JPH03453A - Continuous casting mold for restraining corner crack in casting billet - Google Patents

Continuous casting mold for restraining corner crack in casting billet

Info

Publication number
JPH03453A
JPH03453A JP13424589A JP13424589A JPH03453A JP H03453 A JPH03453 A JP H03453A JP 13424589 A JP13424589 A JP 13424589A JP 13424589 A JP13424589 A JP 13424589A JP H03453 A JPH03453 A JP H03453A
Authority
JP
Japan
Prior art keywords
mold
copper
long side
casting
side mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13424589A
Other languages
Japanese (ja)
Other versions
JPH0673718B2 (en
Inventor
Shozo Shima
省三 嶋
Yukio Nakamura
中村 勇気男
Yasuhiko Kinoshita
康彦 木下
Yasuro Hisayoshi
久芳 康郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Nippon Steel Corp
Original Assignee
Mishima Kosan Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd, Nippon Steel Corp filed Critical Mishima Kosan Co Ltd
Priority to JP1134245A priority Critical patent/JPH0673718B2/en
Publication of JPH03453A publication Critical patent/JPH03453A/en
Publication of JPH0673718B2 publication Critical patent/JPH0673718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce surface temp. difference between a major side mold and a minor side mold and to prevent vertically cracking fault in a casting billet by reducing the depths of slitting grooves on the major side copper plate in the mold for casting carbon steel bloom toward the corner part sequentially. CONSTITUTION:By burying stainless steel square material 3 into the slitting grooves 2 for cooling on the major side mold 1 in the copper or copper alloy- made mold for casting the carbon steel bloom, the depths of the grooves 2 are reduced toward the corner part sequentially to make the mold having the little difference of the surface temps. between the major side mold 1 and the major side mold. By this method, the development of solidified shell is uniformly executed at the major side mold and the minor side mold, and the casting billet fault is prevented.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は鋳片のコーナー割れを抑止する連続鋳造用鋳型
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a continuous casting mold that suppresses corner cracks in slabs.

〈従来の技術〉 ブルーム鋳造用鋳型は、鋳型の横断面の幾何学的寸法か
ら長片側が強冷却となり短辺側は暖冷却となるためコー
ナー最寄りの鋳型表面で長辺側と短片側で温度差を生じ
、それにより溶鋼のメニスカス温度にも同様に温度差が
生じるため、製品であるブルーム鋳片のコーナー寄りに
縦割れ欠陥が生じやすい。
<Conventional technology> Due to the geometrical dimensions of the cross section of the bloom casting mold, the long side is strongly cooled and the short side is warmly cooled, so that the temperature on the long side and short side is evenly distributed on the mold surface closest to the corner. As a result, a temperature difference also occurs in the meniscus temperature of the molten steel, so vertical cracking defects are likely to occur near the corners of the bloom slab, which is the product.

これは大形ブルームになればなる程上記欠陥が生じやす
く、又中皮鋼を包晶反応領域で鋳造する際にその欠陥が
発生しやすくなる。
The larger the bloom, the more likely these defects will occur, and the more likely these defects will occur when medium-skinned steel is cast in the peritectic reaction region.

更に詳しく述べると、鋼中炭素が0.15〜0.18%
の鋼種は鋳型内での収縮が大きく、鋳型壁での抜熱がな
されにくく且つ包晶反応を供うために極めて割れが生じ
やすい。又凝固時の収縮、復熱の繰り返しにより凝固完
了後のシェル内でオーステナイト粒の成長が起こり非常
に割れ易いことが一般に知られている。
To explain in more detail, carbon in steel is 0.15 to 0.18%.
The steel type has a large shrinkage within the mold, is difficult to remove heat from the mold wall, and is extremely prone to cracking due to the peritectic reaction. It is also generally known that repeated shrinkage and recuperation during solidification causes austenite grains to grow within the shell after solidification, making it extremely susceptible to cracking.

長辺側の強冷却を緩和する手段としては、特開昭61−
180649号公報に示される鋳型の長辺の内面にのみ
多数のスリット溝を施す方策や、特開昭61−9275
6号公報に示される長辺並びに短辺とも内面に溝を入れ
ることにより緩冷却を行う方策や、更には特公昭57−
11735号公報に示される鋳型の全面もしくは一部に
多数個の凹部を施し凹部の形状は数種が提示されている
方策がある。
As a means for alleviating strong cooling on the long side, there is
The method of forming a large number of slit grooves only on the inner surface of the long side of the mold as shown in Japanese Patent Publication No. 180649, and the method disclosed in Japanese Patent Application Laid-Open No. 61-9275
The method of slow cooling by making grooves on the inner surface of both the long and short sides as shown in Publication No. 6, and also the method of
There is a method shown in Japanese Patent No. 11735 in which a large number of recesses are formed on the entire surface or a part of a mold, and several shapes of recesses are proposed.

しかるに上記特開昭61−180649号公報、特開昭
61−92756号公報、特公昭57−11735号公
報のいずれの技術もこれらの公報にも示されている様に
溝や凹部の深さは数μmから数100μmでないと溶鋼
の引込みを生じるため極めて浅いものとなっており、溶
鋼の凝固したシェルでの摩耗に長期的に耐えられるもの
ではな〈産業上実用的でないのが現状であり実際的には
鋳型内表面は平坦なものが使用されている。
However, as shown in these publications, the depth of the grooves and recesses is If it is less than several micrometers to several hundred micrometers, the molten steel will be pulled in, making it extremely shallow, and it will not be able to withstand long-term wear from the solidified shell of the molten steel. Typically, a mold with a flat inner surface is used.

〈発明が解決しようとする課題〉 本発明者は従来仕様の連続鋳造鋳型の二次元熱解析を行
った結果、長辺と短辺の最寄りのコーナー部に於いて、
長辺側と短辺側で著しい温度差を生じていることを見出
した。
<Problems to be Solved by the Invention> As a result of two-dimensional thermal analysis of a conventional continuous casting mold, the inventor found that at the corners closest to the long side and short side,
It was discovered that there was a significant temperature difference between the long side and the short side.

第1図にその解析結果を示すが、図中aは従来仕様鋳型
の長辺表面温度、bは従来仕様鋳型の短辺表面温度であ
り、コーナー部での温度は長辺側は151°Cであり短
辺側は270’Cとなっている。即ち長辺側は著しく強
冷却になっており、短辺側は甚しく緩冷却であり、両者
間の温度差は119°Cと大きく均衡が失われている。
Figure 1 shows the analysis results. In the figure, a is the long side surface temperature of the conventional specification mold, b is the short side surface temperature of the conventional specification mold, and the temperature at the corner is 151°C on the long side. The short side is 270'C. That is, the long side is cooled extremely strongly, the short side is cooled extremely slowly, and the temperature difference between the two is 119°C, which is a large loss of balance.

又炭素成分が包晶反応域にある鋳片のカットサンプルか
らエツジプリントを採取したところ上、記温度差で最も
凝固の遅れる短辺コーナー寄り15IIIIlの位置で
は粒の成長が確認された、尚鋳片コーナーの縦割れはこ
の部分に集中して発生している知見を得た。
In addition, when edge prints were taken from a cut sample of a slab in which the carbon component was in the peritectic reaction zone, grain growth was confirmed at the short side corner position 15III1, where solidification is slowest due to the above temperature difference. It was found that vertical cracks at one corner were concentrated in this area.

これらの解析並びに観察から鋳片コーナーの縦割れの発
生を詳述する。コーナー部短辺では緩冷却のため凝固は
著しく遅れる。逆に長辺側では強冷却になっている為凝
固は、先行するこの為短辺のコーナー寄り部の凝固遅れ
シェルは引っ張り応力を受は鋳型壁面から離れ、鋳型と
の間に空隙を生じ、この空隙に溶融パウダーが流入し局
部的凝固遅れが更に進行していく。鋳片は鋳型下端を抜
けた位置で多量の鋳片冷却水と接することにより急速に
収縮が生じその収縮反応で凝固遅れの部位に縦割れを生
じる。この現象は前述の如く凝固収縮の大きい中炭鋼種
で顕著に生じるもので、高次鋼種、低臭鋼種では顕著な
ものとはならない。更に冬期の冷却水温度が降下する場
合に多発し、給水温度が26°C以下になると極めて生
じ易くなる。
Based on these analyzes and observations, the occurrence of vertical cracks in slab corners will be explained in detail. On the short sides of the corners, solidification is significantly delayed due to slow cooling. On the other hand, since the long side is strongly cooled, solidification occurs first, so the solidification slow shell near the corner of the short side receives tensile stress and separates from the mold wall, creating a gap between it and the mold. Molten powder flows into this gap, and the local solidification delay further progresses. When the slab comes into contact with a large amount of cooling water at the position where it passes through the lower end of the mold, it rapidly shrinks, and the shrinkage reaction causes vertical cracks in areas where solidification is delayed. As mentioned above, this phenomenon occurs noticeably in medium-coal steel grades with large solidification shrinkage, but is not noticeable in high-order steel grades and low-odor steel grades. Furthermore, it occurs frequently when the cooling water temperature drops in winter, and is extremely likely to occur when the water supply temperature falls below 26°C.

本発明はこの様な従来法の欠点を解消し、コーナー割れ
を抑止する連続鋳造用鋳型を提供することを目的とする
ものである。
It is an object of the present invention to provide a continuous casting mold that eliminates the drawbacks of the conventional method and suppresses corner cracks.

〈課題を解決する為の手段〉 上述の従来法の問題点を解消する為、本発明では次の如
き手段を採用した。即ち鋳型の長辺側冷却用のスリット
溝の深さをコーナー部に向けて順次浅くすることで長辺
側鋳型の表面温度と短辺側表面温度の差が少ない鋳型と
なり、鋳片のコーナー割れを抑止することが出来る。又
長辺銅板のスリット溝に銅又は銅合金より熱伝導の低い
例えば5US304材を溝底に施し溝の深さをコーナー
部に向けて順次浅くすることでも同様の効果を有する鋳
型となる。又長辺銅板のスリット溝の巾をコーナー部に
向けて順次巾小とした鋳型でも同様な効果を有する鋳型
となる。更には長辺銅板のスリット溝の隔たりをコーナ
ー部に向けて順次遠くした鋳型でも同様な効果を有する
鋳型となる。
<Means for Solving the Problems> In order to solve the problems of the above-mentioned conventional method, the present invention employs the following means. In other words, by gradually decreasing the depth of the cooling slit grooves on the long side of the mold toward the corners, the mold has a small difference in surface temperature between the long side mold surface and the short side surface temperature, which prevents corner cracks in the slab. can be suppressed. Furthermore, a mold having the same effect can be obtained by applying a material such as 5US304, which has lower thermal conductivity than copper or copper alloy, to the bottom of the slit groove of the long-side copper plate and gradually decreasing the depth of the groove toward the corner. A mold having the same effect can also be obtained by making the width of the slit groove of the long side copper plate gradually smaller toward the corner. Furthermore, a mold in which the distance between the slit grooves of the long-side copper plate is gradually increased toward the corner portion can also be used to obtain a mold having the same effect.

〈実施例〉 以下本発明にその実施例及び比較例を示しながら詳述す
る。第2図は本発明の一例の長辺横断図であり、長辺銅
板の最コーナー寄りスリット溝に巾511IffI、高
さ16胴の5US304の角材を埋込み溝の有効深さを
9mmとし、当該溝に隣接するスリット溝に巾5M、高
さ5薗のSUSの角材を埋込み溝の有効深さを20刷と
したものである。第3図は本発明の実施例即ち第2図と
対にした短辺の図である。第4図は従来形の長辺。第5
図は第4図と対になる短辺の図である。
<Examples> The present invention will be described in detail below with reference to Examples and Comparative Examples. Fig. 2 is a long side cross-sectional view of an example of the present invention, in which a square piece of 5US304 with a width of 511IffI and a height of 16 mm is embedded in the slit groove closest to the corner of the long side copper plate, and the effective depth of the groove is 9 mm. An SUS square piece with a width of 5M and a height of 5 meters was placed in the slit groove adjacent to the groove, making the effective depth of the groove 20 mm. FIG. 3 is an embodiment of the present invention, that is, a short side view paired with FIG. 2. Figure 4 shows the long side of the conventional model. Fifth
The figure is a view of the short side that is the opposite of FIG. 4.

第4図の長辺と第5図の短辺を組合わせた連続鋳造用鋳
型の鋳型表面温度分布は前述の如く第1図のa、bであ
る。本発明の実施例、即ち第2図の長辺と第3図の短辺
から構成する鋳型の表面温度の二次元熱解析結果を第1
図中に併記するが、Cが長辺表面温度、dが短辺表面温
度であり、従来法に比ベコーナー部での温度は長辺側は
191°Cでり、短辺側は245°Cとなっており長辺
側と短辺側の温度差は54°Cと大巾に改善されたもの
となっている。これは長辺側と短辺側の温度差を少なく
した鋳片のコーナー割れを抑止する用途に合った鋳型で
ある。
As described above, the mold surface temperature distribution of a continuous casting mold that combines the long side in FIG. 4 and the short side in FIG. 5 is as shown in a and b in FIG. 1. The results of two-dimensional thermal analysis of the surface temperature of the mold according to the embodiment of the present invention, that is, the long side of FIG. 2 and the short side of FIG.
Also shown in the figure, C is the long side surface temperature and d is the short side surface temperature.Compared to the conventional method, the temperature at the corner part is 191°C on the long side and 245°C on the short side. C, and the temperature difference between the long side and the short side is 54°C, which has been greatly improved. This mold is suitable for suppressing corner cracks in slabs by reducing the temperature difference between the long side and the short side.

尚、第1図に示す二次元熱解析の条件は従来型、本発明
の1例ともに、鋳辺引き抜き速度0.8m/min、冷
却水量は長辺側800 f 7面・分;短辺側500 
f 7面・分、冷却水温度40“Cである。
The conditions for the two-dimensional thermal analysis shown in Fig. 1 are: for both the conventional type and the example of the present invention, the mold side pull-out speed is 0.8 m/min, the amount of cooling water is 800 f/min on the long side; 500
f 7 sides/min, cooling water temperature 40"C.

スリット溝は従来型の長辺側が巾5 mmで深さ25m
の溝が16列であり短辺側が巾5 mmで深さ25mm
の溝が12列であり、本発明の1例は長辺側が巾5胴で
深さはコーナー最寄りの溝が9 mで当該溝の鋳型表面
側に巾511Ilで高さ16mmの一3US304の角
材を施し当該溝に隣接する溝は巾51Wlで深さ20!
+l[11で更に鋳型表面側に巾5 mmで高さ5ff
IIllの5LJS304の角材を埋設しその他の溝は
巾5 mmで深さ25IIIIIIのものであり合わせ
て16列で短辺側が中5鵬で深さ25mmの溝が12列
である。
The conventional slit groove has a width of 5 mm on the long side and a depth of 25 m.
There are 16 rows of grooves, and the short side is 5 mm wide and 25 mm deep.
In one example of the present invention, the long side has a width of 5 mm, the groove closest to the corner is 9 m deep, and a square piece of US304 with a width of 511 Il and a height of 16 mm is placed on the mold surface side of the groove. The groove adjacent to this groove has a width of 51 Wl and a depth of 20!
+l[11, further add width 5mm and height 5ff on the mold surface side
The other grooves are 5 mm wide and 25 mm deep, with a total of 16 rows, and the short side has 12 rows of 25 mm deep grooves.

尚これら従来型と本発明の1例の両鍔型により下表に示
す成分素2鋼種で比較鋳造を行った結果を第6図に示す
FIG. 6 shows the results of comparative casting of two types of steels shown in the table below using both the conventional type and one example of the present invention.

第6図から判る通り、従来型でのコーナー割れ発生率は
A、B鋼種の平均で77.5%であり、本発明の1例で
のそれは5%と十分な効果を発現していることを確認し
た。
As can be seen from Fig. 6, the corner crack occurrence rate in the conventional type is 77.5% on average for steel types A and B, and in one example of the present invention, it is 5%, which is a sufficient effect. It was confirmed.

