流束比が特定範囲を越えることが、
大幅に減少したため、鋳造速度を落とすことなく製造が
可能となった。
FIG. 7 shows the average casting speed (one month average of the same steel type) when casting was performed using the mold of the present invention. In a conventional mold, when the above-mentioned heat flux ratio exceeds a specific range, the casting speed is reduced to operate so as to obtain an appropriate heat flux ratio. In contrast, when casting using the mold of the present invention, the heat flux ratio may exceed a specific range,
The drastic reduction has made it possible to manufacture without reducing the casting speed.

【0026】図8には、本発明の鋳型を用いて鋳造した
際の、鋳片の表面介在物個数を調べた結果を示す。従来
の鋳型では、前述した熱流束比が特定範囲を越えた場合
に、電磁撹拌を低減させることで、適切な熱流束比にな
るよう操業していたため、表面介在物が多く、品質上問
題となっていた。それに対して、本発明の鋳型を用いて
鋳造した場合には、熱流束比が特定範囲を越えることが
大幅に減少したため、電磁撹拌を低減させることなく鋳
造が可能となり、介在物は大幅に低減した。
FIG. 8 shows the results of examining the number of surface inclusions in the slab when casting was performed using the mold of the present invention. In the conventional mold, when the above-mentioned heat flux ratio exceeds a specific range, the electromagnetic stirring is reduced so that the operation is performed to obtain an appropriate heat flux ratio, so there are many surface inclusions, and there is a problem in quality. Had become. In contrast, when casting was performed using the mold of the present invention, since the heat flux ratio greatly decreased beyond the specified range, casting was possible without reducing electromagnetic stirring, and inclusions were significantly reduced. did.

【0027】[0027]

【発明の効果】以上詳述したように、本発明によれば、
角形ビレットの連続鋳造における、鋳片の割れ、ブレー
クアウト、凹みや変形を防止することを可能となるた
め、鋳造速度低下を防止し、生産性の向上が可能とな
り、また電磁撹拌電流の低減を防止し、品質の向上が期
待できる。
As described in detail above, according to the present invention,
In the continuous casting of square billets, it is possible to prevent cracks, breakouts, dents and deformation of the slab, thereby preventing a reduction in casting speed, improving productivity, and reducing electromagnetic stirring current. Prevention and quality improvement can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明方法の実施例に係わる角形ビレットの
連続鋳造用鋳型の断面図であり、a)は縦断面図、
(b)は横断面図(A−A断面)である。
FIG. 1 is a cross-sectional view of a continuous casting mold for a rectangular billet according to an embodiment of the method of the present invention, wherein a) is a longitudinal cross-sectional view,
(B) is a transverse sectional view (AA section).

【図2】本発明の実施例に係わる角形ビレットの連続鋳
造方法を示す概念図である。
FIG. 2 is a conceptual diagram showing a method for continuously casting a square billet according to an embodiment of the present invention.

【図3】本発明の実施例に係わる角形ビレットの連続鋳
造用鋳型の横断面図である。
FIG. 3 is a cross-sectional view of a mold for continuous casting of a square billet according to an embodiment of the present invention.

【図4】本発明の他の実施例に係わる角形ビレットの連
続鋳造用鋳型の横断面図である。
FIG. 4 is a cross-sectional view of a square billet continuous casting mold according to another embodiment of the present invention.

【図5】本実施例における熱流束比と割れとブレークア
ウトの発生回数との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a heat flux ratio and the number of occurrences of cracks and breakouts in the present embodiment.

【図6】本実施例における熱流束比と凹みと菱形変形の
発生回数との関係を示す図である。
FIG. 6 is a diagram showing a relationship between a heat flux ratio, a dent, and the number of occurrences of rhombic deformation in the present embodiment.

【図7】本発明の鋳型と従来技術の鋳型での平均鋳造速
度の比較の例を示す図である。
FIG. 7 is a diagram showing an example of comparison of the average casting speed between the mold of the present invention and the mold of the prior art.

【図8】本発明の鋳型と従来技術の鋳型での介在物個数
の比較の例を示す図である。
FIG. 8 is a diagram showing an example of comparison of the number of inclusions between the mold of the present invention and the mold of the prior art.

【符号の説明】[Explanation of symbols]

1 鋳型 2 熱電対 3 溶融金属 4 凝固シェル 5 メニスカス(凝固開始点) 6 電磁撹拌コイル 7 変換器 8 演算装置 9 溝 DESCRIPTION OF SYMBOLS 1 Mold 2 Thermocouple 3 Molten metal 4 Solidified shell 5 Meniscus (solidification starting point) 6 Electromagnetic stirring coil 7 Converter 8 Arithmetic unit 9 Groove

