JPH01113164A - Method and apparatus for producting unidirectionally solidified ingot - Google Patents

Method and apparatus for producting unidirectionally solidified ingot

Info

Publication number
JPH01113164A
JPH01113164A JP27256987A JP27256987A JPH01113164A JP H01113164 A JPH01113164 A JP H01113164A JP 27256987 A JP27256987 A JP 27256987A JP 27256987 A JP27256987 A JP 27256987A JP H01113164 A JPH01113164 A JP H01113164A
Authority
JP
Japan
Prior art keywords
water
cooling
shell
mold
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27256987A
Other languages
Japanese (ja)
Inventor
Masaaki Takagi
高木 政明
Tetsuo Okamoto
岡本 徹夫
Shinichi Kawabata
河端 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP27256987A priority Critical patent/JPH01113164A/en
Publication of JPH01113164A publication Critical patent/JPH01113164A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To radically eliminate problem of air gap caused by strain of lower face of shell and to improve cooling speed by water-cooling as directly hitting cooling water to the exposed shell. CONSTITUTION:Molten steel 1A is poured into a mold 2 on a water cooled base plate 31. Then, the molten metal poured is cooled with the water cooled base plate 31 and then the shell 1B comes to so thick that thickness thereof can support the molten metal 1A at the upper part, it is shifted to water cooling part 4. At there, by directly bringing the cooling water 5 into contact with the shell 1B without the base plate 31, it is cooled. In this result, as the unidirectional solidification is perfectly developed and rapidly progressed, an ingot without any segregation can be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

及皿り亘仰 [産業上の利用分野] 本発明は、鋳塊の全体にわたって一方向に凝固が進行し
た金属の鋳塊を製造する方法に関し、それを実施するた
めの装置をも包含する。 [従来の技術] 鋼を例にとっていえば、一般に金属の鋳造は、よく知ら
れているとおり、定盤上に置いた筒状のインゴットケー
ス内に、上注ぎ法または下注ぎ法により溶鋼を注入し、
必要により押湯を利用しながら凝固させることによって
行なっている。 溶鋼の凝固は横方向から中心に向って進行し、程度の差
こそあれ、中心部に偏析ヤ、いわゆるパイプ、ルーズネ
スが発生することが避け、られない。 介在物についてみれば、溶鋼中を浮上しきらないうちに
凝固が進むから、鋼塊中にとらえられてしまう。 こうした欠点は、C含有量が比較的高く(0゜30%以
上)、従ってCの偏析や炭化物の粗大化を防がなければ
ならないにもかかわらず、そのおそれが大きい軸受鋼や
工具鋼、ざらには介在物を極力低減すべき清浄鋼に関し
て、とくに深刻でおる。 実質上偏析のない鋳塊を得る方法として、できるだけ溶
鋼の底面から表面へ向う凝固、いわゆる一方向凝固法が
効果的でおるとして注目されるようになった。 出願人
はその技術を開発し、すでに提案した(特願昭61−1
15747号、特願昭62−137967号)。 これ
らの方法は、溶鋼の表面を保温するか、または積極的に
加熱することによって、溶鋼凝固の方向性を強める条件
を維持しつつ、固液界面がゆっくりと上昇していくよう
にしたものである。 こうした努力により、鋳塊の偏析は実用上支障のないレ
ベルまで減少させることができたが、溶鋼の底面を冷却
する一方で表面を保温または加熱するため1、全体を凝
固させるのに長時間を要するとともに、エネルギー消費
が大きいという問題がある。 また、定盤上での冷却で
は、凝固方向に厚手の一方向凝固塊を得ることに困難が
必ることを経験した。 この困難は、鋳塊が厚手になる
ほど、溶湯からの後熱が定盤(銅製)の熱伝導度から期
待できる程度に進まな・いことに起因している。 [発明が解決しようとする問題点] 本発明の目的は、一方向凝固を完全かつ速やかに行なっ
て厚い鋳塊も容易に鋳造できる一方向凝固塊の製造方法
を提供することにある。 その方法を実施するための装
置を提供することもまた、本発明の目的に含まれる。 及里辺璽感
[Industrial Application Field] The present invention relates to a method for manufacturing a metal ingot in which solidification progresses in one direction throughout the ingot, and also includes an apparatus for carrying out the method. [Prior art] Taking steel as an example, metal casting generally involves pouring molten steel into a cylindrical ingot case placed on a surface plate using a top pouring method or a bottom pouring method. death,
This is done by solidifying using a riser if necessary. Solidification of molten steel progresses from the lateral direction toward the center, and although there are differences in degree, it is inevitable that segregation, so-called pipe, and looseness will occur in the center. Regarding inclusions, they solidify before they can fully float through the molten steel, so they become trapped in the steel ingot. These drawbacks are due to the relatively high C content (over 0.30%), and although it is necessary to prevent C segregation and coarsening of carbides, bearing steel, tool steel, and rough This problem is particularly serious when it comes to clean steel, where inclusions must be reduced as much as possible. As a method for obtaining ingots with virtually no segregation, the so-called unidirectional solidification method, in which molten steel is solidified from the bottom to the surface, has gained attention as being effective. The applicant has developed the technology and has already proposed it (Patent Application No. 1986-1)
No. 15747, Japanese Patent Application No. 137967/1982). These methods maintain conditions that strengthen the directionality of molten steel solidification by insulating or actively heating the surface of the molten steel, while allowing the solid-liquid interface to slowly rise. be. Through these efforts, we were able to reduce the segregation of the ingot to a level that does not pose a practical problem. However, because the bottom of the molten steel is cooled while the surface is kept warm or heated, it takes a long time to solidify the entire ingot. In addition, there is a problem that energy consumption is large. In addition, we experienced that it is difficult to obtain a thick unidirectional solidified mass in the solidification direction when cooling on a surface plate. This difficulty is due to the fact that the thicker the ingot, the less the after-heat from the molten metal will proceed to the extent expected from the thermal conductivity of the surface plate (made of copper). [Problems to be Solved by the Invention] An object of the present invention is to provide a method for producing a unidirectionally solidified ingot, which can perform unidirectional solidification completely and quickly and can easily cast even thick ingots. It is also within the object of the invention to provide an apparatus for carrying out the method. Feeling of distance

【問題点を解決するための手段】[Means to solve the problem]

本発明の一方向凝固塊の製造方法は、代表的には溶鋼で
ある溶融金属を水冷定盤上に設けた鋳型に注入し、溶融
金属の底部に凝固金属のシェルを形成させた後、鋳型を
水冷定盤から分離して、露出したシェルに直接冷却水を
当てて水冷することにより一方向凝固の進行をはかるこ
とを特徴とする。 この方法を実施するための装置は、図面に示すように、
下面を流れる冷却水5により冷却される水冷定盤31を
設けた間接水冷部3と、それに隣接して上部が開放され
冷却水が流れる直接水冷部4とを備え、耐火断熱材21
を内張りした底のない鋳型2、およびこの鋳型2を上記
間接水冷部3と直接水冷部4との間を往復動させる駆動
手段6からなり、上記鋳型2は下端から横方向に伸びる
裾板22A、22Bを有し、鋳型2が間接水冷部3に必
る間は裾板22Aが直接水冷部4の上を覆って冷却水5
の流路を形成するように構成したことを特徴とする。 [作 用] 鋳型2内に注入された溶鋼1Aは、間接水冷部3におい
て定盤31に接して冷却され、溶鋼下部が凝固してシェ
ル1Bができる。 シェルは冷却が進むにつれて厚くな
り、冷却速度が遅くなる。 その度合が、前記したように定盤および凝固金属の熱伝
導率から予測されるより大きいのは、シェルが厚くなる
につれて、定盤に接している面が歪み、定盤とシェルと
の間にエアギャップが生じるためであると判明した。 
エアギャップが生じると、いくら定盤を水冷しても冷却
が効果的にできないことは、容易に理解されるであろう
。 そこで本発明では、冷却初期は水冷定盤上で冷却し、上
部の溶融金属を支えられる程度までシェルが厚くなった
ら、定盤を介することなくシェルに直接冷却水を接触さ
せて冷却する方策をとった。 冷却水を直接シェルに触れさせることにより、シェル下
面の歪みによるエアギャップの問題を扱本的に解消する
とともに、冷却速度の向上をはかることができる。 [実施例] 第1図ないし第4図に示した装置で、縦と横が30cm
、高ざ40CIItの鋳塊を製造した。 はじめは第1図に示すように水冷定盤31の上にある鋳
型2に@tl1250に!Jを注入し、1分経過後に鋳
型2を第3図に示した位置、すなわち直接水冷部4に移
動し、溶鋼を冷却した。冷却の間、冷却水を流速8m/
secで流通水した。 得られた鋳塊は、全体にわたって上下方向に柱状晶がよ
く発達しており、偏析もみられなかった。 比較のため、同じ装置を使用して、間接冷却だけで、つ
まり鋳型を水冷定盤上に置いたままで溶鋼を凝固させ、
鋳塊を製造した。 この鋳塊は底面から高さ約3cmま
では柱状晶ができ偏析もないが、それより上は、方向性
が弱くなり、Cの偏析がみられた。 及皿五皇呈 本発明の鋳塊の製造方法によれば、一方向凝固が徹底し
て起り、かつ速やかに進行するから、偏析が実質上ない
鋳塊を得ることができる。 このようにして、従来は困
難であった厚手の一方向凝固鋳塊も製造可能である。 従って本発明は、轟速度鋼、刃物用ステンレスのように
微細な炭化物粒子を均一に分散させることが必要な鋼種
はもちろん、ボイラーや圧力容器などに用いる極厚高級
厚板用鋼のように、均質で欠陥のないことを要求される
鋼種の鋳塊を製造するのに適している。 本発明の装置は、上述した一方向凝固鋳塊の製造方法の
実施が容易にできる。
The method for producing a unidirectionally solidified ingot of the present invention involves injecting molten metal, typically molten steel, into a mold set on a water-cooled surface plate, forming a solidified metal shell at the bottom of the molten metal, and then molding the molten metal into a mold. The shell is separated from the water-cooled surface plate, and cooling water is applied directly to the exposed shell to cool it, thereby promoting unidirectional solidification. The apparatus for carrying out this method is as shown in the drawings:
It is equipped with an indirect water cooling section 3 provided with a water cooling surface plate 31 that is cooled by cooling water 5 flowing on the lower surface, and a direct water cooling section 4 adjacent to the indirect water cooling section 3 having an open top and through which the cooling water flows, and includes a fireproof heat insulating material 21.
A bottomless mold 2 lined with , 22B, and while the mold 2 is in the indirect water cooling part 3, the skirt plate 22A covers the top of the direct water cooling part 4 and the cooling water 5
It is characterized by being configured to form a flow path. [Function] The molten steel 1A injected into the mold 2 is cooled in contact with the surface plate 31 in the indirect water cooling section 3, and the lower part of the molten steel solidifies to form the shell 1B. The shell becomes thicker as cooling progresses, slowing down the cooling rate. The degree of this is greater than expected from the thermal conductivity of the surface plate and solidified metal as described above, because as the shell becomes thicker, the surface in contact with the surface plate becomes distorted, and there is a gap between the surface plate and the shell. It turned out that this was due to the formation of an air gap.
It will be easily understood that if an air gap occurs, no matter how much the surface plate is cooled with water, the surface plate cannot be cooled effectively. Therefore, in the present invention, cooling is performed on a water-cooled surface plate at the initial stage of cooling, and once the shell becomes thick enough to support the molten metal on the upper part, cooling water is brought into direct contact with the shell without using a surface plate to cool the shell. I took it. By bringing the cooling water into direct contact with the shell, it is possible to essentially eliminate the problem of air gaps caused by distortion of the lower surface of the shell, and to improve the cooling rate. [Example] Using the apparatus shown in Figures 1 to 4, the length and width are 30 cm.
, an ingot with a height of 40CIIt was produced. At first, as shown in Figure 1, the mold 2 is placed on the water-cooled surface plate 31 @tl1250! J was injected, and after one minute had elapsed, the mold 2 was moved to the position shown in FIG. 3, that is, directly to the water cooling section 4, and the molten steel was cooled. During cooling, the cooling water flow rate is 8m/
The water was circulated at sec. In the obtained ingot, columnar crystals were well developed in the vertical direction throughout, and no segregation was observed. For comparison, the same equipment was used to solidify molten steel with only indirect cooling, that is, with the mold placed on a water-cooled surface plate.
An ingot was produced. This ingot had columnar crystals and no segregation up to a height of about 3 cm from the bottom, but above that the directionality became weak and segregation of C was observed. According to the method for producing an ingot of the present invention, unidirectional solidification occurs thoroughly and proceeds rapidly, so that an ingot substantially free of segregation can be obtained. In this way, it is also possible to produce thick unidirectionally solidified ingots, which has been difficult in the past. Therefore, the present invention applies not only to steel types that require uniform dispersion of fine carbide particles, such as low-speed steel and stainless steel for cutlery, but also to steels for extra-thick high-grade plates used in boilers and pressure vessels, etc. Suitable for producing ingots of steel types that are required to be homogeneous and free of defects. The apparatus of the present invention can easily carry out the above-described method for producing a unidirectionally solidified ingot.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の詳細な説明するためのものであ
って、第1図は装置の平面図である。第2図および第3
図は一部を断面で示した側面図であり、前者は鋳型を間
接水冷部に置いたところを、後者は鋳型を直接水冷部に
移動させたところを、それぞれ示す。 第4図は、第3
図のI−I方向の縦断面図である。 1A・・・溶融金属   IB・・・凝固金属のシェル
2・・・鋳 型     21・・・耐火断熱材3・・
・間接水冷部   31・・・定 盤4・・・直接水冷
部   5・・・冷却水6・・・鋳型駆動手段 特許出願人   大同特殊鋼株式会社 代理人  弁理士  須 賀 総 夫 第4図
The drawings are for explaining the present invention in detail, and FIG. 1 is a plan view of the apparatus. Figures 2 and 3
The figures are side views, partially in cross section, with the former showing the mold placed in the indirect water cooling section, and the latter showing the mold being moved to the direct water cooling section. Figure 4 shows the third
FIG. 2 is a longitudinal cross-sectional view taken along the line I-I in the figure. 1A... Molten metal IB... Solidified metal shell 2... Mold 21... Fireproof insulation material 3...
・Indirect water cooling section 31... Surface plate 4... Direct water cooling section 5... Cooling water 6... Mold drive means patent applicant Daido Steel Co., Ltd. Agent Patent attorney Souo Suga Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)溶融金属を水冷定盤上に設けた鋳型に注入し、溶
融金属の底部に凝固金属のシェルを形成させた後、鋳型
を水冷定盤から分離して、露出したシェルに直接冷却水
を当てて水冷することにより一方向凝固の進行をはかる
ことを特徴とする一方向凝固鋳塊の製造方法。
(1) After pouring molten metal into a mold set on a water-cooled surface plate and forming a shell of solidified metal at the bottom of the molten metal, the mold is separated from the water-cooled surface plate and cooling water is directly applied to the exposed shell. 1. A method for producing a unidirectionally solidified ingot, characterized in that unidirectional solidification is progressed by cooling with water.
(2)下面を流れる冷却水により冷却される水冷定盤を
設けた間接水冷部と、それに隣接して上部が開放され冷
却水が流れる直接水冷部とを備え、耐火断熱材を内張り
した底のない鋳型、およびこの鋳型を上記間接水冷部と
直接水冷部との間を往復させる駆動手段からなり、上記
鋳型は下端から横方向に伸びる裾板を有し、鋳型が間接
水冷部にある間は裾板が直接水冷部の上を覆つて冷却水
の流路を形成するように構成したことを特徴とする一方
向凝固塊の製造装置。
(2) Equipped with an indirect water cooling section equipped with a water cooling surface plate that is cooled by cooling water flowing on the bottom surface, and an adjacent direct water cooling section with an open top and through which cooling water flows, the bottom is lined with fireproof insulation material. and a drive means for reciprocating the mold between the indirect water cooling section and the direct water cooling section, the mold having a skirt plate extending laterally from the lower end, and while the mold is in the indirect water cooling section. 1. An apparatus for producing a unidirectional solidified ingot, characterized in that a skirt plate is configured to directly cover a water cooling part to form a cooling water flow path.
JP27256987A 1987-10-28 1987-10-28 Method and apparatus for producting unidirectionally solidified ingot Pending JPH01113164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27256987A JPH01113164A (en) 1987-10-28 1987-10-28 Method and apparatus for producting unidirectionally solidified ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27256987A JPH01113164A (en) 1987-10-28 1987-10-28 Method and apparatus for producting unidirectionally solidified ingot

Publications (1)

Publication Number Publication Date
JPH01113164A true JPH01113164A (en) 1989-05-01

Family

ID=17515734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27256987A Pending JPH01113164A (en) 1987-10-28 1987-10-28 Method and apparatus for producting unidirectionally solidified ingot

Country Status (1)

Country Link
JP (1) JPH01113164A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568833A (en) * 1995-06-07 1996-10-29 Allison Engine Company, Inc. Method and apparatus for directional solidification of integral component casting
US5674054A (en) * 1993-05-21 1997-10-07 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Reciprocating type compressor
US5704769A (en) * 1995-03-20 1998-01-06 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Noise suppressing mechanism in piston-type compressor
US7264038B2 (en) * 2005-07-12 2007-09-04 Alcoa Inc. Method of unidirectional solidification of castings and associated apparatus
US7377304B2 (en) * 2005-07-12 2008-05-27 Alcoa Inc. Method of unidirectional solidification of castings and associated apparatus
AU2011224055B2 (en) * 2005-07-12 2013-02-14 Alcoa Inc Method of unidirectional solidification of castings and associated apparatus
US8997833B2 (en) 2008-05-21 2015-04-07 Aloca Inc. Method of producing ingot with variable composition using planar solidification

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674054A (en) * 1993-05-21 1997-10-07 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Reciprocating type compressor
US5704769A (en) * 1995-03-20 1998-01-06 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Noise suppressing mechanism in piston-type compressor
US5568833A (en) * 1995-06-07 1996-10-29 Allison Engine Company, Inc. Method and apparatus for directional solidification of integral component casting
US5680895A (en) * 1995-06-07 1997-10-28 Allison Engine Company Apparatus for directional solidification of integral component casting
US7264038B2 (en) * 2005-07-12 2007-09-04 Alcoa Inc. Method of unidirectional solidification of castings and associated apparatus
US7377304B2 (en) * 2005-07-12 2008-05-27 Alcoa Inc. Method of unidirectional solidification of castings and associated apparatus
US7951468B2 (en) 2005-07-12 2011-05-31 Alcoa Inc. Method of unidirectional solidification of castings and associated apparatus
AU2006267086B2 (en) * 2005-07-12 2011-06-16 Alcoa Inc. Method of unidirectional solidification of castings and associated apparatus
JP2013027928A (en) * 2005-07-12 2013-02-07 Alcoa Inc Method of unidirectional solidification of casting and associated apparatus
AU2011224055B2 (en) * 2005-07-12 2013-02-14 Alcoa Inc Method of unidirectional solidification of castings and associated apparatus
AU2011224055B9 (en) * 2005-07-12 2013-03-14 Alcoa Inc Method of unidirectional solidification of castings and associated apparatus
US8997833B2 (en) 2008-05-21 2015-04-07 Aloca Inc. Method of producing ingot with variable composition using planar solidification

Similar Documents

Publication Publication Date Title
JPH01113164A (en) Method and apparatus for producting unidirectionally solidified ingot
US4078600A (en) Continuous casting
JPH0342144A (en) Method for cooling mold for continuous casting and mold thereof
JPS632534A (en) Method of bottom pouring steel ingot making
JPS60137562A (en) Continuous casting method for thin sheet
JP2969305B2 (en) Continuous casting method
JPH0526584B2 (en)
JPS6339341B2 (en)
JPS6153143B2 (en)
JPH0518664B2 (en)
JPS61186153A (en) Continuous casting method of thin strip by solidifying it below molten metal surface
JPS6087956A (en) Continuous casting method of metal
JPH0270355A (en) Method and device for casting continuous strip
JPH0515403Y2 (en)
JPS6354473B2 (en)
JPS61276745A (en) Steel ingot making method
JPS6216851A (en) Device for casting thin sheet
JPS58168463A (en) Continuous casting method for thin walled ingot
JPS61245949A (en) Continuous casting method
Yamaguchi et al. Control of uneven shell formation of stainless steel in early stages of solidification
JPS6227314Y2 (en)
JPS60257964A (en) Ingot making device for flat steel ingot
JPH0241723A (en) Method for casting mold
JPS60177933A (en) Production of non-segregated steel ingot
JPS6221443A (en) Continuous casting device for thin sheet