〈発明の効果〉 以上述べて如く、長辺側の冷却用スリット溝をコーナー
部に向けて順次冷却能を緩和することにより短辺側との
冷却能との差を極力少なくすることで当該鋳型と接する
溶鋼の長辺側と短辺側との温度差を少なくすることによ
り凝固シェル生成が長辺側と短辺側で出来るだけ均衡に
行われるという特徴を持った連続鋳造用鋳型を提供する
ものであり、鋳片欠陥を生じない用途に合ったものであ
る。
<Effects of the Invention> As described above, by gradually relaxing the cooling capacity of the cooling slit grooves on the long sides toward the corners, the difference in cooling capacity between the cooling slits on the long sides and the short sides is minimized. To provide a continuous casting mold having the feature that solidification shell formation is performed as evenly as possible on the long side and short side by reducing the temperature difference between the long side and the short side of molten steel in contact with the molten steel. It is suitable for applications that do not cause slab defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法と本発明の1例の二次元熱解析による鋳
型表面の温度分布図、第2図は本発明の実施例を示す長
辺横断面の説明図、第3図は本発明の長辺と対となる短
辺の横断面の説明図、第4図は従来型の長辺の横断面の
説明図、第5図は第4図の長辺となす短辺の横断面の説
明図、第6図は従来型と本発明の1例で比較鋳造した鋳
辺のコーナー割れ発生率を比較したグラフである。第7
図、第8図、第9図は本発明の詳細な説明図である。 図   中   a : b : 従来型鋳型の長辺の表面温度 従来型鋳型の短辺の表面温度 本発明の1例の長辺の表面温度 本発明の1例の短辺の表面温度 長辺鋳型 長辺鋳型の冷却用スリット溝 冷却用スリット溝内に施した 角材 4:短辺鋳型 5:短辺鋳型の冷却用スリット溝 コーナーからの脂層(mm) 悌2図 第3図 執40 発、80 p<q(r 第9図 X>y>z 第5図 手続ネ甫正8(方式)
Figure 1 is a temperature distribution diagram of the mold surface obtained by two-dimensional thermal analysis of a conventional method and an example of the present invention, Figure 2 is an explanatory diagram of a long side cross section showing an example of the present invention, and Figure 3 is an illustration of the present invention. Figure 4 is an explanatory diagram of the cross section of the long side of the conventional type, and Figure 5 is an explanatory diagram of the cross section of the short side that is paired with the long side of Figure 4. The explanatory diagram, FIG. 6, is a graph comparing the incidence of corner cracks in the cast sides of the conventional type and one example of the present invention. 7th
8 and 9 are detailed explanatory diagrams of the present invention. In the figure, a: b: Surface temperature of the long side of the conventional mold Surface temperature of the short side of the conventional mold Surface temperature of the long side of an example of the present invention Surface temperature of the short side of an example of the present invention Long side mold length Cooling slit groove of side mold Square bar 4 inside cooling slit groove: Short side mold 5: Fat layer from corner of cooling slit groove of short side mold (mm) Figure 2 Figure 3 Figure 40, 80 p<q(r Figure 9

Claims (1)

【特許請求の範囲】 1、銅もしくは銅合金製の炭素鋼ブルーム鋳造用鋳型で
、且つ、銅板の冷却がスリット溝タイプの鋳型において
、長辺銅板のスリット溝の深さをコーナー部に向けて順
次浅くしたことを特徴とする連続鋳造用鋳型。 2、長辺銅板のスリット溝に銅又は銅合金より熱伝導率
の低い金属部材を溝底に施したことを特徴とする請求項
1に記載の連続鋳造用鋳型。 3、銅もしくは銅合金製の炭素鋼ブルーム鋳造用鋳型で
、且つ銅板の冷却がスリット溝タイプの鋳型において、
長辺銅板のスリット溝の幅をコーナー部に向けて順次巾
小にしたことを特徴とする連続鋳造用鋳型。 4、銅もしくは銅合金製の炭素鋼ブルーム鋳造用鋳型で
、且つ、鋼板の冷却がスリット溝タイプの鋳型において
、長辺銅板のスリット溝間の隔たりをコーナー部に向け
て順次遠くしたことを特徴とする連続鋳造用鋳型。
[Claims] 1. In a mold for casting a carbon steel bloom made of copper or copper alloy, and in which the cooling of the copper plate is of the slit groove type, the depth of the slit groove of the long side copper plate is directed toward the corner part. A continuous casting mold characterized by successively shallower molds. 2. The continuous casting mold according to claim 1, wherein a metal member having a lower thermal conductivity than copper or a copper alloy is applied to the bottom of the slit groove of the long side copper plate. 3. A carbon steel bloom casting mold made of copper or copper alloy, and a slit groove type mold for cooling the copper plate,
A mold for continuous casting, characterized in that the width of the slit groove in the long side copper plate gradually decreases toward the corner. 4. A mold for casting a carbon steel bloom made of copper or copper alloy, and a slit groove type mold for cooling the steel plate, characterized in that the distance between the slit grooves on the long sides of the copper plate is gradually increased toward the corners. Continuous casting mold.
JP1134245A 1989-05-26 1989-05-26 Continuous casting mold to prevent slab corner cracking Expired - Lifetime JPH0673718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1134245A JPH0673718B2 (en) 1989-05-26 1989-05-26 Continuous casting mold to prevent slab corner cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1134245A JPH0673718B2 (en) 1989-05-26 1989-05-26 Continuous casting mold to prevent slab corner cracking

Publications (2)

Publication Number Publication Date
JPH03453A true JPH03453A (en) 1991-01-07
JPH0673718B2 JPH0673718B2 (en) 1994-09-21

Family

ID=15123792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1134245A Expired - Lifetime JPH0673718B2 (en) 1989-05-26 1989-05-26 Continuous casting mold to prevent slab corner cracking

Country Status (1)

Country Link
JP (1) JPH0673718B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1792676A1 (en) * 2005-12-05 2007-06-06 KM Europa Metal Aktiengesellschaft Mould for continuous casting of metal
JP2016112589A (en) * 2014-12-16 2016-06-23 Jfeスチール株式会社 Continuous casting method of steel and casting mold for continuous casting

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093563A1 (en) * 2010-01-29 2011-08-04 주식회사 풍산 Casting mold plate, casting mold plate assembly, and casting mold including same
WO2011093564A1 (en) * 2010-01-29 2011-08-04 주식회사 풍산 Casing mold plate, mold plate assembly, and mold

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206555A (en) * 1981-06-16 1982-12-17 Kawasaki Steel Corp Cooling method for water cooled mold for continuous casting of slab

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206555A (en) * 1981-06-16 1982-12-17 Kawasaki Steel Corp Cooling method for water cooled mold for continuous casting of slab

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1792676A1 (en) * 2005-12-05 2007-06-06 KM Europa Metal Aktiengesellschaft Mould for continuous casting of metal
JP2007152432A (en) * 2005-12-05 2007-06-21 Km Europ Metal Ag Metallic mold for continuous casting of metal
JP2016112589A (en) * 2014-12-16 2016-06-23 Jfeスチール株式会社 Continuous casting method of steel and casting mold for continuous casting

Also Published As

Publication number Publication date
JPH0673718B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
RU2142861C1 (en) Method for continuous casting of peritectic steels
JPS60158955A (en) Mold for continuously casting steel strip and continuous casting method using said mold
JPS5832552A (en) Mold for continuous casting of thin walled ingot
AU757475B2 (en) High speed continuous casting device and relative method
JPH03453A (en) Continuous casting mold for restraining corner crack in casting billet
US4911226A (en) Method and apparatus for continuously casting strip steel
JPH09276994A (en) Mold for continuous casting
JPH026037A (en) Method for continuously casting steel
JPH01289542A (en) Casting mold for continuous casting of steel
JP2950152B2 (en) Continuous casting mold for slab
JPS626897B2 (en)
JPH01113164A (en) Method and apparatus for producting unidirectionally solidified ingot
JP3389449B2 (en) Continuous casting method of square billet
JPH01228645A (en) Method for preventing longitudinal crack on solidified shell surface in continuous casting mold
JPH10193041A (en) Mold for continuously casting molten steel
JPH026038A (en) Mold for continuously casting steel
US5503216A (en) Continuous casting mold for the casting of thin slabs
US5095970A (en) Continuous-casting mold for vertically casting metal strip
JPH1058093A (en) Method for continuously casting steel
JPS5970442A (en) Mold for continuous casting
JP2574471B2 (en) Cooling drum for continuous casting of thin cast slabs
JPS5832551A (en) Method and mold for continuous casting of thin walled ingot
US2626436A (en) Ingot mold
JPH0539807Y2 (en)
JPH09225593A (en) Mold for continuously casting square billet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 15