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 角型ビレットの連続鋳造方法において、
凝固開始点から鋳造方向への距離が等しい位置での鋳型
コーナー部の抜熱流束と鋳型面部の抜熱流束の割合を特
定の範囲とすることを特徴とする角型ビレットの連続鋳
造方法。
In a continuous casting method of a square billet,
A continuous casting method of a square billet, wherein a ratio of a heat flux at a mold corner portion and a heat flux at a mold surface portion at a position where a distance from a solidification start point to a casting direction is equal is within a specific range.
【請求項2】 前記抜熱流束の割合を、コーナー部の抜
熱流束を面部の抜熱流束の30〜70%とすることを特
徴とする請求項1に記載の角型ビレットの連続鋳造方
法。
2. The continuous casting method of a square billet according to claim 1, wherein the ratio of the heat removal flux is such that the heat removal flux at the corner portion is 30 to 70% of the heat removal flux at the face portion. .
【請求項3】 コーナー部の抜熱流束と面部の抜熱流束
の割合に応じて、引き抜き速度および/または電磁撹拌
流速を変更させることを特徴とする請求項1または請求
項2に記載の角型ビレットの連続鋳造方法。
3. The corner according to claim 1, wherein the drawing speed and / or the electromagnetic stirring flow rate is changed in accordance with the ratio of the heat flux at the corner portion and the heat flux at the face portion. Continuous casting method for die billets.
【請求項4】 R加工を施されたコーナー部を有する筒
型断面の角型ビレットの連続鋳造用鋳型において、コー
ナー部の肉厚を面部の肉厚よりも厚くすることを特徴と
する角型ビレットの連続鋳造用鋳型。
4. A continuous casting mold for a square-shaped billet having a cylindrical section having a rounded corner portion, wherein the corner portion has a greater thickness than the surface portion. A mold for continuous casting of billets.
【請求項5】 角型ビレットの連続鋳造用鋳型におい
て、鋳型の面部の冷却水路側に、鋳造方向に複数本の溝
を有することを特徴とする角型ビレットの連続鋳造用鋳
型。
5. A continuous casting mold for a square billet, comprising: a plurality of grooves in a casting direction on a cooling water channel side of a surface of the casting mold.
【請求項6】 鋳型の面部の冷却水路側に、鋳造方向に
複数本の溝を有することを特徴とする請求項4に記載の
角型ビレットの連続鋳造用鋳型。
6. The mold for continuous casting of a rectangular billet according to claim 4, wherein a plurality of grooves are provided in a casting direction on a cooling water channel side of a surface portion of the mold.
JP09864397A 1997-04-16 1997-04-16 Continuous casting method of square billet Expired - Fee Related JP3389449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09864397A JP3389449B2 (en) 1997-04-16 1997-04-16 Continuous casting method of square billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09864397A JP3389449B2 (en) 1997-04-16 1997-04-16 Continuous casting method of square billet

Publications (2)

Publication Number Publication Date
JPH10286652A true JPH10286652A (en) 1998-10-27
JP3389449B2 JP3389449B2 (en) 2003-03-24

Family

ID=14225193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09864397A Expired - Fee Related JP3389449B2 (en) 1997-04-16 1997-04-16 Continuous casting method of square billet

Country Status (1)

Country Link
JP (1) JP3389449B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399233B1 (en) * 1998-12-21 2004-02-05 주식회사 포스코 Casting Monitoring Method of Billet Continuous Casting Machine
WO2013151061A1 (en) * 2012-04-02 2013-10-10 株式会社神戸製鋼所 Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with same
CN110243489A (en) * 2019-07-01 2019-09-17 西北工业大学 A kind of electromagnetic suspension melt process of setting three-dimensional temperature field measurement device and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3175938B1 (en) * 2015-12-02 2020-09-30 KWS South Wales Limited Temperature controlled casting process
GB2531663B (en) 2015-12-02 2017-02-08 Kws South Wales Ltd Temperature controlled casting process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399233B1 (en) * 1998-12-21 2004-02-05 주식회사 포스코 Casting Monitoring Method of Billet Continuous Casting Machine
WO2013151061A1 (en) * 2012-04-02 2013-10-10 株式会社神戸製鋼所 Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with same
CN104185519A (en) * 2012-04-02 2014-12-03 株式会社神户制钢所 Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with same
US9156081B2 (en) 2012-04-02 2015-10-13 Kobe Steel, Ltd. Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with same
CN110243489A (en) * 2019-07-01 2019-09-17 西北工业大学 A kind of electromagnetic suspension melt process of setting three-dimensional temperature field measurement device and method
CN110243489B (en) * 2019-07-01 2020-09-11 西北工业大学 Device and method for measuring three-dimensional temperature field in solidification process of electromagnetic suspension melt

Also Published As

Publication number Publication date
JP3389449B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
JP2008525199A (en) Continuous cast steel equipment for billet and bloom shapes
US4493363A (en) Method at continuous casting of steels and metal alloys with segregation tendency and apparatus for carrying out the method
US6315030B1 (en) High speed continuous casting device and relative method
JP2814958B2 (en) Continuous casting method
US6367539B1 (en) Crystalliser for continuous casting
JP3389449B2 (en) Continuous casting method of square billet
JP2683157B2 (en) Method for continuously casting metal, especially steel, on bloom and billet slabs
US6112805A (en) Continuous casting mold for billet
US6474401B1 (en) Continuous casting mold
RU2320453C2 (en) Mold for continuous casting of melt metals such as steels at high casting rate for producing polygonal bars, rough billets and billets desigtned for rolling in blooming mill
WO2008017711A1 (en) Crystalliser
JP6947192B2 (en) Mold for continuous casting of steel and continuous casting method of steel
JP2950152B2 (en) Continuous casting mold for slab
US20010017199A1 (en) Continuous casting mold and processes for making and retrofitting
JP3320040B2 (en) Continuous casting mold
JPH0220645A (en) Mold for continuously casting steel
JPH026038A (en) Mold for continuously casting steel
RU2800555C1 (en) Mould for continuous casting of a metal product and corresponding casting method
JPH0631418A (en) Continuous casting method
JP2000079445A (en) Mold for continuously casting steel
JP3465578B2 (en) Method of manufacturing rectangular slab by continuous casting
JP3100541B2 (en) Continuous casting method of round billet and mold used in the method
JPH09225593A (en) Mold for continuously casting square billet
SU1242295A1 (en) Method of cooling ingot on curvilinear continuous casting machine
JP3412670B2 (en) Method of setting rolling gradient in continuous casting and continuous casting method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees